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1 Analytical derivations - from M to τi

To construct the propagation times T (j → i) we must first obtain the individual response
times τi, capturing the transient response of each node i to direct incoming perturbations
from its interacting neighbors. Indeed, as we show in the main paper (Eq. (7)), the
propagation times T (j → i) can be constructed from the sequence of local responses τi
along each path. Hence we use a perturbative approach to derive the response time of a
node to a directly neighboring perturbation ∆xm.

Starting from the dynamic equation

dxi
dt

= M0(xi(t)) +
N∑
j=1

AijM1(xi(t))M2(xj(t)), (1.1)

we obtain the steady state xi by setting the derivative on the l.h.s. to zero, and then
introduce a time-independent perturbation xm(t) = xm + ∆xm on the activity of node
m, one of i’s nearest neighbors. Throughout the derivation we denote time-independent
variables, i.e. steady-states, by xi,∆xi, omitting the argument t, and time-dependent
variables by xi(t),∆xi(t). Node i’s response to the permanent ∆xm signal will follow

xi(t) = xi + ∆xi(t), (1.2)

with τi representing the relaxation time of ∆xi(t). Below, we show in detail how to
calculate τi (for a brief outline of this derivation see Methods).

Our theoretical framework. Our derivation predicts the scaling relationship be-
tween τi and each node’s weighted degree Si, directly from the system’s dynamics
M = (M0(x),M1(x),M2(x)) in (1.1). Throughout this derivation we rely on two main
approximate assumptions:

� Perturbative limit. We assume that the signal ∆xm is small, allowing us to employ
linear response theoretic tools to treat (1.1) analytically.

� Configuration model. We allow Aij to feature any arbitrary degree/(positive)
weight distribution, including scale-free or other fat-tailed density functions, but
assume that it is otherwise random [1]. Such approximation may overlook cer-
tain aspects of the network’s fine-structure, such as degree-degree correlations [2],
or clustering, which, in the limit of sparse networks (〈k〉 � N → ∞) become
negligible due to the random connectivity.

In Sec. 7 we systematically test the robustness of our predictions against these approxi-
mations. We examine the impact of large perturbtaions, including the system’s response
to complete node knockout, an unambiguously large perturbation. We also observe our
theory’s performance under increasing levels of degree-correlations, clustering, hidden
nodes and parametric noise in M. We find, that our predictions are generally insensitive
to these approximations, successfully withstanding empirically relevant levels of cluster-
ing and degree-correlations as well as large signals, all of which have but a marginal
- and in fact non-visible - effect on our predicted scaling and its consequent dynamic
regimes. The origins of this robustness are also discussed in Sec. 7. We also test the
level of uncertainty, i.e. hidden nodes and noise, beyond which our predictions break
down.
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1.1 Configuration model

Throughout our analysis below we use the configuration model framework to analyze
Aij [1]. Within this framework Aij represents a general weighted network with arbitrary
degree and weight distributions, but otherwise random structure. Hence we assume neg-
ligible correlation between the number of neighbors of a node ki, and its link weights Aij,
namely P (Aij = a|ki) = P (Aij = a). Another significant implication of the configura-
tion model assumption is that we neglect minor structural correlations between nodes
and their immediate surrounding. For instance, while two nodes, i and j, may have ex-
tremely different topological characteristics, say i is a hub and j is a low degree node,
their neighborhoods are assumed to share similar statistical properties, namely i’s (many)
neighbors are extracted from the same statistical pool as j’s (few) neighbors. Specifically,
let us denote by G(S) the group of all nodes whose weighted degrees are between S and
S + dS, i.e. G(S) = {i|Si ∈ (S, S + dS)}. This group can be characterized by one or
more random variables Qi, capturing, for instance the activity xi(t) or the response time
τi associated with a randomly selected node i ∈ G(S). The corresponding distribution

PS(Qi = q) ≡ P
(
Qi = q

∣∣i ∈ G(S)
)

(1.3)

is unique to G(S), since nodes in G(S) are distinct from nodes in G(S ′), hence, in general
PS(Qi = q) 6= PS′(Qi = q). This distinction translates also to statistics extracted from
G(S). For instance, the mean value of Qi over nodes in G(S), denoted by

Q(S) =
1

|G(S)|
∑

i∈G(S)

Qi, (1.4)

may, in general, differ from Q(S ′); in (1.4) |G(S)| represents the number of nodes in G(S).
Taking Qi to represent, e.g., response time, the implication is that the typical response
time of nodes in S is potentially different than that of nodes in S ′, i.e. τ(S) 6= τ(S ′).

Next we consider the random variable

Qi,� =
1

Si

N∑
n=1

AinQn, (1.5)

a weighted average over i’s nearest neighbors, whose probability distribution is given by
P (Qi,� = q). Averaging over nodes in G(S) we obtain

Q�(S) =
1

|G(S)|
∑

i∈G(S)

Qi,� =
1

|G(S)|
∑

i∈G(S)

1

S

N∑
n=1

AinQn, (1.6)

analogous to Q(S) in (1.4). According to the configuration model the nearest neighbors
of i ∈ G(S) and those of j ∈ G(S ′) follow similar statistics, hence we have

P
(
Qi,� = q

∣∣i ∈ G(S)
)

= P
(
Qi,� = q

∣∣i ∈ G(S ′)
)
, (1.7)

or more generally
P
(
Qi,� = q

∣∣i ∈ G(S)
)

= P (Qi,� = q), (1.8)
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capturing the independence of the neighborhood (�) statistics on its central node. There-
fore, Eq. (1.8) allows us to substitute the specific Qi,�-distribution extracted from nodes
in G(S) by the general Qi,�-distribution taken over all nodes in the network. The mean-
ing is that while the statistical properties of Qi may, generally, depend on S, with
Q(S) 6= Q(S ′), those of Qi,� are independent of S, i.e. Q�(S) = Q�(S ′), ultimately
providing Q�(S) = 〈Q〉�, an average over all nodes in the network. This translates to

Q�(S) ≡ 1

|G(S)|
∑

i∈G(S)

1

S

N∑
n=1

AinQn =
1

N

N∑
i=1

1

Si

N∑
n=1

AinQn ≡ 〈Q〉� (1.9)

where the l.h.s. represents a nearest neighbor average over nodes within G(S) and the
r.h.s. represents a nearest neighbor average over all nodes, a characteristic of the network,
independent of S.

1.2 Steady state analysis

We consider systems of the form (1.1) that exhibit at least one fully positive steady
state xi (i = 1, . . . , N). We focus on the dependence of this steady-state, xi, on a
node’s weighted (incoming) degree Si =

∑N
j=1 Aij. Therefore, we seek the average (time-

dependent) activity x(S, t) characterizing all nodes i ∈ G(S). Substituting xi(t) for the
random variable Qi in (1.4), this activity takes the form

x(S, t) =
1

|G(S)|
∑

i∈G(S)

xi(t). (1.10)

We now use (1.1) to write

dx(S, t)

dt
=

1

|G(S)|
∑

i∈G(S)

[
M0

(
xi(t)

)
+

N∑
n=1

AinM1

(
xi(t)

)
M2

(
xn(t)

)]
, (1.11)

which we approximate by

dx(S, t)

dt
= M0

(
x(S, t)

)
+M1

(
x(S, t)

) 1

|G(S)|
∑

i∈G(S)

N∑
n=1

AinM2

(
xn(t)

)
. (1.12)

Equation (1.12) approximates

1

|G(S)|
∑

i∈G(S)

Mq(xi) ≈Mq

 1

|G(S)|
∑

i∈G(S)

xi

 , (1.13)

(q = 0, 1), namely it introduces the average into the functions (see Box). This is exact if
Mq(x) is linear, or in the limit where xi(t) are narrowly distributed within G(S). Indeed,
if all environments are uniform, as per the configuration model, one expects nodes of equal
degree S to exhibit similar characteristics, expressed by a narrow PS(xi(t)) distribution.
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The mean-field approximation in Eq. (1.13). To make analytical advances, we use
the mean-field approximation to write (shorthand)

〈
Mq(x)

〉
≈ Mq(〈x〉). This approxi-

mation assumes three limits, relevant in the context of the present discussion:

� Linear functions. In case Mq(x) are linear the mean-field approximation is exact.
Indeed, while in general the dynamics (1.1) are nonlinear, in some cases (e.g.,
R1,E) the individual functions Mq(x) are linear. Under these conditions Eq. (1.13)
becomes exact.

� Uniform activities. While xi(t) can, in general, be highly diverse, driven by the
extreme levels of heterogeneity of most networks (e.g., scale-free), our averaging
in Eq. (1.13) is limited to nodes in G(S), namely nodes of equal weighted de-
gree. Within this group we expect the activities {xi(t) | i ∈ G(S)} to be rather
homogeneous, following a bounded distribution PS(xi). This is especially relevant
under the configuration model, in which all nodes of equal degree witness a similar
surrounding neighborhood. Such homogeneity enables thedegree-based mean-field
offered in (1.13).

� Sub-linearity or saturation. The homogeneity of xi(t) ∈ G(S) is further strength-
ened in case Mq(x) is sub-linear, e.g., a saturating function (R1,R2,M,N) or a
fractional exponent (R2,P). Indeed, subjecting a distributed xi to a sub-linear or
saturating function f(xi) reduces the spread of the resulting random variable. For
example if xi is spread across, say, two orders of magnitude, then the sub-linear

√
xi

spreads only across one order of magnitude, and the saturating H(xi) is bounded
between zero and unity. While not guaranteed, such functional forms are often
encountered in many of the most frequently used dynamic models.

Therefore, despite the approximate nature of our derivation, it is no surprise that the
numerical validation fully supports its predicted outcomes.

We can now use (1.9) to express the sum on the r.h.s. of (1.12) as

1

|G(S)|
∑

i∈G(S)

N∑
n=1

AinM2

(
xn(t)

)
= S

〈
M2

(
x(t)

)〉
�
, (1.14)

where
〈
M2(x(t))

〉
�, an average over all nearest neighbor nodes in the network, is inde-

pendent of S. Equation (1.12) then takes the form

dx(S, t)

dt
= M0

(
x(S, t)

)
+ SM1

(
x(S, t)

) 〈
M2(x(t))

〉
� . (1.15)

To obtain the steady state x(S) (no t) we set the l.h.s. of (1.15) to zero, providing

R
(
x(S)

)
=

1〈
M2(x)

〉
� S

, (1.16)

where

R(x) = −M1(x)

M0(x)
. (1.17)
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Extracting x(S) from (1.16) we write

x(S) ∼ R−1 (λ) , (1.18)

where R−1(x) is the inverse function of R(x) and

λ =
1〈

M2(x)
〉
� S
∝ S−1 (1.19)

is (proportional to) the inverse weighted degree. Equation (1.18) expresses the average
steady-state activity over all nodes with in-degree S (i ∈ G(S)) in function of their
inverted degree λ ∝ S−1.

