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Low-energy BHZ Hamiltonian for Dirac fermions in HgTe quantum wells 
The low-energy band structure in HgTe QWs in the vicinity of the Γ point of the Brillouin zone is 

analytically described within the Dirac-like Bernevig-Hughes-Zhang (BHZ) model [1]. This model takes 

into account the lowest electron-like level E1, formed by the Bloch functions at the Γ point of the 

Brillouin zone with the total angular momentum mJ=±1/2, and the top hole-like level H1 formed by the 

Bloch functions of heavy-holes with mJ=±3/2 [1]. In the basis |E1,+〉, |H1,+〉, |E1,–〉, |H1,–〉, the BHZ 

Hamiltonian is written as  

𝐻BHZ (𝐤) = (
𝐻+ (𝐤) 0

0 𝐻− (𝐤)
),    (SM1) 

where k = (kx, ky) is the momentum in the QW plane, and 

𝐻+ (𝐤) = (𝐶 − 𝔻𝑘2)𝜎0 + (𝑀 − 𝔹𝑘2)𝜎𝑧 + 𝐴(𝑘𝑥𝜎𝑥 + 𝑘𝑦𝜎𝑦).   (SM2) 

Here, σ0 is a 2×2 unit matrix, namely I2, σα (with =x, y or z) are the Pauli matrices, and C, M, A, 𝔹, 𝔻 

are the structure parameters, which depend on the QW width, the barrier material, the QW growth 

direction and external conditions [2], respectively. The mass parameter M defines the band gap (which 

equals 2M) at the Γ point (k = 0) and the ordering of E1 and H1 subbands. For instance, the electron-

like subband lies below the hole-like at M < 0. The blocks 𝐻+(𝐤) and 𝐻−(𝐤) in Eq. (1) describe the 

spin-up and spin-down electrons in the E1 and H1 subbands, respectively. Note that due to time reversal-

symmetry 𝐻−(𝐤) = 𝐻+
∗ (−𝐤), where the star represents the complex conjugation. In Eq. (1), we have 

also neglected the small terms breaking inversion [3] and axial symmetries [4] around the growth 

direction, which results in the block-diagonal form of 𝐻BHZ (𝐤). 

 

The terms 𝔻𝑘2𝜎0 and 𝔹𝑘2𝜎𝑧 in Eq. (SM2) quadratic in momentum are not present in the Dirac 

Hamiltonian familiar from relativistic quantum mechanics, but they play an important role in 

semiconductor QWs. In particular, the relative sign of 𝔹 and M determines the Z2 classification: the 

system is classified as a topologically trivial insulator if 𝑀𝔹 < 0 and non-trivial insulator for 𝑀𝔹 > 0 

[1]. Since for HgTe QWs 𝔹 < 0, the inverted QW with M < 0 is thus a non-trivial topological insulator 

(for Fermi energies inside the gap), while the non-inverted QW with M > 0 is a trivial band insulator. 

The phase transition between these two types of insulators therefore occurs at M = 0, when the QW band 

structure mimics massless Dirac fermions. 

 

The Hamiltonian (SM1) can be exactly diagonalized, and the two branches of doubly degenerated eigen-

energies are: 

𝐸𝑠
(±)

(𝐤) = 𝐶 − 𝔻𝑘2 + 𝑠√(𝑀 − 𝔹𝑘2)2 + 𝐴2𝑘2,   (SM3) 

 

where s = +1 (−1) stands for the conduction (valence) band, and the superscript ± of 𝐸𝑠
(±)(𝐤) stands for 

spin up (down) component, which are degenerated here.  

