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Marco Di Liberto7, Nathan Goldman7, Immanuel Bloch1,2,3, Monika Aidelsburger1,2

1 Fakultät für Physik, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 München, Germany
2 Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany

3 Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
4 Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
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Here, we present calibration measurements and addi-
tional data (S1), the detailed theoretical model (S2), the
calculation of the edge states in a tight-binding model
(S3) and the connection between the topological charge
and the Berry curvature (S4).

S1. CALIBRATIONS AND ADDITIONAL
MEASUREMENTS

A. Influence of the harmonic trap

We apply a force on the cloud by accelerating the lat-
tice, which leads to a longitudinal velocity of the atoms
in the lab frame. Detuning the frequency of one laser
beam by ∆f = ∆ω/(2π) changes the quasimomentum of
the atoms by

∆q =
2λLmK∆f

3~
. (S.1)

Changing the laser frequency linearly for a time ∆t gives
rise to the force:

F =
~∆q

∆t
= mKaL. (S.2)

The force is varied by changing the time ∆t and keeping
the final detuning fixed. For the bandgap measurements
the applied forces are large and ∆t is small, leading only
to minor displacements in real space, so in this case the
effect of the harmonic trap can be neglected. The trans-
verse deflections were probed with smaller forces to en-
sure that we adiabatically move within a single band,
yielding real-space displacements up to ≈ 100µm. In the
presence of the harmonic trap the semiclassical equations

of motion read:
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where the trapping potential is given by Vtrap =
0.5mKω

2
r(x2 + y2) with the mean trapping frequency in

the xy-plane being ωr = 2π × 27.0(4) Hz (see below).
The additional acceleration terms arise due to the mo-
tion of the lattice potential when transforming back into
the lab frame and give rise to the longitudinal displace-
ments mentioned above. In these cases the restoring force
of the harmonic trap becomes significant along the di-
rection of the force leading to a reduction of the lon-
gitudinal displacement and quasimomentum. Hence, a
different amount of Berry curvature is traversed in recip-
rocal space, potentially changing the transverse deflec-
tion. In Fig. S1a, the calculated longitudinal quasimo-
menta are shown for different forces applied along the
Γ-direction as a function of the quasimomentum qf set
by the lattice acceleration according to Eq. (S.1). At

qx = q0 = 0.5
√

3 kL, the changes are minor, even for the
smallest force of Fa/h = 170 Hz that was used for the pa-
rameter scan in Fig. 3 in the main text. But at the final
value of qf = 1.5

√
3 kL the quasimomentum is reduced

to qeff ≈ 1.25
√

3 kL.
Along the transverse direction the real space displace-

ments are small leading only to minor changes in the
quasimomentum due to the trap. To calculate the trans-
verse deflections we numerically solved the set of equa-
tions in (S.3) including the band dispersion and the har-
monic trap. The resulting transverse quasimomentum
components were q⊥ ≤ 0.005 kL for all modulation pa-
rameters used in this work, meaning that the transverse
band derivative is negligible, since the paths in recipro-
cal space are still well directed along the high-symmetry
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Figure S1. Calculated longitudinal quasimomentum center of
mass (CoM) and calibration of the momentum space width.
a. Calculated quasimomentum CoM qeff along the direction
of the force as a function of the programmed quasimomentum
qx in the presence of the harmonic trap and a static lattice
with V = 6Er (see Sec. S2). The force is applied along the
Γ-direction and varied between Fa/h = 170 Hz and Fa/h =
545 Hz, as indicated by the colorbar, and σ = 0.139 kL. The
black line is the solution without the harmonic trap. The
dashed lines mark the quasimomentum q0 = 0.5

√
3 kL up to

which we accelerate during the parameter ramp-up in many
cases, and the final quasimomentum qf = 1.5

√
3 kL. b. Mea-

surement of the momentum space width by observing the pop-
ulation transfer when driving adiabatically across the border
of the first BZ. Each point is an average over five individual
experimental realizations, errorbars indicate the standard er-
ror. The solid line is an errorfunction fitted to the data to
determine the Gaussian width σ.

lines of the lattice. Hence, it is justified that that the
transverse deflection measured in the experiments is in-
deed proportional to the Berry curvature.

The trapping frequency was measured in the presence
of a static lattice with V = 6Er by observing the breath-
ing mode of the BEC insitu after a quench of the in-
plane harmonic confinement. We fitted a 2D Gaussian to
the absorption images, with the principle axes directed
along the propagation directions of the trapping beams
in the xy-plane, to extract the oscillation of the real-
space width. In our system, the trapping frequency along
the vertical direction is about 8-times larger than the in-
plane frequency. According to [1], the in-plane trapping
frequency can thus be extracted from the frequency fb of
the breathing mode as:

f =

√
3

10
fb.

