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S1. APPROXIMATED TIGHT-BINDING MODEL

In order to estimate the qualitative properties of our experimental system modeled by the

cRM model, we consider an approximated tight-binding picture. Our experimental system

is based on the following dynamical superlattice potential in a clean limit:

Vclean(x, t) = −VS cos2

(
2πx

d

)
−VL cos2

(
πx

d
− φ(t)

)
. (S1)

Hereafter, since in our experiments only the first band is almost occupied, and the band

gap between the second and third bands are fairly large, we can focus on only the first and

second bands created by our experimental superlattice potential. Then, we can describe the

system with an effective tight-binding model, namely, the tRM model in a clean limit, which

reads

ĤRM =
∑
i

[
−(J + δ)â†i b̂i − (J − δ)â†i b̂i+1 + h.c. + ∆(â†i âi − b̂

†
i b̂i)

]
. (S2)

In the topological charge pumping (TCP), δ and ∆ are adiabatic dynamical parameters,

which can be approximately determined by the band structure induced by the superlattice

potential Vclean(x, t). Here, we approximate these dynamical sequence for δ and ∆ as a

circular trajectory, δ = δ0 sin θ, ∆(t) = ∆0 cos θ, where θ = 2φ(t). Although the actual

dynamical sequence for δ and ∆ in our experimental system is subtly different from the

circular one, this approximation facilitates the ideal theoretical treatment of the TCP phe-

nomena, especially for calculating the Chern number, and can give insight for qualitative

properties of the TCP described by the cRM in our experiment. The physical values of J ,

δ0 and ∆0 can be directly determined by the band structure of the superlattice potential

Vclean(x, t). The values of J and δ0 are determined by the band width in the double-well

lattice case (θ = π/2, 3π/2), while the value of ∆0 by the band gap in the staggered lattice

case (θ = 0, π) as discussed in the previous study [1]. For the band structure determined

by our experimental setup, the tRM parameters are approximately determined. The tRM

model is expected to capture the qualitative behavior for our experimental system since,

in the clean limit, the circular parameter sequence for δ and ∆ is topologically connected

to our actual experimental sequence without gap closing. Regarding the basic topological

aspect of the tRM model, for ∆ = 0 (at inversion symmetric point, θ = π/2, 3π/2), the

model reduces to the celebrated Su-Schrieffer-Heeger (SSH) model, classified in the Altland-

Zirnbauer class BDI of the periodic classification of topological states[2, 3]. The SSH model
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exhibits a topological phase and zero energy topological edge modes [4]. However, a finite

∆ breaks the chiral symmetry without gap closing, i.e., σ̂zĤRM(k)σ̂z 6= −ĤRM(k) where

ĤRM(k) is the bulk momentum Hamiltonian of Eq. (S2). Accordingly, the tRM model is

not necessarily in the BDI class.

In our experiment, a quasi-periodic disorder lattice created by an additional laser with

wavelength λD (= 798 nm) applied by tilting 45◦ for the one-dimensional superlattice axis,

is given by

VDis(x) = −VD cos2

(
πx

dD
+
α

2

)
, (S3)

(see Fig. 1a of the main text). This quasi-periodic disorder potential VDis(x) can be effectively

implemented in the tRM model as an on-site potential given by

V̂ ′Dis =
∆D

2
sin[2πβ(2i) + α]â†i âi +

∆D

2
sin[2πβ(2i− 1) + α]b̂†i b̂i, (S4)

where β = d/(2dD). The potential amplitude ∆D in V̂ ′Dis does not strictly correspond to the

value of the continuous system potential VD but gives a good approximation. The quasi-

periodic disorder potential V̂ ′Dis is diagonal and breaks the chiral symmetry even for θ = π/2

or 2π/3 SSH case. In general, this type of disorder strongly affects the topological system and

leads to the breakdown of the topological phase, compared to a chiral symmetric disorder

employed in a recent experiment [5]. On the other hand, in this tight-binding picture we

ignore modulated effects of VDis(x) to the tRM parameters, J , δ0 and ∆0. Thus, we consider

ĤRM + V̂ ′Dis as an approximated tight-binding model for our experimental system.