 

To calculate Landau levels (LLs) dispersion in the presence of an external magnetic field B oriented 

perpendicular to the QW plane, one should make the Peierls substitution of the momentum 𝐤 → −𝑖𝛁 +
𝑒𝐀 𝑐ℏ⁄  (where 𝐀 is the vector potential so that 𝑩 = 𝛁 × 𝐀) and add an additional Zeeman term 𝐻Z  to 

𝐻BHZ (𝐤) 
 

𝐻𝑍 =
𝜇𝐵𝐵

2
(

𝑔𝑒 0 0 0
0 𝑔ℎ 0 0
0 0 −𝑔𝑒 0
0 0 0 −𝑔ℎ

).    (SM4) 

 

Here, μB is the Bohr magneton, and ge and gh are the g-factors describing the Zeeman splitting in E1 and 

H1 subbands, respectively. Solving the eigenvalue problem in the presence of magnetic field, the LL 

energies are found analytically [5]: 

 

𝐸𝑛≥1
(±)

= 𝐶 −
2𝔻𝑛±𝔹

𝑎𝐵
2 ±

𝑔𝑒+𝑔ℎ

4
𝜇𝐵𝐵 + 𝑠√(𝑀 −

2𝔹𝑛±𝔻

𝑎𝐵
2 ±

𝑔𝑒−𝑔ℎ

4
𝜇𝐵𝐵)

2
+

2𝑛𝐴2

𝑎𝐵
2 , 



𝐸0
(+)

= 𝐶 + 𝑀 −
𝔻+𝔹

𝑎𝐵
2 +

𝑔𝑒

2
𝜇𝐵𝐵, 

𝐸0
(−)

= 𝐶 − 𝑀 −
𝔻−𝔹

𝑎𝐵
2 −

𝑔ℎ

2
𝜇𝐵𝐵,     (SM5) 

 

where aB is the magnetic length (aB
2 = cħ/eB). Typically in HgTe 𝑔𝑒 ≫ 𝑔ℎ [6], so the latter can be 

neglected.  

 

As mentioned in the main text, the most essential difference between massless Dirac Fermions in 

semiconductor QWs and those in graphene is the absence of spin degeneracy of the LLs due to non-zero 

values of 𝔹, 𝔻, 𝑔𝑒 and 𝑔ℎ. These terms also result in the absence of the series of equidistantly spaced 

LLs, as existing in graphene. In order to calculate the structure parameters for the BHZ Hamiltonian, 

we apply the perturbative approach [7] to the 8-band k∙p Hamiltonian [8]. This model directly takes into 

account the interactions between Γ6, Γ8 and Γ7 bands in bulk materials and well describes the electronic 

states in HgCdTe-based QWs. In the 8-band Kane Hamiltonian, we take into account the terms, 

describing the strain effect arising due to mismatch of lattice constants in the buffer, QW layers and 

CdHgTe barriers [8]. Parameters for the bulk materials, and valence band offsets, used in the 8-band 

Kane model, are taken from Ref [8]. In the main text, we consider the QWs, grown along (001) and (013) 

crystallographic orientations. 

 

To derive effective 2D BHZ Hamiltonian valid in the vicinity of the Γ point from the 8-band Kane 

model, we follow the procedure proposed in Ref. [9] and described in details in the supplementary 

materials of Ref. [7]. First, we split the Kane Hamiltonian HKane into two parts HKane = H(0)(kz) + 

H(1)(kz, kx, ky), where H(0)(kz) is the Kane Hamiltonian at kx = ky = 0. In our case, the z axis is oriented 

along (0mn) direction (m and n are positive integer), while the x and y axes correspond to the directions 

(100) and (0𝑛�̅�), respectively. Then, we numerically diagonalize H(0)(kz), to obtain the energies and 

envelope functions and to classify of electronic levels as electron-like Ep, hole-heavy-like Hn, light-

hole-like LHp or spin-off-like SOp levels (p = 1, 2, …). After, we group the eigenstates of H(0)(kz) into 

A and B subsets. The A subset includes the basis states of {|E1,±〉, |H1,±〉} levels. In the B subset, we 

consider eight above-lying electron-like states and eight subbands for light-hole-like and hole-heavy-

like states. All the other subbands are neglected since they are well separated in energy. The states in 

both classes are not coupled, since they are eigenstates of H(0)(kz). The presence of H(1)(kz, kx, ky) 

introduces the mixing between the states from two subsets. To derive effective BHZ Hamiltonian, we 

treat H(1)(kz, kx, ky) as a small perturbation and apply the second-order Löwdin perturbation method to 

eliminate the coupling between the states from different subsets [9]: 

