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A. Long-length-scale inhomogeneous birefringence

A variety of experimental probes are reported as hav-
ing detected rotational C4 symmetry breaking persist-
ing tens of kelvin above the bulk structural transition
temperature (as determined by scattering and thermody-
namic probes) [1–7]. However, our local probes are con-
sistent with the concurrent onset of resistivity anisotropy
and twin-domain formation, at least where the domains
walls do not wander; see Supp. Sec. B. To reconcile this
apparent discrepancy, we now detail our observation of
birefringence that is inhomogeneous on long-length-scales
and persists to temperatures as high as 60-K above Tnem.
These observations are consistent with the previous re-
ports of C4 symmetry breaking at T > Tnem.

Supplemental Fig. 1 shows wide-area birefringence
(θ(x, y)) images for x = 0 and 2.5% samples at tempera-
tures below, at, and above their respective Tnem. While
short-length-scale birefringence modulations from twin-
domains disappear above Tnem, long-length-scale, inho-
mogeneous birefringence persists up to 60-K higher.

Supplemental Figs. 1(d,h) show birefringence in the
blue and orange boxes plotted versus temperature. Evi-
dent are the expected kinks in |θ(x, y)| due to the peak in
nematic susceptibility near Tnem. Interestingly, the sign
of θ(x, y) in the parent sample is the same in the two
regions despite being morphologically consistent with or-
thogonally oriented domains. This might indicate the
presence of a quenched lattice distortion from unintended
strain along the same direction in both regions. That
could cause the ∼+0.2-baseline shift we observe around
which short and long-length-scale birefringence is modu-
lated. Such a picture is also consistent with the observed
peak, rather than dip, in the orange region’s rotation,
since the prevailing distortion axis would be co-aligned
with that in the blue region.

We were not able to determine whether long-length-
scale resistivity anisotropy is coincident with this bire-
fringence due the currently limited field of view of the
SQCRAMscope. Nevertheless, these observations sug-

∗ F.Y, S.F.T., and S.D.E contributed equally to this work.

gest that the anisotropy observed by other probes [1–7]
at T > Tnem may be the result of a large nematic suscep-
tibility coupled to inhomogeneous unintended strain.

B. Additional scan of x = 2.5% sample

Supplementary Fig. 2(a,b) shows birefringence and
measured magnetic field for scan region D3 of the x =
2.5% sample. The scan exhibits interesting features,
highlighting the variety of domain morphology at the
nematic transition. Limited magnetometry resolution
blurs neighboring domains that otherwise appear dis-
tinct in optical birefringence. Birefringence measure-
ments reveal the movement of domain walls near the
transition temperature that can just be discerned in the
lower-resolution magnetometry data, implying a bulk,
rather than just near-surface effect. This movement, cou-
pled with sensitivity and resolution limits, makes it dif-
ficult to compare the temperatures at which transitions
in birefringence versus magnetometry occur in this scan.
Rather than attempt to compare metrics like AB(T ) and
Aθ(T ) for migrating domains of variable width, we in-
stead simulate the magnetic field resulting from the do-
main structure in panel (a) and use it to compare with
the actual magnetometry data in panel (b). To do so,
we calculate the field we would detect if the birefringence
structure in panel (a) were to faithfully serve as proxy for
demarcating the bulk electronic nematic domain bound-
aries. The results are shown in panel (d), where the
optical data have been convolved with the Biot-Savart
kernel to account for finite resolution and noise from the
sensitivity limit measured in Ref. [8] has been added; see
below for simulation details.

