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I. Spin polarization of composite fermions

In this Section, we further discuss the spin polarization of composite fermions (CFs) in light

of our experimental data presented in Figs. 1 and 2 of the main text. In Fig. 2b of the main

text, all the CF geometric resonance traces are presented in the same panel to depict the gradual

and systematic change in the geometric resonance features as a function of density. Here in

Figs. S1a–c, we separate our CF geometric resonance data in three panels: n > nc2 (Fig. S1a),

nc1 < n < nc2 (Fig. S1b), and n ≤ nc1 (Fig. S1c), so that the details can be seen more clearly.

Furthermore, we also include a few traces taken at higher densities, see for e.g., n = 10.16,

7.94, and 6.88 traces (Fig. S1a). We mark the expected field positions of the i = 1 CF geometric

resonance assuming a fully-spin-polarized CF Fermi sea for each trace. In Figs. S1a,c, where

the CFs are fully spin polarized, the locations of the CF geometric resonance minima align well

with the markings. In Fig. S1b, however, the locations of the CF geometric resonance minima

deviate from the markings, because the CFs in nc1 < n < nc2 range are only partially spin

polarized.

As we discussed briefly in the main text, the spin physics of CFs arises from a competition

between the Zeeman (EZ) and Coulomb (EC) energies. Note that the relevant magnetic field for

2



0.4

0.4

0.4

-0.4 0 0.4

0.4

0.6

0.6

-0.4 0 0.4

0.6

0.6

a = 190 nm

0.6

0.6

0.6

0.6

0.6

0.6

1

1

1

1

-0.4 0 0.4

0.6

n = 3.51

3.34

3.31

3.20

0.6

0.4

1

3.17

1
i = 1

3.05

a = 190 nm

1/2

1

1

1

1

1

1 i = 1

1/2

3.69

n = 4.02

3.67

3.63

3.55

3.52

0.4

a = 190, 200, 225 nm

1

1

1

1

1

1 i = 1

n = 10.16

7.94

6.88

5.34

4.39

4.22

B  (T)*

1/2

1

1

1

1

1
1

1

1

1

1

n ≤ nc1nc1< n < nc2

1

1

1

1

1

 0
.2

 k
Ω

/  
ρ xx

(  
   

   
   

  )

B  (T)*B  (T)*

n > nc2a b c

Fig. S1: CF geometric resonance features near ν = 1/2 demonstrated by the resistance minima
flanking ν = 1/2 in the density ranges of: a, n > nc2, b, nc1 < n < nc2, and c, n ≤ nc1.
The black and red arrows in panel b mark the positions of the minima we associate with the
geometric resonance of spin-up and spin-down CFs. Vertical blue lines mark the expected
positions for the i = 1 geometric resonance for fully-spin-polarized CFs.

the EZ of the CFs is the total applied magnetic field (B) and not the effective field (B∗).S1 EZ

increases linearly with B while EC goes as
√
B. Previous studiesS2, S3 of the spin polarization

of CFs have established that at sufficiently high electron density, when the ratio (α) of EZ to
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EC exceeds a critical value (αc ' 0.01), the CFs are fully spin polarized at ν = 1/2 (and other

filling factors < 1). This is the case in the n > nc2 region in our samples (Fig. S1a). When the

density is lowered, the ratio betweenEZ andEC decreases and the CFs make a transition from a

fully-spin-polarized to a partially-spin-polarized phase. This is also well established in previous

reports, and happens in our samples when we lower the density below nc2 (Fig. S1b). Now, as

the density is lowered even further, if the residual interaction between the CFs is ignored, one

would expect spin polarization to continue to decrease. There is no reason for the CFs to become

fully spin polarized again since the ratio of EZ and EC is further decreased.

What is surprising in our experiments, however, is that as we lower the density below nc1,

the CFs make a sudden transition to a fully-spin-polarized state (Fig. S1c). We attribute this

transition to a Bloch-type, interaction-driven transition to a ferromagnetic state. Our detailed

theoretical calculations presented in the main text and Section V of SM justify our explana-

tion: the effective interaction strength between CFs depends on Landau level mixing, and at

low densities, the CFs become more strongly interacting as the Landau level mixing increases.

Such strong interaction between CFs then drives the system into a fully-polarized state, just as

expected for a Bloch ferromagnet.

It is important to note that our experiments clearly show that both the phases above nc2

and below nc1 are fully spin polarized, i.e., ferromagnetic. The key point, however, is that the

origin of full spin polarization is different above nc2 and below nc1. In light of our experiments

and theoretical calculations presented in this paper, in the density range n > nc2, the CFs are

fully spin polarized because EZ dominates over the EC while below nc1, the ferromagnetism

is stabilized by inter-CF interaction. In order to discern these two ferromagnetic states, the

presence of the intermediate density range nc1 < n < nc2, where the CFs are partially polarized,

is crucial. If the CFs did not exhibit partial spin polarization in this range, i.e., if they remained

fully spin polarized at all densities, it would be impossible to infer a Bloch transition. In this
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context, we provide additional evidence for partial spin polarization in the range nc1 < n < nc2

in the next Section (Section II).

