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Crystal structure of Nd-LSCO at p = 0.21 and p = 0.24

Recent dilatometry measurements have been performed on samples cut from the same

larger samples as the ones we have measured here (see Extended Data Figure 7 in Grisson-

nanche et al. [1]). These measurements show that both the p = 0.21 and p = 0.24 samples

transition from the low-temperature-orthorhombic (LTO) to the low-temperature-tetragonal

(LTT) phase at TLTT = 75 K (p = 0.21) and TLTT = 50 K (p = 0.24) [2]. This means that

our three samples of Nd-LSCO (p = 0.20, 0.21, and 0.24) have the same structure (LTT) at

the temperature of our experiment (T = 25 K). This fact has recently been confirmed by

detailed X-ray and neutron measurements [3].
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Nd-LSCO p = 0.24: Yamaji angle analogy

An intuitive picture for interpreting the structure of ADMR is that minima in the conduc-

tivity (maxima in the resistivity) occur at angles where a component of the Fermi velocity

averages toward zero for most of the cyclotron orbits. In a quasi-2D material with a simple

sinusoidal dispersion along the kz direction and ωcτ � 1, the ADMR has peaks at θ val-

ues corresponding to zeros of J0(ckF tan θ), where J0(x) is the 0th order Bessel function of

the first kind, c is the interlayer lattice constant, and kF is the average Fermi wavevector

[4]. These special angles are referred to as Yamaji angles—at these angles all Fermi surface

cross-sectional areas are equal and the c-axis Fermi velocity (vz) averages to zero for all

cyclotron orbits [5].

For Nd-LSCO at p = 0.24, the Fermi surface along the kz direction is more complicated

than a simple sinusoidal warping and the material is also far from the ωcτ � 1 limit. Similar

intuition to the simple Yamaji angle scenario, however, still holds at low θ. While there are

no longer angles where vz averages to precisely to zero for all cyclotron orbits there are still

angles where the orbital average of vz is minimal. At these same angles where the orbitally-

averaged vz is minimal the cyclotron orbits all have similar areas. This means that the rate

of change of area as one moves along kz is a minimum at certain angles, and these angles

correspond to maxima in the resistivity.

As shown in Figure S1, the variation in the cyclotron orbit area drops to a minimum

at around 32◦ for φ = 0◦. This is near the angle where we find a peak in the ADMR for

p = 0.24, indicating that this angle is indeed one where vz is averaged close to zero most

effectively. In addition, as φ is rotated toward 45◦, the minimum in rate of change of the

area moves to lower θ, tracking the behaviour of the peak in the ADMR (the lifetime τ has

been increased for the calculated ADMR in Figure S1c to highlight the peak.) Thus, while

the interlayer warping of Nd-LSCO is not a simple sinusoid, and ωcτ � 1, the Yamaji-angle

picture still provides the correct intuition for interpreting the ADMR.

Nd-LSCO p = 0.21: YRZ Fermi surface reconstruction

There are alternative routes to producing nodal hole pockets similar to what is produced

by a (π,π) reconstruction. One example is the Yang, Rice, and Zhang (YRZ) ansatz [6],



3

0°
15°
30°
45°

0 10 20 30 40 500.

1.2

2.4

3.6

4.8

θ(°)

(∂
A
/∂

k z
)2

0 10 20 30 40 50
1.

1.8

2.6

3.4

4.2

θ(°)

ρ z
z(
θ)
/ρ

zz
(0
)

a

b

Θz

c

φ

FIG. S1. Cross-sectional area of the cyclotron orbits as a function of angle. (a) The

Fermi surface of Nd-LSCO p = 0.24 in the first Brillouin zone. The black arrow represents the

direction of the magnetic field B. Each blue surface represent the area enclosed by a cyclotron

orbit for this particular direction of B (here just a few orbits are shown as examples). (b) The

square of the rate-of-change of Fermi surface area as a function of kz: when this quantity is zero

it means that all orbits have the same area. (c) ADMR calculated for the FS shown in (a) with

ωcτ chosen to be long enough to emphasize the peaks in the resistivity where there are minima in

panel (b).

which has been shown to reproduce the decrease in the Hall coefficient below p? [7].
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The tight binding model for the YRZ ansatz is

εYRZ(kx, ky, kz) =
1

2
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where ξk, ξ0k, and Eg are given by

ξk = −2t [cos(kxa) + cos(kya)] − 4t′ cos(kxa) cos(kya) (2)

− 4t′′ [cos(2kxa) + cos(2kya)] − µ

ξ0k = −2t [cos(2kxa) + cos(2kya)] (3)

Eg = ∆/2 [cos(2kxa) − cos(2kya)] . (4)

As was the case with the (π,π) reconstruction, we select only the nodal hole pockets

because of their consistency with the measured Hall effect, and introduce the interlayer

coupling after in-plane reconstruction. The resulting nodal hole pockets are shown in Fig-

ure S2a, and the best fit is shown in Figure S2c. The best fit parameters are an isotropic

scattering rate of 1/τ = 26 ps−1, µ = −0.492t, tz = 0.278t, and ∆ = 0.013t, with the rest of

the tight binding parameters taken from Extended Data Table 1.
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FIG. S2. Fermi surface reconstruction by the YRZ ansatz. (a) The nodal hole pockets

produced by the YRZ reconstruction. (b) The ADMR data for p = 0.21, reproduced from Figure

1c in the main text. (c) Best-fit of the ADMR using the YRZ model and a constant scattering

rate.
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Nd-LSCO p = 0.20: ADMR data

We performed ADMR measurements on Nd-LSCO at p = 0.20 (< p∗), as shown in

Figure S3. Due to time constraints on the 45 Tesla hybrid at the National Magnet Lab in

Tallahassee, data at this doping were only taken for two different φ values. The data are

similar to Nd-LSCO p = 0.21, but with a less pronounced anisotropy in φ around θ = 90◦.

a b

FIG. S3. ADMR data of Nd-LSCO p = 0.20. ADMR data at B = 45 T as a function of θ,

for φ = 0◦ and 45◦. (a) T = 25 K; (b) T = 20 K.
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iberté, M. Dion, J.-S. Zhou, S. Pyon, T. Takayama, H. Takagi, N. Doiron-Leyraud, and L. Taille-

fer, Chiral phonons in the pseudogap phase of cuprates, Nature Physics 16, 1108 (2020).

[2] G. Grissonnanche, A. Legros, S. Badoux, E. Lefrançois, V. Zatko, M. Lizaire, F. Laliberté,
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