1.3 The scaling of τi

We now calculate the response time τi of a node to a neighboring perturbation. Hence,
we induce a small permanent perturbation ∆xm on the steady state activity of node m,
a nearest neighbor of i, setting

xm(t) = xm + ∆xm. (1.20)

The dynamic equation (1.1) then becomes

d(xi + ∆xi)

dt
= M0

(
xi + ∆xi(t)

)
+

N∑
j=1
j 6=m

AijM1

(
xi + ∆xi(t)

)
M2

(
xj + ∆xj(t)

)
+ AimM1

(
xi + ∆xi(t)

)
M2

(
xm + ∆xm

)
, (1.21)

where ∆xi(t) and ∆xj(t) (j = 1, . . . , N, j 6= m) are all time dependent, while ∆xm
is constant; the terms xi, xj and xm represent time-independent steady-state activities.
Linearizing around the steady state we obtain

d∆xi
dt

=

M ′
0(xi) +M ′

1(xi)
N∑
j=1

AijM2(xj)

∆xi(t)

+ M1(xi)
N∑
j=1

AijM
′
2(xj)∆xj(t) +O(∆x2), (1.22)

where M ′
q(x) (q = 0, 1, 2) represents the derivative dMq/ dx with x taken at the steady-

state, which according to (1.18) can be expressed by x = R−1(λ). Next, following a
similar derivation as the one leading to (1.15), we average of over all nodes in G(S) to
obtain a direct equation for the response of nodes with weighted degree Si ∈ (S, S+ dS),
namely we seek the dynamic equation for

∆x(S, t) =
1

|G(S)|
∑

i∈G(S)

∆xi(t). (1.23)
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Using (1.22) to express the time derivative of ∆xi(t) in (1.23) and neglecting super-linear
terms O(∆x2), we obtain

d∆x(S, t)

dt
=

M ′
0

(
x(S)

)
+M ′

1

(
x(S)

) 1

|G(S)|
∑

i∈G(S)

N∑
j=1

AijM2(xj)

∆x(S, t)

+ M1

(
x(S)

) 1

|G(S)|
∑

i∈G(S)

N∑
j=1

AijM
′
2(xj)∆xj(t), (1.24)

where x(S) is the steady state activity of nodes in G(S), as expressed in (1.18). Finally,
the configuration model assumption, allows us to simplify the first sum on the r.h.s. using
(1.9), providing us with

d∆x(S, t)

dt
=

(
M ′

0

(
x(S)

)
+ SM ′

1

(
x(S)

) 〈
M2(x)

〉
�

)
∆x(S, t) + f(S, t), (1.25)

where

f(S, t) = M1

(
x(S)

) 1

|G(S)|
∑

i∈G(S)

N∑
j=1

AijM
′
2(xj)∆xj(t). (1.26)

Equation (1.25) can be written in the form

d∆x(S, t)

dt
= − 1

τ(S)
∆x+ f(S, t), (1.27)

in which the average relaxation time τ(S) follows

1

τ(S)
= −M ′

0

(
x(S)

)
− SM ′

1

(
x(S)

) 〈
M2(x)

〉
� . (1.28)

Equation (1.27) is a non-homogeneous linear differential equation, describing the average
time dependent response ∆x(S, t) of nodes in G(S) to a neighboring permanent pertur-
bation ∆xm. Its solution takes the form

∆x(S, t) = Ce−
t

τ(S) + e−
t

τ(S)

∫ t

0

f(S, t′)e
t′
τ(S) ∆t′, (1.29)

where the constant C is set to zero to satisfy the initial condition ∆x(S, t = 0) = 0. The
relaxation of ∆x(S, t) (1.29) to its final, perturbed, state is governed by τ(S) (1.28), which
depends on the weighted degree S, both explicitly, and implicitly through x(S) in (1.18).
To observe this we focus on each of the two terms on the r.h.s. of (1.28) independently.
First we write

M ′
0

(
x(S)

)
=

dM0

dx

∣∣∣∣
x=R−1(λ)

, (1.30)

a derivative around the steady state x(S), which we expressed using (1.18). Using the
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definition of R(x) (1.17) we further develop (1.30), writing it as

M ′
0

(
x(S)

)
=

(
−M

′
1(x)

R(x)
+
M1(x)

R2(x)
R′(x)

)∣∣∣∣∣
x=R−1(λ)

= −
M ′

1

(
R−1(λ)

)
λ

+
M1

(
R−1(λ)

)
R′
(
R−1(λ)

)
λ2

, (1.31)

where in the last step we used the fact that R(R−1(λ)) = λ. In a similar fashion we
express the second term of (1.28) as

SM ′
1

(
x(S)

) 〈
M2(x)

〉
� =

〈
M2(x)

〉
�
M ′

1

(
R−1(λ)

)
λ

. (1.32)

Collecting all the terms we arrive at

1

τ(S)
= c1

M ′
1

(
R−1(λ)

)
λ

+ c2

M1

(
R−1(λ)

)
R′
(
R−1(λ)

)
λ2

, (1.33)

where the coefficients are
c1 = 1−

〈
M2(x)

〉
�

c2 = −1. (1.34)

As we are only interested in the asymptotic scaling of τ(S) with S (or λ) in the limit of
large S (small λ), we can rewrite (1.33) without the coefficients. Indeed, for sufficiently
large S, only the leading terms where S is raised to the highest power dominate the
equation, providing 1/τ(S) ∼ c1S

a + c2S
b ∼ Smax(a,b), independent of c1 and c2. Hence,

preserving only the terms relevant to the scaling, Eq. (1.33) becomes

1

τ(S)
∼ 1

λ2

[
R
(
R−1(λ)

)
M ′

1

(
R−1(λ)

)
+M1

(
R−1(λ)

)
R′
(
R−1(λ)

) ]
, (1.35)

where, once again, we used the fact that λ = R(R−1(λ)), allowing us to extract the pre-
factor of λ−2, preceding the square brackets. Interestingly, the terms within the square
brackets can be written in derivative form as d[M1(x)R(x)]/ dx, taken at x = R−1(λ).
Therefore we can further simplify (1.35) to the form

1

τ(S)
∼ 1

λ2

d
(
M1(x)R(x)

)
dx

∣∣∣∣∣
x=R−1(λ)

, (1.36)

providing us with

τ(S) ∼ λ2Y
(
R−1(λ)

)
(1.37)

where

Y (x) =

(
d(M1R)

dx

)−1

. (1.38)
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Equation (1.37) expresses τ(S) as a function of λ (1.19), from which its dependence on
S can be obtained. It indicates that the scaling of τ(S) with S is determined directly by
the dynamical functions M1(x) and R(x), or, using (1.17), M1(x) and M0(x). Next we
express Y (R−1(λ)) as a Hahn series [3] around λ = 0

Y
(
R−1(λ)

)
=
∞∑
n=0

Cnλ
Γ(n), (1.39)

allowing us to systematically consider the asymptotic behavior at S → ∞, equivalent
to λ → 0. The Hahn series is a generalization of the Taylor expansion to allow for both
negative and real powers, as represented by Γ(n), a countable set of real numbers, ordered
such that Γ(n − 1) < Γ(n) < Γ(n + 1). Hence the leading power of (1.39) is Γ(0), the
next leading power is Γ(1), etc. For large S we only keep the leading order term, namely
λΓ(0). Using (1.37) this provides us with

τ(λ) ∼ λ2λΓ(0), (1.40)

or, substituting S−1 for λ,

τ(S) ∼ Sθ, (1.41)

where
θ = −2− Γ(0), (1.42)

as presented in Eqs. (4) - (6) in the main paper text.

2 Classification of the dynamic models

We analyzed the propagation patterns in six different frequently used dynamic models,
for each obtaining θ (1.42), and hence their class as distance limited (θ = 0), degree
limited (θ > 0) or composite (θ < 0). The detailed derivations appear below.

2.1 Regulatory dynamics - R1 and R2

Gene regulation is often modeled using Michaelis-Menten dynamics, in which the activity,
i.e. expression, of all genes follows [4, 5],

dxi
dt

= −Bxai (t) +
N∑
j=1

AijH
(
xj(t)

)
, (2.1)

where H(x) is the Hill function describing the activation/inhibition of xi(t) by its neigh-
bor’s activity xj(t). Since regulation depends primarily on the presence or absence of the
regulator j, with little sensitivity to j’s specific abundance, the Hill function is designed
to be a switch-like function satisfying H(x) → 1 (H(x) → 0) for large (small) x in case
of activation, or H(x) → 1 (H(x) → 0) for small (large) x in the case of inhibition. A
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most common choice is [4, 5]

dxi
dt

= −Bxai (t) +
N∑
j=1

Aij
xhj (t)

1 + xhj (t)
, (2.2)

where the Hill coefficient h governs the rate of saturation of H(x). Equation (2.2) can be
cast in the form (1.1) with M0(x) = −Bxa, M1(x) = 1 and M2(x) = xh/(1 + xh). Hence
Eq. (1.17) provides R(x) = −B−1x−a, and its inverse follows

R−1(x) = B−
1
ax−

1
a ∝ x−

1
a . (2.3)

Next we use (1.38) to write

Y (x) =

(
dM1R

dx

)−1

, (2.4)

which taking M1(x) = 1 and the above R(x) becomes

Y (x) =

(
dx−a

dx

)−1

∼ xa+1. (2.5)

Using (2.3) in (2.5) we arrive at the Hahn expansion of (1.39)

Y
(
R−1(λ)

)
∼ Y

(
λ−

1
a

)
∼ λ−

a+1
a , (2.6)

whose leading (indeed, only) power is Γ(0) = −(a + 1)/a. Finally, we predict θ from
(1.42) to be

θ = −2− Γ(0) = −2 +
a+ 1

a
=

1− a
a

. (2.7)

For R1 we set a = 1 and h = 1, predicting θ = 0, a distance limited dynamics; for R2 we
set a = 0.4 and h = 0.2, predicting θ = 3/2, a degree limited system. Both predictions
are perfectly confirmed on both model and real networks in Figs. 3 and 4 of the main
text.