II. Additional evidence for the partial spin polarization of com-
posite fermions at intermediate densities

In the main text, we provide three sets of data that support our conclusion regarding the partial

spin polarization of CFs near ν = 1/2 in the intermediate density regime nc1 < n < nc2. First,

in this density range, we observe geometric resonance minima at |B∗i=1| < 2~(4πn)1/2/ea(1 +

1/4); this is consistent with CFs being partially polarized (Fig. 2b and also Fig. S1b). Second,

we show a resistance vs density plot (Fig. 1e of the main text) that indicates a rapid change in

resistance in the density ranges, where spin-polarization changes occur. Third, in Fig. 3 of the

main text, we show parallel field dependence of the CF geometric resonance features, exhibiting

a transition from partial to full spin polarization in the nc1 < n < nc2 range, when a sufficiently

large Zeeman energy is added via applying in-plane magnetic fields, lending crucial credence

to the partial spin polarization in nc1 < n < nc2 at zero in-plane magnetic field.

Here we first elaborate on the origin and significance of Fig. 1e data. Next we discuss

the parallel field-dependent data, a portion of which is presented in Fig. 3 of the main text.

We reiterate that the presence of this intermediate density range, where the CFs are partially

polarized, is very important for our conclusion.

II.1. Resistivity at ν = 1/2 as a function of density

In Fig. S2 we show the resistivity of our samples measured at ν = 1/2 as a function of density.

(A portion of this data is shown in Fig. 1e.) As expected, the resistivity increases when the

density is lowered. There is, however, a pronounced dip in the resistivity in the density range

nc1 < n < nc2. This behavior is consistent with the CFs not being fully spin polarized in
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Fig. S2: Resistivity vs density plot for ν = 1/2 CFs, revealing a decrease in ρxx when the
CFs are partially spin polarized. The data support our conclusion that in the ranges n < nc1
and n > nc2, CFs are fully spin polarized while for nc2 < n < nc1, CFs are only partially spin
polarized. Closed and open symbols denote the data taken from two different samples.

this density range. It is well known that two-dimensional (2D) carrier systems have a smaller

resistance when not spin polarized [see, e.g., Refs.S4–S9]. The origin is generally believed to be

the fact that spin-unpolarized electrons are more efficient in screening the disorder potential; see

e.g., Refs.S4–S11 The CFs have also been reported to follow the same trend, with their resistance

at ν = 1/2 being larger when spin- (or valley-) polarized.S12, S13 The data of Fig. S2 therefore

provide further evidence that the CFs in our samples are partially spin polarized in a very small

density range before making a sudden transition to a fully-magnetized state at lower densities.
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Fig. S3: Tilt evolution of the CF geometric resonance features near ν = 1/2 for: a, n = 4.30,
b, n = 3.67, and c, n = 2.67. Traces are vertically offset for clarity; the tilt angle θ is given
for each trace. The expected positions for the i = 1 geometric resonances for fully-magnetized
CFs are marked with vertical blue lines. In all three panels, the scale for the applied external
field B⊥ is shown on top while the bottom scale is the effective magnetic field B∗⊥ experienced
by the CFs. The cartoons above the panels elucidate the effect of B||.

II.2. Spin polarizing the composite fermions by adding an in-plane mag-
netic field

In a separate set of measurements, we add a parallel (in-plane) magnetic field (B||) by tilting the

sample in the magnetic field, with θ denoting the angle between the total field direction and the

normal to the 2D plane. B|| adds to the Zeeman energy EZ while keeping the Coulomb energy
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EC fixed (at a given filling). In Fig. S3, we present the evolution of CF geometric resonance

features as a function of B||, similar to what is shown in Fig. 3 of the main text. Here in Fig. S3,

we include additional traces at intermediate tilt angles to demonstrate the B||-dependence of the

CF geometric resonance features.

At n = 3.67 and θ = 0, there are CFs with both ↑-spin and ↓-spin. (As in the main text, we

use 1010 cm−2 as the unit of density.) This is evident from the two i = 1 CF geometric resonance

features on the B∗ > 0 side, as seen in Figs. 2b and 3b of the main text and also in Figs. S1b

and S3b. When the sample is titled, however, the CFs become fully magnetized; see the upper

traces in Fig. S3b where there is a clear i = 1 geometric resonance minimum whose position

agrees very well with what is expected for fully-spin-polarized CFs. This behavior is consistent

with the enhancedEZ in tilted fields favoring fully-magnetized CFs. Thus, in the nc1 < n < nc2

region where the CFs are partially polarized, CFs can be forced to become fully polarized by

adding additional Zeeman energy. In Fig. S3c we show tilt data for n = 2.67. In this low-

density case, the CFs are already fully magnetized at θ = 0, and show no change in their spin

polarization as the sample is tilted. This trait is similar to the tilt evolution for n > nc2, such

as n = 4.30 (Fig. S3a), where there is no change in the position of the CF geometric resonance

features, i.e., the spin polarization of the CFs, as we add in-plane magnetic fields, consistent

with the CFs being fully polarized. (In some of the traces for CFs with a fully-spin-polarized

