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SUPPLEMENTARY MATERIALS

Pair binding instability with zero temperature
Hatsugai-Kohmoto Gibbs state

Given the Gibbs state ρ = e−βHHK/Z =∑
n e
−βEn |n〉〈n|, we fix the purification on the doubled

Hilbert space with HB ' HA

|β〉 =
∑
n

e−βEn/2 |n〉 ⊗ |n〉 ∈ HA ⊗HB (35)

satisfying trB |β〉〈β| = ρ, and restrict

A† =
∑
k 6∈Ω2

αkb
†
k (36)

to the singly-occupied and unoccupied regions Ω1 and Ω0

of the Brillouin zone. Now |ψ〉 = A† ⊗ 1 |∞〉 has overlap

〈∞|bk ⊗ 1|ψ〉 = tr
A,B
|∞〉〈∞|(bkA† ⊗ 1) (37)

= tr
A
ρbkA

† = 〈bkA†〉 (38)

=


0 if k ∈ Ω2,
1
4αk if k ∈ Ω1,

αk if k ∈ Ω0.

(39)

With [bk, H] as before, for each k ∈ Ω1,Ω0 we have

Ckih̄∂tαk(t = 0)

= 〈∞|ei(H⊗1+1⊗H′)t(bk ⊗ 1)e−i(H⊗1+1⊗H′)t|ψ〉
∣∣∣
t=0

(40)

= 〈∞|[bk, H]⊗ 1|ψ〉 (41)

= (2ξk + U〈nk↓ + n−k↑〉)Ckαk

− g

Ld
〈1− nk↑ − n−k↓〉

∑
q∈Ω1

1

4
αq +

∑
q∈Ω0

αq

 (42)

where Ck = 1/4 if k ∈ Ω1 and Ck = 1 if k ∈ Ω0. Then
taking αk(t) = e−iEt/h̄αk(0) recovers the same consis-
tency equation

1 = − g

Ld

∑
k∈Ω1,Ω0

〈1− nk↑ − n−k↓〉
E − 2ξk − U〈nk↓ + n−k↑〉

(43)

= −g
∫ W/2

µ

dε
ρ(ε)

E − 2ε+ 2µ
(44)

since the numerator vanishes in the singly-occupied re-
gion Ω1.

Dyson equation for pair susceptibility

In order to relate the pair susceptibility

χ(iνn) ≡ 1

Ld

∫ β

0

dτ eiνnτ 〈T∆(τ)∆†〉g (45)

to the bare pair susceptibility, χ0(iνn) at g = 0, we work
in the interaction picture where

〈T∆(τ)∆†〉g =
〈TS(β, 0)∆(τ)∆†〉0
〈TS(β, 0)〉0

(46)

for ∆(τ) evolved in the Heisenberg picture (under H)
in 〈· · ·〉g, and evolved in the interaction picture (under
HHK) in 〈· · ·〉0. Here

S(β, 0) = eβHHKe−βH = Tτi exp g

∫ β

0

dτ1Hp(τ1), (47)

for Hp(τ1) evolved in the interaction picture. Then the
numerator takes the form of a power series in g,

〈TS(β, 0)∆(τ)∆†〉0

=

∞∑
m=0

gm

m!
〈T

(∫ β

0

dτ1Hp(τ1)

)m
∆(τ)∆†〉0 (48)

where each term

1

Ld
〈T

(∫ β

0

dτ1Hp(τ1)

)m
∆(τ)∆†〉0 =

1

(Ld)m+1

∫
· · ·
∫ β

0

dτ1 · · · dτm〈T∆†(τ1)∆(τ1) · · ·∆†(τm)∆(τm)∆(τ)∆†〉0 (49)

factorizes, as χ0 does in Eq. (20), because each pair an-
nihilator bk(τ) in the sum

∆(τ) =
∑
k

bk(τ) =
∑
k

e−τ(2ξk+U(nk↓+n−k↑−1))bk (50)

evolves (in the interaction picture under HHK) as a mul-
tiple of an unevolved pair annihilator bk. The denomi-
nator then removes all disconnected factorizations with

either 〈T∆†(τi)∆(τi)〉0 for any time τi or 〈T∆(τ)∆†〉0.
This leaves only those factorizations with the form of an
m-wise convolution, resulting in

χ(iνn) =

∞∑
m=1

gm−1(χ0(iνn))m =
χ0(iνn)

1− gχ0(iνn)
. (51)
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Example of Tc and ∆ calculation

