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I. EXPERIMENTAL AND THEORETICAL METHODS

A. Single crystal growth

CoSi single crystals were grown in Te-flux. The high purity starting materials Co (99.95%,
Alfa Aesar), Si (99.999%, Chempur) and Te (99.9999%, Alfa Aesar) were mixed in the molar
ratio of 1:1:20. All materials were kept in a cylindrical alumina crucible and sealed in a quartz
tube. The entire assembly was heated to 1050 °C at a rate of 100 °C/h, and held there for for 15 h to
ensure a homogeneous mixture. Successively, the sample was cooled to 700 °C at a rate of 2 °C/h,
and extra Te-flux was removed by centrifugation at 700 °C. High quality CoSi single crystals
in the mm-range resulted from this growth protocol. These single crystals resemble octahedra,
indicating a dominant growth along the [111] direction [Fig. S1 (a)]. The quality of the single-
phase crystallinity was checked by Laue and single crystal X-Ray diffraction. The Laue diffraction
pattern of CoSi matches well with the theoretically simulated one [Fig. S1 (b)], demonstrating high

crystalline quality.

B. Focused-ion-beam (FIB) microstructuring

100 x 40 x 2 pm thin slabs were cut out from a CoSi single crystal via a FEI Helios Plasma
FIB using Xe-ions. The lamella was then transferred to a sapphire substrate ex-situ with a micro-
manipulator and glued down with the red araldite epoxy. Afer that it was structured to the designed

geometry with the Plasma FIB.

C. Details of ab-initio band structure calculation

Electronic band structures of CoSi were calculated by density functional theory (DFT) using the
full-potential local-orbital code (FPLO)' with a localized atomic basis and full potential treatment
(Fig. S2). The exchange and correlation energies were considered in the generalized gradient ap-
proximation level?. To calculate the Fermi surface, we projected Bloch states onto high symmetric

atomic-orbital-like Wannier functions and constructed tight-binding model Hamiltonian.
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II. DETAILED ANALYSIS OF FERMI SURFACES AT R-POINT

A. Fermi surface Identity

Following the band character identification in band structure calculations [Fig. 2(d)] presented
in the main manuscript, the four corresponding Fermi surfaces are also labelled as 17,17,27
and 2~ (Fig. S3). Here 1 and 2 denote the orbit character while +/- stand for the spin character.
Note that the sizes of 1- and 2- Fermi surfaces are larger than their spin-opposite counterpart due
to spin-orbit-coupling as discussed in Sec. Il C. For the clarification we separate them into two
pairs: 117/2" and 17/27. Due to crystalline symmetry, these Fermi surfaces intersect exactly at the

Brillouin zone boundary.

B. Slice-and-view of Fermi surfaces

To further demonstrate the Fermi surface geometry, the slice-and-view of the four Fermi sur-
faces is displayed in Fig. S4. As slicing from the top to the bottom of the Fermi surfaces, the slice
section changes from ellipsoidal to circular and then back to ellipsoidal. Note that the ellipsoids
from the top and bottom slice are elongated along orthogonal directions. This orthogonality is
generally true for all Fermi surfaces [Fig. S4 (a) and (b)]. The combination of all sliced orbits, as
displayed in Fig. S4 (c), show both crossings at the high symmetry plane and crossings protected

by quasi-symmetry.

The Fermi surface orbits with field applied along different directions are shown in Fig. S5 (b)
which demonstrate the evolution of degeneracies at the Fermi surfaces. For all four field directions
displayed, the Fermi surface orbits are intersecting at multiple k-points. Degeneracies occur at the
Brilloiun zone boundary are protected by crystalline symmetry, while the others located at low
symmetry k-points are formed due to quasi-symmetry. These two different types of degeneracies
are denoted with different colors on Fig. S5 (b). The momentum difference from R-point Ak
as a function of angle ¢ with different applied field directions is presented in Fig. S5 (c) with ¢
defined in S5 (b). Two different types of degenerate points are marked with pink and blue circles

respectively.
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C. Influence of spin-orbit-coupling