Fermi sea, we observe hints of the i = 2 geometric resonance; examples include the trace at

θ = 30.5o in Fig. S3b, the trace at θ = 0o in Fig. S3c, and the traces at n = 10.16, 3.31,

3.17, and 3.05 in Figs. 2 and S1.) This test provides a consistency check on the partial vs. full

polarization of the CFs.
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Fig. S4: Temperature dependence of the CF geometric resonance features for three different
densities: a, n = 10.16; b, n = 3.67; and c, n = 3.20; all densities are in units of 1010 cm−2.
Theses data were taken in a separate cooldown from the data shown in the main text. In a
and c, the CFs are fully spin polarized while in b CFs are partially spin polarized. Magneto-
resistance traces are shown for seven temperatures ranging from 0.30 K to 0.76 K. Traces are
vertically offset for clarity. The expected positions for i = 1 geometric resonances, assuming
fully-spin-polarized CFs, are marked with blue vertical lines.

III. Temperature-dependence of composite fermion geometric
resonances

Here we describe the temperature (T ) dependence of the CF geometric resonances. In Fig. S4

we show the CF geometric resonance features as a function of temperature over the density
9



ranges, n > nc2 [Fig. S4a], nc1 < n < nc2 [Fig. S4b], and n < nc1 [Fig. S4c]. In all three cases,

when T is increased, the geometric resonance features become weaker before disappearing at

high temperatures. More importantly, however, the field positions of the geometric resonance

features remain unchanged even up to the highest temperatures where we still observe geometric

resonances.

It is clear from the plots in Fig. S4 that the geometric resonance features become weaker as

T is raised. Such a weakening can happen for various reasons, including: (a) The ballistic mean-

free-path of the CFs can get shortened because of the extra scattering at higher temperatures.

(b) At high temperatures, the thermal energy (kBT ) approaches the CF Fermi energy (E∗F ).

We estimate E∗F/kB for CFs at ν = 1/2 to be 3.3, 2.0, and 1.8 K for n = 10.16, 3.67, and

3.20, respectively.S14, S15 (All densities are in units of 1010 cm−2.) Therefore, as we raise the

temperature, kBT becomes a significant fraction of E∗F , and can lead to the gradual weakening

and the eventual disappearance of the geometric resonance features at high temperatures. (c)

The CFs can also gradually lose their spin polarization as T is raised; see further discussion in

the next paragraph. In this case, one would expect the magnetic field positions of the geometric

resonance features to move closer to ν = 1/2 (similar to the geometric resonance features in

the range nc1 < n < nc2). However, we do not observe a measurable shift in the field positions

of the geometric resonance features when the temperature is raised. Hence, we surmise that the

weakening of the geometric resonance features with the rise in T is linked to either the reduction

of the mean-free-path of CFs or the increase in kBT/E∗F with temperature.

Our data suggest that there is no loss of spin polarization up to the highest T at which

we still observe clear geometric resonance features. This might sound surprising at first sight,

since it is well documented in nuclear magnetic resonance studies that CFs tend to lose their

spin polarization at high temperatures.S14, S15 To better understand the T -dependence data, we

compare our results to the nuclear magnetic resonance data of Melinte et al.,S14 who presented
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data for CFs at ν = 1/2 for samples with two densities n = 14 and 8.5. They found that the

loss of spin polarization depends on n. For the sample with n = 14, there is only 5% loss of

polarization when T is raised from 0.30 K to 0.60 K while for the sample with lower density,

the loss is about 10%. Therefore, a reasonable estimate of the loss of spin polarization for

our sample with n = 10.16 at T ' 0.60 K would be about 8%. However, at T & 0.57 K,

the geometric resonance minima in our samples become quite broad [Fig. S4a] and therefore

such a small change in the polarization cannot be accurately detected. There is no nuclear

magnetic resonance data available at very low densities (< 8.5) but, extrapolating the nuclear

magnetic resonance data to low densities, one would expect that the CFs should lose their full

spin polarization more quickly as T is raised. For n = 3.20, which is about 3 times smaller than

the lowest density in nuclear magnetic resonance measurements (8.5), Fig. S4c data suggest

that the geometric resonance and its position might be anomalously robust. A possible reason

for this relative robustness could be the enhanced exchange interaction between the CFs that

we believe is responsible for the itinerant ferromagnetism we observe at very low densities.

However, because of the very limited T -range where the geometric resonances are observed, the

connection between the temperature robustness and the spontaneous ferromagnetism is tenuous

and requires further investigation.

