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I. POSITION CALIBRATION

As we are using open-loop piezo scanners (Attocube ANSxyz100), we need to calibrate their physical
displacement and determine the piezo non-linearity in order to achieve accurate fitting of the domain wall. To
do so, we perform atomic force microscopy (AFM) measurements of our sample’s topography on a commercial
system (Bruker Dimension 3100), and compare various length scales as offered by patterned mesas on the
sample surface to those measured by our system. This allows us to determine the conversion factor from
applied voltage (V) to physical piezo displacement (µm) for a wide range of piezo voltages as shown in
Fig. S1a. Errors on individual points here are below the marker size. We integrate the fitting functions given
in the legends to convert from our system coordinates (in voltage) to real coordinates (in µm) as shown in
Fig. S1b. This leads a non-linear conversion, which corrects for deformations in our measurements (Fig. S1b,
inset). We make this explicit by showing a 2D stray field image in Fig. S1c, where the original image (with
scale in applied voltage) is shown in the top panel and the adjusted scaling conversion in the bottom panel.
The difference between the two images is most apparent when one compares the visible curvature of the
domain wall in both figures.
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FIG. S1. Calibration of the piezo position a The conversion factor from applied voltage (V) to displacement
(µm) as a function of the applied voltage for the x (top) and y (bottom) axes. b Plot of the position (as determined
by integrating the conversion factor in a) as a function of the voltage applied in the x direction (blue squares) and y
direction (red circles). The fit parameters are given in the top right inset. The bottom right inset shows the resulting
deformation of equally spaced lines in a 2D plot, with dark gray arrows shown for emphasis. c Stray field image
of two mesas together with the domain wall plotted with the position in applied voltage (top) and the converted
position in µm (bottom).

II. DOMAIN WALL NUCLEATION AND MORPHOLOGY

As received, the single crystal Cr2O3 was in a mono-domain state, confirmed with high probability by
measuring the same sign of the surface magnetization at number of mesas (see Section IV) across the surface
of the crystal. The DW is then nucleated as described in the methods and using the device shown in
Fig. S2a. We use the same method of sampling the magnetization across the sample to localize the DW. The
nucleated DWs appear smooth and straight, as seen when imaging the domain wall over larger areas. The
approximate orientation of the DW, as determined by NV magnetometry, is shown in Fig. S2b with cyan lines
for subsequent nucleation procedures, separated by an erasure of the domain wall through electromagnetic
cooling in a homogeneous field. Note that these positions differ from the nominal location of the split-gate
gap (shown by a thick, white line), indicating that the domain wall is mobile during the nucleation process.
Furthermore, upon annealing the sample at ≈ 453 K, the domain wall position changed drastically, as shown
in the right panel of Fig. S2b, where the initially nucleated position is shown with a dashed line, and the
final position, after annealing is shown with a solid line. We would like to note that the observation that
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a domain wall may persist even when heated above the Néel temperature is not a new one, and that this
phenomenon was already explored by Brown in 1969 [1]. We also show an additional stray field image of the
domain wall in Fig. S2c, taken at the bottom right of the cyan line shown in the inset. This emphasizes the
fact that the domain wall, in the absence of mesa structures and strong pinning centers, is indeed smooth at
the micrometer scale and suggests that the pinning we observe is primarily due to the interaction between
mesa and DW. Further examples of this pinning are shown in the bottom two panels of Fig. S2c. In these
two images, we observe simultaneous pinning at multiple mesa edges following both nucleated instances of
the domain wall.
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FIG. S2. Nucleation of domain walls a A schematic representation of the setup used to nucleate domain walls in
a single crystal of Cr2O3. The north and south poles of the permanent magnets are shown with the field direction
given by the black arrows. The grey arrows show the direction of the electric field, generated by applying voltages
±V between the top contacts and ground. b Optical images of the crystal with the approximate locations of the
split-gate gap during nucleation shown with a thick, white line. The final domain wall position is given by the solid,
cyan line. In the left image, the dashed cyan line shows the position of the domain wall before annealing. c. (top)
Stray field image of the domain wall showing its general smoothness and straight orientation. The inset shows a
microscope image of the domain wall position, shown by the solid, cyan line, with the area of the stray field scan
taken at the bottom right end of the line. (bottom) Stray field images showing (left) simultaneous pinning at two
different mesa edges after the first poling and (right) a further example of DW pinning to two edges of a mesa after
the second poling.