The corresponding trapping frequencies along the
dipole axes were fX = 27.9(7) Hz and fY = 26.8(4) Hz
giving the weighted average value of f = 27.0(4) Hz men-
tioned above.

B. Momentum space width

Due to finite temperatures, harmonic confinement and
on-site interactions, the BEC is broadened in recipro-
cal space, which we describe by a symmetric Gaussian

Fa hω 2π

s
a
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a

−

KΓ KΓ

Figure S2. Transverse deflections s−⊥ in the Haldane and
anomalous regime. a. Deflections vs. modulation frequency
up to q0 along the Γ- and K-directions with Fa/h = 204 Hz
for m = 0.25. Errorbars indicate the SEM. b. Deflections
in the anomalous regime (m = 0.24, ω/(2π) = 10 kHz) for
q0 → qeff ≈ 1.25

√
3 kL depending on the applied force. The

solid lines denote the corresponding theoretical values includ-
ing the momentum space width. Errorbars indicate the SEM.

momentum distribution with width σ. The width was
determined experimentally by performing a knife-edge
measurement in reciprocal space: The quasimomentum
is changed adiabatically by one reciprocal lattice vector
along the Γ-direction using a force of Fa/h = 204 Hz and
performing bandmapping [2] at certain quasimomenta
along the path. Since the velocity component imposed by
the moving lattice is directed opposite to the Bloch oscil-
lation, the atoms appear, when bandmapping, at the Γ-
point within the first BZ. When some of the atoms reach
the edge of the BZ they appear at the Γ-point in the next
BZ, so we count the relative population in the first BZ
(similar to the bandgap measurements) depending on the
quasimomentum. The amount of atoms in the first BZ is
given by the integral over the Gaussian distribution and
hence described by an errorfunction. An exemplary mea-
surement is depicted in Fig. S1b along with the resulting
fit. The width of the error function was obtained from
the fit, all other parameters were fixed. For every mea-
surement of the transverse deflections we determined the
width in reciprocal space immediately before or after the
measurement and used this to calculate the correspond-
ing theory values (see Sec. S2 B).

C. Deflections during ramp-up and test of the used
forces

To probe the Berry curvature in the Haldane and
anomalous regime the modulation amplitude and partly
the modulation frequency were ramped up while driving
to q0. Using the band structure calculations we verified
that during the ramp-up the points where the two lowest
bands potentially had touched and hybridized, which is
the location of the additional negative Berry curvature
in the anomalous phase, is always located away from the
edge of the moving cloud in reciprocal space (see Meth-
ods). Since we are accelerating along high-symmetry
lines in reciprocal space, the band derivatives along the
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Figure S3. Energy gaps ∆E at Γ and K depending on the modulation frequency for modulation amplitudes m =
{0.2, 0.22, 0.25, 0.27, 0.3} measured with Stückelberg interferometry using Fa/h = 1360 Hz. The energy gap at K (gray
circles) remains open over the full parameter range. The gap at Γ shows multiple closings, indicating the transitions from the
Haldane to the anomalous and third phase with decreasing frequency. With increasing amplitude an avoided crossing appears
at modulation frequencies around ω/(2π) = 15 kHz. The solid green and grey lines are the corresponding theoretical minimal
gaps calculated using six bands, the solid blue lines in the last two panels are the theoretical gaps from a two-band model
(see Sec. S2). The red dashed lines are fits ∝ |ω| to the bandgaps at Γ to determine the phase transitions (see text). The
errorbars indicate fitting errors from the oscillation fits, every oscillation consists of 23 points each averaged over 3-4 individual
experimental realizations.

transverse direction average to zero. Hence, there should
be no deflection during the ramp-up and the measured
transverse deflection can be assumed to correspond to a
path in reciprocal space starting at q0. This is confirmed
by the data in Fig. S2a, showing the measured transverse
deflections along the Γ- and K-direction up to a distance
of q0 for m = 0.25 and different modulation frequencies.