2.2 Population dynamics - P
Birth-death processes have many applications in population dynamics [6], queuing theory
[7] or biology [6]. We consider a network in which the nodes represent sites, each site i
having a population xi(t), with population flow enabled between neighboring sites. This
process can be described by

dxi
dt

= −Bxbi(t) +
N∑
j=1

Aijx
a
j (t), (2.8)

where the first term on the r.h.s. represents the internal dynamics of site i, characterized
by the exponent b, which distinguishes between processes such as [8] in/out flux (b = 0),
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mortality (b = 1), pairwise annihilation (b = 2), etc.. The second term describes the
nonlinear flow from i’s neighboring site j into i. Here we have M0(x) = −Bxb, M1(x) = 1
and M2(x) = xa, therefore R(x) = −B−1x−b. Following the same steps leading from (2.3)
to (2.6) we find

Y
(
R−1(λ)

)
∼ λ−

b+1
b , (2.9)

predicting

θ = −2− Γ(0) = −2 +
b+ 1

b
. (2.10)

In P we set b = 0.5 and a = 0.2, predicting θ = 1, a degree limited system, as confirmed
in Figs. 3 and 4 of the main text.

The dynamic exponents a, b. In both R and P we observe equation terms of the form
xα, where α takes either integer values, e.g., 1 in R1, or fractional values, i.e. 0.2, 0.4 and
0.5 in R2 and P. These exponents, as opposed to the rate constant B or the weights Aij,
are intrinsic to the dynamic mechanisms driving the system components. For example
α = 1 represents a first-order reaction, such as mortality/degradation or duplication, in
which a single copy is depleted/added to the system; α = 2 captures a second order
process, such competition or dimerization, in which the interaction rate is driven by
the number of pairs of reacting individuals/molecules. Such distinctions are intrinsic to
the physics of the interacting components, and are thus not subject to perturbations or
sensitive to environmental conditions. Therefore the fact the θ is determined by these
exponents indicates that it is a robust observable, ingrained in the system’s intrinsic
dynamics.

A non-integer α is often encountered under fractional-order reactions, which arise
when mechanisms of different order combine to form chain-reactions. A classic example
is given by the catalytic chain reaction

A+ x
k1−→ 2A+ x?

βA
k2−→ ∅, (2.11)

under k2 � k1. The kinetic equations follow

dx

dt
= −k1Ax

dA

dt
= k1Ax− k2A, (2.12)

where, due to the time-scale separation of k2 vs. k1 we take A to be at quasi-steady-state,
setting dA/ dt = 0. This provides A ∝ −x1/(β−1), which leads, in the first equation to

dx

dt
∝ −xα, 0 (2.13)
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where α = β/(β − 1), an effective non-integer order reaction. More complex chain
reactions can lead to equation terms with any desired order. For most real systems
the effective order of a reaction is determined experimentally, and terms of the form
ẋ = −xα + · · · , with 0 < α < 1, are quite common in biochemical settings.

2.3 Epidemics - E
In the susceptible-infected-susceptible (SIS) model, each node may be in one of two
potential states: infected (I) or susceptible (S). The spreading dynamics is driven by the
two process

I + S → 2I, (2.14)

where a susceptible node becomes infected through contact with one of its infected neigh-
bors, and

I → S, (2.15)

an infected node recovering and becoming susceptible again. The activity xi(t) denotes
the probability that i is in the infected state. The infection and recovery processes above
are captured by [9]

dxi
dt

= −Bxi +
N∑
j=1

Aij
(
1− xi(t)

)
xj(t). (2.16)

The first term on the r.h.s. accounts for the process of recovery, at a rate B, and the second
term accounts for the process of infection, where a node could only become infected if it
is in the susceptible state, with probability 1 − xi(t), and its neighbor is in the infected
state, with probability xj(t). We have M0(x) = −Bx, M1(x) = 1 − x and M2(x) = x,
providing (1.17)

R(x) =
1− x
Bx

, (2.17)

and therefore

R−1(x) =
1

1 +Bx
. (2.18)

Equation (1.38) takes the form

Y (x) =

 d

dx

(
(1− x)2

x

)−1

∝ 1

1− x−2
, (2.19)

allowing us to obtain the Hahn expansion (1.39) as

Y
(
R−1(λ)

)
= Y

(
1

1 +Bλ

)
=

1

1− (1 +Bλ)2
=

1

2B
λ−1 +

1

4
λ0 +

1

8
Bλ1 +O(λ2), (2.20)

whose leading power is Γ(0) = −1. Using (1.42) this predicts

θ = −2− Γ(0) = −2− (−1) = −1, (2.21)

a composite dynamics, in which hubs respond most rapidly (Figs. 3 and 4 in main paper).
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2.4 Mutualistic dynamics in ecology - M
We consider symbiotic eco-systems, such as plant-pollinator networks, in which the in-
teracting species exhibit mutualistic relationships. The species populations follow the
dynamic equation

dxi
dt

= Bxi(t)

(
1− xai (t)

C

)
+

N∑
j=1

Aijxi(t)F
(
xj(t)

)
. (2.22)

The self dynamics

M0(x) = Bx

(
1− xa

C

)
(2.23)

is a generalization of the frequently used logistic growth: when the population is small,
the species reproduce at a rate B, yet, as xi approaches the carrying capacity of the
system C, growth is hindered by competition over limited resources [10], captured by the
nonlinear −xa+1

i term. For a = 1 we arrive at the classic quadratic growth deficiency
term, in which competition scales with the number of competing pairs. In case a > 1
growth is hindered through higher order internal competition within a species.

The mutualistic inter-species interactions are captured by

M1(x) = x
M2(x) = F (x),

(2.24)

where F (x) represents the functional response, describing the positive impact that species
j has on species i. This functional response can take one of several forms [11]: Type I:
Linear impact

F (x) = αx. (2.25)

Type II: Saturating impact

F (x) =
αx

1 + αx
. (2.26)

Type III: A generalization of Type II, where

F (x) =
αxh

1 + αxh
. (2.27)

In our simulations we used Type II mutualistic interactions and set the competition
coefficient to a = 2, providing

M0(x) = Bx

(
1− x2

C

)
M1(x) = x

M2(x) =
αx

1 + αx
,

(2.28)
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where, for simplicity, we set B = C = α = 1. Hence we have (1.17)

R(x) =
1

x2 − 1
, (2.29)

and therefore

R−1(x) =

(
x+ 1

x

) 1
2

. (2.30)

Next we use (1.38) to write

Y (x) =

(
d

dx

(
x

x2 − 1

))−1

= −
(
x2 − 1

)2

1 + x2
. (2.31)

Consequently, the Hahn expansion (1.39) takes the form

Y
(
R−1(λ)

)
= Y

(λ+ 1

λ

) 1
2

 =
1

λ+ 2λ2
= λ−1 − 2λ0 + 4λ1 +O(λ2), (2.32)

for which the leading power Γ(0) = −1. As a result we predict (1.42)

θ = −2− Γ(0) = −1, (2.33)

classifying M in the composite dynamics class, as fully confirmed by the results presented
in Figs. 3 and 4 of the main paper.

2.5 Excitation dynamics between brain regions - N
Brain regions, comprising a macroscopic ensemble of neurons each, interact through neu-
ronal bundels in the connectome to activate each other. The dynamics of such excitation
interactions have been offered as [12]

dxi
dt

= −Bxi(t) + C tanhxi(t) +
N∑
j=1

Aij tanhxj(t), (2.34)

where the first term captures the relaxation of node i, at a rate B, the second term
captures the self-activation between neurons within region i, characterized by the rate
C, and the interaction term sums over the impact of i’s network neighbors. Here we set
B = 2 and C = 2.5.

In (2.34) we have M0(x) = −Bx+C tanhx, M1(x) = 1 and M2(x) = tanh x, providing
via (1.17)

R(x) =
1

Bx− C tanhx
. (2.35)

We cannot explicitly invert (2.35), however we can approximate its inverse in the λ→ 0
limit, which is all we need to evaluate θ. In the limit of large x, we have R(x) → 0,
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therefore the inverse function R−1(λ), taken at λ→ 0, is governed mainly by the large x
limit. Indeed inverting R(x) is equivalent to switching the R-axis and the x-axis. Hence
the inverse function around zero, R−1(x → 0) is the mirror image of the segment in the
original function where R(x)→ 0. The latter only occurs when x→∞. In this limit we
can approximate tanhx ≈ 1, enabling us to invert (2.35) as

R−1(λ) =
C

B
+

1

B
λ−1. (2.36)

Equation (1.38) takes the form

Y (x) =

(
d

dx

(
1

Bx− C

))−1

=
(Bx− C)2

B
. (2.37)

Substituting R−1(λ) in (2.36) in place of x, we obtain the Hahn expansion (1.39) as

Y
(
R−1(λ)

)
=

1

B
λ−2, (2.38)

with the leading power of Γ(0) = −2. Hence (1.42) predicts

θ = −2− Γ(0) = −2− (−2) = 0, (2.39)

a distance limited propagation, as observed in Figs. 3 and 4 in main text.
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Table 1: Dynamic models. Summary and classification of all dynamic models.
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3 Methods and data analysis

3.1 Numerical integration

To numerically test our predictions we constructed Eq. (1.1) for each of the systems in
Table 1, using the appropriate Aij (Scale-free, Erdős-Rényi, empirical, etc.). We then used
a fourth-order Runge-Kutta stepper (Matlab’s ode45) to numerically solve the resulting
equations. Starting from an arbitrary initial condition xi(t = 0), i = 1, . . . , N we allowed
the system to reach steady-state by waiting for ẋi → 0. To numerically realize this limit
we implemented the termination condition

N
max
i=1

∣∣∣∣xi(tn)− xi(tn−1)

xi(tn)∆tn

∣∣∣∣ < ε, (3.1)

where tn is the time stamp of the nth Runge-Kutta step and ∆tn = tn − tn−1. As the
system approaches a steady-state, the activities xi(tn) become almost independent of
time, and the numerical derivative ẋi = xi(tn) − xi(tn−1)/∆tn becomes small compared
to xi(tn). The condition (3.1) guarantees that the maximum of ẋi/xi over all activities
xi(tn) is smaller than the pre-defined termination variable ε. In our simulations, across
the different dynamics we tested, we set ε ≤ 10−12, a rather strict condition, to ensure
that our system is sufficiently close to the true steady-state.