III. METROPOLIS HASTINGS

We use a form of the Metropolis Hastings (MH) algorithm to infer the probability distributions of pa-
rameters in difficult-to-sample data sets [2, 3]. This MH-based parameter estimation is chosen, since the
model involves correlated parameters and exhibits many local good fits to the data. Such conditions make
it difficult for gradient descent methods to determine a global minimum in the difference between the data
and the model as typically characterized by the mean squared error (MSE). Additionally, the analysis via
the MH algorithm allows us to better estimate the uncertainty on the involved parameters by combining
several datasets. For all analyses of the magnetic and sensor properties (parameters p) discussed in the main
text, we evaluate the recorded stray field (data D) with a theoretical description (model) using the following
implementation of this iterative algorithm (with n steps):

1. A set of initial starting parameters (pcurr), a step size (di) for each parameter and a theoretical model

3



are defined.

2. A second new candidate set of parameters pnew is drawn from a proposal distribution. For this, a
symmetric normal distribution is used, which is centered around the current values pcurr with a width
= 2di, which realizes a random-walk MH algorithm to find the next candidate parameters.

3. The model function is then computed for both parameter sets and compared with the measured data
D to estimate the two likelihoods rcurr and rnew, of the data, given pcurr or pnew, respectively. We
assume unbiased Gaussian noise on the data and Jeffreys priors on the variance [3]. In particular, the
likelihood is evaluated as rnew/curr ∝ (R + 1)−(ν+1)/2 ≈ R−(ν+1)/2, where ν = |D| − |pnew/curr| (| · |
is the size of the set) and R is the MSE of our model given the data and model parameters. Often
additional prior knowledge is available on certain parameters (e.g. as a restriction to bounds or normal
distributions based on previous data), in which case, we multiply these to r following the Bayesian
rule for the posterior. The probability for accepting pnew is then realized following the typical iterative
operational implementation:

• Select a random value a, uniformly distributed between 1 and 0.

• If (rnew/rcurr) ≤ a: Accept the new parameters pnew and set pcurr = pnew.

• Else: Keep the parameter set pcurr.

• Draw a new candidate set based on pcurr.

• Repeat this procedure n times.

We apply this analysis to both the mesa and domain wall stray fields using the model functions and data
acquisition described in the following sections.
A typical evolution of a single parameter normalized to its starting value is shown in Fig. S3 as a function
of the iteration number. In the initial period, the parameters evolve towards the region of a better model
representation of the data (higher likelihood) before it settles to a stochastic walk around a particular
value (thermalization). The iteration steps before reaching this point are dropped when later examining
the distribution of values, and are referred to as the ”burn-in region” [2, 3]. The remaining steps are then
processed into histograms for each parameter value, obtaining a marginalized and unnormalized probability
distribution for each parameter. We test for an underlying correlation of the steps by only considering every
ηth value (thinning). In the last step, the distribution curves are approximated by Gaussians to estimate a
mean and a standard deviation for a given parameter based on the data and model used.
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FIG. S3. Typical single parameter evolution in the Metropolis Hastings algorithm The parameter values
relative to its starting value as a function of the iteration steps of the algorithm. The initial burn-in period is shown
by the shaded area. The inset shows the histogram of values taken after the burn-in period, fitted with a Gaussian
distribution, with the mean and FWHM shown with red bars.
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IV. MESA STRAY FIELDS

In order to extract quantitative magnetic and sensor information from a mesa, we record its stray field
while scanning the magnetometer in a line that crosses the mesa (linecut). This data is then compared to a
well-established model [4] for the stray field of a magnetic stripe, where the field arises from effective currents
(I+, I−) running along the top and bottom of its edges as shown in Fig. S4a. According to this model, the
stray field measured at a distance dNV from a single edge of a mesa, oriented along the y-axis, is given by:

BNV = sin(θNV ) cos(φNV )Bx + sin(θNV ) sin(φNV )By + cos(θNV )Bz, (S1)

Bx = −µ0σm

2π

(
dNV

(x−x0)2+d2NV
− (dNV +t)

(x−x0)2+(dNV +t)2

)
, and (S2)

Bz = µ0σm

2π

(
x−x0

(x−x0)2+d2NV
− x−x0

(x−x0)2+(dNV +t)2

)
. (S3)

Here, σm is the magnetization, t is the thickness of the mesa, x0 is the location of the edge, θNV and φNV
are the polar and azimuthal angles of the NV axis respectively and µ0 = 4π × 10−7 N/A2 is the vacuum
permeability. Note that By = 0 in this configuration. These equations describe the stray fields (Bx and Bz)
on one side of the mesa, and as such, we add the corresponding terms for the second edge (located at x1).
In order to take into account a possible asymmetric tip shape or accumulation of dirt during scanning, we
allow for two different NV distances (dNV and dNV + ∆d) for either side of the mesa, as described in [5].

With this particular analytical form, we now address the recorded stray field data and are left with seven
fitting parameters (σm, dNV , θNV , φNV , x0, x1,∆d). In the first step we seek to infer the sensor orientation
(θNV ,φNV ), since we can assume it to be constant throughout all measurements. For this, we perform an
initial least-squared fit, seeded from 50 different initial parameter sets and choose the best fit parameters.
These parameters, together with the measured stray field values and model described above (Eq. S1), are
then used to initialize the MH algorithm (see Section III). From all the combined datasets (29 individual
linecuts), we infer the likelihood-distribution of the sensor orientation, by multiplying the individual likeli-
hood distributions of the sensor-angles from each dataset. The resulting distribution is then described by a
Gaussian, yielding a θNV and φNV of 60.7± 2.9 deg and 260.6± 0.8 deg respectively.

While there is no reason for θNV and φNV to vary between scans, we can not assume the remaining
parameters to stay constant throughout all datasets. Therefore, we proceed with the analysis of individual
linescans, with the global sensor orientation as prior knowledge. The 29 individual parameter sets are
iterated until the resulting (unnormalized) probability distributions are smooth (n ≈ 5× 106 iterations) and
approximate them by Gaussians. Note that here, we need to account for the position error arising from the
open-loop scanner as described in Section I. This is done by calibrating our length scale and the statements
on the error of the individual parameters.

An example of this analysis for the data set in Fig. S4b is shown in Fig. S4(c,d). We approximate each
of these histograms with a Gaussian and extract its mean and the standard deviation. For this particular
data set, we extract σm = 2.4 ± 0.2 µB/nm2, dNV,0 = 46 ± 3 nm and dNV,1 := ∆d + dNV,0 = 53 ± 3 nm
(not shown). In the main text, we state the mean of σm obtained at room temperature together with the
systematic error.

V. DOMAIN WALL MODEL

In order to derive a model for the stray field of a domain wall, we consider the surface magnetization of
Cr2O3. As for the mesa measurements (Section IV), in our experiments the emerging stray field BNV is
measured along the NV axis:

BNV = B0 + cos(θNV )Bz + cos(φNV ) sin(θNV )Bx, (S4)
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FIG. S4. Fitting of the mesa stray field a Schematic of a mesa with the surface magnetization shown as an array
of oriented spins. The stray field lines are shown in grey, originating from effective currents, I+ and I−, at the edges
of the mesas. The NV is located at the tip of the scanning probe, which is scanned relative to the mesa. b Stray
field of the mesa as measured along the NV axis with the fit of the model shown in red. The topography of the
stripe is shown at the bottom. c,d Histograms of the results of the MH algorithm for the surface magnetization (c)
and NV-to-sample spacing, dNV,0 (d). These are fit with Gaussian distributions (shown in red) and the mean and
standard deviation for each distribution is given in the text.