IV. Spin polarization of zero-field electrons

In this Section, we present geometric resonance data for the zero-field electrons. To draw a

comparison with the CFs, similar to Fig. 1c of the main text, in Fig. S5a we plot the measured

densities of a particular spin, normalized by the total electron density n, plotted against n. The

plot in Fig. S5a looks simpler compared to Fig. 1c of the main text because there is no spin

transition for zero-field electrons as we tune the density from n = 10.16 to 1.32. Therefore,

we conclude that there is no Bloch ferromagnetism for zero-field electrons within the density
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Fig. S5: Spin polarization of zero-field electrons obtained from geometric resonance data. a,
The measured electron densities of a particular spin, normalized to n, plotted against n. Filled
and open squares represent data from two samples from different wafers. The 2D electron sys-
tem is spin unpolarized even at very low densities. b–d, Magneto-resistance traces for three
different electron densities, revealing many geometric resonance features flanking the V-shaped
minimum at B = 0. Vertical blue lines mark the expected field positions of geometric reso-
nances, assuming a spin-unpolarized Fermi contour with kF = (2πn)1/2. Insets: Normalized
Fourier transform (FT) spectra of the geometric resonance oscillations shown in c and d, re-
spectively. The vertical blue lines mark the expected fGR assuming spin-unpolarized Fermi
contours.

range of this study. This is consistent with both theory and previous experiments. At n = 1.32,

rs is only about 4.7, much smaller than the theoretically predicted value of 26 that is required

to observe Bloch ferromagnetism.S16, S17 Our data are also consistent with the results of Zhu
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et al.S9 on GaAs 2D electron systems which indicated a paramagnetic ground state at zero

magnetic field even down to n = 0.2 (rs ' 12). An intriguing aspect of our data is that the

spin polarization shows a tendency to slightly increase at very low densities below n ' 2. It

would be very interesting if one could lower the density even further and still observe electron

geometric resonance features to probe the spin polarization at extremely low densities.

Next we briefly describe how we obtain the spin polarization for the zero-field electrons.

Similar to CFs at ν = 1/2, we track the geometric resonances for the zero-field electrons.

If the cyclotron orbit of the electrons becomes commensurate with the period of the applied

perturbation, then a geometric resonance occurs. Quantitatively, geometric resonances of zero-

field electrons manifest at the electrostatic geometric resonance condition 2Rc/a = i − 1/4

(i = 1, 2, 3, ...),S18–S24 where Rc is the real-space cyclotron radius, and a is the period of the

perturbation. The size of Rc is directly related to the electron Fermi wavevector kF according

to Rc = ~kF/eB. The magneto-resistance traces of Fig. S5b–d, are representative of such

geometric resonances, exhibiting pronounced resistance minima at Bi = 2~kF/ea(i− 1/4).

In the case of very low densities such as n = 1.32, there are very few geometric reso-

nance features and they are easy to track [Fig. S5b]. Therefore, we can deduce kF directly

from the field positions of geometric resonances. At higher densities, however, there is a large

number of geometric resonance features thanks to the high mobility of our sample. Also, the

field positions of the geometric resonance features overlap with the Shubnikov-de Haas oscil-

lations and we obtain a superposition of these two sets of oscillations. Therefore, we perform

a Fourier transform (FT) analysis to extract the frequency of geometric resonance oscillations

[shown in the insets of Figs. S5c–d]. The frequency of the geometric resonance oscillations,

fGR = 2~kF/ea, directly yields kF . Using the deduced kF , we can obtain an estimate of the

spin polarization according to n↑/n = kF/(4πn)1/2. The FT spectra for both n = 3.73 and

7.70 exhibit a single peak whose position is consistent with a circular, spin-unpolarized Fermi

13



contour having kF = (2πn)1/2. To better show this match in Figs. S5b–d, vertical blue lines

are placed which mark the expected geometric resonance minima positions for such a Fermi

contour assuming kF = (2πn)1/2.

V. Theory

In this Section we describe the details of theoretical calculations. We begin with the wavefunc-

tion of the CF Fermi sea state in the periodic torus geometry, followed by a brief outline of the

fixed-phase diffusion Monte Carlo method for treating the effect of Landau level mixing. The

most direct method for determining the critical Zeeman energy (above which the system is fully

spin-polarized) would be to begin with a fully-spin-polarized CF Fermi sea and calculate the

gain in the energy when one CF is moved from the top of the Fermi sea to the bottom of the

spin-reversed Fermi sea. This calculation, unfortunately, is not possible because of the signif-

icant finite-size effects arising from the deviation in the shape of the Fermi sea from a perfect

circle. Fortunately, we find that the change in energy due to Landau level mixing is reasonably

well behaved as a function of the number of particles N for both the fully-spin-polarized and

the spin-singlet CF Fermi seas. Our strategy is therefore to calculate the change in the ener-

gies of the spin-polarized and spin-singlet CF Fermi seas as a function of rs. We incorporate

the Zeeman energy through the Stoner model, which assumes that CFs of opposite spins in-

teract through a contact interaction. We determine the values of the parameters in the Stoner

model that produce transitions at the experimentally observed densities, and find that these are

in reasonable agreement with those obtained from the microscopic CF theory. We assume zero

temperature below.
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V.1. Wavefunction of the composite fermion Fermi-sea state

We will employ the torus geometry which is most suitable for investigating the CF Fermi sea.