Simulated magnetometry domains appear to be sub-
sumed by noise above 97 K, nearly the same temperature
at which the domains in magnetometry vanish outright
or are also subsumed into detection noise. Because of
this, we cannot tell if the magnetometry domains actu-
ally extend to higher temperatures, say, up to ∼100 K
where the optical domains vanish. However, domains in
the magnetometry data do seem to migrate just as in the
simulation, showing that this is an effect of the bulk as
well as the surface. Another complication is the broad
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Supp. Fig. 1. Large-length-scale optical birefringence modulation. Data from x = 0% and 2.5%-doped samples in panels
(a-d) and (e-h), respectively. Optical birefringence below the nematic transition (a,e), at the transition (b,f), and above the
transition (c,g). (d,h) Polarization rotation angle as a function of temperature at two different regions marked by blue and
orange rectangles in (a-c) and (e-g), respectively. Nematic and Néel transition temperatures are indicated by solid and dotted
lines.
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Supp. Fig. 2. Additional scan of the x = 2.5% sample in D3 region. Shown are (a) birefringence signal θ̄(x, T ), (b) magnetometry
signal B̄x(x, T ), and (c) simulated magnetic field B̄sim

x (x, T ) from the birefringence data in (a), and (d) simulated magnetic
field with background subtracted B̄sim

x (x, T ) − B̄sim
x (x, T ∗) (T ∗ > Tnem).

magnetic feature of unknown origin that appears above
∼97 K, which could also be masking the magnetic do-
main signal. The positive part of the feature is centered
±15-µm about x = 20 µm, while negative wings emerge
at the top and bottom of the scan. This feature is not
evident in the optical measurement, though it is above
the noise floor and presumably not a detection artifact.

We cannot discern whether domains in magnetometry
vanish around 97 K due to detection noise or because
they are subsumed into a broad magnetic feature of un-
known origin. Thus, while we cannot be sure whether
the x = 2.5% data is more consistent with a single ne-
matic structural-electronic transition versus an extraor-

dinary surface transition scenario, the data do indicate
that bulk and surface transitions differ by no more than
few degrees and that strong short-length-scale nematic
domains do not extend far above the expected bulk ne-
matic transition temperature. Future magnetometry us-
ing a SQCRAMscope with improved resolution and sensi-
tivity should help resolve what this feature is and exactly
where the bulk transition lies in data where the domains
migrate.
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Simulation of expected magnetic field from optical rotation
data

We will show in Supp. Sec. G that to leading order, the
current density jy(x, y) is proportional to the resistivity
anisotropy 1− ρx/ρy. Therefore, if we take the birefrin-
gence θ(x, y) as a proxy for nematicity, and by extension,
resistivity anisotropy, then convolving it with the Biot-
Savart kernel G(kx, ky) gives the expected magnetic field
B̄sim; see Eq. (6) in Supp. Sec. F.

The raw and background-subtracted simulation results
are shown in Supp. Figs. 2(c,d). We now detail the nu-
merical procedure for generating the simulated field be-
low. Supplemental Sec. G presents how to map measured
current density to resistivity anisotropy. Briefly, the cur-
rent density jy(x, y) perpendicular to the BEC is pro-
portional, to leading order, to the resistivity anisotropy
1− ρa/ρb,

1− ρa/ρb =
2δjy
jbulk

, (1)

where jbulk is the applied bulk current density. There-
fore, if we take the birefringence θ(x, y) as a proxy for
nematicity, and by extension, resistivity anisotropy,

1− ρa/ρb = αθ(x, y), (2)

where α is an arbitrarily chosen conversion coefficient,
then convolving δjy with the Biot-Savart kernel G(x, y)
(see Supp. Eq. 6 in Supp. Sec. F) gives the expected
magnetic field Bsim

x :

Bsim
x (x, y) = jsim

y (x, y) ∗G(x, y) (3)

=
αjbulk

2
θ(x, y) ∗G(x, y). (4)

We note that the application of the aforementioned
method to the data in Supp. Fig. 2(a) results in
Supp. Fig. 2(c), which does not fully resemble the mea-
sured field shown in Supp. Fig. 2(b). However, by
subtracting the simulated field at a higher temperature
T ∗ = 102.5 K from that of each temperature, we recover
a field map Supp. Fig. 2(d) that is more similar to the
measured field. This suggests that the long-length-scale
birefringence reported in Supp. Sec. A might contribute
an offset to the data observed here.