To calculate this field, we use the procedure of propagating fields in Fourier space (with momentum vector
q) [6], where for a given magnetization M(q), the Fourier components of the magnetic strayfield for a given
sensor distance dNV can be calculated with the corresponding propagator D(q, d):

B(q, dNV ) = D(q, dNV )M(q), (S5)

with:

D(q, d) =
µ0Ms

2
(e−dq − e−(d+tm)q)

− cos2(φq) − sin(2φq)
2 −i cos(φq)

− sin(2φq)
2 − sin2(φq) −i sin(φq)

−i cos(φq) −i sin(φq) 1

 . (S6)

Here, tm is the thickness of the magnetic layer and Ms [µA/m] is the saturation magnetization. For the
two-dimensional surface magnetization, we consider the limiting case tm · q� 1 such that, σm = Ms · tm is
the surface magnetization, and the exponential pre-factor simplifies to µ0σmq

2 (e−dq).
After an inverse Fourier transformation, one obtains the real-space x and z components of the stray field

of a Bloch wall:

Bx = − µ0σm
2π2`m

Re

[
−ψ(1)

(
2dNV + π`m + 2ix

2π`m

)
+ ψ(1)

(
2dNV + π`m − 2ix

2π`m

)]
, (S7)

Bz =
µ0σm
2π2`m

Im

[
−ψ(1)

(
2dNV + π`m + 2ix

2π`m

)
+ ψ(1)

(
2dNV + π`m − 2ix

2π`m

)]
. (S8)
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Here, ψ(1) represents the first derivative of the log gamma function. Note that the situation is translation
invariant along the y-direction, and therefore produces no stray field in By.
In order to validate this analytical description of the stray field of a domain wall, we simulate a Bloch
wall in MuMax3 [7]. In the simulation, the surface magnetization of Cr2O3 is approximated by a thin slab
given by a single cell with a 1 nm extent and a magnetization M of |M | = 10 kA/m , exchange stiffness
A = 0.423 pJ/m and uniaxial anisotropy of K = 215.86 J/m3. The total dimensions of the simulated sheet
are 4096 nm× 32 nm× 1 nm discretized to a grid of 1 nm× 2 nm× 1 nm cells, including periodic boundary
conditions to minimize boundary artifacts.
To nucleate a domain wall, we start by considering a sheet magnetized upwards in one half and downwards
in the other. After energy minimization of the system via relaxation, a time-span of about 1 µs is simulated
to ensure a static equilibrium. The magnetization profile of the domain wall is then extracted and fitted
according to the wall profile described by Eq. (1-3) in the Methods, which yields `m. In the next step, the
stray field at a distance of 20 nm is extracted from the simulation and compared with Eq. S8. We find very
good agreement between the numerical estimates and analytical approximations. In fact, we believe the
analytical description to be more accurate in capturing the dipolar stray fields, since the model considers an
infinitely extended magnetic system, without the need of periodic boundary conditions or finite extent as
present in the simulations. Such a comparison is shown in Fig. S5.
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FIG. S5. a Normalized magnetization profile of a Bloch domain wall obtained from micromagnetic simulations (black
dots) and its analytical description (solid line). b Stray field components Bx, Bz (black square, red dots) simulated
for a 20 nm distance from the sample surface and calculated stray fields according to the analytical model (lines).
For better visibility in both sub-panels, only every 10th data point of the simulation is shown.

VI. DOMAIN WALL FITTING

Based on concurrent measurements taken over the mesa structures, we can place tight restrictions on the
values of σm, θNV , φNV and dNV . In particular, for dNV , we use the estimate for the larger of the two
extracted distances (dNV,0, dNV,1, see Section IV) to account for possible dirt when scanning. The scanning
direction with respect to our NV axis is readily obtained through our position calibration (Section I), though
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again, taking into account the error on the angle. This leaves only the domain wall position and magnetic
length `m as complete unknowns.

To proceed, the stray field data of the domain wall, prior information and stray field model (as derived
in Section V) is analyzed via our MH algorithm implementation (Section III). We iterate through n ≈
20× 106 steps, resulting in a reasonable modeling of the recorded stray field data, as shown in Fig. S6b and
smooth probability distributions for all parameters, in particular for the remaining magnetic length (`m)
that determines the width of the domain wall.