For the sake of simplicity, we consider the effect of the quasi-periodic disorder only on

the on-site potential and ignore the effects of the trapping potential. However, the resulting

model is nevertheless able to capture the essence of the physical behavior of the cRM model

and the experimental system. In particular, for small VD, the tRM model reasonably ap-

proximates the cRM model. However, for large VD, deviations between the tRM model and

cRM models become noticeable. Since V̂ ′Dis is diagonal, the total tight-binding model has

no chiral symmetry even for inversion symmetric point, therefore V̂ ′Dis is expected to have a

strong influence to the TCP.
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FIG. S1. IPR calculation for a quasi-periodic disordered SSH model. a, C1: (VL,VS) =

(20, 14)ER, (J ,δ0,∆0) = (0.861, 0.851, 6.45)ER. b, C2: (VL,VS) = (30, 20)ER, (J ,δ0,∆0) =

(0.860, 0.857, 8.54)ER. c, C3: (VL,VS) = (15, 10)ER, (J ,δ0,∆0) = (0.914, 0.898, 4.86)ER. d, C4:

(VL,VS) = (36, 24)ER, (J ,δ0,∆0) = (0.827, 0.825, 9.605)ER.

S2. LOCALIZATION TRANSITION IN A QUASI-PERIODIC DISORDERED SSH

MODEL

To estimate the Anderson localization point VAL in our experimental system, we calculate

effects of quasi-periodic disorder created in a disordered SSH model, corresponding to the

∆ = 0 case in the tRM model of Eq. (S2) including the V̂ ′Dis of Eq. (S4) as an effect of

the disordered lattice potential. Here, we consider a quasi-periodic disorder lattice with a

wavelength of 798 nm. In general, since we consider quasi-periodic disorder, we expect an

Anderson localization transition at a finite disorder strength even in the one dimensional

system. In conventional Anderson localization, single atoms are localized at each single

lattice site. To estimate the localization transition in our considering system, we employ the

inverse participation ratio (IPR). The IPR for each eigenstate is defined as

(IPR)` =
∑
j

|〈j|ψ`〉|4, (S5)

where |j〉 is a j-site localized single-particle state and |ψ`〉 is `-th eigenstate in the SSH

model with quasi-periodic disorder potential. A large value of the IPR is a signature of
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the localized tendency of the single-particle wave function. We perform the IPR calculation

for four different parameter sets of (J ,δ) corresponding to those in the four different pump

trajectories in our experiments. The results are shown in Fig. S1, where we plot the IPR

as a function of ∆D and of the eigenstate number in L = 200 lattice site system with

periodic boundary conditions. The sets C1 and C2 correspond to the parameter sets A and

B in Fig. 2a in the main text, and the set C3 and C4 correspond to the trajectories Cinner

and Couter in Fig. 4b, respectively. The order of the eigenstate numbers corresponds to

the eigenenergy in ascending order. Due to the quasi-periodic disorder, all cases in Fig. S1

exhibit mobility edges, i.e., different eigenstates localize for different disorder strengths.

Here we take the condition (IPR)` & 0.1 as a localization criterion, while the transition

point is determined by the case where all eigenstates fulfill this condition. For all the cases

in Fig. S1, all the eigenstates already tend to be localized for ∆D/2∆0 < 0.04. We define the

Anderson localization transition point VAL in the main text, using eigenstates with lower

eigenenergies. These states are localized at ∆D/2∆0 ∼ 0.02 and ∆D/2∆0 ∼ 0.004 for the

pump trajectories C1 and C2 (or the set A and B in the main text), respectively. These

values correspond to V A
AL ∼ 0.3ER and V B

AL ∼ 0.07ER. Even though from the numerical

calculation our experimental system (cRM model) is also expected to be localized around

the SSH parameters points, this fact does not mean gap closing directly. Even when the

system exhibits localization and fulfills our criteria, the pumping does not necessarily break

down, as shown numerically in Ref. [6].

S3. CHERN NUMBER CALCULATION FROM A DIMENSIONAL EXTENDED

TIGHT-BINDING MODEL

The tRM model can be mapped into the Harper–Hofstadter–Hatsugai (HHH) model [7]

through a dimensional extension [8, 9]. By regarding the pumping parameter θ in ĤRM of

Eq. (S2) as y-direction momentum ky and applying the Fourier transformation for ky, we

can obtain the HHH model from the tRM model:

Ĥ2D =
∑
m,n

[
−Jĉ†m+1,nĉm,n −

∆0

2
e−iπ(m−1/2)ĉ†m,n+1ĉm,n

−δ0

2
eiπmĉ†m+1,n+1ĉm,n −

δ0

2
e−iπmĉ†m+1,nĉm,n+1 + h.c.