𝐻BHZ(k)𝑚,𝑚′ = 𝐸𝑚𝛿𝑚,𝑚′ + 𝐻𝑚,𝑚′
(1)

+
1

2
∑ 𝐻𝑚,𝑙

(1)
𝐻𝑙,𝑚′

(1)
(

1

𝐸𝑚−𝐸𝑙
+

1

𝐸𝑚′−𝐸𝑙
)𝑙 .   (SM6) 

Here, the indices m, m’ correspond to states in set A, the indices l correspond to the states in set B, 𝐻𝑚,𝑚′
(1)

 

is the matrix element of H(1)(kz, kx, ky), calculated by using the envelope function of H(0)(kz). Parameters 

for BHZ Hamiltonian calculated for different thicknesses of HgTe QWs are provided in Table SM1. 

Figure SM1 shows the band dispersion for gapless and inverted HgTe/Cd0.7Hg0.3Te QWs grown on 

(013) CdTe buffer (see Tab. SM1). One can see, that for small values of the wave vector, the energy 

dispersion is reproduced by both the BHZ and 8-band k·p models. The two models show significant 

deviations at higher k values. 



Table SM1. Structure parameters involved in the BHZ Hamiltonian for HgTe/CdxHg1-xTe QWs grown 

on (013)-oriented CdTe buffer, which were used for the calculations presented in Fig. 1 and 3 in the 

main text. 

d (nm) x C (meV) M (meV) A, (meV·nm) 
𝔹 

(meV·nm2) 
𝔻 

(meV·nm2) 
ge gh 

6.2 0.65 –26.5 0 375.8 –634.4 –451.6 59.15 2.43 

8 0.8 –32.8 –12.7 353.3 –828.5 –645.4 44.04 2.41 

 

 
Figure SM1: Comparison of energy dispersion for a) gapless HgTe/Cd0.65Hg0.35Te QWs and b) gapped 

HgTe/Cd0.8Hg0.2Te QWs calculated on the basis of the BHZ and 8-band k·p models. To stress the role 

of the quadratic terms, the green curves also represent the band structure within the Dirac model, i.e. the 

BHZ Hamiltonian at 𝔹 = 𝔻 = 0. It is noticeable, that for small values of k, all models reproduce the 

same behavior while for higher k a significant deviation may arise. 

 

Transport characterization 
All the samples studied for emission in this paper were additionally characterized by means of magneto-

transport as it is presented on Figure SM 2 for the single 8nm thick quantum well sample #101109. The 

carriers’ concentration was calculated from the period of Shubnikov-de-Haas oscillations in reciprocal 

magnetic field, N = 4.58∙1011 cm-2. Then, Van der Pauw method was employed to determine the carriers’ 

mobility: a four-point probe placed around the perimeter of the sample allows measuring the average 

conductivity of the sample at liquid helium temperature. For instance, for the sample #101109 the 

conductivity σ = 0.0113146 Ohm∙m. Finally, knowing the carrier’s concentration in the sample and the 

conductivity one may calculate the mobility: µ = 154000 cm2/V∙s. All these data are presented in the 

summary table in the main text. 

 



 
Figure SM2: The longitudinal magneto-transport curve of the single 8 nm QW exhibits nicely seen 

Shubnikov-de Haas oscillations. The figure inset shows these oscillations in the reciprocal magnetic 

field, their period in 1/B allows to determine the sheet density of the carriers NS = e/h = 4.58∙1011 cm-

2. 