We also verified that the forces we used to measure
the transverse deflections were sufficiently small to avoid
a reduction of the deflections due to excitations to the
second band. We measured the deflections depending on
the applied force when driving by qeff ≈ 1.25

√
3 kL along

the Γ- and K-directions for modulation parameters in
the anomalous regime (see Fig. S2b). The final quasimo-
menta for the lattice acceleration were chosen such that
the effective length of the traversed path in reciprocal
space was similar for all forces. For Fa/h > 300 Hz, the
deflections along both directions are smaller than pre-
dicted by the theoretical calculations due to excitations
to the second band. The modulation parameters chosen
here lie close to the phase transition with energy gaps
∆E(K)/h = 1500(30) Hz and ∆E(Γ)/h = 1110(70) Hz.
The measured deflections saturate for smaller forces
which happens earlier along the K-direction, also indi-
cating the larger energy gap compared to Γ. In total, the
chosen forces of Fa/h = 170 Hz and Fa/h = 204 Hz used
for these modulation parameters are sufficiently small,

which is also confirmed by the overall good agreement
between the measured deflections and the theoretical cal-
culations, where we assume population in a single band.

D. Bandgap measurements for frequency scans

To explore the phase diagram shown in Fig. 1c we
probed the bandgaps and Berry curvature for a broad
range of modulation parameters in different topologi-
cal regimes. The measured transverse deflections along
the Γ- and K-directions are shown in the main text in
Fig. 4a accompanied by the experimentally determined
phase transitions. The corresponding gap measurements
at Γ and K are displayed in Fig. S3 together with the
theoretical values from our model including the six low-
est energy bands. For m = 0.3 we also show the result of
a model truncated to the lowest two energy bands. At the
phase transitions, the (absolute) energy gap at Γ closes
and reopens linearly with the modulation frequency for
constant modulation amplitude. To determine the phase
transition points, we fitted ∆E/h = n · |ω − ω0|/(2π) to
the slope on the left and right of the gap closings, with
n = 1 and n = 2 for the first and second phase transi-
tion. The second phase transition could only be obtained
for m ≥ 0.25. The errors for the phase transitions are

σtot =
√
σ2

fit + σ2
sys with the fit errors σfit and the sys-
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tematic errors σsys. The latter are given by the step size
∆ω/(2π) = 300 Hz used in the energy gap measurements
which is dominating the fit errors σfit ∈ [20, 70] Hz.

We also measured the energy gaps at K to validate our
theoretical calculations and pick the forces for the deflec-
tion measurements appropriately. For large modulation
frequencies and amplitudes the influence of the p-bands
becomes significant which can be seen in the jumps of the
energy gap around ω/(2π) = 15 kHz: Due to the coupling
between the different bands, gaps open at avoided cross-
ings, which increase with modulation amplitude. These
manifest in discontinuities in the effective Floquet bands
and the corresponding energy gaps. The experimental
data is well reproduced by a six-band model, signaling
that coupling to even higher bands with µ > 6 can be
neglected. A two-band model fails to capture all signa-
tures of the experimental data, as illustrated by the com-
parison for m = 0.3 in Fig. S3: The overall shape of the
energy gap at Γ is similar, but the first phase transition
is shifted, whereas the difference between the two mod-
els decreases for smaller modulation frequencies. This is
expected since the modulation frequency becomes more
detuned from the energy gap to the p-bands. At K, the
theoretical curves also coincide at small frequencies but in
the Haldane regime the deviations are larger, especially
the jumps at the avoided crossings are not captured by
a two-band model. The general mechanism of the phase
transitions is captured by a simple two-band model but to
quantitatively describe the experiments performed here,
a six-band model is necessary.

E. Stückelberg interferometry

All energy gaps presented in this work were mea-
sured using Stückelberg interferometry as described in
the Methods. To quantify the amount of atoms in the
first and second band, we take absorption images after
performing bandmapping at Γ giving distinct peaks cor-
responding to the different bands, as shown in the insets
of Fig. S4a. The atoms in the lowest band appear in the
center, whereas atoms in the second to sixth band are
distributed over the outer peaks. The forces were cho-
sen sufficiently large to ensure population of the second
band but not too large to avoid excitations to the p-bands
which can also be assumed to be small due to the good
agreement of the measured energy gaps with the calcu-
lated minimal gaps. We sum up the pixels inside each
of the seven regions of interest (ROIs) drawn as yellow
circles with radius R in the insets of Fig. S4a. To ac-
count for inhomogeneities in the background due to the
finite size of the imaging beam, we also count the pixels
in a larger ROI with radius

√
2R (grey circles). The pixel

counts for each peak are then obtained as 2ΣR − Σ√2R
and the relative population in the lowest band is given
by the counts in the central peak divided by the total
counts.