The inset of Fig. S6b shows the cumulative distribution function (CDF) of `m for this data set. The
measurement is taken at 302 K, and yields a mean magnetic length of 20 nm with the 2nd and 98th percentiles
being 2 nm and 28 nm respectively.

We claim that statements on such small `m (`m � dNV ) parameters are still reasonable due to the
immediate lateral and temporal proximity of the mesa and domain wall measurements. This allows us to
assign any broadening in the stray field of the DW, exceeding the expected broadening from the sensor
distance dNV , to the domain wall width given by `m. This is essentially a deconvolution of the domain wall
data with the detection function of our setup, possible by the concurrently taken mesa measurement data.
The analysis yields our statistical confidence in the model parameters given in the data. In our experience,
most systematic errors can be excluded, with the exception of the error arising due to the piezo non-linearity,
drift and hysteresis characterized in Section I. We consider the possibilities of these errors in our statement
of the DW upper bound by referring to the 98th percentile, while remaining within a reasonable range of
values.
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FIG. S6. Fitting of the domain wall a Full field image of the domain wall running between two perpendicular
mesas. The black line shows the location of the linescan, with the domain wall portion given by the dashed line. b
The stray field over the entirety of the linecut showing the domain wall fitted with the MH algorithm (red) and the
mesa stray field in the grey area. The inset shows the CDF of the distribution of magnetic lengths with the 2%, 50%
and 98% points shown with colored circles.
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VII. TEMPERATURE DEPENDENCE

By mounting the sample on a small Peltier element, we are able to access a range of sample temperatures
from room temperature (295.7 K) up to ≈340 K. As such, we are able to explore the temperature dependence
of both the sample magnetization and `m. We begin by presenting the magnetization, extracted as described
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FIG. S7. Temperature dependence of σm and `m a The surface magnetization, as extracted from the mesa fits,
plotted as a function of temperature. The error bars in the magnetization are given by the standard deviation of the
extracted magnetization distributions (see Section IV). The fit is given by Eq. S9 for TNéel = 307K. b The magnetic
length (`m) is plotted as a function of temperature, with the mean DW parameter given by the circular points. The
upper and lower limits, shown with black bars, are determined by the 98% and 2% confidence intervals respectively.
The range of theoretical DW parameter values is presented by the shaded region between the red and blue lines.
Note that all errors in the horizontal axis are smaller than the symbols.

in Section IV, and plotted against the temperature (normalized to the Néel temperature, TNéel) in Fig. S7a.
Here, we see that the surface magnetization falls off as

σm = σm0

(
1− T − T0

TNéel

)β
, (S9)

where β is the critical exponent. Note that we allow for an offset, T0 of the temperature to take into account
a possible calibration offset between the thermistor (which defines T ) and the actual sample temperature.
Here, we assume the literature value of the Néel temperature (307 K), a reasonable assumption in the absence
of excessive strain [8] or doping [9], which may lead to changes in TNéel. In doing so, we obtain a relatively
small offset of only 2 K and a critical exponent β = 0.26, well within the range of previously measured values
[10].

Note that the vertical error bars in Fig. S7a are given by the standard deviation of a Gaussian fit to the
distribution of σm, extracted using the MH algorithm. We now repeat the same procedure for `m, plotted
against the temperature in Fig. S7b. Here, the filled circles represent the mean magnetic length extracted
from the MH algorithm for each data set. The error bars are given by the 98th (2nd) percentiles of the
CDF, to show the maximum (minimum) values of `m that would be consistent with our data given the
constraints we place based on the mesa measurements. In particular, we can look at the room temperature
measurements (first three points at the left), which all fall below the 98th percentile bar at 32 nm. This
justifies our statement in the main text, that `m > 32 nm is inconsistent with our measurements at room
temperature. Furthermore, we show the theoretical upper (blue) and lower (red) limits given by `m =

√
A/K

where A is the exchange stiffness and K is the anisotropy [11]. In particular, we use the following temperature
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dependence for A [12, 13]:

A(T ) = A(0)

[
m(T )

m(0)