In our calculations below we consider a square sample of side L (in units of the magnetic length

lB) with periodic boundary conditions. The lowest Landau level (LLL) wavefunction for the

fully-spin-polarized CF Fermi sea in this geometry was introduced in Refs. (S26–S29):

ΨCF
ν= 1

2
= PLLL det [exp (ikn · rm)] Ψ2

1. (S1)

Here det [exp (ikn · rm)] is the Fermi sea of free fermions, Ψ2
1 (defined below) attaches two

quantized vortices to each electron to convert it into a CF, and PLLL projects the wavefunction

into the lowest Landau level. The allowed wavevectors are:

k = n1b1 + n2b2 (n1 and n2 integers) (S2)

with

b1 =

(
2π

L
, 0

)
, b2 =

(
0,

2π

L

)
. (S3)

The number of flux quanta penetrating the square is given by Nφ = L2/2π, which is quantized

to be an integer. Ψ1 is the wavefunction of the lowest filled Landau level in effective magnetic

field B∗ = B/2:

Ψ1[zi, z̄i] = e
∑
i

z2i−|zi|
2

8l2
B R1(Z)

∏
i,j,i<j

θ

(
zi − zj
L
|τ
)
, (S4)

with

R1(Z) = e−i
πN
L
Zθ

(
Z

L
− πN(τ − 1)

2π
|τ
)
, (S5)

where zj = xj + iyj denotes the coordinates of the jth electron as a complex number, Z =∑N
i=1 zi is the center of mass coordinate, and θ is the odd Jacobi theta function:S29

θ(z|τ) =
∞∑

n=−∞

eiπ(n+ 1
2)

2
τei2π(n+ 1

2)(z+ 1
2). (S6)
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Here, we have τ = i for the square torus. The explicit wavefunction after projection into the

lowest Landau level through the Jain-Kamilla methodS30–S32 is given by:

ΨCF
ν= 1

2
= e

∑
i

z2i−|zi|
2

4l2
B

[
R1(Z + il2B

∑
j

kj)

]2

detGkn(zm) (S7)

with

Gkn(zm) = e−
knl

2
B

4 (kn+2k̄n)e
i
2

(k̄n+kn)zm ×
∏
j,j 6=m

θ

(
zm + i2knl

2
B − zj

L
|τ
)
. (S8)

The wavefunction for the spin-singlet Fermi seaS33 is obtained by making the replacement

in Eq. S7:

detGkn(zm)→ det↑Gn(zm) det↓Gn(zm). (S9)

Here det↑Gn(zm) is the determinant of an N
2
×N

2
matrix corresponding to theN/2 spin-up elec-

trons (with spatial coordinates from z1 to zN/2), and det↓Gn(zm) is an analogous determinant

for the remaining spin-down electrons.

The Coulomb interaction is given by:S32, S34

E = W +
1

N

2π

L2

∑
i<j

∑
q 6=0

1

q
eiq · (ri−rj) (S10)

in units of EC. Here we have q =
(

2πm
L
, 2πn
L

)
, where m and n are integers. The first term

represents the self-interaction between electrons and their images, given by:S35

W =− 1

L

[
2−

′∑
m,n

ϕ−1/2(π(τm2 + τ−1n2))

]

ϕn(z) ≡
∫ ∞

1

dte−zttn ,

(S11)

where the prime on
∑′ indicates that the m = n = 0 term is to be excluded. The second

term on the right hand side of Eq. S10 represents the electron-electron, electron-background

and background-background interactions; the q = 0 term is excluded because it is canceled by

the sum of the electron-background and background-background interactions.
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V.2. Fixed-phase diffusion Monte Carlo method

The wavefunctions described above are confined to the lowest Landau level. To deal with

the experimental phenomenon we need to estimate how these wavefunctions are modified by

Landau level mixing. We will employ the fixed-phase diffusion Monte Carlo method for this

purpose. The strength of Landau level mixing is conveniently characterized by the parameter

κ = EC/~ωc, where ~ωc = ~eB/m is the cyclotron energy. For ν = 1/2 we have the relation

rs = 2κ, and we will depict our results as a function of rs. For parameters of n-doped GaAs

(electron band mass m = 0.067me, dielectric function ε = 13, and Landé g factor g = −0.44),

rs is related to density as n ≈ (32.8/r2
s)× 1010 cm−2.