An example of the population oscillations at Γ for dif-

ω
2π

Figure S4. Raw data used to obtain the energy gaps. a.
Relative population n1 in the lowest band measured at Γ de-
pending on the hold time for different modulation frequencies
and m = 0.25. The reduction of the energy gap and thus oscil-
lation frequency is clearly visible illustrating the gap opening
and closing. Each population is an average over 3-4 individual
experimental realizations. The two insets show raw images for
ω/(2π) = 15.8 kHz and ω/(2π) = 15.2 kHz after a hold time
of 22 modulation cycles, brighter color indicates higher opti-
cal depth. The yellow and grey circles indicate the areas used
to define the pixel counts in each band and the correspond-
ing background (see text). b. Fast Fourier transform (FFT)
of the signal in a as a function of the Stückelberg oscillation
frequency.

ferent modulation frequencies and m = 0.25 is presented
in Fig. S4a, already showing the decrease of the oscilla-
tion frequency towards the phase transitions. To obtain
the points in Fig. 2 and Fig. S3 we fit a sum of cosines
to each population curve as described in the Methods
section of the main text. However, the change in the
oscillation frequency can also be seen directly by per-
forming a Fast Fourier transform (FFT) of the popula-
tion oscillation (Fig. S4b) where the gap closings at the
two phase transitions are clearly visible as well as ad-
ditional small frequency components appearing around
ω/(2π) = 10 kHz probably arising from weak coupling to
Floquet copies of the p-bands.

F. Lifetimes

We measured the lifetime of the BEC at Γ in all three
topological regimes probed in this work. As described in
the main text, in the anomalous phase the first band of
the static lattice is adiabatically connected to the second
band of the modulated lattice which has an energy mini-
mum at Γ. Hence we probed the lifetime for the anoma-
lous regime in the second band by ramping the modu-
lation frequency and amplitude simultaneously in a non-
linear fashion (see Methods) to directly access the anoma-
lous regime. The third regime was probed in the first
band, using a similar ramp-up but starting at a smaller
modulation frequency. After ramping up the modulation
we held the atoms at the Γ-point in the modulated lat-
tice for different times t = nT with n ∈ N, then ramped
down the modulation and performed bandmapping after
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10 ms TOF. In the Haldane regime (for amplitude and
phase modulation) the ramp time was fixed to 5T , in the
anomalous and third regime we used 12T and 7T -8T re-
spectively, corresponding to ≈ 2 ms. The population in
the lowest band was then counted as Σ1 = 2ΣR − Σ√2R
for the central peak using the main and background ROIs
described above for the Stückelberg oscillations. The
population exhibited an exponential decay as a function
of the hold time for most modulation parameters, so we
fitted the function Σ1(t) = Ae−t/τ + y0 to it and ex-
tracted the parameters A, y0 and the lifetime τ , whereas
all of them were constrained to be real and positive. The
fitted offset was negligible in most cases, since we mea-
sured up to times t at which almost no atoms were left.

In the Haldane regime (Fig. S5a) we compared the life-
time for different modulation amplitudes at ω/(2π) =
10 kHz and for m = 0.1 at ω/(2π) = 20 kHz. The life-
times increase linearly for smaller modulation amplitudes
and larger frequencies moving away from the first phase
transition. The value for m = 0.1 and ω/(2π) = 20 kHz
is comparable to the lifetime in the static lattice. In
the anomalous regime (Fig. S5b) the lifetimes are much
smaller and depend mainly on the modulation frequency.
For ω/(2π) = 7 kHz the system is deep in the anomalous
regime and exhibits similar lifetimes for all amplitudes,
whereas the lifetime is reduced significantly for ω/(2π) =
10 kHz and slightly decreases with the modulation ampli-
tude. In the third regime (Fig. S5c) the lifetimes increase
again and strongly depend on the modulation amplitude
and frequency. The parameters were chosen such that
they have equal distance to the phase transition and the
lifetimes are reduced by almost two orders of magnitude
for larger amplitudes and higher frequencies. Based on
the observed dependence of the lifetimes on the modu-
lation parameters, we assume that these effects mainly
originate from excitations to higher quasienergy bands,
which are favored for larger modulation amplitudes and
frequencies, increasing the coupling between the Floquet
zones. In the Haldane regime, the lifetime increases for
f = 20 kHz compared tor f = 10 kHz, which can be
understood as follows: At f = 20 kHz, gπ(Γ) > g0(Γ),
reducing the coupling to the first Floquet copy of the
second band, whereas the gap to the corresponding p-
bands is still large. Increasing the modulation frequency
further, reduces the lifetime again, since excitations to
the p-bands are favored: For f = 30 kHz and m = 0.1
the measured lifetime is similar as for f = 10 kHz (not
shown in the plot).

