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S1. Theory for magneto-optical detection of propagating spin waves in antiferromagnets 

S1.1 Magnetic potential 

The antiferromagnetic order can be best described by introducing the antiferromagnetic Néel 

vector L = M1 - M2 and net magnetization M = M1 + M2, where M1,2 are the magnetizations of 

the antiferromagnetically coupled magnetic sublattices, such that |M1| = |M2| = M0 and |L| ≈ 2M0 = 

L0.  

The density of magnetic energy in DyFeO3 written in terms of M and L reads1,2:  

𝑤𝑤(𝐌𝐌,𝐋𝐋) =  
𝐻𝐻ex
2𝑀𝑀0

𝐌𝐌𝟐𝟐 − (𝐇𝐇0 ∙ 𝐌𝐌) −
𝐻𝐻D

2𝑀𝑀0
�𝒆𝒆𝑦𝑦 ∙ [𝐋𝐋 × 𝐌𝐌]� + 𝑤𝑤a(𝐋𝐋). (S1.1) 

 

In this expression, 𝐻𝐻ex is the effective exchange field (𝜔𝜔ex = 2𝛾𝛾𝐻𝐻ex), with γ = 1.76 107 s-1Oe-1 the 

gyromagnetic ratio, H0 is the external magnetic field, HD is the magnitude of the effective 

Dzyaloshinskii-Moriya field (𝐇𝐇D = 𝐻𝐻D
2𝑀𝑀0

�𝒆𝒆𝑦𝑦 × 𝐋𝐋�, ey is the unit vector along the y-axis, which 

corresponds to the even C2 crystal axis in DyFeO3). The spontaneous spin-reorientation between 

the two competing magnetic states is governed by the temperature-dependence of the energy of 

the magneto-crystalline anisotropy a ( )w L 3,4: 

𝑤𝑤a(𝐋𝐋) =  
1
2
𝐾𝐾2(𝑇𝑇)𝐿𝐿𝑦𝑦2 −  

1
2
𝐾𝐾4𝐿𝐿𝑦𝑦4 , S(1.2) 

 with K2,4 phenomenological parameters that describe the strength of the magnetic anisotropy.                                       

Within the sigma-model approach, the dynamics of the Néel vector is described by a closed 

equation (sigma-model equation, see, e.g., review article [2] and Supplementary Section S2 for 

details), whereas the net magnetization M is determined by this vector and its time derivative via 

the relation: 

𝐌𝐌 =
𝑀𝑀0

𝐻𝐻ex
𝐇𝐇D +

1
2𝑀𝑀0𝜔𝜔ex

�
𝜕𝜕𝐋𝐋
𝜕𝜕𝜕𝜕

× 𝐋𝐋� . (S1.3) 

 

In DyFeO3 the ground state of the Néel vector as well as its dynamics corresponding to the quasi-

antiferromagnetic mode (q-AFM) is restricted to the (xy) plane. For such dynamics, the Néel vector 
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can be parametrized by introducing the angle 𝜑𝜑L that the vector forms with the y-axis, 

L=L0(sin𝜑𝜑L, cos𝜑𝜑L,0). In the ground state of DyFeO3: 

𝜑𝜑L = �
0, 𝑇𝑇 < 𝑇𝑇M
𝜋𝜋
2

, 𝑇𝑇 > 𝑇𝑇M
 (S1. 4) 

For such planar dynamics, the net magnetization 𝑀𝑀𝑧𝑧 emerges along the z-axis, such that:  

𝑀𝑀z =
𝑀𝑀0

𝐻𝐻ex
�−𝐻𝐻D sin𝜑𝜑L +

1
𝛾𝛾
𝜕𝜕𝜑𝜑L
𝜕𝜕𝜕𝜕

� , (S1.5) 

At this point we introduce a variable 𝜑𝜑 to designate deviations of the vector L from the equilibrium 

orientation, such that φ = φL for the collinear AFM state and φ = π/2 - φL for the canted AFM state. 