The diffusion Monte Carlo methodS36, S37 can obtain the ‘exact’ ground-sate energy for cer-

tain interacting systems. The essential idea is that for wavefunctions that are real and non-

negative, the Schrödinger equation in imaginary time:

−~∂tΨ (R, t) = [H (R)− ET ] Ψ (R, t) (S12)

and can be interpreted as a diffusion equation, with Ψ (R, t) playing the role of the density

distribution. Here R = (r1, r2, . . . , rN) collectively denotes the positions of all particles and

ET is a constant energy offset introduced for the convenience of numerical computation. The

Schrödinger equation may be written in terms of Green’s function:

Ψ (R, t+ τ) =

∫
G (R→ R′, τ) Ψ (R, t) dR (S13)

where

G (R→ R′, τ) = 〈R′| exp

[
−τ (H (R)− ET )

~

]
|R〉. (S14)

In the large imaginary-time limit the evolution operator projects out the ground state provided

it has non-zero overlap with the initial trial wavefunction. Diffusion Monte Carlo is a stochastic
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projector method for implementing the evolution in imaginary time through an importance sam-

pling scheme using a trial or guiding wavefunction. In the absence of a potential, we have the

distribution of random walkers (or diffusing Brownian particles) in the 2N dimensional config-

uration space. In the presence of a potential, the most effective method is through a branching

(or a birth/death) algorithm in which either a walker dies with some probability in regions of

high potential energy, or new walkers are created in regions of low potential energy, according

to certain rules that have been discussed extensively in the literature.

The wavefunction of the CF Fermi sea is not real due to the broken time-reversal symmetry

in the presence of a magnetic field. To circumvent this problem, we use the fixed-phase diffusion

Monte Carlo method.S38–S41 Here one expresses the wavefunction as:

Ψ = |Ψ| exp [iΦ] . (S15)

Taking the phase Φ(R) to be fixed, the Schrödinger equation for the amplitude is given by:

H |Ψ (R, t)| =

(
−

N∑
i=1

~2∇2
i

2m
+ Veff (R)− ET

)
|Ψ (R, t)| = E |Ψ (R, t)| , (S16)

where

Veff (R) = V (R) +
1

2m

N∑
i=1

[
~∇iΦ (R) +

e

c
A (ri)

]2

(S17)

is an effective interaction potential. Treating this with diffusion Monte Carlo method now gives

the lowest energy within the chosen phase sector, provided that |Ψ (R, t)| has a non-zero over-

lap with the lowest-energy state in that phase sector. The accuracy of the fixed-phase diffusion

Monte Carlo method depends on the choice of the phase (which is fixed using a trial wavefunc-

tion). Previous work has indicatedS40, S41 that the phase is not strongly affected by Landau level

mixing, and hence it is a good starting point to fix the phase using the accurate lowest Landau

level wave functions of the CF theory. That is the approach we follow.
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Fig. S6: Upper row: Momentum configurations of the fully-spin-polarized CF Fermi sea as a
function of N , the number of CFs. The dots represent single particle momenta occupied by CFs
(all with the same spin). Lower row: Momentum configurations of the spin-singlet CF Fermi
sea. The stars mark momenta occupied by both spin-up and spin-down CFs.

V.3. Calculation of Ep and Es

We find that the thermodynamic extrapolations of the energies Ep(rs) and Es(rs) are not suf-

ficiently accurate to capture the subtle physics of our interest, because of finite size deviations

from circularity of the available Fermi seas in the torus geometry. We therefore write:

Ep(rs)− Es(rs) = Ep(0)− Es(0) + ∆Ep(rs)−∆Es(rs) (S18)

where ∆Ep(rs) = Ep(rs) − Ep(rs = 0) and ∆Es(rs) = Es(rs) − Es(rs = 0) are changes

in the (per particle) energies of spin-polarized and spin-singlet Fermi sea states as a function

of Landau level mixing. The quantities ∆Ep(rs) and ∆Es(rs) are relatively well behaved as a

function of N and allow reasonable thermodynamic extrapolations.

The Fermi seas we have used to calculate Ep(rs) and Es(rs) are shown in Fig. S6. To

approximate the ground state, we have made the Fermi surface as compact and circular as

possible within the finite-size constraints. Because of the computational complexity, we have

reached systems containing up to 25 CFs for the fully-polarized state and 26 CFs for the spin-
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Fig. S7: Left Panel: The change in energy as a function of rs for the fully-polarized CF Fermi
sea as a function of the number of particles N . The error arising from Monte Carlo sampling
is shown for each point. The data points deviate from the regression line, indicating relative
big errors in estimating the intercepts of the regression lines. However, the spacing between
different regression lines is more or less uniform, implying that the slope of the ∆Ep vs. rs line
has less uncertainty. Right Panel: Same as in the left panel, but for the spin-singlet CF Fermi
sea.

singlet state. The behavior ofE(rs)−E(0) for fully-polarized and spin-singlet CF Fermi seas as

a function of 1/N is shown in Fig. S7. The thermodynamic limits of E(rs)−E(0) are obtained

from linear regression, with the error defined as the standard deviation of the calculated values

from the regressed values. The resulting E(rs) − E(0) are shown in the main text for both the

spin-polarized and spin-singlet CF Fermi seas.