The last panel of Fig. S5 shows the lifetimes in the
Haldane regime as a function of the scattering length
which we can tune using a Feshbach resonance (see main
text). All measurements so far were performed at as =
6.35 a0. Increasing the on-site interaction considerably
reduces the lifetimes in the static lattice, but even more
in the modulated case, where the minimal lifetime is τ ≈
15 ms for as = 80.25 a0. This suggests that there are
also two-particle processes involved increasing the rate
of excitations to higher Floquet bands.

τ 
(m

s)
τ 

(m
s)

τ 
(m

s)
τ 

(m
s)

Modulation amplitude  m

Modulation amplitude  m

Modulation amplitude  m

Scattering length a

1 2

3 1

Figure S5. Measured lifetimes τ at Γ vs. modulation param-
eters. a. Haldane regime in the first band for as = 6.35 a0.
b. Anomalous regime in the second band for as = 6.35 a0.
c. Third regime in the first band for as = 6.35 a0 whereas
the modulation amplitude and frequency were chosen such
that the gap at Γ is similar. d. Haldane regime in the first
band for ω/(2π) = 20 kHz vs. scattering length. The red
data point is measured for phase modulation of the lattice
with a frequency of 8 kHz and an amplitude of 6.6 kHz also
realizing a Haldane system with the energy gap at K calcu-
lated to be ∆E/h = 160 Hz similar to the measured value
for ω/(2π) = 20 kHz and m = 0.1. Errorbars indicate fitting
errors in all cases, every decay measurement consists of 23
points each averaged over 10 experimental realizations.

Overall, the smallest lifetimes measured are on the or-
der of 2 ms in the second band and the anomalous regime
being comparable to the maximal duration of ≈ 6 ms
used in the deflection measurements. During these ex-
periments the influence of the atom loss on the insitu
images was minor, allowing for proper determination of
the CoM-position by Gaussian fits in all cases. In the
bandgap measurements the atom loss and heating was
visible in the absorption images at long hold times, lead-
ing to damping of the oscillations.

We also compared the lifetimes in the Haldane regime
to the case of a Haldane system realized by circu-
lar phase modulation of the lattice (red data point in
Fig. S5d), similar to [3, 4]. Here, the lattice was shaken
at a frequency of ωM/(2π) = 8 kHz with an ampli-
tude bM/(2π) = 6.6 kHz leading to an energy gap of
∆E/h = 160 Hz at the K-points which is similar to the
corresponding gap for m = 0.1 and ω/(2π) = 20 kHz.
The phase shaking leads to a reduced lifetime compared
to the amplitude modulation, which is nevertheless large
with respect to the experimental times used here.
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S2. NUMERICAL CALCULATIONS

A. Effective Hamiltonian and energy bands

In the experiments, we directly probe the properties of
the bulk from which we can deduce the topological wind-
ing numbers associated with the band gaps. These topo-
logical invariants determine the existence of chiral edge
modes in the system (not measured in the experiment).
To obtain the bulk energy bands and corresponding Berry
curvatures in the modulated lattice we numerically cal-
culated the effective Hamiltonian Heff, which is defined
via the time-evolution operator U(T ) over one full period
of the drive:

Heff =
i~
T

ln(U(T )), U(T ) = T e− i
~
∫ T
0
H(t)dt, (S.4)

where T denotes time-ordering and ln the matrix loga-
rithm. To numerically calculate Heff, the time-dependent
Hamiltonian is evaluated at 300 discrete timesteps tl
within one driving period. We set T = 1 for the inte-
gration over one driving period to simplify the numerics.
For each set of parameters (q,m) we calculated the in-
stantaneous Hamiltonian H(tl,q,m) at each timestep tl
in the basis of plane waves and projected it to its six
lowest eigenstates:

H∗p (tl,q,m) = M†(tl,q,m) ·H(tl,q,m) ·M(tl,q,m),

where the columns of the matrix M are the eigenstates of
H corresponding to the six lowest eigenvalues and · de-
notes matrix multiplication. The resulting 6×6-matrices
H∗p are then transferred to a common basis consisting of
the six lowest eigenstates of H(t = 0,q = 0,m = 0), be-
ing the columns of the Matrix M0. The basis change is
done as:

Hp(tl,q,m) = B(tl,q,m) ·H∗p (tl,q,m) ·B−1(tl,q,m),

B(tl,q,m) = M†0 ·M(tl,q,m).