]
. (S6)
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Here ĉ
(†)
m,n is the annihilation (creation) operator at a two dimensional lattice site (m,n),

where m = 1, 2, · · · , Lx and n = 1, 2, · · · , Ly, i.e., Lx × Ly lattice system. The HHH model

is known to have two topological bands with a non-zero Chern number [7, 8]. This is a

peculiar property compared to a conventional quantum Hall system on lattice described by

the Hofstadter model [10], since the Hofstadter model does not exhibit two separated bands

with non-trivial topology. The two topological bands with a non-zero Chern number in the

HHH model are the origin of the TCP in the tRM model. The value of the Chern number

corresponds to the total pumped current per one pumping cycle in the tRM model [4]. For

the HHH model, we can further implement the effect of the quasi-periodic disorder V̂ ′dis of

the tRM model as V̂ ′′Dis = ∆D

2
sin(2πβm + α)ĉ†n,mĉn,m. Here, it should be noted that V̂ ′′Dis

depends only on the x-component site m and is uniform along y-direction.

In our experimental system, atoms almost occupy the lowest band and the occupation of

atoms in higher bands is fairly suppressed. We assume that the lower band of the tRM model

is fully-occupied approximately. Accordingly, in the numerical calculation of the HHH model,

the half-filling case is considered. Then, to make a comparison with the experimental results

shown in the main text, we set the HHH model parameters (J , δ0, ∆0) to four experimental

parameter sets: (I) (VL,VS) = (20, 14)ER, (J ,δ0,∆0) = (0.861, 0.851, 6.45)ER, (II) (VL,VS) =

(30, 20)ER, (J ,δ0,∆0) = (0.860, 0.857, 8.54)ER, (III) (VL,VS) = (15, 10)ER, (J ,δ0,∆0) =

(0.914, 0.898, 4.86)ER, and (IV) (VL,VS) = (36, 24)ER, (J ,δ0,∆0) = (0.827, 0.825, 9.605)ER.

These approximated circular pumping trajectories determined by the above four parameter

sets are denoted by C1, C2, C3 and C4. These parameter sets (J , δ0, ∆0) are determined

by comparing to the energy spectra of the cRM model as in the previous paper [1]. The C1

and C2 trajectories are the approximated version of the set A and B in the experimental

pumping sequences in Fig. 2a in the main text, respectively. The C3 and C4 trajectories

correspond to the experimental pumping sequences Cinner and Couter in Fig. 4b, respectively.

In what follows, We numerically calculated the Chern number for C1, C3 and C4 trajectories

and use Lx = 40 (20 unit cells). This x-direction system size is close to our experimental

system.

We calculate the Chern number for the model of Ĥ2D + V̂ ′′Dis in the following manner.

Since discrete translational invariance is broken due to the term V̂ ′′Dis, we employ a calculation

method to obtain the Chern number from the real space Hamiltonian, namely, the so-called

coupling matrix method [11–14]. In this method, we impose twisted periodic boundary
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FIG. S2. Numerical calculation of Chern number in the presence of quasi-periodic

disorder and its dependence on Ly. Lx is fixed to 40. We average over 20 different values of

α, the tRM parameters are set to the C1 case. The blue shaded regime represents a theoretically

expected phase transition regime, where the TCP is suddenly suppressed.

conditions with two twisted phases θx and θy for each spatial direction. Their twisted phases

play a role of the momentum kx and ky (corresponding to θ) in the TKNN formula [15].

Since these twisted phase boundary conditions can be employed even for a system without

translational invariant such as a disordered system, we can calculate the Chern number for

the model of Ĥ2D + V̂ ′′Dis.

Figure S2 displays the calculated Chern number in the presence of quasi-periodic disorder

and its dependence of the artificial y-spatial system size Ly with fixed Lx = 40 (20 unit cells

system from the viewpoint of the tRM model). The result indicates that the system-size

dependence is fairly small, and the topological phase transition point does not depend much

on the value of Ly. Therefore, the system size used in the numerical calculation is large

enough to capture the behavior of our experimental system. Ly = 24 data in Fig. S2 is

displayed in Fig. 2b in the main text.

Next, we employ this numerical method to study the disorder-induced charge pump

(DICP). The schematic pumping trajectory plotted in the δ−∆ plane is shown in Fig. S3a.