For the case of small deviations of the Néel vector from equilibrium, we assume 𝜑𝜑 ≪ 1 and obtain:  

𝑀𝑀𝑧𝑧 =

⎩
⎪
⎨

⎪
⎧𝑀𝑀0

𝐻𝐻ex
�−𝐻𝐻D𝜑𝜑 +

1
𝛾𝛾
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
� , 𝑇𝑇 < 𝑇𝑇M

𝑀𝑀0

𝐻𝐻ex
�−𝐻𝐻D −

1
𝛾𝛾
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
� , 𝑇𝑇 > 𝑇𝑇M

 

(S1.6) 

 

S1.2 Magneto-optical detection mechanism for the finite-k magnon modes 

Optical detection of magnetization dynamics in a reflection geometry is performed using the 

magneto-optical Kerr effect (MOKE). The phenomenon originates from a helicity-dependent 

refractive index in the material with broken time reversal symmetry. The refractive index differs 

for left-handed and right-handed polarized light, resulting in different reflection coefficients. To 

calculate the rotation of the plane of polarization after reflection, linearly polarized light is first 

decomposed into circularly polarized components. For simplicity, it is assumed that the incident 

light is polarized along the x-axis, and the normalized electric field vector 𝒆𝒆𝑖𝑖 in the (xy) plane is: 

𝒆𝒆𝑖𝑖 =
1
2
� 1
−𝑖𝑖� +

1
2
� 1

+𝑖𝑖� =
1
2
𝒆𝒆+ +

1
2
𝒆𝒆−, (S1.7) 

where 𝒆𝒆± = � 1
∓𝑖𝑖�. Then the reflected field is 

 𝒆𝒆𝑟𝑟 =
1
2
𝑟𝑟+𝒆𝒆+ +

1
2
𝑟𝑟−𝒆𝒆− =

1
2
� 𝑟𝑟+ +  𝑟𝑟−
𝑖𝑖(𝑟𝑟− − 𝑟𝑟+)�,  (S1.8) 
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Now the reflectivity is written as the sum of the static reflectivity 𝑟𝑟0 and the dynamic part of the 

reflectivity ∆𝑟𝑟, which is induced by the spin wave: 

 𝑟𝑟+ = 𝑟𝑟0+ + ∆𝑟𝑟+
𝑟𝑟− = 𝑟𝑟0− + ∆𝑟𝑟− (S1.9) 

We consider the experimental geometry schematically shown in Suppl. Fig. 1a, in which a probe 

pulse enters the material at z = 0. To find the change in reflectivity, depending on the light helicity, 

we take an approach similar to the ultrafast detection of acoustic phonons, where phonon-induced 

strain affects reflectivity [see Ref. [5], Eq. (32)]. In Ref. [5] the change in reflectivity is derived as 

function of the time and space dependent change in permittivity Δε(z,t) due to the strain 

modulation. Here, the same equation is employed to calculate the change of reflectivity induced 

by magnetization. The equation taken from Ref. [5] reads: 

 
𝑟𝑟 = 𝑟𝑟0 +

𝑖𝑖𝑘𝑘02

2𝑘𝑘
𝜕𝜕0�̃�𝜕0 � d𝑧𝑧′ 𝑒𝑒2𝑖𝑖𝑖𝑖𝑧𝑧′∆𝜀𝜀(𝑧𝑧′, 𝜕𝜕)

∞

0
, 

(S1.10) 

where 𝑟𝑟0 is the reflection coefficient in absence of perturbations in the permittivity, 𝜕𝜕0 is the 

transmission coefficient of the light into the medium, and �̃�𝜕0 is the transmission coefficient from 

the medium into free space, 𝑘𝑘0 is the wave-vector of the light in free space and 𝑘𝑘 is the wave-vector 

of light in the medium. 
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Supplementary Figure 1: Experimental geometry to probe spin-wave excitations. (a) Schematic diagram of the 

experiment considered. (b) Schematic illustration of the detection condition from Eq. (2) in the main text. 

Two electromagnetic eigenmodes exist in a magnetic material with (dynamical) magnetization 

along the z-axis, which have left-handed and right-handed circular polarization (±) and experience 

different refractive indices n±
6. From these effective refractive indices, the effective permittivity 

modulation Δε can be obtained:  

 𝑛𝑛±
2 = 𝜀𝜀 ± 𝑔𝑔 = 𝜀𝜀 + ∆𝜀𝜀±, (S1.11) 

where 𝑔𝑔 is the gyration term. Generally, this gyration term is proportional to the net magnetization: 

𝑔𝑔(𝑀𝑀)  =  𝑎𝑎𝑀𝑀𝑧𝑧, where a is a proportionality coefficient. From this it is found that:  