3.2 Measuring T (j → i) and τi

To observed the spatio-temporal propagation of a perturbation we set the initial condi-
tion of the system to its numerically obtained steady-state above. We then introduce a
boundary condition on the source node j, as

xj(t) = xj + ∆xj, (3.2)

a signal in the form of a permanent perturbation to j’s steady state activity xj. In our
simulated results we used ∆xj = αxj, setting α = 0.1, a 10% activity perturbation. The
remaining N − 1 nodes continue to follow the original dynamics (1.1), responding to the
signal ∆xj. To be explicit, we simulate this propagating perturbation by numerically
solving the perturbed Eq. (1.1), which now takes the form

dxj
dt

= 0

dxi
dt

= M0

(
xi(t)

)
+

N∑
n=1

AinM1

(
xi(t)

)
M2

(
xn(t)

)
i 6= j

, (3.3)

in which the perturbation on j is held constant in time, and the remaining N − 1 nodes
respond via the system’s intrinsic dynamics. The system’s response is then obtained as

xi(t) = xi + ∆xij(t), (3.4)
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in which ∆xij(t) represents i’s temporal response to the signal ∆xj. We continue running
(3.3) until the termination condition (3.1) is realized again, and the system reaches its
new perturbed state with ∆xij(t→∞) = ∆xij, i’s final response to j’s signal. To focus
on the response time of each node, we define i’s normalized response as

fij(t) =
∆xij(t)

∆xij
, (3.5)

which transitions smoothly between fij(t) = 0 at t = 0 to fij(t) = 1 at t → ∞, as
i approaches its final perturbed state. The function fij(t) captures the spatio-temporal
response of the system in the discrete network space, namely the level of response obtained
at time t in location i, as a result of perturbation j. When fij(t) = η, we say that i has
reached an η-fraction of its final response to the traveling signal ∆xj. For instance,
setting η = 1/2 allows us to evaluate the half-life of i’s response. We then evaluate the
propagation time T (j → i) as the time when

fij
(
t = T (j → i)

)
= η (3.6)

or alternatively

T (j → i) = f−1
ij (η). (3.7)

The parameter η can be set to any value between zero and unity, η ∈ (0, 1), with the
typical choice being of order η ∼ 1/2. All results presented in the main paper were
obtained for η = 0.7, however, as we show in Fig. 1 changing the value of η has no
detectable effect on the observed behavior of τi and hence of T (j → i).

Local response. To obtain the local response τi we must measure the response time
to a signal in the direct vicinity of i, namely T (j → i) where j is directly linked to i
(Aij > 0). Hence we denote by Ki the group of incoming neighbors of i

Ki = {j = 1, . . . , N |Aij 6= 0} (3.8)

and average i’s response time to these neighbors as

τi =
1

|Ki|
∑
j∈Ki

T (j → i), (3.9)

where |Ki| is the number of nodes in Ki.

Visualizing the spatio-temporal spread. To construct the visualizations of Fig. 3a - f
in the main paper we used Gephi [13] to layout the weighted scale-free network SF, placing
the source node j at the center. As the propagation unfolds we measured the response
of all nodes i = 1, . . . , N , setting the size and color depth of each node to be linearly
proportional to fij(t) (3.5). Later, in Fig. 6 of the main text we present the exact same
data only this time we laid out the nodes according to our universal metric L(j → i),
as described in Eq. (7) of the main text. Hence we located j at the center as before
(L(j → j) = 0), and then placed all target nodes i at a radial distance r proportional to
L(j → i), while randomly selecting the azimuth ϕ ∈ [0, 2π]. In the case of degree-driven
propagation (θ > 0, red) since L(j → i) (and T (j → i)) span several orders of magnitude
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Figure 1: The impact of the arbitrary parameter η. Measuring the response times
requires to select the value of η in (3.7), an arbitrary parameter between zero and unity.
To test the impact of this parameter we tested our results for the scaling θ (1.41) under
different selected values of η. As expected, we find that our results are not affected by
the selected η.
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we set r ∝ lnL(j → i).

3.3 Logarithmic binning

The scaling τi ∼ Sθi is shown in log-scale in Fig. 4 of the main paper, with θ captured by
the linear slope of τi vs. Si. To construct these plots we employed logarithmic binning
[14]. First we divide all nodes into W bins

B(w) =
{
i = 1, . . . , N

∣∣cw−1 < Si ≤ cw
}
, (3.10)

where w = 1, ...,W and c is a constant. In (3.10) the wth bin includes all nodes i whose
weighted degrees Si are between cw−1 and cw. The parameter c is selected such that the
unity of all bins ∪Ww=1B(w) includes all nodes, hence we set cW = maxSi. We then plot
the average degree of the nodes in each bin

Sw = 〈Si〉i∈B(w) =
1

|B(w)|
∑
i∈B(w)

Si (3.11)

versus the average response time of nodes in that bin

τw = 〈τi〉i∈B(w) =
1

|B(w)|
∑
i∈B(w)

τi. (3.12)

To evaluate the measurement error for each bin we first calculated the variance in the
observed τi across all nodes in the bin σ2

w = 〈τ 2
i 〉i∈B(w) − 〈τi〉2i∈B(w). We then set the

error-bar to represent the 95% confidence interval as [15]

Ew =
1.96σw√
|B(w)|

. (3.13)

A similar scheme was used to present
〈
T (j → i)

〉
vs. N in Fig. 4g - i and T (j → i) vs.

L(j → i) in Fig. 6h - j of the main paper. In most cases the error bars were tiny, smaller
than the size of the plot markers, and hence, despite the fact that they are plotted, they
do not show in the display.

3.4 Model and empirical networks

To test our predictions we used model and real networks, as summarized below:
ER. An Erdős-Rényi random network with N = 6, 000 nodes and an average degree of
〈S〉 = 4.
SF. A binary scale-free network with N = 6, 000 nodes, 〈S〉 = 4 and degree distribution
following P (S) ∼ S−γ with γ = 3, constructed using the Barabási-Albert model [16].
SF1. Using the underlying topology of SF we added uniformly distributed weights Wij,
extracted from the uniform distribution Wij ∼ U(0.1− 0.9).
SF2. Using the underlying topology of SF we extracted the weights Wij from a scale-
free probability density function P (w) ∼ w−ν with ν = 3, resulting in an extremely
heterogeneous network, featuring both scale-free topology and scale-free weights.
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Table 2: Model networks. Summary of model networks used to exemplify our formal-
ism.

UCIonline. An instant messaging network from the University of California Irvine
[17], capturing 61, 040 transactions between 1, 893 users during a T = 218 day period.
Connecting all individuals who exchanged messages throughout the period, we obtain a
network of 1, 893 nodes with 27, 670 links, exhibiting a fat-tailed degree distribution.
Email Epoch. This dataset monitors ∼ 3 × 105 emails exchanged between 3, 185 indi-
viduals over the course of ∼ 6 months [18], giving rise to a scale-free social network with
31, 885 binary links.
Epinions. A binary online social network linking 467 individuals via 6, 538 social ties
[19].
ATN. The Advogato trust network, a symmetric social network constructed from con-
nections within the community of open source developers, comprising 6, 539 nodes and
23, 540 links [20].
PPI1. The yeast scale-free protein-protein interaction network, consisting of 1, 647 nodes
(proteins) and 5, 036 undirected links, representing chemical interactions between proteins
[21].
PPI2. The human protein-protein interaction network, a scale-free network, consisting
of N = 2, 035 nodes (protein) and L = 13, 806 protein-protein interaction links [22].
PPI3. Binary protein-protein interaction network of Arabidopsis thaliana, whose giant
connected component comprises 2, 938 nodes and 7, 720 links [23].
PPI4. Multiplex genetic and protein interactions network of Rattus norvegicus, composed
of 2, 350 nodes and 3, 484 links [24].
Brain. Mapping the physical fibre bundle connections between 998 brain regions, as
measured using diffusion tensor imaging techniques. The weights represent empirically
observed bundle densities [25].
ECO1 and ECO2. To construct the mutualistic ecological networks we collected data
on symbiotic interactions of plants and pollinators in Carlinville Illinois from [26]. The
resulting 456× 1, 429 network Mik is a bipartite graph linking the 456 plants with their
1, 429 pollinators. When a pair of plants is visited by the same pollinator they mutually
benefit each other indirectly, by increasing the pollinator populations. Similarly pollina-
tors sharing the same plants also posses an indirect mutualistic interaction. Hence we
can collapse Mik to construct two mutualistic networks: The 1, 429 × 1, 429 pollinator
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Table 3: Real networks. We implemented our theory on a set of highly diverse
empirical networks, including social, biological and ecological networks. For each network
we characterize the weighted degree distribution P (S), bounded versus scale-free (SF),
and show the empirically extracted scaling exponent γ, where relevant. For the weighted
networks ECO1/2 we also present the scaling exponent ν of P (w). In BRAIN the weights
represent empirically measured link densities from diffusion MRI. On each network we
ran the relevant models, e.g., epidemic spreading (E) on the social networks.

network ECO1 and the 456× 456 plant network ECO2. The resulting networks are

Bkl =
456∑
i=1

MikMil∑n
s=1Mis

, (3.14)

for the pollinator network (ECO1), and

Aij =

1,429∑
k=1

MikMjk∑n
s=1Msk

, (3.15)

for the plant network (ECO2). In both networks the numerator equals to the number
of mutual plants (Bkl) or pollinators (Aij). For each mutual plant i (pollinator k) we
divide by the overall number of plants (pollinators) that share i (k). Hence, the weight of
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the mutualistic interaction in, e.g., Aij is determined by the density of mutual symbiotic
relationships between all plants, where: (i) the more mutual pollinators k that plants i
and j share the stronger the mutualistic interaction between them; (ii) on the other hand
the more plants pollinated by k the smaller is its contribution to each plant. A similar
logic applies also for the pollinator network Bij. This process potentially allows us to
have isolated components, e.g., single disconnected nodes. The state of these isolated
nodes is decoupled from the state of the rest of the network, and hence in our analysis we
only focused on the giant connected component of Aij and Bij, comprising all 456 plants,
rendering Aij to be a fully connected component, but only 1, 044 pollinators, eliminating
385 isolated pollinators in Bij.

4 Complementary results from empirical

networks

To complement the results presented in the main paper we include here observations
extracted from our set of empirical networks (Sec. 3.4), comprising 17 combinations of
networks and dynamics, as appear in Table 3. The scaling relationship τi ∼ Sθi has
already been tested in the main text (Fig. 4) on all 41 systems, model and empirical,
hence we focus below on the structure of P (T ) and on the layouts predicted by our
universal metric L(j → i) (Eq. (7) in main text).

4.1 Distance limited propagation

In Fig. 2a - e we show P (T ) vs. T (blue) as obtained for the distance limited R1 and
N implemented on PPI1 - PPI4 (R1) and on Brain (N). As predicted for these distance
limited dynamics, P (T ) exhibits separated sharp peaks, corresponding to the discrete
lengths of all paths Lij. A slight overlap is observed for N (Fig. 2e), where the peaks,
while clearly separated, show a smoother pattern than in ER, SF1 - 3 and PPI1 - 4. This
is due to Brain being a weighted network, allowing some level of heterogeneity within each
Lij-shell as a consequence of the distributed weights across all links. We further tested
our universal dynamic metric L(j → i), as predicted in Eq. (7) of the main text. The
results, presented in Fig. 4 confirm that indeed, these five systems all exhibit distance
limited propagation, expressed through the discrete shells characterizing the traveling
signals.