C. Sample preparation

Single crystals of Ba(Fe1−xCox)2As2, with nominal
composition x = 0% and 2.5%, were grown using the
self-flux technique described in Ref. [9]. The structural
and Néel transition temperatures were determined from
bulk resistivity measurements on crystals from the same
growth batch following the procedure in Ref. [10]. The
intra-batch variations in transition temperatures are typ-
ically ∼1 K.

The crystals were cleaved and cut into thin rectangular
plates, with edges of the crystal cut at roughly 45° to the
tetragonal axis. The sizes of the crystals were measured
using an SEM to be: 1.69 mm × 2.35 mm × 28 µm for
the parent crystal, and 1.78 mm × 2.23 mm × 22 µm for
the 2.5%-doped crystal. The variation in thickness is
of the order 5–10 %. The crystals were positioned on
lithographically patterned gold wires on the silicon wafer
used to support the samples in the SQCRAMscope using
a flip-chip bonder, and electrical contact between crystal
and gold was made using silver epoxy.

D. Location of scan regions

The location of the scan regions P1, P2, D1, D2 and D3
referred to in the main text are indicated in Supp. Fig. 3.

E. Magnetometry measurement of bulk current
density

In our calculations of resistivity anisotropy, we use a
bulk current density jbulk that is determined by dividing
the total sample current by the cross-sectional area of
the sample. This assumes that jbulk is spatially homoge-
neous. To substantiate this assumption, we carried out
a more direct local measurement of jbulk, as we now ex-
plain. (The data listed below are taken from the parent
compound as an example. Similar measurements carried
out on the 2.5%-doped sample shows no discrepancy and
are omitted here.) Due to the shape of our BEC trap-
ping field, applying a magnetic field perpendicular to the
BEC changes the distance between the sample surface
and the BEC (which we refer to as the BEC height). The
bulk sample current flows parallel to the BEC (along the
x axis), which generates a perpendicular magnetic field
(along the y axis). Thus, the BEC height reflects the
mean current density j̄bulk in its vicinity.

Starting with the BEC positioned about 10-µm away
from the sample surface, we measured its height as a func-
tion of the total sample current, as shown in Supp. Fig. 4.
We can determine the response of the gas height to the
sample current to be (−37± 5) µm/A in this example
measurement. We then calibrated the response with ex-
ternal bias coils to find a coefficient of (11± 1) µm/G,
from which we deduce that the sample generates a bias
field near its surface with a field-per-current coefficient of
Bx/I = (3.4± 0.5) G/A. Since the BEC height is much
smaller than the lateral size of the sample, the field near
the sample can be modelled by a thick infinite-sized slab
conductor with current density jy and magnetic field Bx
given by

Bx =
µ0jyh

2
=
µ0I

2w
, (5)

where µ0 is the vacuum permeability, h is the thickness of
the sample, and w is the width of the sample. Given the
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Supp. Fig. 3. SQCRAMscope magnetometry scan regions. The scan regions P1 and P2 are indicated by red parallelo-
grams on θ(x, y) images for parent BaFe2As2 in panels (a–b). The regions D1-3 are similarly indicated for 2.5% Co-doped
Ba(Fe1−xCox)2As2 in panels (c–e). Red arrows indicate the direction of the scan. The speckles seen on the sample surfaces
were likely introduced post-growth via accidental ablation of glue. They do not have a noticeable effect on electronic transport.
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Supp. Fig. 4. BEC height versus sample current. Error bars
represent standard error of the mean.

sample dimensions listed in Supp. Sec. A, we expect a
field-per-current coefficient of 3.7 G/A, in agreement with
the BEC-height measurements. This shows that the local
jbulk at the location we perform our magnetometry does
not deviate substantially from that calculated assuming

a spatially uniform distribution.