This trajectory is a combination of circular C3 and C4 trajectories. Our experiment is con-

ducted with a trajectory similar to this schematic trajectory. In particular, the experimen-

tal trajectory can be connected by continuous deformation, and it is therefore topologically

equivalent, to the trajectory shown in Fig. S3a. The DICP trajectory does not wrap the

origin (∆0, δ0) = (0, 0) corresponding to the gap closing point in the tRM model in the clean
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FIG. S3. Numerical calculation of Chern number in the disorder-induced charge pump-

ing (DICP). a, Pumping trajectory. This is created by combining the two circular trajectories

C3 and C4 with different circular direction. The two trajectories are connected by changing the

staggered potential ∆0 with fixed δ = 0. The total pumping trajectory does not wrap the origin

corresponding to the gap closing point of the clean RM model. Without the quasi-periodic disorder

lattice, the total charge pumping along this trajectory is zero. b, Chern number behavior for C3

trajectory and c, for C4 trajectory as a function of ∆D. The TCP in C4 case is more robust than

in C3 trajectory. d, The difference of the Chern number between C3 and C4 trajectories as a func-

tion of ∆D. The numerical result indicates a possibility to exhibit a disorder-induced pumping for

10ER . ∆D . 30ER. Ly-system size dependence is fairly small. For the case that the inner (C3)

and outer (C4) trajectories are farther apart: e, Chern number behavior for C3 trajectory and f, for

C4 trajectory as a function of ∆D. The TCP in C4 case is much more robust than in C3 trajectory.

g, the difference of the Chern number between C3 and C4 trajectories as a function of ∆D. The

numerical result indicates the possibility to realize a topological DICP for 40ER . ∆D . 80ER,

where a clear quantized plateau appears.

limit. In this sense, in the clean limit, the tight-binding RM model of Eq. (S2) exhibits

no TCP, i.e., the total pumped current is zero. However, once the quasi-periodic disorder

V̂ ′Dis is switched on, the disordered model has a possibility to exhibit a non-trivial pumped

current that could not occur at the clean limit. This corresponds to the fact that the dis-

ordered HHH model also has a possibility to exhibit a topological non-trivial phase with a

non-vanishing Chern number, CN 6= 0.

To study the DICP, we split the DICP trajectory into two circles, C3 and C4. For each
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circular trajectory, we calculate the Chern number by using the disordered HHH model.

Here, various system sizes for Ly are calculated to check the finite-size effects. Moreover,

for all data, we average over different samples corresponding to different values of α (60

samples). The numerical results for each trajectory are shown in Fig. S3b and c. The data

display ∆D-dependence (not 2∆0 scale) of the Chern number. Furthermore, Fig. S3d shows

the sum of the Chern number between C3 and C4 trajectories. The result clearly captures

the presence of a non-trivial pump between 10ER . ∆D . 30ER, quantified by the imperfect

cancellation between the Chern numbers for C3 and C4 trajectories. All results in Fig. S3b-d

indicate that the finite system size (Ly) dependence is fairly small. Ly = 24 data in Fig. S3

are used in Fig. 4b and c in the main text.

In addition, we show that this type of pump protocol in Fig. S3a theoretically exhibits a

topological DICP. Here, we consider that the inner and outer trajectories are farther apart

compared with the experimental ones, i.e., we set the inner circle (C3) with (J, δ0,∆0) =

(1, 0.9, 5)ER and the outer circle (C4) with (J, δ0,∆0) = (6, 5, 45)ER. The numerical results

are shown in Fig. S3e-g. As seen in Fig.S3g, there exists a quantized plateau within the errors

or fluctuations due to numerical instability inevitable for disordered systems for moderate

disorder strength.

S4. CONTINUOUS MODEL

To obtain the band structure in the continuous system, we use a continuous model with

a lattice potential given by

V (x, t) = −VS cos2

(
2πx

d

)
− VL cos2

(πx
d
− φ(t)

)
− VD cos2

(
πx

dD

+
α

2

)
, (S7)

and we solve the time-independent Schrödinger equation[
−~2∂2

x

2m
+ V (x, φ)

]
Ψ(x, t) = EΨ(x, t), (S8)

using space discretization. Using the recoil energy as the energy unit and the lattice constant

of the long lattice as the length unit one has ER = h2/(8m)2 = 1.