To ease calculations, consider εk such that ρ(ω) =
1
Ld

∑
k δ(ω − εk) = 1

W for −W2 < ω < W
2 . We will focus

on the half-filled metal i.e. U < W and µ = U/2.
The single-particle density of states (DOS) can be bro-

ken into contributions from different regions of momen-
tum space

N(ω) = N0(ω) +N2(ω) +
1

2
N1(ω) (52)

N0(ω) = θ(ω)ρ(ω + U/2) (53)

N2(ω) = θ(−ω)ρ(ω − U/2) (54)

N1(ω) = θ(−ω)θ(ω + U)ρ(ω + U/2) (55)

+ θ(ω)θ(−ω + U)ρ(ω − U/2) (56)

The effective DOS for calculating Tc and ∆ are

N ′(ω) = N0(ω) +N2(ω) +
1

4
N1(ω) (57)

N ′′(ω) = N0(ω) +N2(ω) +N1(ω) (58)

(59)

a. Superconducting temperature Tc. The suscepti-
bility diverges when

1

g
= χ0(0) =

∫
dω N ′(ω)

tanh βω
2

2ω
. (60)

Set x = βω/2 and integrate by parts

1

g
= −1

2

∫
dx lnx

[
N ′(

2x

β
) sech2 x (61)

+

(
d

dx
N ′
(

2x

β

))
tanhx

]
. (62)

For T � U,W this becomes

1

g
=

1

W
ln
β(W − U)

4
+

1/4

W
ln
βU

4
(63)

−N ′(0)

(
− ln

(
4

π

)
− γ
)

(64)

W

g
= ln

β(W − U)

4
+

1

4
ln
βU

4
− 5

4

(
− ln

(
4

π

)
− γ
)
(65)

where γ ≈ 0.577 is Euler’s constant. The solution gives
the transition temperature

Tc = (W − U)
4/5
U1/5 e

γ

π
e−

4
5

W
g . (66)

b. Superconducting gap ∆. The gap equation is
given by

1 =
g

2

∫
dω

N ′′(ω)√
ω2 + |∆|2

(67)

=
g

W
sinh−1

(
W − U

2∆

)
+
αg

W
sinh−1

(
U

2∆

)
(68)

For ∆� U,W this becomes

1

g
=

1

W
ln

(
W − U

∆

)
+

α

W
ln

(
U

∆

)
(69)

which can be solved to find

∆ = (W − U)1/2U1/2e−
W
2g (70)

Variational ground state

Consider the variational wave function

|ψ〉 =
∏
k>0

(
xk + ykb

†
kb
†
−k +

zk√
2

(
b†k + b†−k

))
|0〉 . (71)

〈ψ|ψ〉 = 1 is satisfied if |xk|2 + |yk|2 + |zk|2 = 1. This
generalizes the BCS wavefunction, which corresponds to
xk = u2

k, yk = v2
k, zk =

√
2ukvk. Furthermore, the state

defined by xk = 1 for k ∈ Ω0, zk = 1 for k ∈ Ω1, and
yk = 1 for k ∈ Ω2 is a ground state of the HK model.
Note that although one signal of pair condensation in the
BCS wavefunction is the presence of nonzero ukvk ∝ zk,
this state is not a pair condensate.

In the free fermion case, the ground state in the ab-
sence of pairing is the filled Fermi sea, with uk = 1 for
k ∈ Ω0 and vk = 1 for k ∈ Ω2. For a small pairing in-
teraction g, the variational ground state with pairing is
very similar but with both uk and vk non-zero near the
boundary of Ω0 and Ω2, namely the Fermi surface. In
the HK model with weak pairing (g � U,W ), we sim-
ilarly expect that both xk and zk become nonzero near
the boundary of Ω0 and Ω1 and both yk and zk become
nonzero near the boundary of Ω1 and Ω2.

Again we try to minimize 〈ψ|H|ψ〉. For all k > 0,
p > 0, and k 6= p,

〈ψ|nkσ|ψ〉 = |yk|2 +
|zk|2

2
(72)

〈ψ|nk↑nk↓|ψ〉 = |yk|2 (73)

〈ψ|b†kbk|ψ〉 = |yk|2 +
|zk|2

2
(74)

〈ψ|b†kb−k|ψ〉 =
|zk|2

2
(75)

〈ψ|bk|ψ〉 =
1√
2

(x∗kzk + z∗kyk) (76)

〈ψ|b†kbp|ψ〉 =
1

2
(z∗kxk + y∗kzk)

(
x∗pzp + z∗pyp

)
. (77)

The same equations apply if we take k → −k, p→ −p on
the left hand sides. Combining everything, and ignoring
terms like g′

∑
k . . . that do not scale extensively in the
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thermodynamic limit,

〈ψ|H|ψ〉 =
∑
k>0

ξk

(
4|yk|2 + 2|zk|2

)
+ U

(
2|yk|2

)
(78)

− g′
∑

k,p>0;k 6=p

2(z∗kxk + y∗kzk)
(
x∗pzp + z∗pyp

)
(79)

=
∑
k>0

(4ξk + 2U)|yk|2 + 2ξk|zk|2 (80)

− 2g′
∑

k,p>0;k 6=p

(z∗kxk + y∗kzk)
(
x∗pzp + z∗pyp

)
(81)

For each k, introduce a lagrange multiplier λk to enforce
normalization.