]α
, (S10)

where m is the sublattice magnetization and α ∈ [1, 2]. The exact value of α is unknown, but is believed to
be close to α = 2 yielding generally smaller domain wall widths. Furthermore, the value of A(0) is estimated
as:

A(0) =
J S2

a
, (S11)

with the exchange integral J = 2.34× 10−21 J taken from DFT data [14] and S = 1 being the effective spin
length [12]. As such, we see that our measurements are consistent with the theoretical expectations, and
expect that, close to the Néel temperature, we would reach a regime where `m > dNV , in which case, we
could directly measure `m. This would require either higher spatial resolution (for lower temperatures) or a
higher sensitivity (close to TNéel), which should be achievable in future work.

VIII. ANALYTICS FOR SNELL’S LAW

We consider a semi-infinite sample with a mesa of width w and thickness t on the top surface (z = 0).
It is assumed that the mesa has a constant rectangular cross-section and is directed along the ey axis.
The continuum model of Cr2O3 can be represented using two antiferromagnetically coupled sublattices
with unit magnetization vectors Ma(r) and Mb(r) [15, 16]. Within the long-wave approximation, it is
reasonable to use the Néel vector order parameter L(r) = (Ma−Mb)/2 and the total magnetization vector
M(r) = (Ma + Mb)/2, with |L| = 1 and |M | ≈ 0. The latter will be neglected in the following. Then, the
effective energy of the sample reads [17, 18]

E = K
∫ [

`2m
∑

ν=x,y,z

(∂νL)2 + (1− L2
z)

]
dr, (S12)

where `m =
√
A/K is the magnetic length as for the spin-lattice model. Note that additional magnetoelastic

terms may be incorporated into the effective value of the anisotropy constant K, leading to a shift in `m
with qualitatively identical results [19–21]. We furthermore assume the exchange-driven Neumann boundary
conditions for the Néel vector:

L× (ns · ∇)L = 0, (S13)

where ns is the surface normal. In the following, we use the local spherical reference frame parametrization
L = {sinϑ cosϕ, sinϑ sinϕ, cosϑ}. We set the equilibrium, bulk domain wall position to the plane y = kx
where k is assumed to be small. We also assume a mesa geometry satisfying t/w > 0.01. Then, we can
describe the domain wall as it passes through the mesa through the following Ansatz:

ϑ =

{
2 arctan exp

y′−yb0 (x′,z)
`m

, z < 0

2 arctan exp
y−ym0 (x,z)

`m
, z ≥ 0

ϕ = const. (S14)

Here, (x′, y′) = Rez
(ν)(x, y) with Rez

(ν) being the rotation matrix around ez at an angle ν, and yb,m
0

describes the domain wall profile in bulk and mesa, respectively. We use

yb
0 (x, z) = (k0 − k)b sech

x

b
tanh

x

b
e−

z2

2c2 (S15)

with b = w/(2 arcsinh 1). The values of k0 and c are determined through the energy minimization below.
The function ym

0 (x, z) is determined by minimizing the energy functional (S12) within the mesa and reads

ym
0 (x, z) =

4k0

w

∞∑
n=0

(−1)n

λ2
n

sechλnt coshλn(t− z) sinλnx, (S16)
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where λn =
(1 + 2n)π

w
and we set ym

0 (x, 0) = k0x. Then, the total energy of the domain wall (E), up to a

constant, reads:

E = E0k2w2

[
1− f

(
t

w

)]
, f(x) =

[
C2 + C1

N0∑
n=1

tanhπ(2n− 1)x− 1

(2n− 1)3

]−1

,

E0 =
16K`m
π3C1

, C1 =
48
√

70 arcsinh2 1

7π7/2
≈ 0.811, C2 = 1 +

7

8
ζ(3)C1 ≈ 1.853,

(S17)

where ζ(3) ≈ 1.202 is the value of the Riemann zeta-function and N0 is chosen from condition tanhπ(2N0−