In this section, we discuss the influence of spin-orbit-coupling (SOC) on band structure. With-
out SOC, the spin dengeneracy is preserved and therefore all bands are at least two-fold degenerate
throughout the Brilloiun zone. At the boundary of the Brilloiun zone, the crystalline symmetry en-
forces a four-fold band degeneracy, as revealed by the ab-initio band structure calculation [Fig. S6
(a)]. If the SOC is included, spin degeneracy will be lifted therefore all bands are non-degenerate
except either at the high symmetry planes or the quasi-symmetry protected planes [Fig. S4 (b)].
This difference is exemplified for the Fermi surface orbits with different field directions. When
the magnetic field is applied along [100] axis, the non-SOC orbits are four-fold degenerate [Fig.
S6 (c)] while for SOC-included case the orbits are doubly degenerate [Fig. S6 (d)]. In the mean-
time for B//[110] the non-SOC orbits are doubly degenerate except at the high symmetry lines
[Fig. S6 (e)], while for SOC-included case the four orbits are almost non-degenerate [Fig. S6 (f)]
yet displays a complex intersecting pattern with degeneracies occur only at certain k-point. The
three-dimensional (3D) view of the Fermi surfaces for both non-SOC and SOC-included cases are

displayed in Fig. S6 (g) and (h) respectively.

III. NEAR-DEGENERACY DUE TO QUASI-SYMMETRY

To display the near-degeneracy due to quasi-symmetries, Fermi surfaces with different orbital
and spin characters, namely 1*/2~ and 17/2", are paired up (Fig. S7). The intersections between
the Fermi surfaces form four rings for each pair and therefore eight rings in total. As the position
of the degenerate rings strongly depend on the size and shape of the Fermi surfaces, by tuning the
Fermi level of the system, the degenerate rings are reshaped and relocated in the Brilloiun zone
(Fig. S8). When the Fermi level is tuned to the type-1I Weyl point located along the R to I line, the
degenerate rings shrink to eight singular Weyl points at the Fermi surface and vanish with further
reducing the Fermi level. By combining all degenerate rings at different Fermi energy, degenerate
planes protected by the quasi-symmetry is constructed (Fig. S9). The degenerate planes contain

eight different planes which are all symmetrically related (Fig. S10).

4



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

IV.  SHUBNIKOV-DE HAAS OSCILLATION MEASUREMENTS OF COSI

Four microstructure devices are fabricated by focused-ion-beam technique in order to perform
Shubnikov—de Haas (SdH) oscillation measurements with field applied along different directions.
For device-1, a microbar along [100] axis with a cross section area of 6 by 6 um? is fabricated
[Fig. S11 (a)], and the quantum oscillations are measured with magentic field rotate within the
(100) plane [Fig. S11 (b)]. This ensures the magnetic field direction is always perpendicular to
the current direction which eliminates the possible influence of longitudinal magnetotransport.
The SdH oscillations are measured with a 10-degree-step rotation starting from [001] axis [Fig.
S11 (c)], and the corresponding angle-dependent fast-Fourier-transformation (FFT) spectrum is
displayed in Fig. S11 (d). In order to demonstrate the consistency of our analysis, we have also
analyzed the angular dependence of second harmonic oscillation frequencies which can be nicely
described by the theoretical prediction as well (Fig. S12).

To further investigate the Fermiology of CoSi, another micro-bar along [110] axis is fabricated
[Fig. S13 (a)]. The magnetic field is therefore rotated from [001] to [110] axis [Fig. S13 (b)].
Angle-dependent SdH oscillations and corresponding FFT spectrum are displayed in Fig. S13 (c)
and (d) respectively. The angular dependence of oscillation frequency is summarized in Fig. S13
(e). Similarly, the experimental results match well with the theoretical prediction, which further

demonstrates the importance of quasi-symmetry in CoSi.

A. Determination of cyclotron mass

To accurately determine the corresponding cyclotron mass of the Fermi surfaces, we have per-
formed SdH oscillation measurements of device-1 down to 50 mK [Fig. 3 (a)] with both magnetic
field and current applied along [100] direction. The temperature dependence of the oscillations fol-
lows well the Lifshitz-Kosevich form, leading to a low cyclotron effective mass of m,. ~ 0.84 m,

(Fig. S14) which is consistent with the previous report’.