 

 ∆𝜀𝜀±(𝑧𝑧, 𝜕𝜕) = ±𝑎𝑎𝑀𝑀𝑧𝑧(𝑧𝑧, 𝜕𝜕) (S1.12) 

 

Inserting the expression for ∆𝜀𝜀(𝑧𝑧, 𝜕𝜕) in Eq. (S1.9) for right- and left-handed circular polarization 

we obtain: 

 
𝑟𝑟+ = 𝑟𝑟0+ − 𝑖𝑖𝜕𝜕0+�̃�𝜕0+

𝑎𝑎𝑘𝑘02

2𝑘𝑘+
� d𝑧𝑧′𝑒𝑒2𝑖𝑖𝑖𝑖+𝑧𝑧′𝑀𝑀𝑧𝑧(𝑧𝑧′, 𝜕𝜕) ≡ 𝑟𝑟0+ + ∆𝑟𝑟+
∞

0

𝑟𝑟− = 𝑟𝑟0− + 𝑖𝑖𝜕𝜕0−�̃�𝜕0−
𝑎𝑎𝑘𝑘02

2𝑘𝑘−
� d𝑧𝑧′𝑒𝑒2𝑖𝑖𝑖𝑖−𝑧𝑧′𝑀𝑀𝑧𝑧(𝑧𝑧′, 𝜕𝜕) ≡ 𝑟𝑟0− + ∆𝑟𝑟−
∞

0

. 

(S1.13) 
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For the sake of simplicity, we use the approximation of a pure antiferromagnet, such that the 

difference in reflection coefficients, transmission coefficients and wave vectors of light with 

opposite helicity in statics is negligible (we also neglect higher-order effects such as magnetic 

birefringence), simplifying the expression to: 

 𝑟𝑟+ = 𝑟𝑟0 − ∆𝑟𝑟
𝑟𝑟− = 𝑟𝑟0 + ∆𝑟𝑟         , (S1.14) 

where  

 ∆𝑟𝑟 = 𝑖𝑖 𝑎𝑎𝑖𝑖0
2

2𝑖𝑖
𝜕𝜕0�̃�𝜕0 ∫ d𝑧𝑧′𝑒𝑒2𝑖𝑖𝑖𝑖𝑧𝑧′𝑀𝑀𝑧𝑧(𝑧𝑧′, 𝜕𝜕)∞

0 . (S1.15) 

Now the rotation angle 𝜃𝜃K is calculated from equation (S1.8), by taking the ratio of the y- and x-

components. Generally, the rotation angles are small such that tan(𝜃𝜃K) ≈ 𝜃𝜃K so that: 

 
𝜃𝜃K ≈

𝑖𝑖(𝑟𝑟− − 𝑟𝑟+)
𝑟𝑟− + 𝑟𝑟+

=
𝑖𝑖∆𝑟𝑟
𝑟𝑟0

 
(S1.16) 

As discussed in the manuscript and Supplementary Section S2, the optical pumping results in the 

excitation of a broadband spin-wave wave packet. We consider an arbitrary plane spin wave 

component of the packet with the frequency ωs and the wavevector km(ωs). We show below that 

the experimentally detected spin wave component is fully defined by the wavevector k of the probe 

pulse.  

Following Eqs. S1.5, S1.6, spin dynamics in DyFeO3 results in an oscillatory out-of-plane 

magnetization. The magnetization Mz associated with the propagating spin wave can thus be 

written as follows: 

 𝑀𝑀𝑧𝑧(𝑧𝑧, 𝜕𝜕) = 𝑀𝑀𝑖𝑖𝑒𝑒𝑖𝑖𝜔𝜔s𝑡𝑡𝑒𝑒−𝑖𝑖𝑖𝑖m(𝜔𝜔s)𝑧𝑧 (S1.17) 

Here, Mk is the amplitude of the chosen spin wave component, determined by the amplitude of the 

spin deflection 𝜑𝜑, (see Eqs. (S1.5, S1.6)) and km(ωs) is the wave-vector of the spin wave, related 

to 𝜔𝜔s through the dispersion relation ωk.  

