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SUPPLEMENTARY MATERIALS

Pair binding instability with zero temperature
Hatsugai-Kohmoto Gibbs state

Given the Gibbs state p = e PHnx/7 =
>, e PE n)(n|, we fix the purification on the doubled
Hilbert space with Hg ~ H

1B) = Z e PEn/2 In) ®|n) € Ha @ Hp (35)

satisfying trp|S)(S| = p, and restrict

At = 3" agb] (36)

kg

to the singly-occupied and unoccupied regions 27 and Qg
of the Brillouin zone. Now |1)) = AT ® 1 |oc) has overlap

(ool @ 19) = frJoo)(ocl(beA ©1)  (37)

= tjpbkAT = (beAT) (38)
0 if ke QQ,

= iak if ke Oy, (39)
Qp if k£ € Q.

With [bg, H] as before, for each k € 21, Qg we have

Ckihatak (t = 0)

_ <oo|ei(H®1+1®H’)t(bk ®Q 1)e—i(H®l+l®H’)t|w>
t=0
(40)

= (ool[bk, H] @ 1[¢)) (41)
= (26 + U(nky + n_pt)) Crou;

g 1
- ﬁ(l — Tt — Ny Z 1% + Z Qq (42)

qeE g€

1

A(T)AT>O = (Ld)imﬂ

factorizes, as xo does in Eq. (20), because each pair an-
nihilator by (7) in the sum

A(T) = Zbk(T) = Z e~ TR HU(k +nkr=1))p, (50)
k k

evolves (in the interaction picture under Hyk) as a mul-
tiple of an unevolved pair annihilator b;. The denomi-
nator then removes all disconnected factorizations with

where C), = 1/4 if k€ O and Cp = 1if k € Qp. Then
taking ag(t) = e~ F4/"q;(0) recovers the same consis-
tency equation

g (1 —ngy —n_py)
1=-2 (43)
Ld kegl;szo E =28 — U(ngy, +n_gr)
w2
p(e)
— g / de— ) (44)
" E—2e+2u

since the numerator vanishes in the singly-occupied re-
gion ;.

Dyson equation for pair susceptibility

In order to relate the pair susceptibility

d
to the bare pair susceptiqbility, Xo(iv,) at g = 0, we work
in the interaction picture where

B .
x(ivy) = Li/ dr e (TA(T)AT), (45)

(TS(B,0)A(r)Af),
(T'5(8,0))o

for A(7) evolved in the Heisenberg picture (under H)
in (---)g4, and evolved in the interaction picture (under
Hyg) in (- --)o. Here

(TA(T)AY)g = (46)

B
5(B,0) = ePHmxe=PH — expg/ driHpy(t1), (47)
0

for Hy,(m) evolved in the interaction picture. Then the
numerator takes the form of a power series in g,

(TS(B,0)A(T) A,
o) g B m
=) =T (/0 danm)) A(r)AT)y  (48)

where each term

/.../05 dTl...dTm<TAT(Tl)A(Tl)..,AT(Tm)A(Tm)A(T)AT>O (49)

(

either (TAT(1;)A(;))o for any time 7; or (TA(T)AT),.
This leaves only those factorizations with the form of an
m~wise convolution, resulting in

Kivn) = 3 g (xoliva)™ = —X0(2n)

11— gxoliva)’ (51

m=1



Example of T, and A calculation

To ease calculations, consider e; such that p(w) =
2230w —ex) = g for =% < w < W We will focus
on the half-filled metal i.e. U < W and p = U/2.

The single-particle density of states (DOS) can be bro-
ken into contributions from different regions of momen-
tum space

Nw) = Now) + Nafw) + 3 M) (52)
No(iw) = w)p(w + U/2) (53)
Na(w) = (~w)p(w ~ U/2) (51)
Ni(w) =0(—w)f(w+ U)p(w +U/2) (55)

+0(w)0(—w + U)p(w — U/2) (56)

The effective DOS for calculating T, and A are

N/ (@) = No(@) + Na(w) + iNl W (7
N"(w) = No(w) + Na(w) 4+ Ni(w) (58)
(59)

a. Superconducting temperature T.. The suscepti-
bility diverges when

1 tanh 22
2 —vo(0) = [ dw N'(w)——2_. 60
© =000 = [ do V@) (60)
Set = fw/2 and integrate by parts
—=-—= /d:c lnx[N’ )sech2 (61)

(o (Z)) ], 2

For T« U, W this becomes

}:%1 5(W4—U) 1/4, m 27 (63)

g
o(-s(3)-)
LONUELIDE i_i(_ln@)_y?)
65

where v =~ 0.577 is Euler’s constant. The solution gives
the transition temperature