 

Temperature influence on the cyclotron resonance energy 
It is well known that temperature has a significant influence on the band structure of HgCdTe 

compounds. This can even be used to induce a topological phase transition at the critical temperature 

Tc
10. Thus, when considering radiative transitions between discrete LLs, the change of temperature can 

significantly influence the emission energy. Here, due to the different nature of the emission, originating 

from the quasi-classical cyclotron resonance, the influence of temperature on the emission frequency 

should be negligible. To verify this, we studied additional to the emission spectra, the transmission 

spectra for one sample as illustrated in Ref [10] (sample named 091222 in this reference). The 

comparison between these two methods, in the same sample at a given magnetic field value, is shown 

in Figure SM3. The upper part shows the emission spectra obtained at 4.2 K while the lower part shows 

the transmission spectra for different temperatures ranging from 2 K to 100 K, with a fixed magnetic 

field Bsample = 2 T for all measurements. Comparing the transmission measurements at different 

temperatures it is obvious that the absorption energy does not change and the slight decrease in 

amplitude may be associated with the reduced sensibility of the bolometer at elevated temperatures. We 

note that there is a slight difference between the emission and absorption energy. This can stem from 

deviations in the quantum well thickness or in the Cd content in the barriers even when using samples 

from the same wafer. However, these results seem to confirm the possibility of observing a cyclotron 

emission at temperatures reachable by Peltier coolers, without significant variation in the emission 

frequency. 

 



  
Figure SM3: Comparison of the emission (upper part) and absorption (lower part) spectra of an 8nm 

QW (Sample 091222) at a fixed magnetic field of 2T. The absorption was measured at different 

temperatures ranging from 2 K to 100 K.  

 

Furthermore, it might not be sufficient to only consider one chosen magnetic field, since in the crossed 

fields configuration the general behaviour of the emission line may change even when the energy at a 

fixed magnetic field doesn’t change. In Figure SM4 we therefore show an extended dependence with 

multiple absorption and emission measurements at different magnetic fields and temperatures ranging 

from 2 K to 130 K. The solid lines indicate calculated LL transition energies in accordance to Ref. [10]. 

Stars are absorption peak maxima extracted from the measurements as shown in Figure SM3. Full and 

empty circles are emission peaks maxima obtained in the two different operation modes of the emission 

setup, i.e. with fixed detector energy or fixed Bsample, where the FWHM of latter measurements is shown 

as error bars. The dashed green line is the emission line obtained at 4.2 K. One can see, that temperature 

independence assumed from Figure SM3, is indeed true for multiple magnetic field in the temperature 

range of almost 130 K. 

 

 
Figure SM4: a) Comparison of the emission and absorption spectra for an 8nm QW (Sample 091222) 

at different magnetic fields and temperatures, ranging from 2 K to 130 K. Solid lines indicate calculated 

LL transition energies. Stars are absorption peak maxima extracted from the measurements as shown in 

Figure SM3. Full end empty circles are emission peaks maxima obtained in the two different operation 

modes of the emission setup, i.e. with fixed detector energy or fixed Bsample, where the FWHM of latter 

measurements is shown as error bars. The dashed line indicates the emission spectra obtained at 4.2K. 



b) Full emission spectra of an 8nm QW (Sample 091222) at 4.2 K and different magnetic fields as 

indicated in panel a). 

 

Cyclotron emission obtained in a wide gapless QW 
For typical gapless HgTe/CdTe QWs the well thickness is close to critical (6.3 nm). However, this is 

only true if the QW consists of pure HgTe. This changes when Cd is added to the well. In this case the 

gapless state and its associated Dirac cone are reproduced for much higher thicknesses. For a Cd 

concentration of 13.9%, the gapless state is realized at a thickness of 30 nm. The schematic layer 

structure of such a sample studied in emission is shown in Figure SM5 b). The corresponding energy 

spectra obtained for different fixed magnetic fields is shown next to it (Figure SM5 a). We emphasize, 

that so far this was the sample with the highest tuneability (~5THz/T) reaching almost the record value 

of gapless HgxCd1-xTe bulk films (6THz/T). 

 

 
Figure SM5: a) Emission Spectra obtained with the sample S1, a gapless 30nm thick QW with 13.9% 

Cd in the QW. The corresponding layer structure is schematically shown in b)  

 

 

Influence of the applied voltage on the emission amplitude and absence of correlation between 

the emission drop and the magnetoresistance 

 
It is clear that the amplitude of the cyclotron emission increases with the applied voltage (see side peaks 

at the finite values of B in the Figure below). The best conditions for observing the emission in this 

sample were obtained with a voltage of 12 V applied between the contacts. In all the measurements 

made with the different samples, we tried to use conditions in which the cyclotron emission was most 

pronounced and the thermal background still relatively low so that the background noise could be easily 

subtracted. It should be mentioned that even though measurement at higher voltages and reduced duty 

cycle was possible, the risk of damaging the sample or destroying the gold wires at zero magnetic field 

was rather high. It was therefore better to find a compromise and use lower voltages most of the time. 