Substituting Eq. (S1.17) in Eq. (S1.15) and in Eq. (S1.16) afterwards, results in the following 

expression for the rotation angle: 
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 𝜃𝜃K = 𝑡𝑡0�̃�𝑡0
𝑟𝑟0

𝑎𝑎𝑖𝑖02

2𝑖𝑖
𝑀𝑀𝑖𝑖 ∫ d𝑧𝑧𝑒𝑒𝑖𝑖𝜔𝜔s𝑡𝑡𝑒𝑒𝑖𝑖�2𝑖𝑖−𝑖𝑖m(𝜔𝜔s)�𝑧𝑧∞

0 .  (S1.18) 

Note that in a general case 𝑘𝑘m = 𝜅𝜅m − 𝑖𝑖𝜂𝜂m, i.e. spin waves decay upon propagation from the 

sample boundary with a decrement 𝜂𝜂m. For the case 𝜂𝜂m ≠ 0 the integral S1.18 converges and the 

result is: 

 
𝜃𝜃K = 𝑖𝑖

𝜕𝜕0�̃�𝜕0
𝑟𝑟0

𝑎𝑎𝑘𝑘02

2𝑘𝑘
𝑀𝑀𝑖𝑖𝑒𝑒𝑖𝑖𝜔𝜔s𝑡𝑡 �

1
2𝑘𝑘 − 𝑘𝑘m(𝜔𝜔s)

� 
(S1.19) 

The fraction � 1
2𝑖𝑖−𝑖𝑖m(𝜔𝜔s)� can be expressed as: 

 
�

1
2𝑘𝑘 − 𝑘𝑘m(𝜔𝜔s)� =

2𝑘𝑘 − 𝜅𝜅m(𝜔𝜔s)

�2𝑘𝑘 − 𝜅𝜅m(𝜔𝜔s)�
2

+ 𝜂𝜂m2
−

𝑖𝑖𝜂𝜂m
�2𝑘𝑘 − 𝜅𝜅m(𝜔𝜔s)�

2
+ 𝜂𝜂m2

 
(S1.20) 

Now we can assume 𝜂𝜂m ≪ 𝜅𝜅m and take the limit 𝜂𝜂m → 0. Taking into account one of the 

definitions of the Dirac function 𝜋𝜋𝜋𝜋(𝑥𝑥) = lim
𝑎𝑎→0

𝑎𝑎
𝑥𝑥2+𝑎𝑎2

 we obtain: 

 lim
𝜂𝜂m→0

�
1

2𝑘𝑘 − 𝑘𝑘m(𝜔𝜔s)
� =

1
�2𝑘𝑘 − 𝜅𝜅m(𝜔𝜔s)�

− 𝑖𝑖𝜋𝜋𝜋𝜋�2𝑘𝑘 − 𝜅𝜅m(𝜔𝜔s)� (S1.21) 

Equations (S1.19) and (S1.21) select the spin waves with wave vectors satisfying the expression 

2𝑘𝑘 − 𝑘𝑘m(𝜔𝜔s) = 0 to be detected as 𝜃𝜃K~𝜋𝜋�2𝑘𝑘 − 𝑘𝑘m(𝜔𝜔s)�, assuming 𝜅𝜅m = 𝑘𝑘m in the limit of no 

spin wave damping and taking the real part of 𝜃𝜃K, which corresponds to the polarization rotation. 

If one rewrites this expression in terms of the wavelengths 2λm = λprobe, with λm the wavelength of 

the spin wave and λprobe the wavelength of the probe pulse in the medium, the well-known Bragg 

condition is obtained. In the specific case of our experiment, the gradient of the excitation is 

directed in the z-direction which, as discussed in Supplementary Section S2, results in spin waves 

with a wavevector in this particular direction. In the experiment, however, the incoming probe 

pulse can be directed under a certain angle γ. Taking refraction into account (see Suppl. Fig. 1b), 

which leads to a refracted angle γ’ for the incoming probe pulse, the detection expression becomes:  

𝑘𝑘m  =  2𝑘𝑘0𝑛𝑛 cos 𝛾𝛾′ , (S1.22) 

which is Eq. (2) in the main text.  

The result is the following. Assuming a spin wave packet distribution as discussed in 

Supplementary Section S2 (see Suppl. Fig. 2a), the reflection geometry provides a sharp sensitivity 
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to a single component, depending on the probe photon wavenumber. As a result, the oscillation 

emerging in the time-resolved probe polarization (Suppl. Fig. 2b) has the frequency of the spin 

wave at that particular wavenumber. 