0 =
∂

∂xk

[
〈ψ|H|ψ〉+ λk

(
|xk|2 + |yk|2 + |zk|2 − 1

)]
(82)

= λkx
∗
k − 2g′z∗k

∑
p>0,p6=k

(
x∗pzp + z∗pyp

)
(83)

λk = 2
z∗k
x∗k
O, (84)

where O = g′
∑
p>0

(
x∗pzp + z∗pyp

)
(now including the

contribution p = k, which is a O
(
1/Ld

)
difference).

0 =
∂

∂y∗k
[. . . ] = (4ξk + 2U)yk − 2zkO + λkyk (85)

= (4ξk + 2U)yk − 2

(
zk −

z∗kyk
x∗k

)
O (86)

2ξk + U =

(
zk
yk
− z∗k
x∗k

)
O (87)

0 =
∂

∂z∗k
[. . . ] = 2ξkzk − 2(xkO + ykO

∗) + λkzk (88)

= 2ξkzk − 2

(
xkO + ykO

∗ − |zk|
2

x∗k
O

)
(89)

ξkx
∗
kzk =

(
|xk|2 − |zk|2

)
O + x∗kykO

∗ (90)

ξk =

(
xk
zk
− z∗k
x∗k

)
O +

yk
zk
O∗. (91)

In the last lines, we take the limit Ld →∞, so we ignore
the g′ on the LHS of and also replace the sum in O with
a sum over all momentum. Subtracting (91) from (87)
gives

ξk + U =

(
zk
yk
− xk
zk

)
O − yk

zk
O∗. (92)

Using ξlk = ξk and ξuk = ξk+U , and assuming everything
is real,

ξlk =

(
xk
zk

+
yk
zk
− zk
xk

)
O (93)

ξuk = −
(
xk
zk

+
yk
zk
− zk
yk

)
O. (94)

It is straightforward to check for U = 0, combining these
equations produces exactly the BCS result, even though
we started with a more general wavefunction. This sys-
tem of two equations is possible to solve analytically, but
requires finding the roots of a quartic equation.
c. Weak coupling g � U and g �W . First, rewrite

ξlkxkzk =
(
x2
k − z2

k + xkyk
)
O (95)

ξukykzk =
(
z2
k − y2

k − xkyk
)
O, (96)

which now looks very similar to the BCS case, apart from
the xkyk terms.

If g � U , we expect that there are still well defined
regions Ω0, Ω1, Ω2, such that mixing occurs only between
xk and zk or between yk and zk and never xk and yk.
Is it safe to drop the xkyk terms from (95) and (96)?
Consider a k point where ξlk < ξuk < 0. Here we expect
1 ≈ yk � zk � xk. If xk, yk, zk are all positive, (95)
can only be satisfied if z2

k � xkyk. A similar argument
can be made for (96). Therefore we drop xkyk from both
equations and work with

ξlkxkzk =
(
x2
k − z2

k

)
O (97)

ξukykzk =
(
z2
k − y2

k

)
O. (98)

Change variables to

x2
k − z2

k =
ξlk
Elk

(
1− y2

k

)
, 2xkzk =

∆l
k

Elk

(
1− y2

k

)
(99)

Elk =

√
ξlk

2
+ ∆l

k

2
(100)

z2
k − y2

k =
ξuk
Euk

(
1− x2

k

)
, 2ykzk =

∆u
k

Fuk

(
1− x2

k

)
(101)

Euk =

√
ξuk

2 + ∆u
k

2 (102)

to get

∆l
k = g′

∑
p>0

∆l
p

Elp

(
1− y2

k

)
+

∆u
p

Eup

(
1− x2

k

)
(103)

∆u
k = g′

∑
p>0

∆l
p

Elp

(
1− y2

k

)
+

∆u
p

Eup

(
1− x2

k

)
(104)

from which we see that there is only a single momentum-
independent parameter ∆ defined by

1 = g′
∑
k>0

1− y2
k√

ξlk
2

+ ∆2

+
1− x2

k√
ξuk

2 + ∆2

(105)

1 =
g

2

∫
dω

N ′′(ω)√
ω2 + ∆2

. (106)



11

This is the same as the BCS gap equation, but with an
effective density of states

N ′′(ω) =
1

Ld

∑
k

δ(ω − ξlk)(1− y2
k) + δ(ω − ξuk )(1− x2

k)

(107)
Because we are considering g � U , to a very good ap-
proximation 1− y2

k = θ(ξuk ) and 1− x2
k = θ(−ξlk).