B. Analysis of quantum oscillation spectrum under tensile strain along [111] axis

In the main manuscript, we explained how tensile strain breaks crystalline symmetry of CoSi
which leads to the observation of additional quantum oscillation with different frequencies. To fur-

ther demonstrate the relation between strain-induced additional oscillation frequencies and crys-
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talline symmetry breaking, here we presented detailed analysis of SdH oscillations of device-3
measured at 7' = 50 mK with a tensile strain along [111] direction(Fig. S15). Similar to the
tensile strain approximately along [110] axis, additional satellite peaks around the main frequen-
cies are also clearly resolved. By calculating the additional orbital area generated by breaking
either crystalline or quasi-symmetry, we confirmed that the experimental results can only be de-
scribed by the quasi-symmetry-preserved scenario which, on the other hand, further demonstrates

the stability of quasi-symmetry against strain-induced crystalline symmetry breaking.

C. Gaussian-type multi-peak fit of FFT spectrum

In order to accurately determine the position and relative size of the satellite peaks induced
by tensile strain along [110], we performed both 3-peak and 5-peak Gaussian fit to the the FFT
spectrum presented in Fig.4 (e). 3-peak Gaussian fit [Fig. S16 (a)] describes the experimental
spectrum reasonably well which clearly demonstrates the existence of two satellite peaks. The fre-
quency difference between the main and satellite peaks always stay around 32 T for all principle
frequencies and their higher harmonics. Slight discrepancy between the spectrum of third har-
monic oscillations and the 3-peak Gaussian fit is mainly due to its much reduced amplitude which
is comparable to the noise floor of the FFT analysis. 5-peak Gaussian fit for both first and second
harmonic spectrum is almost identical to the 3-peak fit since the two additional peaks are almost
negligible. While for the third harmonic spectrum, although the fitting quality is improved with
including the two additional peaks, they do not match with the theoretical prediction of crystalline-
symmetry-preserved scenario. These results rigorously demonstrate that strain-induced crystalline
symmetry breaking is the origin of the satellite peaks in the FFT spectrum. To note that since these
additional frequencies rely on the magnetic breakdown tunnelling at the symmetry breaking point,
their amplitudes are much smaller compared to the principle ones. Therefore it is necessary to
perform the measurement down to 7' = 50 mK as to magnify the quantum oscillation amplitude
as much as possible. In the mean time, the breakdown pattern may also be related to the slight
misalignment of strain direction from [110] which we discussed in details in Sec. VII E.

In comparison, for strain along [111] direction the first harmonic FFT spectrum can also be
well described by a 3-peak Gaussian fit (Fig. S17). Here the amplitude difference between the two
different satellite peaks is possibly due to the slight strain imhomogenity along the microstructure.

For the second harmonic spectrum since the satellite peak height is again close to the FFT noise

6



151 floor, the 3-peak Gaussian fit displays limited fitting quality which is improved by including two
152 additional peaks in the 5-peak Gaussian fit. Similar to the [110] case, since the included additional
153 peaks are distinct from the expected ones for crystalline-symmetry-preserved case, they are most

15« likely due to the limited resolution of FFT analysis.

155 V. CALCULATION OF MAGNETIC BREAKDOWN FIELD AND CORRESPONDING CYCLOTRON

156 MASS
157 A. Calculation of magnetic breakdown field
158 Theoretically, the magnetic breakdown probability is defined as:

P = H/H (SD)

159 where H is the magnetic breakdown field given by:

T A?
Hy=—
0 dhe vjv

(52)

10 here v and v, stand for the Fermi velocity along two in-plane directions perpendicular to the mag-
161 netic field. For example, with field applied along [110] axis, v is the Fermi velocity along [001]
12 axis while v, stands for Fermi velocity along [110] direction. From band structure calculation we

163 obtained:

v = 211 x10°m/s, vy = 2.64 x 10° m/s (S3)