4.2 Degree limited propagation

Our testing ground includes six degree limited systems: R2 combined with PPI1 - PPI4
and P combined with ECO1 and ECO2. The density P (T ) for these systems is presented
in Fig. 2f - k (red), following precisely the anticipated form, as predicted and observed
on the model networks of Fig. 3 in the main text. The spatio-temporal layout, L(j → i),
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for these six systems appears in Fig. 5. While the results for the four protein interaction
networks and ECO1 follow our predictions with high accuracy, we find that for ECO2,
the L(j → i) prediction exhibits rather high levels of noise (Fig. 5f). Still, the average
propagation is well approximated by L(j → i) (Fig. 5h). Indeed, ECO2, a small (N =
456) and relatively dense (〈S〉 = 62) network, is characterized by many loops (C ≈ 0.1),
and extremely short paths (max(Lij) = 2), and hence does not adhere to our model
assumptions (large configuration model network). This has little effect on our macroscopic
predictions, θ, P (T ), average L(j → i) vs. T (j → i), but does impact the quality of the
microscopic, node-specific, layouts of Fig. 5f.

4.3 Composite propagation

Our six empirical systems in the composite class include M, applied to ECO1 and ECO2,
and E, applied to UCIonline, Epoch, Epinion and ATN. In Fig. 2l - q we show P (T )
(green), as obtained from these six systems. As predicted, we find multiple overlapping
peaks - the fingerprint of the composite dynamic regime. Interestingly, in these empirical
settings the composite interplay between Lij and P (S) is more complex that that observed
on the clean model networks. For instance, in ECO1, Epoch and UCIonline, while the
inner functions, representing P (T∩L) (shades of green), indeed show the anticipated effect
of network distance, they also feature secondary peaks within the same shell. Specifically,
we find that P (T ∩ L = 2) (dark green) is bi-modal, showing that within the same
distance, we observe two typical response times. This is a direct consequence of the
composite dynamics, in which P (T ) depends both on Lij and on Si. To observe this we
focus on these three systems in Fig. 3, this time showing P (T |Si), the T (j → i) density
conditional on the target nodes having degree Si. We find, indeed, that the secondary
peaks are driven by the low degree nodes within each shell, whose response time is large,
due to their low weighted degree (as expected under θ < 0). This illustrates the essence
of the composite regime, where T (j → i) is determined both by the Lij-shells, but also by
the distribution of Si within each shell, leading, in the case of these empirical networks, to
the observed non-trivial structure of P (T ). The spatio-temporal layouts for these systems
appear in Fig. 6.
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Figure 2: Response time density function in empirical networks. (a) - (d) P (T )
vs. T as obtained from R1 on the protein interaction networks PPI1 - PPI4. (e) P (T )
vs. T as obtained from N on Brain. The slight overlap between peaks is a consequence of
the weight heterogeneity in Brain, in which equidistant nodes may have slightly different
response times, owing to the different weights along their paths. (f) - (i) P (T ) for the de-
gree limited R2 on PPI1 - PPI4. (j) - (k) P (T ) vs. T as obtained from P on the ecological
networks ECO1 and ECO2. (l) - (q) In the composite dynamics M and E, P (T ) is char-
acterized by multiple overlapping peaks. The density P (T |Lij), capturing the response
times within each Lij-shell, is also shown (shades of green). ECO2, whose diameter equals
2 shows only two peaks, as expected. ECO1, Epoch and UCIonline exhibit each two or
three peaks within each shell - a consequence of the composite dynamics, in which low
degree nodes respond at later times.
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Figure 3: A close up on the composite structure of P (T ). We focus on P (T ) vs.
T on (a) M on ECO1; (b) E on Epoch and (c) E on UCIonline. The different peaks, in
these systems, correspond to the low degree target nodes, which respond late (large T )
under composite dynamics. This structure of P (T ) exposes the interplay of distance and
degrees, characterizing the composite universality class.
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Figure 4: The universal distance L(j → i) in empirical networks. Results obtained
from our five distance limited systems.
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Figure 5: The universal distance L(j → i) in empirical networks. Results obtained
from our six degree limited systems.
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Figure 6: The universal distance L(j → i) in empirical networks. Results obtained
from our six composite systems.
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Epidemics and power failure - propagation in empirical systems. Below and in
Sec. 6 we examine two realistic systems that extend beyond our analytical framework.
We hypothesize that our proposed approach - to seek the scaling of individual response
times (τi), then combine these response times to generate global propagation patterns
(P (T ),L(j → i)), will indeed apply under more general conditions than those underlying
our analytical derivations. Hence in the following two sections we examine this extended
applicability and discuss its merits and limitations.

5 Propagation of a global epidemic

5.1 Overview

We used the international air-traffic network to model the spread of a global epidemic.
Here Aij is constructed from human mobility data, capturing the flux of travelers between
N = 1, 292 international airports. The local dynamics, within each location (node), is
driven by the susceptible-infected-recovered (SIR) model [27], the links represent the vol-
ume of human travel [28], and the signal is captured by a local outbreak. This system
challenges our analytical framework in two ways: the dynamics are outside the restric-
tions of Eq. (1.1) and the propagation represents a macroscopic state-transition from
healthy to pandemic, beyond the linear regime of small ∆x. Therefore we cannot ana-
lytically predict θ. However, we can still measure θ, finding that despite the theoretical
discrepancies, the system does follow Eq. (1.41), exhibiting a (weak) degree limited prop-
agation with θ ≈ 0.15 and P (T ), aptly, having a single peak (Fig. 7b,c). Using this
observed θ in L(j → i), we can now predict T (j → i), providing an accurate account of
the actual disease propagation (Fig. 7e). The observed scaling is outside the scope of our
analytical framework, as this dynamics cannot be cast within the form (1.1). However, it
illustrates the merits of our strategic approach: first, examining the rules governing the
local response times, i.e. θ, then piecing together the individual components to project
the global propagation patterns, e.g., L(j → i). Below we provide the detailed analysis
of this system.

5.2 SIR Model

To model epidemic spreading via air travel we used a local susceptible-infected-recovered
(SIR) model with diffusive coupling, following Ref. [28]. In this framework each node
n (n = 1, . . . , N) represents a local population of Mn individuals, of which Sn(t) are
in the susceptible state S, In(t) are infected (I) and Rn(t) are recovered (R), hence
Sn(t)+In(t)+Rn(t) = Mn for all t. Within each node, we assume a well-mixed population
that locally follows SIR dynamics, namely

I + S α−→ 2I
I β−→ R, (5.1)

where α and β are the infection and recovery rates, respectively. The coupling between
two meta-populations n and m is mediated by the flux of incoming/outgoing travelers
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Figure 7: Propagation in epidemic spreading. (a) The spread of a global epidemic,
driven by SIR dynamics, trough the weighted air-traffic network. This system cannot be
cast within (1.1), yet its propagation can still be classified using our the three regimes,
distance/degree limited or composite. (b) τi vs. Si indicates a weak degree driven dy-
namics with θ ≈ 0.15. The roots of the hubs’ delayed response to neighboring outbreaks
is their typically higher populations, which require more time for the disease to pene-
trate. (c) P (T ) vs. T as obtained from 100 random disease outbreaks. As expected,
P (T ) features the characteristic shape of degree limited dynamics. (d) In this regime we
predict that hubs delay the propagation. We exemplify this here on a sub-network of (a),
showing three nodes at distance Lij = 2 from the disease source. Despite their identical
distance, they respond at different times. As predicted, the higher degree nodes (node
size) respond at later times. (e) T (j → i) vs. L(j → i) with θ = 0.15 successfully predicts
the observed spread.

via air-traffic Fnm, quantifying the number of individuals flying from m to n per day. In
this network the weighted in-degree of all nodes

Sn =
N∑
m=1

Fnm (5.2)

captures the number of incoming passengers into n on an average day. Its out-degree
SOut
n =

∑N
m=1 Fmn is the number of passengers departing daily from n.

This form of epidemic spreading gives rise to the following dynamic equations

dSn
dt

= −αSn(t)In(t)

Mn

+
N∑
m=1

(
wnmSm(t)− wmnSn(t)

)
(5.3)

dIn
dt

= α
Sn(t)In(t)

Mn

− βIn(t) +
N∑
m=1

(
wnmIm(t)− wmnIn(t)

)
(5.4)

dRn

dt
= βIn(t) +

N∑
m=1

(
wnmRm(t)− wmnRn(t)

)
. (5.5)

The first term/s on the r.h.s. capture the processes of infection, proportional to the
product of susceptible and infected individuals, and recovery, proportional to In(t). The
summation terms describe the diffusion of S, I or R individuals between local popula-
tions, where
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wnm =
Fnm
Mm

(5.6)

is the per-capita flux from m to n, hence, e.g., wnmSm(t) is the volume of susceptible
passengers leaving m and entering n per day.

Finally, we introduce an invasion threshold ε, which activates the local SIR dynamics
only if the infected population rises above an ε fraction of the local population. We apply
this by adding a sigmoidal function [28]

σ(x) =
(x/ε)h

1 + (x/ε)h
(5.7)

to the equations, providing

dSn
dt

= −αSn(t)In(t)

Mn

σ

(
In(t)

Mn

)
+

N∑
m=1

(
wnmSm(t)− wmnSn(t)

)
(5.8)

dIn
dt

= α
Sn(t)In(t)

Mn

σ

(
In(t)

Mn

)
− βIn(t) +

N∑
m=1

(
wnmIm(t)− wmnIn(t)

)
(5.9)

dRn

dt
= βIn(t) +

N∑
m=1

(
wnmRm(t)− wmnRn(t)

)
, (5.10)

hence infection is locally initiated only when In(t)/Mn exceeds ε, an invasion of n.