Eis
5

:
= (W - U)4/5U1/5%e_ v (66)

b. Superconducting gap A. The gap equation is
given by

1= (67)

o] v
2—|—|A

= o (VUYL Y g (Y
—Wsmh ( 5A )—|—Wslnh (2A) (68)

For A <« U, W this becomes

1 1 W —-U o U

which can be solved to find

A= (W —U)V2UY2e 2% (70)

Variational ground state

Consider the variational wave function

Wy =11 (xk +yrblbl ), + %(b; + ka)) 0). (71)

k>0

() = 1 is satisfied if |zx])* + |yr|” + |z%]* = 1. This
generalizes the BCS wavefunction, which corresponds to
T = ui, Yk = v,%, 2k = V2uLUg. Furthermore, the state
defined by x = 1 for k € Qq, z = 1 for k € Qq, and
yr = 1 for k € Q9 is a ground state of the HK model.
Note that although one signal of pair condensation in the
BCS wavefunction is the presence of nonzero ugvi o zk,
this state is not a pair condensate.

In the free fermion case, the ground state in the ab-
sence of pairing is the filled Fermi sea, with u;y = 1 for
k € Qp and v, = 1 for k € Qy. For a small pairing in-
teraction g, the variational ground state with pairing is
very similar but with both u; and v; non-zero near the
boundary of ¢ and 2, namely the Fermi surface. In
the HK model with weak pairing (¢ < U, W), we sim-
ilarly expect that both z; and z; become nonzero near
the boundary of €y and €; and both y; and z; become
nonzero near the boundary of €2y and Q5.

A%ain (\;vck t;y to minimize (Y|H|y). For all k > 0,

p >0, an b,
(Wlnalt) =l + 2L (72)
(Plngyniy|v) = [yxl? (73)

2
(b}l = P+ 2L (74)
2
(ilbfbef) = 2L (75)
(16[be ) = E(xm + 2iye) (76)
1

(WIbkbplv) = 5 (e + yian) (w52 + 25). (T7)

The same equations apply if we take k — —k, p — —p on
the left hand sides. Combining everything, and ignoring
terms like ¢’ >~, ... that do not scale extensively in the



thermodynamic limit,

WIHR) = 3 & (4l +2) + U (2luf)  (78)
k>0
N

k,p>0;k#p

2(zi@n + yrar) (252 + 2p¥p)

= (48, + 2U) |yx|” + 265 4] (80)
k>0

— 24 Z

k,p>0;k#p

(zhan + yizn) (252 + 250p)
(81)

For each k, introduce a lagrange multiplier Ay to enforce
normalization.

0
0= 87[<¢|H|¢> + Ak(\$k|2 +lynl® + |2l - 1)}
Ty
(82)
= A\ — 29"z Z (x;zp + z;yp) (83)
p>0,p#k
A =220, (84)
L
where O = ¢'>° (x;zp + z;yp) (now including the

contribution p = k, which is a O(1/L?) difference).

0
0= 67/*[ . ] = (4&9 + 2U)yk — 22,0 + \pyg (85)
k
= (4&, +2U)yr — 2 Zlg—M O (86)
x*
k
26, +U = (Z:—;’;)o (87)
k
0
0= B [ . ] = 2&k2 — 2(£Ek0 + ka ) + A2k (88
k
=28z — 2 (xkO + yO* — O)
(89)
&z = (Janl = [54*) 0 + wfge0”  (90)
& = (“ = Z{z)o + 2o (91)
Zk Ty Zk

In the last lines, we take the limit L% — oo, so we ignore
the ¢’ on the LHS of and also replace the sum in O with
a sum over all momentum. Subtracting (91) from (87)
gives

Yk A«
sz . (92)

&+ U = (Z’“ —“)0—

Ye 2k

10

Using f,lc = ¢, and &) = &, + U, and assuming everything
is real,

I _ Yk _ k.
@(%+% mJo (93)
Yk 2k
. L L 94
fk (Zk Zk yk) ( )

It is straightforward to check for U = 0, combining these
equations produces exactly the BCS result, even though
we started with a more general wavefunction. This sys-
tem of two equations is possible to solve analytically, but
requires finding the roots of a quartic equation.

c. Weak coupling g < U and g < W. First, rewrite

Goeze = (27 — 2 + 2ryr) O (95)
&ywae = (22 — v — Tkyn) O, (96)

which now looks very similar to the BCS case, apart from
the zpyr terms.