The time-evolution operator is then calculated from
the projected Hamiltonians at each timestep:

U(T,q,m, f) = Πle
− i

~Hp(tl,q,m) ∆t
f , (S.5)

with f = ω/(2π), and the effective Hamiltonian (in
units of ~ω) is given by

Heff(q,m, f) =
i

2π
ln(U(T,q,m, f)). (S.6)

Due to the periodic driving, the energies are not
bounded any more and the band of Heff that is connected
to the lowest band of the static Hamiltonian not necessar-
ily appears as the lowest. In our case, we are interested in

the two lowest bands, which are adiabatically connected
to the two s-bands of the static lattice.

To extract the two lowest bands, we scanned the quasi-
momentum across the first BZ, calculated the six eigen-
states and eigenenergies of each Heff(q,m, f) and deter-
mined which of the states had the maximal overlap with
the first and second eigenstate from the last q-step. For
the initial step we considered the overlap with the first
two unit vectors, being the eigenstates of the two lowest
bands in the static lattice. The state overlap is defined
as the fidelity Fij :

Fij = | 〈φ(qi,m, f)| |φ(qj ,m, f)〉 |2. (S.7)

Especially at high modulation frequencies and ampli-
tudes, all six bands couple and many avoided crossings
appear. In the vicinity of these points, the eigenstate-
overlap decreases and there can be several states having
an overlap of similar magnitude with the first or second
state of the last step. If the overlap with the previous
eigenstate dropped below a certain threshold, we used
the overlap with the unit vectors instead to avoid false
attributions. The threshold value depends on the modu-
lation parameters, i.e., for low modulation frequencies it
could be set to 0.5, using the eigenstate-overlap mostly
everywhere. By checking the bands in the first BZ as
well as on a 1D-high-symmetry line (Γ −M − K − Γ),
we determined the optimal limits for the fidelity for each
band and set of modulation parameters. The results for
two bands shown in Fig. S3 were obtained by the same
procedure but projecting the instantaneous Hamiltonian
at each time step to its two lowest eigenstates.

B. Transverse deflections

From the eigenstates of the two lowest bands we nu-
merically calculate the Berry curvature according to
Ref. [5] on a rhombic grid spanning the first BZ. For the
numeric integration of Eq. (S.3) we interpolate the Berry
curvature and the band derivatives on a large quadratic
grid spanning several BZs to be able to simulate the full
trajectory including the momentum space extent of the
BEC. The stepsize of the quadratic grid is dq ≈ 0.0145 kL
which was the maximal value at which the resulting real
space positions did not change when decreasing the step-
size further.

For most modulation parameters in the experiment, we
effectively probed the deflections starting at a distance
of q0 in reciprocal space after ramping up the modula-
tion parameters. The quasimomentum after the ramp-
up drive remains as q|| ≈ q0 and q⊥ = 0, and hence
s⊥ = 0 (see Sec. S1 C). The longitudinal offset in real
space was calculated by solving Eq. (S.3) with Ω(q) = 0,
starting at Γ and applying the respective force along the
Γ- and/or K-direction for a time ∆t corresponding to
q0. The integration was performed for about 7300 initial
points in quasimomentum space lying on a circle with
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radius 0.5 kL around Γ to each of which we assigned a
Gaussian weight according to the normalized momentum
distribution of the BEC with width σ. The CoM posi-
tion and quasimomentum after the ramp-up were then
given as the weighted average over the corresponding fi-
nal values. Note that we used the band derivatives for
the final modulation parameters here, which turned out
to give similar results as directly simulating the ramp-up
by using the band derivatives for the different modulation
parameters taken in between.

The deflections were then calculated by integrating
Eq. (S.3) along the Γ- and K-direction with the initial
points lying on a circle centered around the starting point
after the ramp-up, given either by the values above or,
when measuring along the Γ-direction in the first band
and third regime or the second band and anomalous
regime, by q|| = 0 = q⊥ (see Methods). The time span
was determined by the corresponding force and the pro-
grammed quasimomentum distance of 1.5

√
3 kL − q0 (or

1.0
√

3 kL, respectively). The CoM deflection and quasi-
momentum were obtained as the average over the final
values, again using the Gaussian weights of the indepen-
dently calibrated density distribution. For modulation
parameters lying in between the experimental points,
the Gaussian width of the closest measured point was
used. The approximate final values qeff for the longitu-
dinal quasimomentum mainly depend on the magnitude
of the applied force and the time for which it is applied,
whereas the influence of the band derivatives and the
force direction is negligible.

S3. CALCULATION OF EDGE STATES IN A
TIGHT-BINDING MODEL

As described in the main text, in a periodically-driven
system the net number and chirality of edge modes per
energy gap is given by the winding number of the re-
spective gap, allowing for a full characterization of the
system using topological invariants of the bulk only. In
addition to the determination of the winding numbers
we also calculated the energy spectrum of the effective
Hamiltonian on a stripe-geometry displaying the disper-
sion of the edge states directly. We employed a two-band
tight-binding model defined on a stripe terminated by
an armchair-edge in the y-direction and with periodic
boundary conditions along x (Fig. S6a).