162 Meanwhile the breakdown gap A ~ 2 meV as presented in Fig. S19 (d). Therefore the magnetic
165 breakdown field is estimated to be around 0.11 T. Such a small magnetic breakdown field supports
16 the validity of our quasi-symmetry model. For other field orientations, the breakdown gap remains
167 smaller than 2 meV (Fig. S19) and the corresponding breakdown field H at any arbitrary field
s direction is always smaller than 0.11 T. This means at the lowest field limit (B, ~ 3 T) where the
160 quantum oscillation starts to become observable, the breakdown transmission possibility is about
170 96.4%. This explains the clean quantum oscillation spectrum we observed (Fig. 3). This small
171 breakdown gap also implies the possibility of zero-field topological application above 7" = 20 K

172 as the thermal broadening renders the breakdown gap transparent.
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B. Calculation of corresponding cyclotron mass of the breakdown orbits

Based on DFT calculations one can easily obtain the expected cyclotron mass m. ~ 0.78 m,, for
all four pockets with field applied along [100] direction, which is consistent with the experimental
result of m, =~ 0.84 m,. Note that in semi-classical theory*, if the breakdown orbit consists with
two original orbits as shown in Fig. S18(a), the cyclotron mass of the breakdown orbit can be
estimated by directly adding the masses of individual pockets. However this simple scenario is not
applicable for CoSi where the intersection of different original orbits results in two instead of only
one breakdown orbits. Therefore based on semi-classical theory one can deduce that the sum of
cyclotron mass of the two original/breakdown orbits should be similar. This means the original and
breakdown orbit should have similar cyclotron mass value m. ~ 0.78m, which is consistent with
the experimental results. We can also directly calculate the cyclotron mass of the breakdown orbits
in CoSi assuming the quasi-symmetry protected degeneracy is gapless. The calculation yields a
similar cyclotron mass value around 0.77 m,., which again matches well with the experimental

results.

VI. GENERALITY OF QUASI-SYMMETRY

As the quasi-symmetry originates from the k - p-type expansion of effective model, we would
expect it is a general property that exists in materials with the same crystal structure. To demon-
strate this point, we studied the electronic band structure of three different compounds, PtAl, PtGa
and RhSi, which share the same crystal structure as CoSi. We notice that the band structure of
RhSi is almost identical to that of CoSi with an electron pocket around R point and a hole pocket
around I' point, while for PtAl and PtGa, the electron pockets exist for both I' and R points and
the additional hole pockets appear around the M points. The electron Fermi pockets around the
R point are all similar and described by the same effective model for all these compounds and as
shown in Fig. S20, these Fermi surfaces in the [110] plane display both crystalline-symmetry-
protected exact degeneracies and quasi-symmetry-protected near degeneracies, similar to CoSi.
Since the quasi-symmetry is approximate, a small gap is expected for the near degeneraceis, as la-
belled by blue dots in Fig. S20, and the sizes of these gaps vary at the Fermi surfaces for different
materials. We find this gap is extremely small also for RhSi, but a bit larger for PtAl and PtGa,

which depends on the material details. Nevertheless, our calculations here demonstrate that the



202 scenario of quasi-symmetry can generally be applied to all these compounds.



203 VII. THEORETICAL MODELLING
204 A. Space group 198 of CoSi

205 The chiral crystal CoSi has a space group 198 (SG198), which can be generated by

Sas = {Casl 150}, C5 = {Cs 011000}, 9

206 in addition to the translation sub-group’. Hereafter, the Seitz notation is taken for the non-
207 symmorphic symmetry operations, i.e., a point group operation O followed by a translation v =
28 U;t;, labeled as O = {O]v} or O = {O|vyvyvs}, with t; (i = 1,2, 3) representing three basis
200 vectors for a Bravais lattice in three dimensions [see Fig. 2(a) in the main text] The reciprocal

210 space lattice vectors are generated by g;, where g; - t; = 27;;. The rules for multiplication and

211 1Inversion are defined as

{02|va H{O1|v1} = {0201 ]vy + Ogvi }, (S5)
{Ov} ' ={O07' -0 v} (S6)

2

2 The S5, = {C5, 053} symmetry can be generated by

Say = Cg,_lszxcg, (S7)

213 where we take the convention for Cs 111) : (2,y,2) — (y, 2, x), leading to Cy, = 03’(1111)021,

214 U3 111). Likewise, the Sy, symmetry can be given by the combination of Sy,, S5, and the transla-

s tion operator £, = {E|v},

2

SozSay = {E|001}Sy, £ EgorSe.. (S8)

216 Similar to the MnSi in Ref. [6], the symmetry-enforced nodal planes (high symmetry planes)

217 also exist for CoSi. On these high-symmetry planes, the two-fold degeneracies are protected by the

21s combined anti-unitary symmetries, So, 7, S, 7 and Sy, T, where T is the time-reversal operator.