Since dD/d is an irrational number, the quasi-periodic disorder lattice is incommensurate

with respect to the short and the long lattice. As a consequence, the translational sym-

metry of the lattice is broken, and thus the unit cell of the superlattice is not well-defined.
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Hence, one cannot meaningfully define the periodic boundary conditions for the system.

Therefore, we will approach the irrational value dD/d = 3/2
√

2 by taking a succession of

rational approximations of the irrational number, obtained in terms of continued fraction

representation [16]. Every irrational number R ∈ R − Q can be written uniquely as an

infinite continued fraction as

R = [N0;N1, N2, . . .] = N0 +
1

N1 +
1

N2 + . . .

(S9)

with Ni ∈ Z integers. The successive approximations Rn are obtained by truncating the

continued fraction representation [N0;N1, N2, . . . , Nn]. Since Rn are rational numbers one

can write as

Rn = [N0;N1, N2, . . . Nn] =
Pn
Qn

≈ R, (S10)

where Pn, Qn are coprimes. These represent successive rational approximations of the irra-

tional number R.

In our specific case one has

dD

d
=

3

2
√

2
≈17

16
,
35

33
,
577

544
, . . . = 1.0625, 1.060606060 . . . , 1.060661764 . . . , . . . (S11)

For VD = 0 the unit cell of the superlattice has length d. For VD > 0 and R = d/dD being

a rational number R = P/Q with P,Q coprimes, the total unit cell of the superlattice has

length Qd as one can see by direct substituting x→ x+Q into Eq. (S7). The energy levels

are then obtained by solving the Schrödinger equation with periodic boundary conditions

over a system of length L = NcQd where Nc is the total number of unit cells. We take

P/Q = 35/33 and a total length of 198d.

Figure S4 shows the bulk density of states (DoS) as a function of VD and the band

structure in the clean and in the strong disorder regimes, for different values of the lattice

depths VL and VS. The DoS and the band structure are calculated using closed (periodic)

boundary conditions. In the shallower lattice cases (a and b) we can clearly see from the

DoS that the global gap closes and reopens at VD ≈ 5. For the case (c), a very small gap

closes and reopens at VD ≈ 7. In the case (d), which is the same as Fig. 3d of the main text,

the numerical calculations show the gap closing at VD ≈ 5 but do not show such re-opening

of the gap.
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FIG. S4. Bulk density of states (DoS) as a function of VD and band structure in the

clean and in the strong disorder regimes, for different values of the lattice depths VL

and VS. a, For VL, VS = 5, 3.5 we can clearly see from the DoS that the global gap closes and

reopens at VD ≈ 5. b, Also for VL, VS = 7.5, 5 we can clearly see that the global gap closes and

reopens at VD ≈ 5. c, For VL, VS = 10, 7 the gap closes and a very small gap reopens at VD ≈ 7.

d, For VL, VS = 20, 14 which is the same as Fig. 3d of the main text, the gap closes at VD ≈ 5 but

does not reopen. We consider a system with total length equal to 198d and with α = 0. The DoS

is averaged over the phase φ.

Figure S5 shows the band structure calculated in the case of open boundary conditions in

the clean VD = 0 and strong VD = 15 disorder regimes, for the parameter set VL, VS = 5, 3.5

(as in Fig. S4a). In the clean limit, one can clearly see an edge state which connects the lowest
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FIG. S5. Band structure for a system with open boundary conditions with VL, VS = 5, 3.5.

a, In the clean limit VD = 0 there is a non-trivial edge state connecting the lowest energy band (at

filling j = 1) with the first excited band. b, In the strong disorder regime VD = 15 there are no

edge states connecting the lowest energy band with the first excited band.

energy band with the first excited band. Therefore the lowest energy gap is topologically

non-trivial. In the strong disorder case, there is an intraband state in the lowest energy

gap. This intraband state does not connect the two bands and it is therefore topologically

trivial. Non-trivial edge states are also present in the lowest energy gap in the clean limit

VD = 0 for VL, VS = 7.5, 5, VL, VS = 10, 7, and VL, VS = 20, 14. However, for these choices of

the lattice depths, the energy band dispersion becomes so broad that the lowest energy gaps

become very narrow, and the presence and identification of intraband edge states cannot be

resolved unambiguously.

