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Temperature evolution in thermal quenching

The linear relationship between the sample temper-
ature and the ODT beam intensity can be inferred by
observing the evolution of the thermal cloud size in time-
of-flight images from the experiment. Fig. S1 shows that
the square of the thermal cloud size, which is propor-
tional to the sample temperature, linearly decreases as
the intensity is linearly reduced during the quench, and
it remains constant after the quench is completed.
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FIG. S1. The evolution of the square of the thermal
cloud size in the experiment. Data obtained for tq = 600
ms at −1/kFa = −1.53. Each data point comprises ten reali-
sations of the same experiment, and the error bars represent
the standard deviation. The blue line is a bilinear fit to the
data, where one of the lines is kept horizontal. The vertical
dotted line marks the end of the quench.

Counting vortices in time-of-flight images

To extract the vortex number from TOF images, we
use an automised image processing method, similar to
the one outlined in Ref. [S1]. First, for a given absorp-
tion image, the contribution to the optical depth from
the non-condensed fraction of the sample is removed by
fitting a Gaussian to the thermal wings and subtracting
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FIG. S2. Creating a binary image of the density de-
pleted holes. a is an exemplary image of the optical depth
of the sample after TOF, and b shows the converted binary
image identifying the density depleted holes.

it off. Then, a copy of this image is created, and a two-
dimensional Gaussian smoothing filter is applied, whose
width is chosen to be comparable to the typical size of a
density depleted hole. This filtered image is used to di-
vide the unfiltered image, which is then binarised using
an empirically chosen threshold value that best identi-
fies the density depleted holes as isolated “particles” (see
Fig. S2). Using a standard particle analysis package in-
cluded in most mathematical computing software (e.g.
Matlab, Igor, Mathematica), the boundaries and the ar-
eas of the individual particles are identified. Fig. S3
exhibits exemplary TOF images taken from Fig. 1d of
the main manuscript together with the processed images
showing the boundaries of the density depleted holes,
demonstrating the reliability of this procedure.

For samples that are densely populated by vortices,
large holes that represent multiple vortices are observed.
To assign a proper quanta, we plot the histogram of the
hole area at each investigated interaction strength and
assign a cut-off area for each quanta based on the mul-
tiple peak structure of the histogram (see Fig. S4). The
minima between two adjacent peaks are used to set the
vortex number transition lines of the particles. Based
on this criteria, each particle is assigned a quanta equal
to the number of vortices it represents, and their sum is
recorded as the number of vortices of the image. Also,
once the vortex number is determined by this procedure,
every image was double-checked by eye to correct for pos-
sible misassignments.

Condensate formation and vortex decay

In the KZ mechanism, topological defects emerge in
the system through the merging of domains with inde-
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FIG. S3. Computer-assisted counting of vortex number. Images from Fig. 1d and when they are applied to the vortex
counting procedure. Identified vortices are encircled by red lines.
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FIG. S4. The histogram of the identified vortex areas.
The data consists of 70 images at unitarity, where the quench
time extends between 200 ms to 800 ms.

pendent order parameters. To reliably extract the num-
ber of defects, a certain amount of hold time must be
applied to the sample after the thermal quench to ensure
that the condensate growth and the domain merging dy-
namics have been completed. However, in the presence

of destructive interactions among the defects, this hold
time must be kept as short as possible, such that the
ensuing reduction of their numbers does not affect the
observed scaling relationship between the defect density
and the quench rate.

It should be noted that for the case of weakly interact-
ing BECs, investigations on the effect of the dissipative
evolution of the defects on the observed KZ scaling have
shown that the KZ exponent is fairly robust against the
decay of the defect number [S2, S3]. Nonetheless, to ap-
ply a well-defined hold time th to the sample before re-
leasing it for TOF imaging, we investigate the evolution
of the condensate fraction and the vortex number as a
function of th for a number of quench times, at each the
interaction strength accessed in the experiment.

The condensate fraction of the sample is measured us-
ing the “rapid-ramp technique,” where prior to releas-
ing the sample for TOF expansion, the Feshbach field is
rapidly ramped to the molecular side of the resonance to
convert the fermion pairs into tightly bound molecules.
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FIG. S5. The evolution of the sample during and after various quench times tq = 200 ms (circle), 400 ms
(inverted triangle), 600 ms (square), 1000 ms (diamond), and 2000 ms (triangle). a-d, The growth and decay of
the condensate fraction of the sample during and after the quench. e-h, The decay of the average number of counted vortices
during hold time th after the quench. Each data point is the average of ten realisations of the same experiment and the error
bars give the standard error of the mean, where the unseen ones are hidden by the markers.