1)x ≈ 1. The value of c from Eq. (S15) is thereby given by c =

√
5

14

w

2 arcsinh 1
. This parameter plays a

particularly important role as it determines the length scale over which inhomogeneities in the domain wall
persist into the bulk below the mesa. For this reason, we rename this parameter as tB in the main text.
Furthermore, k0 = kf(t/w) characterizes the direction of the domain wall at the bulk-mesa interface. Note,
that it is dependent only on the mesa aspect ratio, which allows us to scale simulations for direct comparison
with experiment. In particular, Fig. S8 shows the comparison between the analytics developed here (solid

mesa mesa

t/w = 0.128t/w = 0.064a b

analytic z=0

analytic z=t

bulk DW

sim z=0

sim z=t

FIG. S8. Analytical analysis of the domain wall in the bulk and mesa Comparison of the domain wall
profile in analytics (solid lines) and simulations (symbols) for two mesa aspect ratios. Level z = t (top of mesa, see
Eq. (S16)) and level z = 0 (bulk-mesa interface, see Eq. (S15)) are shown by black and blue. Equilibrium direction
of the domain wall in bulk is shown by red dashed line. Mesa region is colored by gray. Simulation parameters:
w = 47a, t = 3a a and t = 6a b, sample dimensions (without mesa) 199a× 199a× 49a.

black and blue lines) and simulations (black circles and blue squares, where we see excellent agreement. In
both analytics and simulation, we see the S-shaped bending of the domain wall on the mesa and the gradual
twisting of the domain wall to match that of the bulk position (red dashed line) as we go into the bulk.
The S-shaped deviation is much less pronounced for thinner mesas (Fig. S8a), which is very similar to the
experimental case.

The Snell’s law for the domain wall can be determined using the equilibrium domain wall profile in bulk
and at the mesa top surface (z = t). The incidence angle is given by θ1 = arctan k, while the refraction angle
can be estimated as θ2 = arctan k1 with k1 := ∂xy

m
0 (0, t). Then,

sin θ1

sin θ2
=

k

k1

√
1 + k2

1

1 + k2

t/w→0
≈ 1 + 3.1 cos2 θ1

t

w
. (S18)

IX. ELASTIC PROPERTIES OF THE DOMAIN WALL

In experiments and simulations, we have observed a behavior of the DW that mimics that of a rubber
band. As such, we describe the DW trajectory and interactions with the mesa using its elastic properties,
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FIG. S9. Extended simulations on DW elasticity a Surface energy of the DW as a function of the increased DW
area arising due to a bend around a mesa. We compare simulations (circles and squares) and calculations (lines) for
two different magnetic length values `m = 3a (blue) and `m = 6a (red) b Temperature dependence of γ showing upper
and lower bounds determined as in Fig. S7, showing the softening of the DW elasticity with increasing temperatures.
c Pinning behavior of the DW for two effective temperatures (set by changing the magnetic length), where the blue
curve (`m = 3a) is at a lower temperature than the red (`m = 6a). The insets show snapshots of the simulated DW
position along the red curve. The blue curve corresponds to that seen in Fig. 3c in the main text.

that is, the DW surface energy and corresponding surface tension. In particular, we can consider the surface
ς where the Néel order parameter lies horizontally (Lz(r) = 0), and use this to describe the DW. We can
address the details of ς by means of spin lattice simulations (see Simulation Details in the main text for more
details). In Fig. 2c of the main text, we see that the domain experiences the strongest deflection at the edge
of the mesa when crossing from bulk to mesa. As previously discussed, this behavior is well-described by the
Ansatz in Eq. S14, where the b parameter determines how far the wall is deflected in the plane of the mesa
and c (introduced in Eq. S15) characterizes the deflection in the vertical direction. The same behavior exists
in the case where the domain wall is deformed around the mesa, as shown in the inset of Fig. S9a. Here,
ς exhibits a smooth bend deep in the bulk and sharper deflections near the mesa edges. The additional,
tensional energy due to this bending is plotted here for two different values of `m (circles and squares) as a
function of the increase in area DW area S arising from the bending. We can compare the results of these
simulations with analytical calculations if we assume that the inhomogeneities of ς are gradual, i.e. have a
radius of curvature larger than `m. In this case, we can describe the DW’s mechanical tension by:

γ = E/S = 4
√
AK. (S19)

Here, we have defined a tension coefficient γ for the DW, which is plotted in Fig. S9a as solid lines for two
different values of `m.