 

 

Supplementary Figure 2: Wavenumber selectivity. (a) Wavepacket distribution (black line, left axis) and the 
normalized sensitivity function as given Eq. S1.19 (blue line, right axis). (b) The resulting time-resolved MOKE 
signal, given by the wavepacket distribution and the sensitivity function from panel a). Damping parameter ηm = 0.001 
nm-1, wavepacket distribution: ak ~ 1

1+(𝑖𝑖𝑘𝑘)2 
 (see Suppl. Section S2). 
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S2. Theoretical formalism on the generation of the magnon wavepacket 

We describe the dynamics of the quasi-antiferromagnetic mode (q-AFM) in DyFeO3 using the 

one-dimensional version of the sigma-model, which for the planar dynamics of the Néel vector 

can be obtained by the variation of the Lagrangian 𝐿𝐿[𝜑𝜑]:2 

𝐿𝐿[𝜑𝜑] = ∫ d𝑧𝑧 �
𝐴𝐴
2
�

1
𝑣𝑣02

�
𝜕𝜕𝜑𝜑
𝜕𝜕𝜕𝜕
�
2

− �
𝜕𝜕𝜑𝜑
𝜕𝜕𝑧𝑧
�
2

� − 𝑤𝑤𝑎𝑎(𝜑𝜑)� , (S2.1) 

where A is the non-uniform exchange constant, 𝑣𝑣0 is the magnon speed at the linear region of the 

spectrum, 𝑤𝑤𝑎𝑎(𝜑𝜑) is the anisotropy energy, and the angle φ = φ(z,t) describes the deflection of the 

antiferromagnetic vector L from the equilibrium position (0° and 90° as measured from the y-axis 

in the collinear and canted AFM phase respectively, see Supplementary section S1). Note that the 

characteristic speed 𝑣𝑣02 = 𝛾𝛾𝐴𝐴𝜔𝜔ex/2𝑀𝑀0 contains only terms of exchange origin, the uniform 

exchange parameter 𝜔𝜔ex = 2𝛾𝛾𝐻𝐻ex and the non-uniform exchange constant 𝐴𝐴, which results in the 

large value of this speed.  

The general equation obtained from (S2.1) is the nonlinear Klein-Gordon equation (note that it 

transforms to the familiar sine Gordon equation for the variable 2𝜑𝜑 for the simplest form of the 

anisotropy with only one constant, 𝑤𝑤𝑎𝑎(𝜑𝜑) ∝ sin2 𝜑𝜑). In the linear approximation over the small 

deviations of φ from its equilibrium value it takes the universal form  

𝜕𝜕2𝜑𝜑
𝜕𝜕𝑡𝑡2

− 𝑣𝑣02
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑧𝑧2

+ 𝜔𝜔0
2𝜑𝜑 = 0,                                                  (S2.2) 

where 0ω  is frequency of the spin-wave gap: 

𝜔𝜔0
2 = 𝜔𝜔ex𝜔𝜔a,   𝜔𝜔a = 𝛾𝛾

2𝑀𝑀0

𝑑𝑑2𝑤𝑤𝑎𝑎
𝑑𝑑𝜑𝜑2

|𝜑𝜑=0 .                                      (S2.3) 

The derivative of the anisotropy energy is calculated at the equilibrium value of φ, see for more 

details Ref. [7]. Thus, all the quantities can be present through two well-known quantities: the 

limiting group velocity 𝑣𝑣0 ≈ 20 km/s 8 and the value of the magnon gap ω0, which is directly 

measured in our experiment. The characteristic space scale is given by the value 𝑣𝑣0/ω0.  

Ultrashort pulses of light with a corresponding broadband optical spectrum are routinely being 

used as an instantaneous excitation to generate high frequency spin dynamics9. We start with the 

assumption that at the time t = 0, the spin deflection φ(z,t) in the material is given by the spatial 
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profile of the optical excitation, schematically shown in Suppl. Fig. 3a, as the result of an 

instantaneous excitation (significantly shorter than the period of the spin precession):  

𝜑𝜑(𝑧𝑧, 𝜕𝜕 = 0) = �𝜑𝜑0𝑒𝑒
−𝑧𝑧𝛿𝛿      𝑧𝑧 ≥ 0

0               𝑧𝑧 < 0
. (S2.4)  

Here, z = 0 forms the interface between the magnetic medium and vacuum, 𝜋𝜋 is the penetration 

depth of the excitation pulse and φ0 the amplitude of the initial spin deflection, proportional to the 

pump fluence and inversely proportional to δ (φ0~I/δ), as to conserve the total energy distributed 

among all the excited magnon modes.  