219 For spinless fermions, 7 = K with the complex conjugate X, while for the spin-1/2 fermions,

10



20 ] = i5,K with s, the Pauli matrix acting on the spin subspace. These operations transform the

221 Hamiltonian as

(SouT) MKy, ks k2) (S2xT) = H( =k, by, k2, (S9)
(Say T Hlkew, by o) (Say T) = H(k, —ky, K2), (S10)
(So.T) H ks, by, k) (S0 T) = Hka, by, —k2). (S11)

222 It indicates that [Sy, T, H(k, = 0,7, k,, k.)] = 0 for the k, = 0, w planes. Likewise, the S, T -

2

n

s invariant (S,,7 -invariant) planes are k, = 0, 7 (k, = 0, 7). Moreover, we act the operators So, 7,
224 S, T and S, 7 on the Bloch wave functions at k and find (S2,7)? = (S2,7)* = (S2.7)* = —1
225 at the k; = m plane. Thus, S, 7, S, 7 and S,.7T behave as the time reversal operator for spinful
226 fermions, and the two-fold degeneracy on the k, , . = m-plane can be guaranteed by these anti-

227 Unitary symmetries, similar to the Kramers’ theorem, as depicted in Fig. S4(c).

n

228 B. The effective model Hamiltonian around the R-point

229 In this section, we construct the effective k-p Hamiltonian around the R-point (kg = (7, 7, 7)),
230 and fit parameters for the k - p bands with the density-functional-theory (DFT) bands.
231 We first consider the commutation relations of the symmetry operators S, Sa, and 7 in SG198

232 for spinless fermions at R, given by

{822, 82y} = 0, [T, Saz] = [T, S2y] = 0and (S, T)? = (S, T)? = —1. (S12)

233 For a common eigen-state |V) of S,, with eigenvalue A and the Hamiltonian, the Ss,-

234 eigenvalues of the states Sy, | V), 7|¥) and Sy, 7 |W) are given in the following table,

(W) |2y | W) | TIW) |52, T|W)
Sorl A | =X [N =—Al=At =)

236 from which we find |U), Sy, 7|V) and Sy, |V), T|V) carry opposite Sy,-eigenvalues. Here
27 we have used the fact that \ is a purely imaginary number due to S2, = —1. Furthermore,
23 since (S9,7)? = —1 and So, T is an anti-unitary symmetry operator, (¥|S2,7|¥) = 0, which
20 means the states |U) and Sy, 7|V) (S2,|W¥) and T |¥)) are orthogonal to each other. Thus,

11
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{|W), Soy | W), T|¥), So, T|¥)} are four independent degenerate eigen-states of the Hamiltonian.
This proves all the eigen-states of the Hamiltonian at the R-point are four-fold degenerate (without
spin), and thus supports the discussions in the main text above Eq. (1).

Next we will construct the effective model on the four-fold degenerate states based on the
symmetry argument. Let us choose GG1, G5 and (3 to be the matrix representations for the Sy,

Say, and Cs, respectively. Without spin, these matrix representations need to satisfy the relations

G3=1,G2 = G2 = —1, G1Gy = —G2G1, G3'G1Gs = Gy, G3'GoGy = —G1G.  (S13)

Moreover, all of them commute with time-reversal symmetry, (G, 7| = [G2, T| = [G3,T] =0
for 7 = K. Thus, one can construct the 4D irreducible representation matrices for G'1, G, and G5

as

1 0 0O 0 0 10 0 0 01
00 —-10 0 0 01 , 0 0-10 ,
Gs = LG = = i0yToy, G2 = = 10,T,.
00 01 -1 0 00 0100
0-1 0 0 0 —-100 -10 0 O