Due to hybridization between the s- and p-bands for
large modulation frequencies, the lowest six energy bands
have to be taken into account to quantitatively under-
stand the position of the phase transitions for the model
realized in our experiment (Sect. S2 A). Considering only
the two lowest bands results in a shift of the transition
points (see last two panels of Fig. S3), but the gen-
eral nature of the topological phase diagram remains un-
changed. In this section we present an approximate de-
scription based on a two-band tight-binding model with
time-dependent nearest-neighbor hoppings that allows us

to compute the dispersion of the edge modes directly.
The modulation of the relative intensities leads to a

modulation of the distance between neighbouring lattice
sites, which can be expressed as time-dependent tunnel-
ing matrix amplitudes in the tight-binding limit. The
unit cell of the stripe consists of N dimers along the
y-direction and has a width of 3a in the x-direction.
Due to the periodicity along x, the Hamiltonian can
be Fourier-transformed along this direction with quasi-
momentum qx ∈ [− π

3a ,
π
3a ]. Including time-dependent

nearest-neighbour tunneling along the directions δi with
amplitudes Ji(t), i = {1, 2, 3} and setting the energy off-
set between the A- and B-sites to zero, the Hamiltonian
reads

Ĥtb(qx, t) = −
∑
n,qx

J1(t)
(
e−iqxaα̂†qx(n)β̂qx(n) + c.c.

)
+ J2(t)

(
eiqx

a
2 α̂†qx(n)β̂qx(n+ 1) + c.c.

)
+ J3(t)

(
eiqx

a
2 α̂†qx(n+ 1)β̂qx(n) + c.c.

)
,

(S.8)

where α̂†qx(n) and β̂†qx(n) create a particle with quasimo-
mentum qx on the nth A- and B-site within the stripe.

To extract the time-dependent tunneling amplitudes,
we fitted the energy bands of the two-band tight-binding
model for the system without boundaries to the two
lowest energy bands of the full Hamiltonian for a fixed
modulation amplitude at every timestep tl within one
driving period. The fit was performed on both en-
ergy bands in the entire 2D-BZ, yielding the values of
Ji(tl), i = {1, 2, 3} within one modulation cycle. In the
full six-band Hamiltonian of our time-dependent honey-
comb lattice model, particle-hole symmetry is broken re-
sulting in an asymmetry of the two s-bands. This could
be accounted for by including next-nearest-neighbour
hoppings and coupling to p-orbitals, however, for a con-
ceptual understanding of the phase diagram, the simple
two-band model of Eq. (S.8) is sufficient. In general, the
nearest-neighbour hopping amplitude between two sites
is expected to depend exponentially on the height of the
potential barrier between the sites. Hence, we described
the time-dependence of the hopping amplitudes as

Ji(t) = AeB cos(ωt+φi) + C i = {1, 2, 3}, (S.9)

with φi = 2π
3 × (i − 1) and A, B and C are free vari-

ables that depend on the modulation amplitude. This
function was fitted to the extracted hopping amplitudes.
Using the time dependent hoppings we calculated the ef-
fective Hamiltonian by integration of Ĥtb(qx, t) over one
driving period according to Eq. (S.4) for every qx. The
resulting 2N quasienergies are shown in Fig. S6b as a
function of the quasimomentum qx for N = 50, m = 0.25
and different modulation frequencies describing the three
topological phases. The first plot with ω/(2π) = 16 kHz
corresponds to the Haldane regime, where a pair of chi-
ral edge modes is visible in the gap at zero quasienergy.
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Figure S6. Schematic of the stripe-geometry and calculated quasienergy dispersions in the three topological phases plotted in
the reduced zone scheme. a. Schematic of the stripe geometry described in the text, terminated by an armchair-edge along y
and with periodic boundary conditions along x. The unit cell (gray shaded area) consists of N dimers and has a width of 3a, the
red arrows denote the vectors δi connecting nearest neighbours. b. Quasienergy dispersions from the two-band tight-binding
model with N = 50 for a modulation amplitude of m = 0.25 and modulation frequencies ω/(2π) = {16, 8, 4} kHz corresponding
to the Haldane regime, anomalous regime and third regime hosting chiral edge modes in the g0-gap, both gaps and the gπ-gap,
respectively.

qy

qx

λ

qy

qx

λ

Qs
Qs

2ε 2ε

ba

Figure S7. Schematic drawing of the topological charge Qs
and the integration surfaces discussed below. a. Cube with
height 2ε around Qs in the three-dimensional parameter space
(q, λ). b. Two two-dimensional surfaces in q-space separated
by 2ε.