F. Extracting current density from magnetic field

We describe the method used to extract current density
jy(x, y) from the magnetic field Bx(x, y) measured using
the SQCRAMscope. This method expands upon that de-
tailed in Ref. [8]. Assuming an infinite sheet of electric
current that is uniform along its thickness h, the Green’s
function for the Biot-Savart kernelG(kx, ky) used to com-
pute the field a distance r from the surface of the sheet
is given by

G(kx, ky) = µ0 sinh (hk̄/2) exp
[
−k̄(d+ h/2)

]
/k̄, (6)

where k̄ ≡
√
k2
x + k2

y is the spatial wavenumber. The y-

component of the current density jy is computed by de-
convolution with the Biot-Savart kernel, or equivalently
by division in Fourier space:

jy(kx, ky) = Bx(kx, ky)/G(kx, ky). (7)

The Green’s function for an infinitesimally thin sheet
of current a depth d within the sample decays exponen-
tially with length scale 1/k̄. Thus, spatial frequencies
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Supp. Fig. 5. Green’s function versus depth below sample
surface for a 12-µm spatial wavelength roughly corresponding
to the observed domain length scale.

corresponding to 12 µm, for example, which close to the
width of a typical domain in our samples, have a de-
cay length of 1/k̄ = 2 µm within the bulk. Supplemen-
tary Fig. 5 plots the Green’s function versus depth below
the sample surface for this spatial frequency. It shows
that magnetometry is primarily sensitive to the top few
microns of sample current when detecting signals with
spatial extent matched with the typical domain size. In
contrast to the 30-nm penetration-depth scale of the opti-
cal measurements, this corresponds to bulk length scales.

The convolution method described above is mathe-
matically exact, but also extremely sensitive to high-
frequency noise due to the exponential term in Eq. (6)
unless Γ ≡ (d ± h/2) max (k̄) � 1. In the present
work Γ ≈ 300. Thus, we must suppress high frequencies
with an appropriately chosen window function. We use
a Hanning window,

H(k̄) =

{
cos 2 k̄

2λ k̄ ≤ 2π/λ

0 k̄ > 2π/λ
, (8)

with a cut-off that removes all frequencies greater than
2π/λ. The value of λ should be chosen large enough to
not filter out critical frequency components of the signal,
but not so large as to allow excessive amounts of noise
to corrupt the signal. This number will set the effective
spatial resolution of the SQCRAMscope for imaging cur-
rent density, down to a limit no smaller than the spatial
resolution for magnetic field imaging (presently 2.2 µm
with the lens system being used) [8]. For the 2D cur-
rent density plots in Figs. 2 (g) and (h), the large thick-
ness of the samples requires a relatively large value of λ
to adequately suppress high-frequency noise. We choose
λ = 8 µm, resulting a FWHM point-spread resolution
of 8 µm when imaging current density in these samples.
The 8-µm cutoff is chosen to minimize the amplified noise
without significantly reducing the size of the measured
signal in any but the smallest of domains; 8 µm is close
to the width of the narrowest domains imaged in Figs. 2.
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Supp. Fig. 6. Domain structure for theoretical calculation of
anisotropy.

G. Model relating current density to resistivity
anisotropy

This section describes the derivation of an expression
for resistivity anisotropy. An analytic model is used to
relate resistivity anisotropy to current density. We then
use this model in Supp. Sec. H to calculate resistivity
anisotropy from measured current density.

Consider an infinite conductor in a 2D plane repre-
senting a crystal in the orthorhombic phase. A single,
infinitely long domain wall extends through the crystal
at 45° to the x and y axes, as shown in Supp. Fig. 6. In
the upper domain, denoted (1), the a and b crystal axes
are parallel to the x and y coordinate axes, respectively,
while in the lower domain, denoted (2), the situation is
reversed: a is parallel to y and b is parallel to x. In each
domain, the resistivity takes a value ρa along the crystal
a axis and ρb along the b axis.