 



  
Figure SM6: a) Emission spectra measured in sample S6 at different applied voltages and duty cycles. 

b) The first derivative of the magnetoresistance at low magnetic field measured at 4K in samples S4 and 

S7. The black arrows represent the magnetic field at which the emission signal drops in each samples. 

 

 

The decrease in amplitude of the cyclotron emission observed systematically in all our samples could 

also have been attributed to the non-linearities of resistance in the magnetic field. In this case, one would 

expect to observe a change in the resistance to the magnetic field at which the emission amplitude 

decreases. The following figure therefore shows two examples of first derivatives of the 

magnetoresistance of these samples in order to highlight a possible correlation between the signal drop 

(whose corresponding magnetic fields are represented by the black arrows), and a nonlinearity of the 

magnetoresistance. This correlation is not observed in these two samples and therefore this decrease 

cannot be attributed to such an effect, nor to the appearance of Shubnikov-de Haas oscillations. 

 

 

Incipient Landau quantization regime 

The notion of discreteness of LLs is crucial in the context of the cyclotron emission in HgTe QWs, as 

for suppressing Auger recombination, LLs must be separated. However, the samples are neither into the 

quantized regime in which the LLs are totally separated (i.e. the energy gap between LLs is greater than 

their broadening), nor in the quasi-classical regime in which the LLs form a quasi-continuum of energy. 

They are indeed in conditions of incipient quantization, as introduced for example in [11,12,13,14,15]. In 

this intermediate regime the LLs are already defined, but given their width, they partially overlap (i.e. 

the energy gap between LLs is smaller than their broadening). The “incipient Landau quantization” 

regime is defined by the region of magnetic field between ct ~ 1, where t is the transport scattering 

time, and cq ~ 1, where q is the quantum scattering time, which is the average time an electron stays 

in a given quantum state [16]. Note that q is directly connected with the collision broadening of the 

Landau levels [17]. It is determined by fitting the envelope of Shubnikov-de Haas (SdH) oscillations at 

quantizing magnetic fields [18,19]. In the regime of our cyclotron emission experiments, we do already 

observe SdH oscillations in the magneto-resistance. This indicates that the LLs are de facto separated. 

At the same time, several emission modes contribute to the observed cyclotron emission. Each of them 

necessarily follows the B dependence, imprinted by the emerging LL quantization, nevertheless, their 

envelope still evolves rather linearly with B. Analogous behavior was observed, for instance, in high-

field cyclotron resonance experiments on doped graphene, see [20].   

The figure below illustrates the incipient regime. The magnetic field at which cq = 1 is Bq = 2.25 T 

(Fig. SM8) in the sample S7. For the extraction of the quantum time (q = 5.10-14 s), we used the formula: 

Δ𝜌𝑥𝑥 = 4 𝜌0 exp (−𝜋/𝜇𝑞𝐵) to fit the SdH peak amplitude, where the quantum mobility is given as  𝜇𝑞 =

𝑒 𝜏𝑞/𝑚∗ , and 𝜌0 is the resistivity at B0.  



 

Figure SM7: Illustration of the incipient regime in sample S7. The quasi-classical regime, represented 

by the region below the vertical dotted line, is defined by ct < 1, where c is the cyclotron frequency 

and t is the transport scattering time determined from low magnetic field measurements using the Drude 

model from the Hall mobility (𝜇 = 𝑒𝜏 𝑚∗⁄ ). The regime of incipient quantization of the LLs is between 

ct ~ 1 (represented by the vertical dotted line) and cq ~ 1 (represented by the vertical dashed line) 

where q is the quantum scattering time extracted from the envelope of SdH oscillations and defining 

the broadening of Landau levels. Note however that cq ~ 1 as upper bound of the incipient regime is 

not a strict condition but rather an estimate. a) Magneto-absorption results measured in sample S7 in the 

form of a color map. The cyclotron resonance evolves linearly with magnetic field up to approximately 