A bimodal fit is then applied to extract the condensate
fraction, as shown in Fig. S5a-d. Generically, following
the quench, the condensate fraction initially rises until
it reaches a maximal value near th = 200 ∼ 300 ms
(50 ∼ 150 ms for measurements on the BCS side), and
then it decays due to three-body losses. This value of th
may represent the intrinsic time scale for the condensate
growth dynamics of the system. The condensate frac-
tion measured after this hold time is independent of the
quench time for each −1/kFa, indicating that the sample
is well thermalised during the quench for the investigated
quench times. Also, when the hold time of each data set
is normalised by its respective quench time (see insets
of Fig. S5a-d), the evolution of the condensate fraction
during the ODT ramp closely tracks each other for all
the quench times apart from 200 ms, where it starts to
show a weak deviation. This observation implies that the
temperature of the sample is set by the ODT depth for
the explored quench times during the quench.

The evolution of the vortex number shown in Fig. S5e-f
displays a similar trend compared to that of the conden-
sate fraction. Specifically, the area of the density de-
pleted regions initially rises as the domains merge until
it reaches a maximal value, and then it decays as the loss
mechanism among the defects starts to dominate. Based
on these observations, we set th to be the time at which
the defect number reaches its maximum, corresponding

to th = 200 ms for measurements performed on the BEC
side of the resonance and at unitarity, and th = 50 ms
for the data taken on the BCS side due to a faster decay
rate.

An important observation is that the decay rate of the
vortices is dependent on the initial vortex density set by
the quench time tq. Specifically, it becomes enhanced
at short quench times where the initial vortex number is
higher. The insets in Fig. S5e-h show the decay constant
γ as a function of the quench time when we fit an expo-
nential decay of the vortex number N(t) = N0e

−γt to the
data whose hold time is equal to or greater than th. Here,
t is the hold time and N0 is the the hypothetical vortex
number at t = 0. The increase in the exponential decay
rate for shorter quench times reveals the presence of a be-
yond one-body decay mechanism, which likely arises from
the destructive interactions among vortices with opposite
charges. In the experiment, this loss mechanism is asso-
ciated with the departure from the KZ scaling and the
saturation of the vortex number for short quench times.

Dimensionality of the KZ domain formation

From the perspective of the KZ mechanism, the defect
formation dynamics should be considered to be effectively
2D if the freeze-out correlation length ξ̂ is longer than the
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axial dimension of the sample. For our system at 757 G
(corresponding to a = 3981.8a0), taking the thermal de-
Broglie wavelength λdB,c ≈ 0.8 µm at the critical point as
the microscopic length scale ξ0 for the correlation length
and the (classical) elastic scattering time 1/n0σv ≈ 36 µs
as the microscopic timescale τ0 for the relaxation time,
the freeze-out correlation length ξ̂ = ξ0(tq/τ0)ν/(1+νz)

is estimated to be about 14 µm for the shortest quench
time explored of 200 ms, compared to the axial size of

the sample Rz =
√

2kBTc

mmolω2
z

≈ 4 µm. Here, n0 is the

central density of the molecules in the harmonic trap,
σ = 8πa2mol is the scattering cross section of diatomic
molecules, amol = 0.6a is the molecular scattering length,
v =

√
3kBTc/mmol is the root mean squared velocity of

the molecules at Tc, mmol = 2m is the molecule mass,
and ωz ≈ 2π × 1 kHz is the axial trapping frequency.
Hence, the domain formation dynamics will be initially
2D. However, as the condensation front moves away from
the trap center during the quench and the local freeze-out
correlation length decreases due to the decreasing local
critical temperature, a dimensional crossover from 2D to
3D may occur. From a theoretical viewpoint, the KZ
mechanism itself does not distinguish between the two
scenarios, so the effect of this crossover should be weak,
if it exists at all.

Mean-field critical velocity

The mean-field Landau critical velocity of a strongly
interacting Fermi superfluid in the BEC-BCS crossover is

given by min(vs, vpb) where vs is the speed of sound and
vpb is the mean-field BCS pair-breaking velocity of the
superfluid [S4]. The speed of sound is obtained from the
quantum Monte Carlo equation of state in Ref. [S5]. For
our inhomogeneous superfluid sample in the harmonic
potential, the critical velocity vc at its centre is calculated
by assuming the local density approximation. Here, the
column averaged density, instead of the central density,
has to be employed in computing vs since the superfluid
is hydrodynamic in the axial direction.
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