In this model, current is driven along the x direction,
and the current flow is deflected at the domain boundary
by the anisotropic resistance to give a finite current den-

sity in the y direction. Let j
(1)
x , j

(2)
x , j

(1)
y , and j

(2)
y refer

to current densities in the x and y directions in either the
first or second domain region, as denoted by the super-
script. We can experimentally measure the difference in
current along the y direction in the two domains

δjy ≡ j(2)
y − j(1)

y . (9)

We treat all other current densities, as well as the resis-
tivities, as unknown, and gather a set of equations that
will let us solve for the ratio of resistivities, 1− ρa/ρb.
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Two relations can be obtained by conservation of
charge and Faraday’s law. These give, respectively,

∇ · ~j = 0 and ∇ × ~E = 0, where ~E denotes the electric
field. Taking a divergence and line integral, respectively,
across a long, narrow box straddling the domain bound-
ary, we can convert these differential equations to simple
forms. Defining the coordinates x′ (y′) to be perpendic-
ular (parallel) to the domain wall, we write the result of
these integrals as:

j
(1)
x′ = j

(2)
x′ (10)

E
(1)
y′ = E

(2)
y′ . (11)

Converting back to the x − y coordinate system and in-
serting the constitutive equation Ei = ρijjj , we arrive at
the following equations:

j(1)
x + j(1)

y = j(2)
x + j(2)

y (12)

−ρaj(1)
x + ρbj

(1)
y = −ρbj(2)

x + ρaj
(2)
y . (13)

We now obtain a final set of two equations by inserting
assumptions about the net flow of current. To obtain a
more general result, we allow for the two domains to be
of unequal size, letting a fraction f1 of the sample be do-
main 1 and a fraction f2 be domain 2, where f1 +f2 = 1.
We assume there is a net current density jbulk in the x
direction, and no net current in the y direction, repre-
senting our current supply driving electronic transport
through the crystal. By averaging the x current over a
line parallel to the y axis, while averaging the y current
over a plane parallel to the x axis, we obtain:

f1j
(1)
x + f2j

(2)
x = jbulk (14)

f1j
(1)
y + f2j

(2)
y = 0. (15)

We can now solve this set of equations for 1 − ρa/ρb
in terms of δjy, jbulk, f1, and f2. First, we take Eq. (9)
and Eq. (15), which combine to give:

j(1)
y = −f2δjy (16)

j(2)
y = f1δjy. (17)

Substituting these into Eq. (12) and Eq. (14), we solve

for j
(1)
x and j

(2)
x :

j(1)
x = jbulk + f2δjy (18)

j(2)
x = jbulk − f1δjy. (19)

Finally, we substitute the above into Eq. (13):

−ρa (jbulk + f2δjy)− ρbf2δjy = (20)

−ρb (jbulk − f1δjy) + ρaf1δjy. (21)

Simplifying, we obtain:

ρa/ρb =
jbulk − δjy
jbulk + δjy

. (22)

We can then rewrite this as

1− ρa/ρb =
2δjy

jbulk + δjy
. (23)

This equation provides the resistivity anisotropy as a
function of only the known bulk current density jbulk

and the measured current density δjy. Note that this
equation is also independent of the relative size of the
domains, as the geometric factors f1 and f2 do not ap-
pear in the result.

To verify the validity of this equation, we performed
finite element simulations of electric current flowing
through adjacent domains. The domains have alter-
nating anisotropic resistance and varying widths, sim-
ilar to the domain patterns we see in the measured
Ba(Fe1−xCox)2As2 crystals. Equation (1) correctly de-
termined the anisotropy in these models to within nu-
merical error of a few percent, and did so consistently for
a variety of domain widths and anisotropy magnitudes.

H. Computation of resistivity anisotropy from
magnetic field

We now detail the use of the model described above in
Supp. Sec. G to compute the temperature dependence
of the resistivity anisotropy from the measured magnetic
field Bx. To compute the resistivity anisotropy using
Eq. (1), one must first calculate the current density jy.
While the deconvolution method detailed in Supp. Sec. F
calculates jy from Bx using minimal assumptions about
the spatial structure of jy, it is susceptible to making a
biased estimate of the jy modulation amplitude due to
the need to choose a low-pass filter cut-off frequency. In
Fig. 2 of the main text we establish, using the deconvo-
lution method, that the domain structure exhibited in jy
is in good correspondence with that in the birefringence.
Thus, the birefringence signal provides prior knowledge
of jy that may be used to make an estimate of jy from
Bx that is less susceptible to bias.