If g < U, we expect that there are still well defined
regions )y, 21, 22, such that mixing occurs only between
x and zp or between yi and zp and never xp and yg.
Is it safe to drop the xpyr terms from (95) and (96)7
Consider a k point where §,l€ < & < 0. Here we expect
1= yr > 2z > xp. If 2, yr, 2z are all positive, (95)
can only be satisfied if 27 > zpyg. A similar argument
can be made for (96). Therefore we drop zxy from both
equations and work with

f,lca?kzk = (x% — z,%)O (97)
&iywae = (22 — yi)O. (98)

Change variables to

l Al
R ikl(l - yi)v 2rp2y = B (1 - ) (99)

Ly k
EL = AL® (100)
2 2 17: 2 A% 2
2 =Yk = ﬁ(l — %), 2ykk = ﬁ(l k) (101)
I k
to get
Al Ap
Aéc — g/ J(l — y2) + 7(1 - xk) (103)
E! Ey
p>0 P
Al Ap
A = J ﬁ(l B y2) + ﬁ(l _ mk) (104)
p>0 P

from which we see that there is only a single momentum-
independent parameter A defined by

1— 2 1— 2
1=g'y" . Ye Tk (105)
k>0 \/gé + A2 \/§g2 + A2
"
1:% L C) (106)

e



This is the same as the BCS gap equation, but with an
effective density of states

N"(w) = 23 3 6w — )1~ 1) + 6w — €)1 — 23)
k

(107)
Because we are considering ¢ < U, to a very good ap-
proximation 1 —y2 = 0(¢%) and 1 — 22 = 6(—¢€}).

N"(w Ldzw &0 +0(w—€)0(=¢}) (108)

Note that N”(w) is not the single-particle density of
states of the HK model. In fact it is larger than or equal
to it for all w, and [ dw N”(w) > 1. (108) may be rewrit-

ten as
N'(w)= > dw=&)+ > dw—¢&) (109)
keQo ke
+ > dw—&) +6w—&). (110)
ke

Mean-field calculation of spectral function

To calculate the spectral function in Fig. 1, we treat
the pairing interaction at the mean-field level and the
Mott (U) interaction exactly.

Hpair = _g/ Zb};bk’ (111)
kk’

==/ >~ (bl.) bwr + b (bwe) (112)
kk’

+ (0 = (L)) twe = o)) = (81} (o) - (113)

In the mean-field approximation, the third term
(quadratic in fluctuations) is dropped. The last term
is an inconsequential constant. Define

A=—g Z (br)
%

HME =" A*by + Ab,
k

(114)
(115)

The full Hamiltonian becomes

HMF = Z fk(nm + nm) + Unppngy + A*by + Abz.
k
(116)
Here, the pairing is treated at the mean-field level but the
Mott interaction is treated exactly. While the Hamilto-
nian no longer separates completely in k-space, each k
couples only to —k.

F=y N (117)
k>0
MF __
H'™ = &(ngr + nigp +ngr +n_gy) (118)
+ U(nan]Q + n_mn_ki) (119)
+ A (b, + by) + A(b,t + bT_k>. (120)

11

HMF may be solved by exact diagonalization of each
HMFE  vielding 16 eigenstates and energies for each k. A
is adjusted for self-consistency such that Eq. 114 is sat-
isfied. The single-particle spectral function is calculated
directly from its spectral representation

ZI (nex|m)|*
(121)

where |n) and |m) are eigenstates of HMY, p, =
e PEn /7, and the partition function Z =3 e #En.

(pn + pm)o(w + Ey — Epy),

Calculation of superfluid stiffness

The superfluid stiffness can be calculated as

D, 1 g
e = 7d <<Kzz> - /0 dr <Jz(7—)=]z>>7 (122)

where
0%
Ky = 8k2k ch Cro (123)
ko g
0
Jy = 816: Chy Chior- (124)
ko

As for the spectral function, all expectation values are
calculated by exact diagonalization of H ,ﬁ‘/[ F. In Fig. 4, a
64 x 64 grid of k-points is used.

For a nearest neighbor tight-binding band structure
8;% = 2tcosk,,
in units where the lattice constant @ = 1. Therefore
(K ) is simply the (negative) kinetic energy along the
z-direction bonds. In the spectral representation, we see
that

/OﬁdT<J

is nonnegative, so
superfluid stiffness’

as considered throughout this work,

Z| n|J | 2 Pm _§7L (125)

+a (Kzz) is an upper bound to the
30

Superconducting energy scales in d =1,2,3
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FIG. S1. Cooper pair binding energy E; at half-filling.
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FIG. S2. Superconducting temperature 7. (solid) and mean density of states p = % (p(p) + p(1 — U)) (dotted) at pair coupling
g/W =0.1.
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