3 T. Full LL mapping is provided in the insert to visualize the difference between low field and high 

field optical transitions. At high magnetic fields (above 4 T), the sample is in the quantum regime, and 

unlike in the low field region, the energy evolution of inter-LL transitions becomes nonlinear. However, 

as shown in panel b), SdH oscillations are already visible from a magnetic field of 0.7 T, i.e. between 

ct ~ 1 and cq ~ 1, c) Cyclotron emission at different detection energies clearly appears in the incipient 

quantization regime. 

 

 

Recombination processes and population inversion 

Regarding the population inversion, the following 3 key conditions are met: i) there is Landau 

quantization, though LLs partially overlap; ii) there is a population inversion, i.e. the population of some 

LL (n) is greater than in the lower one (n-1); iii) the system is nonparabolic, i.e. the distance between 

(n+1) and (n) LLs is smaller than between (n) and (n-1) ones. In these conditions, let us consider if the 

nonradiative Auger recombination can kill the population inversion (the latter is the necessary condition 

for stimulated cyclotron emission). If an electron from the (inversely populated) nth LL recombine 



nonradiatively to the (n-1)th LL, its energy must be transferred to another electron. If this other electron 

also occupies the (n-1)th LL, it is then excited and returns to the nth LL. In this case nothing has changed. 

On the other hand, if this other electron, to which the energy has been transferred, occupies a LL lower 

than the (n-1)th, non-parabolicity implies (due to the energy conservation law) that non-radiative 

recombination takes place towards the DOS tail of this lower LL and its probability is therefore reduced. 

Thus, non-parabolicity reduces both the Auger recombination probability and the absorption probability 

of light between the nth and the (n+1)th LL emitted during the radiative transition of the nth to the (n-1)th 

LL. 

Figure and table for Methods 

 

Fig. SM8: Description of the Landau spectroscopy experimental setup. a) The samples are 

HgCdTe/CdHgTe QWs of different thicknesses and Cd compositions, on GaAs and CdTe substrates. b) 

The spectrometer is integrated in a cryostat and composed of two superconducting coils. One of them 

allows to apply a magnetic field to the measured sample while the other is applied to the cyclotron 

detector. A weaker third coil makes it possible to compensate for the action of the first on the second. 

The sample is excited by electrical pulses and the duty cycle of a few percent, detailed in c), is generally 

set to prevent overheating of the sample. The Landau emission signal is finally detected as a voltage 

drop across the InSb detector which is then amplified and measured via a standard lock-in technique.  

 

 
 

Sample  
Wafer 

QW 

width 

(nm) 

Gap 

width 

(meV) 

Number 

of QWs 

Carrier 

density 

 *1011 

(cm-2) 

Carrier 

mobility 

(cm2/Vs) 

Cyclotron 

mass 

mc/me 

FWHM 

(meV) 

Collision 

broadeni

ng (meV) 

S9 130415 6.3 ~ 0 1 1.3 130 000 0.01249 - 0.71 

S5 101227 6.5 ~ 0 1 1.6 225 000 0.01433 - 0.36 

S7 091222-1 8 28.1 1 3.1 190 000 0.02082 3.27 0.29 

S6 091223-1 8 30.4 1 1.95 205 000 0.01855 2.51 0.30 

S8 101109 8 - 1 4.58 154 000 0.02463 3.11 0.30 

S2 210702-5 8.5 25-30 15 0.83 115 000 0.00788 - 1.27 

S3 170410 8.0-8.2 - 50 0.23 80 000 0.00899 - 1.60 



S1 091225 30 ~ 0 1 0.5 105 000 0.0055 4.86 2 

S4 28104 8 - 1 0.6 185 000 0.0125 3.58 0.5 

 

Table SM2: Parameters summary for the samples presented in this work. Carrier density and 

mobility are extracted from transport measurements (see supplementary information); other parameters 

are extracted from the emission data. 