In order to account for the boundary condition given by the surface of the sample, we consider the 

energy flow jE; from the Lagrangian (Eq. S2.1) it follows: 

𝑗𝑗𝐸𝐸 = − 𝜕𝜕𝜕𝜕
𝜕𝜕(𝜕𝜕𝜑𝜑/𝜕𝜕𝑧𝑧)

𝜕𝜕𝜑𝜑
𝜕𝜕𝑡𝑡

= −𝐴𝐴𝜕𝜕𝜑𝜑
𝜕𝜕𝑧𝑧

𝜕𝜕𝜑𝜑
𝜕𝜕𝑡𝑡

 .                                     (S2.5) 

The energy flow should vanish at the surface (z = 0) at all times t. This gives the boundary condition 
𝜕𝜕𝜑𝜑
𝜕𝜕𝑧𝑧

|𝑧𝑧=0 = 0 (free spins). The simplest way to find a solution obeying this boundary condition is to 

expand the problem symmetrically to z < 0, such that the solution of the symmetrical problem is 

𝜑𝜑�(𝑧𝑧, 𝜕𝜕) = 𝜑𝜑�(−𝑧𝑧, 𝜕𝜕) and can be found with the initial conditions: 

𝜑𝜑�(𝑧𝑧, 𝜕𝜕 = 0) =  𝜑𝜑0𝑒𝑒
−|𝑧𝑧|
𝑘𝑘  (S2.6a) 

and 

𝜕𝜕𝜑𝜑
𝜕𝜕𝑧𝑧

(𝑧𝑧, 𝜕𝜕 = 0) =
𝜑𝜑0
𝜋𝜋
�   

−𝑒𝑒−
𝑧𝑧
𝑘𝑘      𝑧𝑧 ≥ 0

0              𝑧𝑧 = 0 
+𝑒𝑒+

𝑧𝑧
𝑘𝑘      𝑧𝑧 < 0 

(S2.6b) 

 

Using the dispersion relation of the material, which is obtained after solving Eq. S2.2, we obtain 

that for a given spin wave component ψk: 

𝜓𝜓𝑖𝑖(𝑧𝑧, 𝜕𝜕) =  𝐴𝐴𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧−𝑖𝑖𝜔𝜔𝑘𝑘𝑡𝑡 + 𝐵𝐵𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧+𝑖𝑖𝜔𝜔𝑘𝑘𝑡𝑡 ,             𝜔𝜔𝑖𝑖 =  �𝜔𝜔02 + (𝑣𝑣0𝑘𝑘)2 (S2.7) 
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Here, as before, ω0 = �ωexωa the spin wave gap and 𝑣𝑣0 the characteristic speed. Having in mind 

the symmetry of the wanted solution, the only solution which is symmetric over inversion of the 

magnon eigenmodes, is:  

𝜓𝜓𝑖𝑖(𝑧𝑧, 𝜕𝜕) = 𝐶𝐶𝑖𝑖 cos(𝑘𝑘𝑧𝑧)cos(𝜔𝜔𝑖𝑖𝜕𝜕)                                        (S2.8) 

From Eq. (S2.6a) we can write the spin deflection 𝜑𝜑�(𝑧𝑧, 𝜕𝜕 = 0) in a material slab of thickness d 

using the Fourier expansion as: 

𝜑𝜑�(𝑧𝑧, 𝜕𝜕 = 0) = 𝜑𝜑0�𝑎𝑎𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧
𝑖𝑖

 ,

𝑎𝑎𝑖𝑖 =  
1
𝑑𝑑

2𝜋𝜋
1 + (𝜋𝜋𝑘𝑘)2

(S2.9) 

From this expression we find that the initial exponential distribution in spin-deflection in real-

space corresponds to a broadband magnon wavepacket, as shown in Suppl. Fig. 3b.  