5.3 Normalized equations

Next we rewrite Eqs. (5.3) - (5.5) for the normalized populations sn(t) = Sn(t)/Mn, jn(t) =
In(t)/Mn and rn(t) = Rn(t)/Mn = 1− sn(t)− jn(t), obtaining

dsn
dt

= −αsn(t)jn(t)σ(jn) +
N∑
m=1

(
Mm

Mn

wnmsm(t)− wmnsn(t)

)
(5.11)

djn
dt

= αsn(t)jn(t)− βjn(t)σ(jn) +
N∑
m=1

(
Mm

Mn

wnmjm(t)− wmnjn(t)

)
(5.12)

drn
dt

= βjn(t) +
N∑
m=1

(
Mm

Mn

wnmrm(t)− wmnrn(t)

)
(5.13)

Assuming a negligible fraction of one-directional trips, i.e. that immigration accounts for
a marginal part of the overall international mobility, we can write Fnm = Fmn, stating
that, on average, the number of passengers flying daily from m to n is the same as those
flying from n to m. This enables us, using (5.6) to write

Fnm = Fmn ⇒ wnmMm = wmnMn, (5.14)
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which allows us to further simplify Eqs. (5.11) - (5.13), bringing them to their final
normalized form

dsn
dt

= −αsn(t)jn(t)σ(jn) +
N∑
m=1

Anm
(
sm(t)− sn(t)

)
(5.15)

djn
dt

= αsn(t)jn(t)σ(jn)− βjn(t) +
N∑
m=1

Anm
(
jm(t)− jn(t)

)
(5.16)

drn
dt

= βjn(t) +
N∑
m=1

Anm
(
rm(t)− rn(t)

)
, (5.17)

where

Anm =
Mm

Mn

wnm = wmn (5.18)

is the normalized human flux matrix.
To construct Anm from data we denote the mobility rate by [28]

µ =

∑N
m,n=1 Fnm∑N
n=1Mn

, (5.19)

in which the numerator quantifies the number of individuals flying per day and the
denominator equals to the total (global) population, therefore providing the daily fraction
of individuals who seek air travel. This allows us to estimate a local population Mn by

Mn =
1

µ

N∑
k=1

Fkn, (5.20)

assuming that all people departing from n, i.e.
∑N

k=1 Fkn, represent a µ fraction of n’s
total population, Mn. We can now write

wnm =
Fnm
Mm

= µ
Fnm∑N
k=1 Fkm

(5.21)

and

Mm

Mn

=

∑N
k=1 Fkm∑N
k=1 Fkn

, (5.22)

providing

Anm = µ
Fnm∑N
k=1 Fkn

, (5.23)

which allows us to extract Anm directly from the mobility data (Fnm, µ).
The resulting dynamics, a highly realistic account of global epidemic spreading, goes

beyond the limits of our universal dynamic equation (1.1) in several aspects: (i) the
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equation is multi-dimensional, describing the state of each node with more than a single
variable xi(t); (ii) the diffusive interaction term cannot be factorized as M1(xi)M2(xj);
(iii) for the appropriate selection of α and β the healthy state (sn = 1) becomes unstable,
hence the initial perturbation causes a macroscopic state-transition, rather than a small
linear response.

5.4 The origins of the observed scaling

The SIR model in (5.15) - (5.17) cannot be covered within our analytical framework, and
hence the observed scaling of θ ≈ 0.15, while compatible with our classification, is not
rooted in the same theoretical arguments as those outlines in Sec. 1. Still the existence
of an analogous scaling relationship demonstrates the conceptual utility of our approach,
that by characterizing the intrinsic time scales associated with each individual component
(θ), it helps piece together the puzzle of the system’s global propagation patterns (e.g.,
L(j → i)).

To understand the observed scaling, we consider the two steps leading to a node’s
infection. First, the source node m is infected, reaching its peak infection through the
local SIR dynamics. As infected individuals accumulate in m they begin to diffuse to
its neighboring node n, through the link Anm. The local SIR process in n, however, is
only initiated once it becomes penetrated, i.e. entered by enough individuals from m such
that jn > ε. Up to this point, the penetration time τ1 of n, the SIR dynamics remains
effectively dormant. Hence, the first stage in spreading the epidemic to n, lasting for time
τ1, is governed by diffusion only, almost independent of the disease parameters α and β.
Once n is penetrated (jn > ε) local SIR dynamics takes over, reaching peak infection
within the infection time τ2. The total response time τn is, therefore, the sum of these
two dynamic processes (Fig. 9a)

τn = τ1 + τ2, (5.24)

the former driven by diffusion (Anm) and the latter by the SIR dynamics (α, β). The
infection time τ2 is independent of the network, driven by the disease’s infection/recovery
rates, and thus unaffected by n’s degree Sn. This component of τn is, in effect, distance
limited, characterized by θ2 = 0. The penetration time τ1, on the other hand, depends
on the diffusion rate Anm from m to n, which, according to (5.18) is inversely dependent
on n’s populations size Mn. Since Mn ∝ Sn (5.20), we find that τ1 depends on n’s degree
Sn =

∑N
k=1 Fkn. Therefore, τ1 is degree limited, having θ1 > 0, expressing the fact that

it required more time to penetrate nodes with a larger population (Fig. 9b).
In Fig. 9d we show τ1 (squares) and τ2 (triangles) vs. S. As expected τ1 increases

with S, while τ2 is uniform for all nodes. Their sum provides the total response time τ
(circles), resulting in an effective (weak) scaling with degree, as observed in Fig. 7.

Implementation. We used the Global Mobility Network dataset [29] to extract the
empirical fluxes Fnm. The dataset lists the daily travel of ∼ 8.91 × 106 passengers per
day over the course of 365 days, i.e. i = 1, . . . , 365, between N = 1, 292 airports, linked
through 38, 377 directional air-routes. The mean flux from m to n is thus captured by
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Figure 8: Measuring epidemic propagation times. To evaluate T (j → i) we mea-
sured the time from the peak infection of the source j (red) to that of the target i (grey,
black). Here we show two targets: the grey represents a low degree node at distance
Lij = 3 from the source (red); the black represents a hub at distance Lij = 2. Due to the
degree limited dynamics the closer hub exhibits an increased response time.

Fn←m =
1

365

365∑
i=1

F {i}n←m (5.25)

where F
{i}
n←m is the number of passengers flying from m to n in day i. In our analysis we

assume an almost symmetric flux matrix, as expressed in Eq. (5.14). Indeed we find that
practically all links are bi-directional, and that in the vast majority of existing links we
have Fn←m ≈ Fn→m, a similar passenger flux in both directions. Therefore, to construct
Fnm we used the symmetrized

Fnm =
Fn←m + Fn→m

2
, (5.26)

a network comprising 19, 614 bi-directional links, that represents a symmetric approxima-
tion of the empirical fluxes. Evaluating the local populations Mn as in (5.20) we obtained
Anm via (5.23). Following Ref. [28], we used µ = 0.0028 day−1 for the mobility rate. For
the disease parameters we set β = 0.285 day−1, capturing a typical 3 − 4 day recovery
time, and α = 1.5β, to secure the system above the epidemic threshold (α/β > 1). For
the penetration threshold we set ε = 10−5 and h = 2 in (5.7). In each realization we
induced at t = 0 an outbreak on a randomly selected node q and measured the response
of all other nodes. The response times τi and T (q → i) were defined as the time from the
peak infection at the source q, jMax

q , to the time of the peak infection at the target, jMax
i

(Fig. 8).
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Figure 9: The two time scales driving epidemic spread. (a) The propagation time
from source (m) to target (n), τ , as measured in Fig. 8, comprises two approximately
separate stages: τ1, the penetration time, defined as the time for the target population
to accumulate an ε fraction of infected individuals; followed by τ2, the infection time,
capturing the time required for the local SIR dynamics to reach peak infection. (b) τ1

is small for low degree nodes (blue) and large for hubs (red), while τ2 is independent of
node degree. (c) For extremely small nodes, penetration, i.e. jn(t) = ε, might occur prior
to the source’s peak infection. In such cases we observe a negative τ1. (d) The target
response time τ vs. its weighted degree S (black circles), is obtained as an aggregation of
the two time-scales: the degree limited τ1 (squares) added to the degree independent τ2

(triangles).
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Figure 10: Propagation of a power component failure. (a) We tracked the propaga-
tion of a cascading failure in the a power supply network, impacting a total of 49 nodes.
(b) The mean failure time T (j → i) of power components vs. their distance from the
source Lij. We find that Lij cannot always predict the failure propagation. (c) T (j → i)
vs. component degree Si shows that higher degree components respond at earlier times,
indicating a composite dynamics in which θ < 0. Having access only to a single sponta-
neously occurring perturbation, we cannot measure τi for this system, as we lack data on
the local response times of nodes to neighboring perturbations. Consequently we cannot
directly measure the precise value of θ. (d) The composite dynamics predict that the
failure propagates faster on hub-enriched pathways. We exemplify this on a sub-network
of (a), where the more distant node (bottom) responds earlier due to the many high
degree nodes along its path. (j) T (j → i) vs. L(j → i) as obtained with θ = −1, helping
us approximate the observed propagation.

6 Failure propagation in power-supply

6.1 Overview

We collected data from a cascading failure in a US power supply network [31], starting
from a local malfunction that lead to the failure of 49 nodes. Unable to induce controlled
perturbations, we cannot directly measure τi for this system, and hence cannot evaluate
the precise value of θ. Still, we find that T (j → i) is, on average, inversely dependent
on Si, indicating that this system is in the composite regime, having θ < 0 (Fig. 10c).
Indeed, setting θ = −1 in L(j → i) we obtain an approximate account of the empirical
spatio-temporal spread (Fig. 10e). The composite classification indicates that long paths
may be potentially faster if they are enriched with hubs. This is demonstrated in Fig.
10d, where the failure traverses the longer bottom path in less time than it does the
shorter top one.

6.2 Implementation

To track the propagation of a local failure in a power supply network we collected data
from a 1996 (August 10) disturbance in the Western Interconnection grid, in which a
transmission line trip resulted in a sequence of 49 component failures [30, 31]. The
cascade, which unfolded over a ∼ 3 hour period, documents the failure time of each
component (Table 4), ultimately resulting in a breakdown, which disintegrated the 212
node network into four isolated component.
Data analysis. As indicated in the official report [30], the first 5 events preceded the
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actual spread, hence the propagation times are tracked from event 6, marking the failure of
transmission line j = 249 at time point tj = 76.588 minutes. Measuring the propagation
times relative to this initial disturbance we define the failure time of all other components
as T (j → i) = ti − tj, taking ti from the right column of Table 4.

Table 4 further indicates that the majority of failures affected transmission lines (Type
2) rather than generating units (Type 1), i.e. most failures are link failures, as opposed to
node failures. Therefore, to track the propagation we mapped the original power supply
network Aij into its adjoint graph Bµν , in which the role of nodes/links is reversed. In
this mapping each of the 316 transmission lines is mapped into a node in Bµν , µ, ν =
1, . . . , 316. Nodes µ and ν are linked if, in the original network, their corresponding links
share a node. For instance, consider a simple linear graph with four nodes, 1 ↔ 2 ↔
3 ↔ 4, and three links A12, A23 and A34. Its adjoint graph will have three nodes µ = 1,
corresponding to link A12, µ = 2, corresponding to link A23 and µ = 3, corresponding
to link A34. The links in the adjoint network Bµν with thus be B12, owing to the shared
node 2 between A12 and A23, and B23, owing to the shared node 3 between A23 and A34.
The 1, 3 link, however, will not exist in Bµν , i.e. B13 = 0, as the corresponding links in
the original graph, A12 and A34, have no shared node. Focusing solely on links failures,
and disregarding events 1 − 5, we are left with a sequence of 34 events that propagate
over the course of 150− tj ≈ 70− 80 minutes.