(S14)

Here we have chosen two sets of Pauli matrices o and 7 to rewrite the four by four matrices.
Based on the above three transformation matrices for G1, G5 and (G5 and time reversal operator

T = K, we can construct the effective Hamiltonian around the R-point as (without spin)

Hnonfsoc(k> = H0<k) + Hk2 (k>7 (815)

where the the leading order Hamiltonian reads

Ho(k) = Coooro + Ai(kyoy0 + kyo,1y — ko0.7,), (S16)

and the k2-order Hamiltonian is

Hy2 (k) = Bik*ogmo + C1(kokyo.m0 + kyk.o0T, + kok.o.7.) + Co(kykyo,7, s17)
7
— kyk.ooTy + kok.o.m0) + Cs(kpkyo,7, — kyk.oymy — kiko.7,),

12
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with Cy, Ay, By, C1, Cy, C3 material-dependent parameters and k& = \/@4—/{:—54—@ )

Next we will include spin-orbit coupling into the Hamiltonian. To do that, we note that spin is
a pseudo-vector and behaves exactly the same as a vector due to the lack of inversion, mirror or
other roto-inversion symmetries for a chiral crystal. Correspondingly, we just need to replace the
momentum k by the Pauli matrices s of the electron spin to get the effective spin-orbit coupling,

which is written as

Hsoe = Ao(820yT0 + 40Ty — S,0.7), (S18)

up to the first order in spin, with the spin-orbit coupling parameter \y. The full Hamiltonian is

given by

HR<k) = %non—soc ® sp + Hsoc‘ (819)

For A\g = 0, one can check that the Hamiltonian # (k) has a 8-fold degeneracy at R-point
(k = 0). Once the spin-orbit coupling is turned on, the 8-fold degeneracy at R-point is split into
a 6-fold (energy \o) and a 2-fold (energy —3)y). From the DFT calculation [see Fig. 2(c) in the
main text], we find that the 6-fold degenerated states have higher energy than that of the 2-fold
states, which implies Ay > 0.

The spin-independent Hamiltonian H, (k) is isotropic with the full rotation symmetry. To see

that, we could define the emergent angular momentum operators as

1 1 1
L, = §O'y7'0, L,= §O'xTy, L,= —éazTy, (520)

which satisfies the commutation relation [L;, L;] = ie;;, Ly, with Levi-Civita symbol ¢;;;, and

i = x,y, z. Therefore, Ho(k) and H,. can be re-written as

Ho(k) = 000'07'0 + 2A1<k . L), (S21)
Hsoe = 2X0(s - L), (S22)
which is shown in the Eq. (1) in the main text. H2(k) breaks the full rotational symmetry.

Moreover, we extract the parameters for the R-model in Eq. (S19) by fitting the DFT bands along

high symmetry lines, shown in Fig. S21. The parameters are
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280

281

282
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284

285

286

287

288

289

Co=—0.18 eV, \g = 0.0075 eV, B; = 2.123 eV - A%, A; = 0.853 eV - A, 5239
Cy=—0.042 eV - A2,Cy = 0.546 eV - A%, C3 = 3.345 eV - A%,
With this set of parameters, the bands near the R-point from the DFT are well reproduced by

the effective model, shown in Fig. S21 (b).

C. The perturbation theory around the Fermi energy

According to the DFT calculation as well as the results from the effective R model in Eq. (S19),
we find the near crossings which are consistent with the experimental results. A tiny gap (~ 1
meV) for the near crossings is shown in Fig. S22 (a). To understand the origin of this tiny gap,
we apply the perturbation theory to the model Hamiltonian (S19). We treat Ho(k) ® sq as the
unperturbed Hamiltonian and H e, = Hsoc + Hi2(k) as the perturbation Hamiltonian.