S5. EVALUATION OF EXCITATION FRACTION

In Fig. 3a of the main text, we investigate the gap closing between the first and sec-

ond bands by measuring the fraction of atoms excited to the second band after three cy-

cles of cRM pumping under quasi-periodic disorder with the lattice parameter (VL, VS) =

(20, 14)ER. The band structure is defined for the long lattice, spanned by the quasi-

momentum q, since we adiabatically turn off the quasi-periodic disorder lattice from the

whole lattice setup in 130 ms. We then utilize a band-mapping technique, where an adi-

abatic turn-off of the remaining optical lattices maps quasi-momentum q of n-th band to
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FIG. S6. Measured momentum distribution of atoms in the case of a clean limit with

φ fixed at 0. It is fitted with the function f1(p) defined in Eq. (S12). Error bars denote the

standard deviation of ten independent measurements.

free-particle momentum p of n-th Brillouin zone [17, 18]. By taking absorption images after

time-of-flight of 10 ms, we evaluate atom fractions in the first and second bands from the

momentum distribution.

In the case of a clean limit with φ fixed at 0, it is expected that only the first band is

occupied. Figure S6 shows the measured momentum distribution corresponding to this case.

An almost homogeneous distribution is obtained within the first Brillouin zone. However,

the homogenous distribution was smoothed around p = ±~π/d owing to experimental im-

perfection such as non-adiabaticity in the band mapping. We approximate this smoothing

by the following function f1(p):

f1(p) =
a

2

[
erf

(
p+ π/d

s

)
+ erf

(
−p− π/d

s

)]
, (S12)

here a and s are fitting parameters and the fitted s value sfit denotes the smoothness. We

assume that this fitted function represents the momentum distribution when the first band

is homogeneously occupied.

During the pumping under the quasi-periodic disorder, atoms can be excited to the second

band. Suppose that the atom distribution in the second band is also homogeneous, and the

smoothness of the value sfit obtained above is common for both the first and second bands.

Then we fit the measured data for the pumping under the quasi-periodic disorder using the
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FIG. S7. Measured momentum distribution of atoms after the Thouless pumping under

the quasi-periodic disorder. This is one typical example of ten independent measurements

obtained at the disorder VD = 20ER. It is fitted with the functions ft(p), defined in Eq. (S13), for

the whole band (red), f1(p) for the first band (grey), and f2(p) for the second band (orange). The

vertical axis is normalized such that the integral of the fitted ft(p) is unity. The whole shift in the

horizontal axis is corrected such that the functions are symmetric with respect to p = 0.

following function ft(p):

ft(p) = f1(p) + f2(p), (S13)

here

f2(p) =
b

2

[
erf

(
p+ 2π/d

sfit

)
+ erf

(
−p+ π/d

sfit

)]
+
b

2

[
erf

(
p− π/d
sfit

)
+ erf

(
−p− 2π/d

sfit

)]
,

(S14)

and b is a fitting parameter. The fitted functions f1(p) and f2(p) show the momentum

distributions in the first and second bands, respectively. Figure S7 shows one of the fitted

results at the disorder VD = 20ER in Fig. 3a in the main text. After normalizing the integral

of the fitted ft(p), we evaluated the second-band fraction by calculating
∫
dpf2(p). The mean

and error bar representing the standard deviation in Fig. 3a of the main text are obtained

for ten independent measurements at each disorder strength.
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FIG. S8. Dependence of pumping suppression on the wavelength of the quasi-periodic

disorder lattice. a, The CoM shift per cycle averaged after three cycles plotted as a function

of the normalized depth of the disorder lattice with wavelength of λD = 776 nm (blue diamond),

798 nm (red circle), and 820 nm (green square) for cRM lattice with (VL, VS) = (20, 14)ER. The

error bars denote the 1σ confidence bound derived from more than forty CoM measurements.

b, Numerical calculation of the wavelength dependence of the Chern number, plotted as a function

of the normalized disorder strength in the tight-binding model. The symbols are the same as those

in a.

S6. DEPENDENCE OF PUMPING SUPPRESSION ON DISORDER-LATTICE

WAVELENGTH

We examine the dependence of the pumping suppression on the wavelength of the disorder

lattice λD. Figure S8a shows the pumping amounts measured at quasi-periodic disorder

wavelengths λD = 776 nm (red diamond), 798 nm (blue circle), and 820 nm (green square).

The data at 798 nm are the same as those with the set A in Fig. 2 in the main text. There

is no clear difference among the results for those different wavelengths. Our numerical

calculation with a tRM model supports the tendency of the measured results (see Fig. S8b).