V.4. Stoner model for composite fermions

For a direct comparison with the experiment it is necessary to incorporate the non-zero Zeeman

energy. We shall do so within the Stoner model of itinerant magnetism. Given that the exper-
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imental phase transitions arise as a result of an extremely subtle competition between various

energies, our strategy in this section will be to determine the parameters of the Stoner model

that produce the experimental values of the critical densities where the two phase transitions are

observed. We find that these values are generally consistent with those obtained directly from

microscopic calculations.

We consider an effective Hubbard Hamiltonian for CFs:

H =
∑
k,σ

(
Ek − σ

EZ
2

)
c†kσckσ +

U

n

∫
d2rn↑(r)n↓(r). (S19)

Here Ek is the single-particle kinetic energy. The parameter σ labels the spin with σ = +1

(or σ =↑ ) and σ = −1 (σ =↓ ) representing spin-up and spin-down. EZ is the Zeeman

energy, defined as the energy required to flip a spin. It is assumed that the interaction is a

contact interaction between spin-up and spin-down CFs, with its strength characterized by the

parameter U . The quantity n = N/A is the average areal density of the CFs whereN is the total

number of CFs and A is the total area. N↑ and N↓ are the number of spin-up and spin-down

CFs, with N = N↑+N↓, and n↑(r) and n↓(r) are the local densities for spin-up and spin-down

CFs. In a mean-field approximation, the above Hamiltonian simplifies to:

H =
∑
k,σ

Ekc
†
kσckσ −

PEZN

2
− P 2UN

4
+
UN

4
, (S20)

where the polarization P is defined as:

P =
N↑ −N↓

N
. (S21)

We define the Fermi energies for spin-up (spin-down) CFs to be E↑F (E↓F ). We will assume

that CFs have a parabolic dispersion with an effective mass that is independent of the spin

polarization. Then, E↑F + E↓F ≡ EF is a constant, equal to the Fermi energy of the fully-spin-

polarized Fermi sea, and the density of states per unit area for each spin is given by n/EF . The
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polarization can be expressed as:

P =
E↑F − E

↓
F

EF
(S22)

From Eq. S20, the ground state energy density is given by:

E

A
=
n(EF − U)

4

(
P − EZ

EF − U

)2

− E2
Zn

4(EF − U)
+

(U + EF )n

4
. (S23)

The range of P is −1 ≤ P ≤ 1, where P = ±1 represents the fully-spin-polarized state and

P = 0 the spin-singlet state.

For EZ=0, Eq. S23 yields:

Ep − Es =
EF − U

4
(S24)

whereEp andEs are the energies per particle for the fully-spin-polarized and spin-singlet states.

For EZ 6= 0, the minimum total energy from Eq. S23 is obtained at P = EZ
EF−U

. Of course,

the polarization is restricted to |P | ≤ 1, and a transition from a fully-spin-polarized state to a

partially-spin-polarized state occurs for P = 1 (assuming EZ > 0), which gives the critical

Zeeman energy Ecrit
Z = EF − U = 4(Ep − Es). The transition from |P | = 1 to |P | < 1 thus

occurs at:

EZ = Ecrit
Z = 4(Ep − Es). (S25)

Now, motivated by our diffusion Monte Carlo results which show thatEp(rs)−Es(rs) varies

linearly with rs for small rs, we model the right hand side of Eq. S25 as Ep(rs) − Es(rs) =

[Ep(rs = 0)− Es(rs = 0)]− γrsEC . A polarization transition occurs at EZ given by:

EZ
EC

=
Ecrit
Z (rs = 0)

EC
− 4γrs. (S26)

Our diffusion Monte Carlo calculations give γ = 0.0012(2). Taking Ecrit
Z (rs = 0)/EC = 0.022

from earlier calculationS3 yields the phase diagram shown in the main text.

A slightly different, although closely related, analysis is as follows. BecauseEZ/EC ∝ 1/rs

and Ecrit
Z (rs = 0)/EC is a constant, Eq. S26 is quadratic in rs, and therefore may admit two real
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Eq. S26 fitted to experiment microscopic calculation
γ 0.00088 0.0012(2) (this work)
Ecrit
Z (0)/EC 0.020 0.022 [Ref.S3]

Table S1: The second column gives the values of parameters of the Eq. S26 that produce
transitions at the densities nc1 = 3.5× 1010 cm−2 and nc2 = 4.2× 1010 cm−2. The last column
displays the values of these parameters obtained from microscopic calculations using either
fixed-phase diffusion Monte Carlo method (this work), or variational Monte Carlo method.S3

The microscopic calculations assume a purely 2D system.