In Fig. 10 we measure Lij and Si from the adjoint graph. In Fig. 10e we calculated
L(j → i) using Eq. (5) of the main text, taking Sp from the adjoint graph and setting
θ = −1. Having a small number of data points (34) we used uniform binning, grouping
6 data points into each bin, apart from the last bin, which consisted of the remaining
points. The error bars were calculated following Eq. (3.13).
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Table 4: Failure propagation in power supply. The first column represents the
event index. The second column describes the the type of failure: 1 - node failure, i.e.
generating units; 2 - link failure, i.e. transmission lines. Column three notes the index
of the failed node/link, and column four is its failure time (minutes). The propagation
begins at event 6, marking the failure of transmission line j = 249 at tj = 76.588 minutes.
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7 Extended testing

Our analytical derivations, outlined in Secs. 1 and 2 are exact under two main assump-
tions: small signals ∆x, which allow us to use linear response theoretic tools; the config-
uration model [1] framework, according to which node i’s nearest neighbor statistics are
independent of i. In real scenarios, however, we are often confronted by large perturba-
tions, or by empirical networks, which may violate, to some extent, the clean picture of
the configuration model. Moreover, realistic scenarios are compounded by uncertainties,
such as partially mapped networks or noisy dynamics. Therefore we tested the robustness
of our analytically predicted scaling, (1.41), against different types of discrepancies. To
test the impact of large signals, we introduce perturbations ranging from 10% to 100%,
culminating in full node knockout. To examine our formalsim’s performance against
topological disrepancies we introduce two frequently encountered network features that
violate the configuration model framework: degree-degree correlations [2] and clustering.
Finally, to examine the limits of predictability of our method we test the effects of hidden
links and of parametric noise on our ability to predict and observe θ.

7.1 The effect of large perturbations

Measuring T (j → i) entails introducing a signal, ∆xj, to the steady state activity xj
of the source node j, and observing the flow of information as it propagates from j to
i. In our derivations we resort to the perturbative limit, where α = ∆xj/xj � 1, a
small perturbation, that allows us to use linearization to achieve analytical advances.
Specifically, in our numerical experiments we set the magnitude of our signals to 10% of
the source’s steady-state activity, namely α = 0.1. In Fig. 11 we examine the impact
of larger perturbations, setting α = 0.4 (squares), a 40% perturbation, α = 0.7 (down-
triangles), a larger perturbation of 70%, and even α = 1 (up-triangles) a signal of the same
size as the node’s unperturbed activity. We find that the predicted scaling θ is extremely
robust, with the size of the perturbation having no visible effect. We further tested the
propagation following the full knockout of the source node, namely removing node j and
observing the spatio-temporal system response (diamonds). Such node removal represents
a common procedure to observe sub-cellular dynamics via controlled genetic knockouts
[32]. It also arises in naturally occurring settings, such as in spontaneous component
failure in e.g., the power grid. We find that even under these extreme conditions our
predicted scaling remains valid, indicating that our predictions are highly robust against
perturbation size.

This lack of sensitivity is rooted in the well-established robustness of scaling rela-
tionships, which are often unaffected by small deviations and discrepancies [33]. This
is especially relevant in a network environment, where local perturbations rapidly decay
(exponentially) as they penetrate the network [34]. Under these conditions even a large
local perturbations will have only a small effect on all individual nodes in its vicinity.
Therefore, the consequent responses of the signal’s direct neighbors, next neighbors and
so on, can be well-approximated by the perturbative limit, even if the original j-signal
violated this limit. Hence we find that the linear response framework remains valid even
under unambiguously large perturbations.
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7.2 The effect of clustering

Next we consider the impact of clustering C, representing the network’s tendency to
from triads, in which there is an increased probability for an n,m link, if n and m share
a mutual neighbor i. Under the configuration model assumption, clustering tends to zero
if the network is sparse and N →∞ [1]. Most empirical networks, however, feature non
vanishing C, in some cases reaching an order of C ∼ 10−1 [35], significantly higher than
that expected in a random connectivity. To measure node i’s clustering we write

Ci =

N∑
m,n=1

AimAinAnm(
ki
2

) , (7.1)

in which the numerator counts the number of actual triads involving nearest neighbors of
i, and the denominator equals to the number of possible triads around i, i.e. the number
of potential pairs among i’s ki nearest neighbors. Hence 0 ≤ Ci ≤ 1 is the fraction
of potential triads that are actually present among i’s neighbors. The clustering of the
network is then obtained by averaging over all nodes as

C =
1

N

N∑
i=1

Ci. (7.2)

In Table 5 we show the clustering C as obtained from our set of empirical networks. We
find that for some of these networks C is rather high, in some cases reaching as much as
C = 0.2567 (Epoch) or C = 0.4637 (Brain). Still, as demonstrated in the main text, our
analytical predictions performed well, even under these challenging conditions of extreme
clustering. This indicates that our predictions are robust against empirically observed
levels of clustering. To further examine the effects of clustering in a controlled fashion,
we used the scale-free network SF, and gradually rewired it to increase its clustering to
C1 = 0.05, C2 = 0.1 and C3 = 0.15 (Table 5), generating three model networks, SFC1 -
SFC3, with controlled levels of clustering. We then measured τi vs. Si on each of these
networks. We find again that even extreme levels of clustering (C3 = 0.15 is two orders of
magnitude higher than the expected value from the configuration model), our theoretical
predictions are consistently sustained (Fig. 12).

7.3 The effect of degree-degree correlations

Next, we examine the effect of degree correlations Q, as defined in Ref. [2]. As before,
we first observe the correlation levels exhibited by our set of empirical networks, finding
that they feature rather high levels of degree correlations (Table 5). The fact that our
predictions cover these networks is, as before, an indication of our theory’s robustness
against empirically observed correlation levels. To complement this finding we rewired
SF, once again, this time to exhibit increasing levels of positive and negative degree
correlations, producing SFQ1 - SFQ4, as detailed in Table 5. As in the case of clustering,
the results, presented in Fig. 13, show that our predictions are largely unharmed by Q,
indicating their low sensitivity to the configuration model assumption of Sec. 1.
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Robustness of predicted scaling and dynamic regimes. Our theory provides both
quantitative as well as qualitative predictions. At the quantitative level, we predict the
precise value of θ, allowing us to provide the precise response times of all nodes (Fig. 4 in
main text). No less important are, however, our qualitative predictions, that allow us to
translate θ into direct insights on the macroscopic propagation patterns of a networked
system. This is observed by the distinct structures of P (T ) (Fig. 3g - l in main text),
the different roles of network paths Lij (Fig. 4d - f in main text), and the class-specific
contribution of P (S) (Fig. 4g - l and Fig. 5 in main text). All of these observations
represent macro-level dynamic patterns that determine how the system (as opposed
to specific nodes) manifests information propagation. Such intrinsic characteristics are
seldom sensitive to microscopic discrepancies.

We further argue that even if the precise value of θ deviates due to some specific
departures from our model assumptions - deviations that we have not observed in our
extensive numerical tests - still, the implications on the macro-scale behavior of the
system, indeed, the qualitative insight that our theory aims to provide, will ultimately
be marginal. For instance, consider a deviation in one of our dynamics, say the degree
limited R2, which under some hypothetical conditions features, e.g., a decrease in its
observed θ from the theoretically predicted θ = 3/2 to, say, θ ≈ 1. This may constitute
a significant discrepancy in terms of our quantitatively predicted scaling, but will not
significantly impact the observed propagation patterns, which will remain within the
degree-driven class. Indeed, micro, or even meso-scopic discrepancies from our model
assumptions are extremely unlikely to cause a qualitative shift to a different class, turning
the system, for instance from degree-driven to distance-driven or composite dynamics.
Such transition can only be done by altering the system’s internal mechanisms, such
as shifting its dynamics from R2 (θ = 3/2) to E (θ = −1), a change in the physics of
the node interactions, which requires a fundamental intervention, unattainable by minor
discrepancies.

7.4 The effect of parametric noise

As it is written, the dynamic Eq. (1.1), is subject to intrinsic noise, introduced through
the random (weighted) topology Aij, which is, in most cases, extremely heterogeneous
and diverse. This source of topological noise seems to have little effect on the accuracy
of our predictions, as indicated by our results. We now examine the performance of our
predicted scaling (1.41) in the presence of dynamic noise, in which, in addition to the
random Aij, the dynamic functions M also feature varying levels of randomness across
all nodes. Hence we consider the R-family of dynamics

dxi
dt

= −Bxaii (t) +
N∑
j=1

Aij
xhj (t)

1 + xhj (t)
, (7.3)

in which the exponent ai is now a random variable extracted from a skewed distribution

ai ∼ N+(µ, σ2), (7.4)

a normal distribution truncated such that P (ai ≤ 0) = 0, namely ai is a non-negative
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random variable. This introduces a source of parametric noise into (1.1), in which each
node follows a different dynamics. The level of this noise is quantified by the variance σ2

in (7.4). The randomness is introduced exclusively on ai, as this is the only parameter
affecting θ in this dynamics; see Eq. (2.7). To predict θ we use the mean value of ai,
given by 〈a〉 = N−1

∑N
i=1 ai, and substitute it for a in Eq. (2.7), yielding

θ =
1− 〈a〉
〈a〉

. (7.5)

We expect the observed scaling to fluctuate around the prediction θ due to the noise,
with the fluctuation magnitude growing as σ2 is increased. To quantify these deviations
we fit the observed τi with the predicted scaling τi ∼ Sθi , and measure the mean-square-
error (MSE) between all data points and the theoretical scaling. To be specific, we use a
logarithmic transformation, plotting log τi vs. logSi. We then fit a linear plot to the data

log τTh
i = θ logSi + C, (7.6)

a perfect linear function, in which we constrain the slope to equal θ, as calculated from
(7.5), then seek the best fit for the arbitrary constant C. Finally, we evaluate the error
using

MSE =
1

N

N∑
i=1

(
τi − τTh

i

)2
, (7.7)

quantifying how noisy the data is in relation to the perfect scaling of (7.6).
In Fig. 14 we show the results obtained for three different dynamics, implemented on

the network SF: R1, where we set µ = 1, R2, where we set µ = 0.4 and R3, where we set
µ = 2, representing our three classes - blue, red and green - respectively. In each panel
we show τi vs. Si for all individual nodes (grey), as well as the logarithmically binned
averages (circles). The calculated θ from Eq. (7.5) is also shown, representing the slope of
the fitted theoretical line (7.6) plotted in each panel (black solid lines). As we gradually
increase the noise level σ, we find that the individual data points become more scattered,
exhibiting a growing MSE, and, consequently leading to observed discrepancies between
the theory (solid black lines) and the data (grey dots). This is especially expressed in the
distance limited R1, where the expected θ vanishes, and hence it is rather sensitive even
to minor discrepancies. Note that in R2, the predicted θ decreases with σ, a consequence
of the skewed N+(µ, σ2), which, under large variance, drives 〈a〉 to be greater than 0.4,
and hence θ (7.5) to become smaller than 3/2. Indeed, for µ = 0.4, as σ is increased, the
truncation at zero, removes a significant portion of the ai density from ai < 0 to ai > 0,
a bias that leads to an increase in 〈a〉.