Rather than computing jy by direct deconvolution of
Bx, we use an iterative method. Using birefringence im-
ages, we construct a parametric model of jy which is then
convolved with the Biot-Savart kernel Eq. (6) to yield a
trial magnetic field B′x. We then vary the model param-
eters by gradient descent so as to minimize the resid-
ual squared error (RSE) between B′x and the measured
magnetic field Bx. The amplification of high-frequency
noise discussed in Supp. Sec. F is avoided because this
method does not directly deconvolve magnetic field data.
The peak-to-peak amplitude of jy, a model parameter,
can then be used to compute anisotropy as described in
Supp. Sec. G.

As shown in Supp. Fig. 7, we model jy as being of fixed
magnitude but rapidly reversing polarity upon crossing
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Supp. Fig. 7. Example of current density model used to fit
magnetic field data.

a domain wall. We parameterize this model according to

jy(x, j0, ε, x1, . . . , xN ) =

N∑
i=1

(−1)ij0 [erf([x− xi]/ε) + 1] /2,

(24)
where j0 is the amplitude of the current; the xi define
the positions of the domain walls, and ε → 0 such that
the error function approximates a step function.

The trial magnetic field B′x is computed as the convolu-
tion of jy(x, j0, x1, . . . , xN ) with the Biot-Savart Green’s
function G:

B′x(x, j0, x1, . . . , xN , B0, B1) = G ∗ jy(x, ε, x1, . . . , xN )

+B0 +B1x+B2x
2,(25)

where B0, B1, and B2 account for fields produced by
large-length-scale current modulations near the region of
interest. Choosing a temperature where the magnetic
signal is near its strongest, we determine the position of
the domain walls by minimizing the RSE between B′x and
Bx by varying j0, xi, B0, and B1. We then constrain
the xi such that the spacing between domain walls is
fixed but they may undergo a rigid translation and the
position of the domain walls is determined by a single fit
parameter x0. To determine the temperature dependence
of jy we use the trial magnetic field

B′x(x, j0, x0, B0, B1) = G ∗ jy(x, µ, x1 + x0, . . . , xN + x0)

+B0 +B1x+B2x
2, (26)

to find the j0, x0, B0, B1, and B2 that minimize the RSE
in magnetic field. We can then use Eq. (1) to compute
the resistivity anisotropy at each temperature by setting
δjy = j0.

We estimate the uncertainty in current density by com-
paring the measured magnetic field to that calculated
using the current density model and its optimal set of
parameters. Supplementary Figs. 8 (a) and (b) show typ-
ical measured (orange) and model (blue) magnetic field
for the parent and 2.5%-doped samples, respectively. We

take the difference of these two curves and deconvolve
the result with the Biot-Savart kernel, following the pro-
cedure in Supp. Sec. F with a cutoff frequency of 8 µm.
The resulting current density represents an estimate of
the difference between our model current density and the
current density flowing through the sample. We overlay
in Supp. Fig. 8 (c) and (d) for the parent and 2.5%-
doped samples, respectively, the model (blue) and error
(red) current densities for the same data presented in (a)
and (b).

We define the uncertainty in δjy to be the spatial
standard deviation in the computed error current den-
sity added in quadrature with error resulting from a 10%
variation in sample thickness. The resistivity anisotropy
error bars in Figs. 3 (e) and (f) result from propagat-
ing these uncertainties through Eq. (1). These error bars
represent uncertainty due to both random sources (e.g.,
noise in the measurement) and systematic sources, such
as a specification of the current density model.