Then in the continuous limit (d → ∞), combining Eq. (S2.4) and Eq. (S2.9) we can easily obtain 

the final expression, given in the manuscript: 

𝜑𝜑(𝑧𝑧, 𝜕𝜕) =  𝜑𝜑�(𝑧𝑧 ≥ 0, 𝜕𝜕) =
2𝜑𝜑0
𝜋𝜋

� d𝑘𝑘 �
𝜋𝜋

1 + (𝑘𝑘𝜋𝜋)2 cos(𝑘𝑘𝑧𝑧) cos(𝜔𝜔𝑖𝑖𝜕𝜕)�
∞

−∞

;       (𝑧𝑧 ≥ 0),  𝜑𝜑0~ 
𝐼𝐼0
𝜋𝜋

  (S2.10)

                     =  
2
𝜋𝜋
� d𝑘𝑘[𝐴𝐴𝑖𝑖 cos(𝑘𝑘𝑧𝑧) cos(𝜔𝜔𝑖𝑖𝜕𝜕)]
∞

−∞

;    𝐴𝐴𝑖𝑖 =  
1
𝑑𝑑

𝜋𝜋
1 + (𝜋𝜋𝑘𝑘)2

 

Eq. S2.10 describes the spin deflection as a function of space (z) and time (t) and therefore the 

dynamics of the broadband magnon wavepacket which will start propagating into the sample. This 

is shown in Fig. 4a in the main text.  
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Supplementary Figure 3: Real-space wavevector spin deflection distribution. (a,b) Real-space distribution of 
the spin deflection φ(z,t) (a) and the corresponding wavevector distribution (b). 
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S3. Excitation of a propagating wavepacket of coherent acoustic phonons 

 

Following the excitation with pump pulses at a photon energy of hν = 3.1 eV, the time-resolved 

polarization rotation signal θK reveals oscillatory dynamics at two central frequencies (see Suppl. 

Fig. 4a). As argued in the main text, the high-frequency component corresponds to a finite-k 

magnon mode. The slow-varying component is caused by a broadband wavepacket of propagating 

acoustic phonons as in details described in Ref. [5]. The generation and detection of ultrafast light-

induced coherent acoustic phonons in solids is a well-established research field known as 

picosecond acoustics10. Typically, the generation is based on a conversion of the energy of the 

strongly absorbed ultrashort pump pulse into photo-induced stress in vicinity of  the material 

surface10. The stress leads to modulation of the intensity of light reflected from the sample as a 

consequence of modulation of refractive index due to optoacoustic effects. The acoustic 

wavepacket observed in our experiments is seen as oscillations in the probe pulse polarization 

rotation, which is also proportional to the intensity of reflected light.  

 

More generally, the opto-acoustic conversion process can be described similarly to the magnon 

detection outlined in Supplementary section S1, which causes the probe pulse to be specifically 

sensitive to an acoustic phonon with the wavenumber given by Eq. S1.2211. The frequency of the 

resulting oscillation corresponds to the intrinsic frequency of the acoustic phonon. 

Therefore the measured oscillations can be used to map out the phonon dispersion, just like it is 

done in Fig. 4 of the main text for the magnon dispersion. We extract the central frequency of the 

slow oscillations for the different probing wavelengths that are also used in Figure 4. These 

frequencies are plotted for the wavenumber calculated using Eq. S1.22 and shown in Suppl. Fig. 4b 

with a linear dispersion fit. The velocity of the sound waves extracted from this fit is 𝑣𝑣s = 6.2 km/s. 

This agrees well with literature values of the longitudinal sound velocity in the orthoferrites, which 

all lie in the range of about 6.0-6.5 km/s at cryogenic temperatures12-14. We therefore conclude that 

optical excitation of the strongly-absorbing charge-transfer transitions excites both a propagating 

broadband magnon wavepacket and a propagating broadband acoustic phonon wavepacket.   
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Supplementary Figure 4: Observation of a wavefront of propagating acoustic phonons. (a) Time resolved 

polarization rotation in the reflection geometry following excitation at hν = 3.1 eV, T = 60 K. The solid line represents 

a best fit using a double-sine function. The slower oscillations are the result of a finite-k phonon mode. The higher 

frequency oscillation corresponds to a finite-k magnon mode. (b) Dispersion relation for the magnons, where the slope 

of the dispersion defines the (limiting) propagation speed of the waves, with the datapoints from Fig. 4 main text. The 

extracted phonon frequencies are plot against the wavenumber calculated using Eq. S1.22 and fit with a linear 

dispersion, which then represents the (longitudinal) acoustic phonon branch in DyFeO3.  
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S4. Temperature and magnetic field dependence of the magnon and phonon modes 

 

To further investigate the behavior of the detected finite-k waves (see Supplementary Section S3) 

we studied their excitation at different temperatures across the Morin phase transition (see Suppl. 