solutions for rs (or density). Table S1 shows the values of the parameters Ecrit
Z (rs = 0)/EC and

γ that produce transitions at densities nc1 = 3.5×1010 cm−2 and nc2 = 4.2×1010 cm−2, where

transitions are experimentally observed. The values of these parameters calculated directly

from the microscopic CF theory are shown in the last column of Table S1. We find that the

numbers given in the last two columns are in satisfactory agreement, especially in view of the

crude nature of the Stoner model (which only accounts for the contact interaction between CFs

of opposite spins and assumes that U and the CF mass do not depend on the polarization), the

various approximations made within the microscopic calculations (neglect of finite thickness;

fixed-phase approximation), and the fact that the energy differences are only a fraction of 1%

of the individual energies.

One may consider the situation where the Zeeman coupling is switched off entirely, as is

possible, in principle, by application of hydrostatic pressure. In this case, the CF Fermi sea

is spin singlet for small rs, but a Bloch transition occurs, according to Eq. S26, at rs ≈ 4.6.

While the precise value of the critical rs depends on the accuracy of the approximations and

assumptions, we believe that our calculations make a strong case for Bloch ferromagnetism for

CFs at sufficiently low densities. These calculations also demonstrate that the Bloch transition

for CFs occurs at relatively small values of rs ≈ 4 − 5 compared to the Bloch transition for

electrons that is predicted for rs ≈ 26. At what rs the transition occurs is a complex function
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of the relative importance of the interaction and the kinetic energies, and a full quantum Monte

Carlo calculation is required even for electrons. The interaction for composite fermions is much

more complex than that between electrons. Some insight into why the Bloch transition occurs at

smaller rs at ν = 1/2 than that for the electrons atB = 0 can be gained from the observation that

the CF mass is much smaller than the electron band mass, thereby diminishing the importance

of the CF kinetic energy.

VI. Related phenomena

VI.1. Bloch ferromagnetism vis-à-vis the Mermin Wagner theorem in 2D
electron systems

In a seminal paper in 1966, Mermin and Wagner (MW) proved that, at any non-zero tempera-

ture, there can be no ferromagnetism in one or two dimensions.S42 The model MW use is the

isotropic Heisenberg spin system with finite-range exchange interaction, and their conclusion is

based on theoretically demonstrating that spin-fluctuations destabilize ferromagnetic (as well as

anti-ferromagnetic) order in an infinitely-large system without a symmetry-breaking field. We

would like to note that the MW theorem is not directly applicable to our experiments, because of

both the finite sample size (about 100 µm by 50 µm) and the presence of a symmetry-breaking

(magnetic) field. We also note that the theoretical calculations above have been performed for

zero temperature, and thus deal only with the ground-state properties.

VI.2. Spontaneous valley polarization in 2D systems with anisotropic effec-
tive mass

A recent theory by Zhu et al.S43 predicts that in 2D electron systems where electrons occupy

two valleys with a large effective mass anisotropy, for a sufficiently large anisotropy, the CF

Fermi sea at ν = 1/2 undergoes a transition to a valley-polarized ground state. The theory does
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not consider the role of density, rs, or Landau level mixing, and the transition depends only on

the mass anisotropy. 2D electron systems confined to AlAs quantum wells have the required

large mass anisotropy, and some of the experimental piezo-resistance traces taken as a function

of uniaxial, in-plane strain in AlAs 2D electron systems indeed give a hint of spontaneous

valley polarization.S43, S44 However, similar data taken on samples with better quality suggest

otherwise.S45, S46 We emphasize that it is not obvious whether there is any connection of this

phenomenon to the Bloch ferromagnetism in the CF Fermi sea that we discuss in our work here.

In particular, as stated above, the valley polarization considered in Ref.S43 does not depend on

the density or rs but the spin polarization we report here does.

VI.3. Spin polarization of 2D electrons in monolayer MoS2

During the writing of our manuscript, we became aware of very recent experiments by Roch et

al.S47 on a 2D electron system in a monolayer of MoS2. (We thank R. Warburton for bringing

this work to our attention.) In MoS2, rs is large thanks to the large electron effective mass and

small dielectric constant. On the other hand, MoS2 has a complex energy band structure: the

2D electrons occupy multiple conduction-band valleys and also there is a strong spin-orbit in-

teraction, linking the spin and valley degrees of freedom. Roch et al. report the observation of

spin-polarized electrons in a magnetic field of 9.0 T and at electron densities up to n = 5×1012

cm−2, which corresponds to rs ' 5. A subsequent theoretical workS48 supports such a fer-

romagnetic phase. In this theory, the ferromagnetism arises from non-analyticities which go

beyond Fermi liquid theory. It is also worth noting that magneto-transport data in nominally

similar samples at comparable densities and magnetic fieldsS49 exhibit Shubnikov-de Haas os-

cillations which do not appear to be consistent with a fully-polarized system.
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