I. Definition of domain-averaged amplitudes

We now provide the definitions for the domain-
averaged amplitudes AB(T ) and Aθ(T ) used in the main
text. We define the domain-averaged amplitude for mag-
netometry and birefringence modulations to be

AB(T ) = argmin
α

{∫
dx
[
B̄x(x, T )− αB̄x(x, Tref)

]2}
(27)

and

Aθ(T ) = argmin
β

{∫
dx
[
θ̄x(x, T )− βθ̄x(x, Tref)

]2}
,

(28)
respectively. Tref is a reference temperature chosen to
be that where the amplitude of spatial modulations as-
sociated with domains is largest. We expect the domain
amplitude to decrease from a peak value near 1 down
to 0 as temperature rises through Tnem. The domain-
averaged amplitude will predominately reflect the size of
features that are large in amplitude or extent. Smaller
or unresolved features will therefore have a minimal ef-
fect on the amplitude, and the presence of, e.g., narrow
domains that are visible in birefringence but not visible
in magnetometry, will not negatively impact the efficacy
of this technique.

J. Simulation of magnetic field for Figure 1d

We simulated the magnetic field we expect to measure
in a two-step process. First, the current density for a
given configuration of nematic domains was computed us-
ing finite-element analysis. This current density was then
used to numerically compute the magnetic field by con-
volution with the Biot-Savart kernel; see Supp. Sec. F.
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Supp. Fig. 8. Error estimation. Panels (a) and (b) show the typical measured magnetic field (orange) and the magnetic field
that results from the optimized current density model (blue) for the parent and doped samples,respectively. Panels (c) and (d)
show the optimized current density (blue) and current density error (red) produced by deconvolving the difference in measured
and calculated magnetic field in panels (a) and (b).

K. Birefringence measurements

We augmented our SQCRAMscope magnetometer
with an optical birefringence microscope similar to the
setup in [11]; see Supp. Fig. 9. The sample, mounted on
a silicon substrate in a UHV chamber, is illuminated by
a 780-nm LED with polarization set by a linear polarizer
and a λ/2 waveplate. Light reflected from the sample
passes through another linear polarizer and is imaged
onto a CCD camera. Silver-coated mirrors and a 50:50
plate beamsplitter are carefully chosen to minimize dis-
tortion of the polarization, giving rise to an extinction
ratio in excess of 1:1000. This provides an angular res-
olution better than 0.1°. The imaging optics are specifi-
cally designed to be installed in the SQCRAMscope with
in-vacuum lenses to provide better numerical aperture.
The microscope was tested with a 1951 USAF target and
found to have a spatial resolution of ∼3 µm, estimated
using the Rayleigh criterion.

The microscope determines the polarization rotation
of light reflected from the sample using the two nearly
crossed polarizers. The intensity of the light on the
CCD camera is therefore indicative of the rotation an-
gle ∆θ = θout − θin, where θin is the linear polarization
angle of the incident light and θout is that of the reflected
light. For samples discussed in the main text, the largest
signal is found when the incident light is linearly polar-
ized along the orthorhombic (110)o direction. This is
consistent with the breaking of C4 symmetry resulting

polarizer

780 nm
LED

λ/2

50:50CCD

polarizer

sample

Supp. Fig. 9. Polarimeter schematic for optical birefringence
measurements.

in a reflectance difference between light polarized along
(100)o versus (010)o. Therefore, we fix the incident po-
larization to be at 45° with respect to the orthorhombic
axes, and define it to be the angular origin throughout
the paper, i.e., θin = 0 and θout = ∆θ.

Because only a small optical birefringence is exhibited
by Ba(Fe1−xCox)2As2, even in the orthorhombic state,
care must be taken to observe a signal. Depending on
whether high accuracy or precision is required, we choose
to operate the optical birefringence microscope in one of
two imaging modes.