In Fig. 15 we collect the MSE vs. σ for all three dynamics R1−R3. Note that MSE> 0
even for σ = 0. This is the baseline error associated with the system’s intrinsic topological
noise. The increase above this baseline captures the impact of the dynamic noise we
introduce here. As MSE increases, an unavoidable consequence of the growing noise
levels, it may potentially impact our quantitative prediction, affecting the measurement
error in our evaluation of θ. Still, even for large MSE, such discrepancies have no bearing
on the qualitative classification of our systems as distance limited, degree limited or
composite (see grey Box in Sec. 7.3).
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7.5 The effect of hidden links

Often the challenge in observing network dynamics is that the underlying network is only
partially mapped, including many unknown interactions. For example, in sub-cellular
networks it is estimated that we have only uncovered ∼ 20% of all links. In social net-
works, relying on proxies, such as online connections, leaves us with a fraction of unknown
off-line social ties that leave no trace in the digital arena, and are hence hidden from the
observer. Such topological uncertainties have no impact on some of our predictions,
e.g., P (T ), which can be measured absent any knowledge of Aij. Our scaling prediction
τi ∼ Sθi , however, requires us to know the degrees of all nodes, and hence relies on a reli-
able mapping of Aij. Therefore we now examine our ability to observe θ in the presence
of hidden links.

An advantage of scaling relationships is that they are, potentially, robust against
hidden links. To understand this consider the case where there is a random fraction f of
un-mapped links in Aij. On average, such uncertainty will reduce the observed degrees
of all nodes as

SObs
i ∼ (1− f)Si, (7.8)

as indeed, lacking a random fraction f of all links, a typical node is expected to miss a
fraction f of its actual neighbors. Fortunately, as long as f is sufficiently smaller than
unity, such re-scaling of all degrees has little impact on Eq. (1.41), which is insensitive to
the multiplicative constant 1− f , namely

τi ∼ Sθi =⇒ τi ∼
(
(1− f)Si

)θ ∼ (SObs
i

)θ
. (7.9)

Such robustness is, of course, dependent on the hidden links being randomly scattered
across all nodes.

We tested this by implementing R1,R2 and R3 on SF, and systematically hiding links
at random, i.e. simulating the complete network, but assuming that a fraction f of the
links are empirically inaccessible. We find that even when 30% of the links are hidden
there is no visible effect on the observed scaling (Fig. 17b). A significant deviation
is observed when f approaches 0.6 − 0.8, depending on the dynamics (Fig. 17c). As
expected, when f continues to grow, we reach a state where we completely fail to observe
the scaling relationship, here shown for f = 0.9, i.e. our network is only 10% known
(Fig. 17d).

7.6 The effect of multiple fixed-points

Nonlinear systems often feature multiple steady-states, which may be characterized by
different propagation patterns. Indeed, extracting the exponent θ depends on the asymp-
totic behavior of R−1(x) in (1.39), which is potentially different around different steady-
states. We demonstrate this here in Fig. 16 on the regulatory model R1 and on the SIS
model E.

For R1 the system exhibits two fixed-points (Fig. 16a) the inactive dead state where
all xi = 0, which is always stable, and the active state, which is only stable if Aij is dense
enough to support sufficiently strong activation of all nodes [36]. We set the system
at each of these fixed-points and tested its response to local signals. We find that the

43



propagation patterns are distance limited around both states, with θ = 0, T (j → i) ∝ Lij
and P (T ) featuring the characteristic discrete peaks (Fig. 16c - e).

For E the system transitions between an exclusively stable healthy state for low net-
work density and an exclusively stable pandemic state as the network crosses the epidemic
threshold (Fig. 16b). Here we find that the propagation patterns are, in fact, different
across the states of the system: while the pandemic state features composite dynamics
(as also shown in the paper), the healthy state is degree limited (Fig. 16f - h). Indeed, lin-
earizing Eq. (2.16) around these two different steady-states predicts a different behavior
in function of Si.

State transitions are a fundamental aspect of nonlinear dynamics, capturing different
phases that can be exhibited by the system. Our observation, that the propagation class
is also state-dependent uncovers an additional layer associated with these phases - it
shows that they are not only characterized by different activities xi, but also by different
propagation patterns. Hence, as the system transitions from, e.g., healthy to pandemic,
it also transitions from distance limited to composite.

Table 5: Degree correlations (Q) and clustering (C) of our model and empirical
networks. We measured Q and C from our set of empirical networks. Many of our
networks features rather high levels of Q,C (compared to a random network), yet this
had but a negligible effect on our results, as displayed in the main text. We also rewired
our model scale-free network SF to increase its clustering (SFC1 - SFC3) and degree-
correlations (SFQ1 - SFQ4) in a controlled fashion, allowing us to systematically examine
the effect of Q and C on the performance of our formalism. Note that rewiring a random
network to increase clustering also impacts its degree correlations and vice versa.
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Figure 11: The effect of perturbation size. To test the limits of our linear response
framework we measured τi vs. Si, as obtained for large signals, representing an α = 10%
(circles), 40% (squares), 70% (down-triangles) and 100% (up-triangles) perturbation.
We also tested the scaling under complete node knockout (Removal, diamonds). We find
that perturbation size has no visible effect on the macroscopic patterns of flow, with θ
consistently adhering to its theoretically predicted value (solid lines).
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Figure 12: The impact of clustering C. τi vs. Si as obtained from SFC1 - SFC3,
featuring increasing levels of clustering C = 0.05 to 0.15. Despite the clustering, the
predicted scaling in each dynamics (θ, solid lines) remains valid. Rewiring SF to increase
C beyond these levels was numerically prohibitive without fragmenting the network. Still,
some of our empirical networks exceeded these levels, e.g., PPI1, Epoch or Brain.
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Figure 13: The impact of degree correlations Q. τi vs. Si as obtained from SFQ1
- SFQ4, featuring negative and positive degree correlations. Despite these correlation
levels the predicted scaling in each dynamics (θ, solid lines) remains valid.
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Figure 14: The impact of parametric noise. τi vs. Si as obtained from Eq. (7.3),
setting µ in (7.4) to µ = 1 (R1, blue), µ = 0.4 (R2, red) and µ = 2 (R3, green).
In each panel we show the raw data obtained for all individual nodes (grey dots), the
logarithmically-binned data, capturing the average behavior (circles), with error bars
calculated as in Sec. 3.3, and the fitted linear plot from (7.6). The noise level σ and the
expected θ from (7.5) are also shown.
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Figure 15: Error induced by parametric noise. The mean-squared-error (MSE) as
obtained from Eq. (7.7) vs. σ for all simulations presented in Fig. 14, on (a) R1, (b) R2

and (c) R3 dynamics.

Figure 16: State-dependent propagation patterns. (a) R1 features to simulata-
neously stable fixed-points - active vs. dead. (b) E features a second order transition
from a stable healthy state to a pandemic state. (c) - (e) In both states of R1 the prop-
agation is in the θ = 0 universality class, featuring distance limited propagation. (f) -
(g) E is distance limited (θ = 0) around the healthy fixed point (left), but transitions to
composite (θ = −1) around the pandemic state. Hence, interestingly, the state transition
is also a propagation class transition.
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Figure 17: The effect of hidden links. (a) τi vs. Si as obtained from a fully mapped
network (f = 0) for R1 − R3. (b) The scaling continues to be observable even for a 70%
mapped network (f = 0.3). (c) Hiding a large fraction of the links begins to impact the
observed scaling at around f = 0.7 for R1, f = 0.6 for R2 and f = 0.8 for R3. (d) Hiding
90% of all links, we are no longer able to extract θ.
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8 Empirical accessibility - complementary

discussion

Despite our continuously growing access to data on complex networked systems, we con-
tinue to lack complete empirical freedom in some of the relevant systems, limiting our
ability to observe the detailed signal propagation patterns. Below we consider several
scenarios, from best to worst case, and discuss, for each scenario, the limits and the
possibilities of empirically observing our predicted signal propagation.

Known network and controlled perturbations. With access to the complete (weighted)
network and with the ability to apply controlled perturbations to selected nodes, we can
empirically measure the entire set of analytical predictions. Indeed, perturbing each node
sequentially, we can measure its direct neighbor response times τi, as well as the propa-
gation times T (j → i) to distant nodes. Knowing the network we can now empirically
observe the scaling τi ∼ Sθi , and calculate the temporal distances L(j → i) • Such best
case scenario is difficult to attain in a fully empirical setting, however our simulated global
epidemic spreading (Sec. 5) illustrates its potential merits. Here all weighted links can
be empirically calculated from data on human travel and the disease parameters can be
selected within a well-documented realistic range, allowing us to capture the propagation
in a highly realistic setting.

Partially known network and controlled perturbations. In many cases, we are
confronted with hidden links/unknown weights, confounding our ability to fully access the
propagation. As discussed and demonstrated in Sec. 7.5 this has no bearing on observing
P (T ) or 〈T 〉, and to a limited extent may also allow us to observe the universal exponent
θ (Fig. 17).

Unknown network. If we lack all access to Aij we cannot identify direct neighbors,
and hence we are unable to directly measure τi. Under these conditions we can only
observe macroscopic properties, such as P (T ) and 〈T 〉, which do not require knowledge
of the network. Fortunately P (T ) provides a distinctive fingerprint to distinguish between
positive (fat-tailed), zero (discrete peaks) or negative (overlapping peaks) θ. It cannot,
however provide the specific value of theta, just the relevant dynamic regime, i.e. θ
greater/smaller than or equal to zero.

Uncontrolled perturbations. Often we are unable to induce controlled perturbations
to the system, such as in social or infrastructure networks. Under these conditions we
must rely on data collected following spontaneously occurring outbreaks or failures. This
limits our ability to measure τi, which requires us to systematically perturb each node’s
nearest neighbors, but still allows us to observe P (T ), 〈T 〉 and T (j → i) This scenario is
demonstrated in Sec. 6, where we examine the propagation of a local failure in a power
network - a challenging scenario, in which we have access to just a single uncontrolled
perturbation, whose spatio-temporal propagation affected only a small sample of nodes,
providing limited statistics.
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