As one can see, the charge pumping starts to decrease from one at a certain critical disorder

strength, which depends on the wavelength. However, the pumping is largely suppressed at

almost the same value VD & 20ER for all three wavelengths.
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FIG. S9. Position change of the local minimum point in the trapping potential with

long and quasi-periodic disorder lattices. The long-lattice depth is fixed to VL = 20ER,

whereas the disorder strength VD is changed as described on the right side. The quasi-periodic

disorder phase α is set to 0 (a) or π (b). The phase φ(t) is swept from 0 to 3π, corresponding to

three pump cycles. The black line shows the initial potential at φ(0) = 0, and the gray shaded area

represents the region in which the trapping potential moves during the three cycles. The position

change of the local minimum point of the trap, initially located at x ≈ 0, is depicted as the red

line.

S7. INTUITIVE UNDERSTANDING OF PUMP SUPPRESSION

We can understand intuitively why the pump is suppressed at VD ∼ VL in the following

way. As long as the lowest band is occupied, Thouless pumping with a cRM lattice is topo-

logically equivalent to that only with a sliding long lattice [1]. Therefore we can capture the
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FIG. S10. Trapping potential created by the long and quasi-periodic disorder lattices.

Their trap depths are set to VL = 20ER and VD = 40ER, respectively, and the relative phase is

zero at the origin. The ground and first-excited vibrational levels are schematically indicated by

blue and red bars, respectively.

essence of the results of the pump suppression by considering a sliding lattice superimposed

with a quasi-periodic disorder lattice, namely the second and third terms of Eq (1) in the

main text.

Figure S9 shows the trapping potential produced by these two lattices as a function of

position x. In addition, the position change of the local minimum point of the trap during

three pump cycles is depicted by the red line. The trap depth of the long lattice is fixed

to VL = 20ER, whereas the disorder strength VD is varied from 0ER to 23ER (from top

to bottom). When VD ≤ 21ER, the local minimum point moves across several lattice sites

during the pump cycle in accordance with the sliding lattice. This means that the whole

lattice is sliding with the phase φ swept. For VD ≥ 22ER, however, the minimum point stops

moving and wanders around the particular trap minimum. Accordingly, the whole lattice

does not slide. This transition happens around VD ∼ VL. Therefore it is expected that the

pump is suppressed at VD ∼ VL. Because this discussion does not depend largely on the

wavelength of the quasi-periodic disorder lattices, it is reasonable that we observe no clear

difference among the three measurements in Fig. S8.

Since the dominant lattice is that of the static quasi-periodic disorder lattice in the case

of VD > VL, the above-mentioned situation also indicates that the trivial band gap should be

open. Although the re-opening of the gap is not clearly visible in the numerical calculations

in Fig. 3 in the main text, this does not necessarily mean that the state is metallic. In

fact, the energy difference between the ground and first-excited vibrational levels within
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individual lattice sites becomes large in the strong disorder as shown in Fig. S10. This large

local energy gap should suppress the excitations to higher levels as observed in Fig. 3a in

the main text.
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[4] Asbóth, J. K., Oroszlány, L. & Pályi, A. A short course on topological insulators. Lecture

notes in physics 919 (2016).

[5] Meier, E. J. et al. Observation of the topological anderson insulator in disordered atomic

wires. Science 362, 929–933 (2018).

[6] Wauters, M. M., Russomanno, A., Citro, R., Santoro, G. E. & Privitera, L. Localization,

topology, and quantized transport in disordered Floquet systems. Phys. Rev. Lett. 123, 266601

(2019).

[7] Hatsugai, Y. & Kohmoto, M. Energy spectrum and the quantum hall effect on the square

lattice with next-nearest-neighbor hopping. Phys. Rev. B 42, 8282–8294 (1990).

[8] Kraus, Y. E., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological states and

adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 (2012).

[9] Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M. & Bloch, I. A thouless quantum

pump with ultracold bosonic atoms in an optical superlattice. Nature Physics 12, 350 (2016).

[10] Hofstadter, D. R. Energy levels and wave functions of bloch electrons in rational and irrational

magnetic fields. Phys. Rev. B 14, 2239–2249 (1976).

[11] Zhang, Y.-F. et al. Coupling-matrix approach to the chern number calculation in disordered

systems. Chinese Physics B 22, 117312 (2013).
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