For a system with an armchair edge being periodic along
x, the Γ- and K-point are both displayed at qx = 0. At
ω/(2π) = 8 kHz the system is in the anomalous phase ex-
hibiting an additional pair of edge modes in the gπ-gap
between FBZs. In the third regime with ω/(2π) = 4 kHz
the are no edge modes at zero quasienergy in the g0-gap,
but there exist chiral edge modes in the π-gap, charac-
terizing a Haldane-like topological system.

S4. WINDING NUMBERS AND
TOPOLOGICAL CHARGE

The change in winding number across a topological
phase transition is defined via the topological charge Qjs
of the band touching singularity as defined in Eq. (1)
in the main text. We consider a three-dimensional pa-
rameter space spanned by the quasimomentum q and
λ, which smoothly connects a family of Hamiltonians
H(q, λ) (white arrows in Fig. 2a). For two-band mod-
els this Hamiltonian can be expressed as H(q, λ) =∑
α=x,y,z hα(k)σα+h0(k)1, where σ = (σx, σy, σz) is the

vector of Pauli matrices and 1 is the identity matrix. In
generic cases we can make a Taylor expansion of the dis-
persion relation in the vicinity of the gap closing point [6]
that occurs at ξ := (qs, λs). The resulting Hamiltonian
can be expressed in the form of a Weyl Hamiltonian

Hs = vβαξβσα, (S.10)

where v is a 3× 3 matrix. The topological charge of the
singularity is then given by [7, 8]

Qs = sgn(det(v)). (S.11)

The Hamiltonian (S.10) has the form of a general three-
parameter Hamiltonian Hs = v′ · σ, whose Berry curva-
ture of the upper and lower state is described by mag-

netic monopoles Ω± = ∓ 1
2

v′

v′2 and there is a singularity
at v′s = 0. The Berry flux through a closed surface Σc
containing the singularity v′s = 0 is given by

φ± = ∓1

2

∫
Σc

dΣ ·Ω± = ∓2πQs. (S.12)

Note that here we defined the topological charge Qs by
the Berry flux of the energy band below the respective
energy gap. In Floquet systems there are two indepen-
dent gaps and the topological charge Q0

s in the gap g0

is defined via the Berry curvature of the lower band Ω−

and accordingly, the topological charge Qπs in the gap gπ

is defined via the Berry curvature of the upper band Ω+.
One possibility to measure the topological charge as-

sociated with the singularity is to determine the flux
through a sphere containing the band touching point
or equivalently through a cube as depicted in Fig. S7a,
which would require Berry flux measurements through
the six surfaces of the cube in (q, λ)-space. This idea,
however, can be simplified, if we consider the limit of
2ε → 0 and shift the origin trivially, such that the sin-
gularity located at ξ is at the origin ξ = 0. In this limit,
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the Berry flux through the two surfaces just before and
just after the phase transition (Fig. S7b) in q-space is
determined by

φ−±ε =

∫ q0
x

−q0
x

dqx

∫ q0
y

−q0
y

dqy Ω−λs±ε(qs)

φ−±ε
ε→0−−−→ ±π (S.13)

Infinitesimally away from the band-touching singular-
ity, the Berry curvature is perfectly localized in the qxqy-
plane giving rise to a flux of ±π. Thus, in order to deter-
mine the sign of the topological charge we simply need
to detect the sign of the π Berry flux on both sides of the
phase transition:

1

2π
∆φ−(qs)

ε→0−−−→ Q0
s, (S.14)

with ∆φ−(qs) =
(
φ−+ε − φ−−ε

)
. The Berry flux φ is pro-

portional to our measured deflections s⊥, however, in
the experiment we perform a weighted average according
to the momentum distribution of our condensate as dis-
cussed in Section S2 B. Nonetheless, if the spread is not
too large and if we can perform the measurement close
enough at the phase transition point, we can identify
the topological charge of the singularity by determining
the sign of the local Hall drifts across the phase transi-
tion [4, 9]:

Q0
s = sgn

(
∆s−⊥(qs)

)
= −sgn

(
∆s+
⊥(qs)

)
(S.15)

Equivalently, the topological charge of the π-gap is de-
termined by

Qπs = −sgn
(
∆s−⊥(qs)

)
= sgn

(
∆s+
⊥(qs)

)
. (S.16)
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