The first mode, which we call the relative mode, en-
ables precise measurements of the relative polarization
rotation angle between points on the sample ∆θ(~r1) −
∆θ(~r2) at the expense of an overall angular offset. For a
given location on the sample, the intensity recorded on
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the camera is

I(x, y;α) ∝ sin2[α−∆θ(x, y)], (29)

where we denote the angle of the second polarizer (the an-
alyzer) measured from the maximum extinction position
in the absence of birefringence α. By recording images
at a series of α values, ∆θ is extracted through a least-
square fit to I(α). However, we note that the accuracy of
∆θ is limited by that of α, which is set by the precision
of optical components and is on the order of 0.2°. Con-
sequently, small ∆θ cannot be directly compared against
zero to infer the sign of polarization rotation. This mode
of operation is suitable for measuring the contrast be-
tween twin domains, and therefore was employed for the
data shown in Figs. 2–4.

The second mode, which we call the absolute mode,
obviates this problem by fixing the angle of the analyzer
α during sample cool-down and warm-up. This provides
an improved accuracy in angle measurements but suffers
from reduced precision. In this operation mode, a differ-
ential image is constructed as

∆I(x, y) = I(x, y;α+)− I(x, y;α−)

∝ sin2(α+ −∆θ)− sin2(α− −∆θ)

≈ (α2
+ − α2

−)− 2(α+ − α−)∆θ(x, y), (30)

where α− and α+ are the angles of the analyzer dur-
ing cool-down and warm-up, respectively. Here, the pre-
vious uncertainty in α is replaced by the unknown but
fixed proportionality factor ∆θ(x, y) across datasets. We
are therefore able to compare the rotation angle directly
to zero and thus identify domains of opposite sign in
the nematic order parameter. In addition, with a ref-
erence dataset taken in the relative mode, we are able to
calibrate-out the unknown proportionality factor. This
results in the dataset shown in Supp. Fig. 1, where the
birefringence of both parent and 2.5%-doped samples is
measured across a large temperature span, all while re-
taining angular resolution in absolute units.

L. Registration of optical birefringence and
magnetometry images

The optical birefringence and the magnetometry scans
are performed using different optical axes and imaging
systems. To remove this spatial offset of the birefrin-
gence images to the magnetometry maps, we introduce

a linearly polarized 780-nm laser beam resonant with
the 87Rb D2 transition along the same path as the po-
larimetry light source (see white beam in Fig. 1) and
perpendicular to the sample surface. Absorption images
of the BEC are then collected on the birefringence imag-
ing camera. The same BEC is also imaged through the
SQCRAMscope imaging axis (see red beam in Fig. 1).
Together with the known magnification of the two imag-
ing systems, this allows us to construct the coordinate
transformation that brings the magnetometry data into
the same coordinate system as the birefringence images.
In particular, we take images of the samples with the bire-
fringence imaging camera immediately after taking each
BEC absorption image on the SQCRAMscope imaging
axis. An up-sampled DFT cross-correlation-based image
registration algorithm [12, 13] is used to register the opti-
cal sample images so as to reconstruct the magnetometry
scan regions on the sample plane. This provides us with
the ability to make a direct comparison between the two
modes of operation, as shown in Figs. 2–4 of the main
text. We further apply the cross-correlation method be-
tween datasets taken at different temperatures to align
features seen in magnetometry of Figs. 2 and 4.

M. Trap parameters

The atomic cloud utilized by the SQCRAMscope is
confined by a magnetic Ioffe-Pritchard trap as described
in previous work [8]. In the present work, the lon-
gitudinal and transverse magnetic traps have typical
frequency (12.2± 0.2) Hz and (1.41± 0.05) kHz, respec-
tively. In addition, a uniform 0.3 mT bias field provides
an atomic quantization axis along x̂. The trap is posi-
tioned 2.3±0.4-µm below the surface of the sample. The
atoms could be positioned as close as 800 nm [8], limited
by trap width, but we choose a large distance in this work
for ease of use.

The magnetic field experienced by the sample due to
the magnetic trap is close to the 0.3-mT trap bias field
near the atomic cloud, and increases to a maximum value
of less than 10 mT at the edge of the sample farthest from
the atoms. Magnetic fields of these small magnitudes
are expected to have a negligible effect on the sample’s
resistivity and transition temperature [14].
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