Fig. 5a). From the Fourier spectra of these signals (see Suppl. Fig. 5b), we can distinguish clear 

contributions from the acoustic phonon mode (~40 GHz) and magnon mode (>200 GHz) at all 

temperatures.  

 

Another way to confirm the attribution of the slow oscillation to an acoustic phonon mode and the 

fast oscillation to a magnon mode is to perform the measurements in a magnetic field. In the WFM 

phase, a magnetic field can bias the orientation of the small net magnetic moment of DyFeO3. As 

shown in Suppl. Fig. 6, there is a strong dependence of the magnon amplitude on the polarity of 

the applied field in contrast to the phonon mode.  
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Supplementary Figure 5: Temperature dependence of the magnon and phonon modes. (a) Time-resolved 

measurements of the polarization rotation θK of a probe pulse (λ0 = 700 nm) for different temperatures. (b) The FFT 

spectra of the time-domain signals from panel (a). The peaks corresponding to the phonon and magnon mode are fit 

with Lorentzians. (c,d) The frequency (c) and amplitude (d) of the oscillatory components corresponding to the 

magnon and phonon mode, extracted with the Lorentzian fits in panel (b). Red spheres: magnon data, black squares: 

phonon data. 



17 
 

 

Supplementary Figure 6: Magnetic field dependence. (a) Time-resolved measurements of the polarization rotation 

θK of a probe pulse (λ0 = 800 nm) after excitation with pump pulses (hν = 3.1 eV) in magnetic fields with opposite 

polarity. (b) The sum and difference of the signals from panel (a) highlighting the phonon and magnon mode 

respectively. 
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S5. Polarization dependence of the magnon and phonon modes 

The results of the measurements for different probe polarization orientations are summarized in 

Suppl. Fig. 7. The polarization dependence of the amplitude of the measured oscillation 

corresponding to the magnon and phonon modes are substantially different. Whereas the phonon 

amplitude peaks for a probe polarization right in-between the crystal x- and y-axis (α = +45, +135) 

and undergoes a 180° phase shift (see Suppl. Fig. 7a), the magnon amplitude is less sensitive to 

the orientation and largest for the polarization oriented along the crystallographic x and y axis. We 

also note that in vicinity of TM the amplitude spectra reveal a probe polarization-dependent peak 

(mode 1) at a low frequency (~12 GHz), of which the origin remains to be identified.  

 

The pump polarization of the excitation pulse has a profound effect on the amplitude and phase of 

the excited spin dynamics. As shown in Suppl. Fig. 8, there is a slight change in phase as the pump 

polarization changes and a large change in the measured amplitude.  
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Supplementary Figure 7: Detection of finite-k magnon and phonon modes for different orientations of the probe 
polarization. (a) Time-resolved measurements of the polarization rotation ΔθK of a probe pulse (λ0 = 690 nm) for 
different orientations of the probe polarization plane w.r.t. the crystallographic x-axis. (b) The Fourier spectra of the 
time-domain signals from panel (a) and the peaks attributed to different modes. (c) The amplitude of the oscillatory 
components corresponding to the magnon and phonon mode for the different probe polarizations. The amplitudes are 
determined by fitting the data from panel (a) with a function with three sine functions with frequencies corresponding 
to the magnon, phonon and mode 1. The solid lines are guides to the eye to highlight the amplitude response to changes 
in the orientation of the probe polarization plane. 
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Supplementary Figure 8: Pump polarization dependence. (a) Time-resolved measurements of the polarization 

rotation θK of a probe pulse (λ0 = 800 nm) for different orientations of the pump polarization plane (hν = 3.1 eV) w.r.t. 

the crystallographic x-axis. The connected points show the temporal position of the magnon minimum (phase) for 

each pump polarization. (b) The amplitude of the oscillatory component corresponding to the magnon mode for the 

different orientations of the pump polarization plane. The amplitudes are determined by fitting the data from panel (a) 

with a sine function. 
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