 

 

1 B.A. Bernevig, T.L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006). 
2 S. S. Krishtopenko, I. Yahniuk, D. B. But, V. I. Gavrilenko, W. Knap, and F. Teppe, Phys. Rev. B 94, 245402 

(2016) 
3 M. Konig, H. Buhmann, L. W. Molenkamp, T. Hughes, C.-X. Liu, X.-L. Qi, and S.-C. Zhang, J. Phys. Soc. Jpn. 

77, 031007 (2008). 
4 D. G. Rothe, R. W. Reinthaler, C.-X. Liu, L. W. Molenkamp, S.-C. Zhang, and E. M. Hankiewicz, New J. Phys. 

12, 065012 (2010). 
5 M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 

318, 766 (2007). 
6 A.M. Kadykov, S.S. Krishtopenko, B. Jouault, W. Desrat, W. Knap, S. Ruffenach, C. Consejo, J. Torres, 

S.V. Morozov, N.N. Mikhailov, S.A. Dvoretskii, and F. Teppe, Phys. Rev. Lett. 120, 086401 (2018). 
7 S.S. Krishtopenko, W. Knap, and F. Teppe, Sci. Rep. 6, 30755 (2016). 
8 S.S. Krishtopenko, I. Yahniuk, D.B. But, V.I. Gavrilenko, W. Knap, and F. Teppe, Phys. Rev. B 94, 245402 

(2016). 
9 D.G. Rothe, R.W. Reinthaler, C.-X. Liu, L.W. Molenkamp, S.-C. Zhang, and E.M. Hankiewicz, New J. Phys. 

12, 065012 (2010). 
10 M. Marcinkiewicz, S. Ruffenach, S.S. Krishtopenko, A.M. Kadykov, C. Consejo, D.B. But, W. Desrat, 

W. Knap, J. Torres, A.V. Ikonnikov, K.E. Spirin, S.V. Morozov, V.I. Gavrilenko, N.N. Mikhailov, 

S.A. Dvoretskii, and F. Teppe, Phys. Rev. B. 96, 035405 (2017). 
11 P. Plochocka, P. Kossacki, A. Golnik, T. Kazimierczuk, C. Berger, W. A. de Heer, and M. Potemski, Phys. Rev. B 
80, 245415 (2009) 
12 L. A. Ponomarenko, R. Yang, R. V. Gorbachev, P. Blake, A. S. Mayorov, K. S. Novoselov, M. I. Katsnelson, and A. 
K. Geim, Phys. Rev. Lett. 105, 136801 (2010) 
13 H. Ramamoorthy, R. Somphonsane, G. He, D. K. Ferry, Y. Ochiai, N. Aoki and J. P. Bird, Appl. Phys. Lett. 104, 
193115 (2014); https://doi.org/10.1063/1.4878535 
14 G. Ferrari, A. Bertoni, G. Goldoni, and E. Molinari, Phys. Rev. B 78, 115326 (2008) 
15 S. Bhat, J.S. Bhat, Solid State Communications 346, 114709, (2022) 
16 M. Sakowicz, J. Łusakowski, K. Karpierz, M. Grynberg, and B. Majkusiak, Applied Physics Letters 90, 172104 
(2007); doi: 10.1063/1.2731713 
17 J. P. Harrang, R. J. Higgins, R. K. Goodall, P. R. Jay, M. Laviron, and P. Delescluse, Phys. Rev. B 32, 8126 (1985) 
18 P. Lorenzini, Z. Bougrioua, A. Tiberj, R. Tauk, M. Azize, M. Sakowicz, K. Karpierz, and W. Knap, Appl. Phys. Lett. 
87, 232107 (2005); doi: 10.1063/1.2140880 
19 P. T. Coleridge, R. Stoner, R. Fletcher, Phys. Rev. B 39, 1120 (1989) 
20 M. Orlita, I. Crassee, C. Faugeras, A. B. Kuzmenko, F. Fromm, M. Ostler, Th. Seyller, G. Martinez, M. Polini and 
M. Potemski, New J. Phys. 14, 095008 (2012) 

                                                           