We can furthermore explore the impact of temperature on the tension coefficient. To do so, we use the
temperature dependence of A [12, 13] and K [11], as in Fig. S7b. The corresponding upper and lower bounds
of the tension coefficient are then shown in as shown in Fig. S9b, where the observed reduction in γ with
increasing temperature implies an increase in elasticity, or a ’DW softening’. The consequences of this are
more clear in Fig. S9c. Here, we show the pinning surface (tension) energy of the domain wall as a function
of the DW position relative to a mesa, as in Fig. 3c in the main text, for two different values of `m. As `m
increases with increasing temperature, this acts as an effective tuning parameter for the temperature in these
simulations. The blue curve is as shown in Fig. 3c, where the DW deforms continuously. However, for larger
`m (red), i.e. higher temperatures, we see a different pinning behavior, illustrated with the snapshots inset
to the figure. Here, the DW is first deformed around the mesa, before snapping into a straight configuration,
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passing through the mesa. As the DW is moved closer to the opposite edge of the mesa, the mesa will again
be preferentially pinned to the mesa edge for some distance, on the order of `m, at which point the DW no
longer feels the influence of the mesa. Thus, we expect that the pinning of the DW can be strongly influenced
by temperature. However, this reduction in pinning strength can be overcome by carefully tuning the mesa
geometry.

X. DOMAIN WALL DRAGGING

We are able to explain dragging of the domain wall by the laser through the formation of an effective
attractive potential for the DW by local heating. Heating of the sample appears to lower the effective depth
of pinning potentials, evidenced by the fact that reproducible laser dragging is only achieved at sample
temperatures above room temperature, and near TNéel. The additional heating provided by the laser then
allows us to completely overcome this barrier, and move the domain wall freely. However, once the heating,
i.e. laser, is removed, the domain wall tension causes the wall to snap back to its original position unless
it becomes pinned along the way. This dragging and pinning can also be achieved over µm-scale distances,
as shown in Fig. S10a, where we drag the DW using the same technique outlined in the main text, over a
distance of 6 µm. This implies that every time we observe a movement of the DW, we are moving it between
strong pinning sites, which can be internal crystal defects or fabricated surface structures.
We support these claims by further scans across the domain wall with the NV scanning probe at increased
laser intensities. In this way, we aim to heat the sample with the near-field of the excitation laser near the
tip of the scanning probe while simultaneously measuring the stray field from the DW at the NV position.
An example of this procedure is shown in Fig. S10b, where we compare the measured stray field at low
power (9.7 µW - red) and high power (85 µW - blue) 532 nm laser excitation (with powers measured at the
rear lens of the microscope objective). Each scan is performed with a 3 s integration time per point, over
the same section of domain wall, at a global sample temperature of 304.5 K. At low power, we see a domain
wall stray field as already discussed. Increasing the power results in additional peaks in BNV occurring at
erratic locations. We explain this observation with a number of pinning sites located along the DW path
as the DW is bent by laser dragging. In particular, we see an initial increase and plateau in BNV , which
is consistent with an attractive potential moving the domain wall ahead of the NV position. The field then
increases, meaning that we pass over the domain wall with the NV, which can only be achieved by pinning
of the domain wall. However, at some point, the pinning is overcome and the domain wall is again dragged
together with the laser. We furthermore see a number of smaller pinning centers, evidenced by the slight
peaks in field towards the end of the scan. In the insets of Fig. S10b, we show the position of the NV relative
to the stray field pattern that would result in such peaks. Furthermore, as we continue to observe a non-zero
stray field while scanning, we expect that the sample temperature surrounding the NV is still below TNéel.
If we again image the domain wall at low green laser power after such dragging, we see that the position
remains unchanged in most cases. This indicates that the other pinning centers we observed are rather weak,
and are overcome by the domain wall tension. Thus, we can directly observe the dragging of the domain wall
by the laser and thereby gain information about the pinning landscape in the sample - a potential avenue
for future research.
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