N ′′(ω) =
1

Ld

∑
k

δ(ω−ξlk)θ(ξuk )+δ(ω−ξuk )θ(−ξlk) (108)

Note that N ′′(ω) is not the single-particle density of
states of the HK model. In fact it is larger than or equal
to it for all ω, and

∫
dωN ′′(ω) ≥ 1. (108) may be rewrit-

ten as

N ′′(ω) =
∑
k∈Ω0

δ(ω − ξlk) +
∑
k∈Ω2

δ(ω − ξuk ) (109)

+
∑
k∈Ω1

δ(ω − ξlk) + δ(ω − ξuk ). (110)

Mean-field calculation of spectral function

To calculate the spectral function in Fig. 1, we treat
the pairing interaction at the mean-field level and the
Mott (U) interaction exactly.

Hpair = −g′
∑
kk′

b†kbk′ (111)

= −g′
∑
kk′

〈
b†k

〉
bk′ + b†k 〈bk′〉 (112)

+
(
b†k −

〈
b†k

〉)
(bk′ − 〈bk′〉)−

〈
b†k

〉
〈bk′〉 . (113)

In the mean-field approximation, the third term
(quadratic in fluctuations) is dropped. The last term
is an inconsequential constant. Define

∆ = −g′
∑
k

〈bk〉 (114)

HMF
pair =

∑
k

∆∗bk + ∆b†k (115)

The full Hamiltonian becomes

HMF =
∑
k

ξk(nk↑ + nk↓) + Unk↑nk↓ + ∆∗bk + ∆b†k.

(116)
Here, the pairing is treated at the mean-field level but the
Mott interaction is treated exactly. While the Hamilto-
nian no longer separates completely in k-space, each k
couples only to −k.

HMF =
∑
k>0

HMF
k (117)

HMF
k = ξk(nk↑ + nk↓ + n−k↑ + n−k↓) (118)

+ U(nk↑nk↓ + n−k↑n−k↓) (119)

+ ∆∗(bk + b−k) + ∆
(
b†k + b†−k

)
. (120)

HMF may be solved by exact diagonalization of each
HMF
k , yielding 16 eigenstates and energies for each k. ∆

is adjusted for self-consistency such that Eq. 114 is sat-
isfied. The single-particle spectral function is calculated
directly from its spectral representation

A(k, ω) =
∑
nm

|〈n|ck|m〉|2(ρn + ρm)δ(ω + En − Em),

(121)
where |n〉 and |m〉 are eigenstates of HMF

k , ρn =
e−βEn/Z, and the partition function Z =

∑
n e
−βEn .

Calculation of superfluid stiffness

The superfluid stiffness can be calculated as

Ds

π
=

1

Ld

(
〈Kxx〉 −

∫ β

0

dτ 〈Jx(τ)Jx〉

)
, (122)

where

Kxx =
∑
kσ

∂2εk
∂k2

x

c†kσckσ (123)

Jx =
∑
kσ

∂εk
∂kx

c†kσckσ. (124)

As for the spectral function, all expectation values are
calculated by exact diagonalization of HMF

k . In Fig. 4, a
64× 64 grid of k-points is used.

For a nearest neighbor tight-binding band structure

as considered throughout this work, ∂2εk
∂k2x

= 2t cos kx,

in units where the lattice constant a = 1. Therefore
〈Kxx〉 is simply the (negative) kinetic energy along the
x-direction bonds. In the spectral representation, we see
that∫ β

0

dτ 〈Jx(τ)Jx〉 =
∑
nm

|〈n|Jx|m〉|2
ρm − ρn
En − Em

(125)

is nonnegative, so π
Ld 〈Kxx〉 is an upper bound to the

superfluid stiffness30.

Superconducting energy scales in d = 1, 2, 3
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FIG. S1. Cooper pair binding energy Eb at half-filling.
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FIG. S2. Superconducting temperature Tc (solid) and mean density of states ρ = 1
2
(ρ(µ) + ρ(µ−U)) (dotted) at pair coupling

g/W = 0.1.
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