We first solve the eigen-problem of the Hamiltonian Hy(k) ® so and due to its full rota-
tion symmetry, we choose the spherical coordinate for the momentum k = (k,, k,, k) =
k(sin 0 cos ¢, sin @ sin ¢, cos #). The eigen-energies of Ho(k) ® so have two branches F. =
Cy + A,k for which each branch has four-fold degeneracy. The four degenerate eigen-wave

functions of the positive energy branch (£, ) are given by

[War1(6,9)) = [War(6,0)) ® (1,0)7,
Up14(0,0)) = [¥p(6,0)) ® (1,0)7,
VUp41(0,0)) = [Up1(0,6)) @ (1,0) 24
(Wasi(0,0)) = [P (0, 0)) @ (0,1)7,
(Up14(0,0)) = Vs (0, 0)) @ (0,1)7,
where the spin-independent components are
WAl (0,0)) = \/LE (cos A cos ¢ — i sin ¢, — cos fsin ¢ — i cos ¢, 0,sin )", (S25)
Wy (0,0)) = \% (—isinf cos ¢, isinfsin ¢, 1,17 cos Q)T, (S26)

here we use { A+, B+} to label the two bands and {1, |} for the electron spin.

Then, we can project the angular momentum operator L into the eigenstate subspace and find

14



k

(Va+ (0, 9)[L[P a1 (8, 0)) = (V+(0, 9)|L| V54 (0, 0)) = o, (S27)
(Wai(0,9)|LIWp(0,9) = (Vs (0, 9)[LIWAL(0,¢)) =0, (S28)
290 which means the emergent angular momentum operator L is projected into the momentum

201 direction. Thus up to the first-order perturbation, the spin-orbit coupling term becomes the form

292 of %(k - 8) ® I,y after projecting into the eigen-state subspace,

Wupper) = {[Wa11(0,0)), |VB41(0,0)), [Var i (6, 9)), [¥54,(0,0))}, (829

293 which supports the discussions below Eq. (1) in the main text. The identity matrix I5yo indi-
204 cates that the first-order perturbation Hamiltonian of SOC does not couple different bands.
295 Next, we can apply the perturbation theory to consider the perturbation Hamiltonian H,.,; in

206 the subspace |V,,,.,) order by order. Up to the first-order perturbation, the perturbed Hamiltonian

H‘;ff(l)

297 reads

H;ff(l) = (Co + Bk + Ark)sowo + Ao (Aesz + Aysy + A.sz)w (S30)
+ ékQSO (dxwx + dyCL)y + dsz) :

298 where C' = C; — Cy + (s, and w, , , are Pauli matrices for the { A+, B+} band subspace [+

20s means the upper four bands in Eq. (S24)]. The coefficient ), , . are defined as
(Azs Ay, Az) = (sinf cos ¢, sin @ sin ¢, cos 0) = %, (S31)

300 and d, , . are given by

d, = cos 0 sin® §sin ¢ cos ¢(cos ¢ + sin @),
d, = cos 6 sin? § sin ¢ cos ¢(sin @ + cos #(cos ¢ — sin ¢)), (S32)
d, = sin® 0 sin ¢ cos ¢(cos?  + sin 6 cos O(— cos ¢ + sin ¢)).

301 The perturbation theory is valid only for A1k > Ao and Ak > \/Tgékg. With the parameters

s02 used in this work [see Eq. (S23)], we can estimate the valid range of the momentum as
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Ao o 4A,

min <k < kmaz < kmin = — ~0.01 A7 and kpop = —== ~ 0.7 A7 S33
a, NeTs (S33)

303 The eigen-energies of the effective Hamiltonian (S30) are given by
Eop(k,0,0) = Co + Bik® + Atk + aXo + SYL2CK?| sin 2¢ sin 20 sin 6, (S34)
304 where = + and § = +. These energy dispersions show the exact crossings in Fig. S22(b).

s Note that sin 2¢ sin 20 sin 6 = 4k, k, k. /k*, indicating the perturbation correction of Hy:2 breaks
ss the full rotational symmetry down to three-fold rotational symmetry.

307 Next we consider the second-order perturbation corrections, which open a tiny gap for the
ss emergent nodal lines [see Fig. S22(c)]. For the second-order perturbation, besides the eigen-state

s00  basis set | Wy, in Eq. (S24), we also need to take four negative energy (E_) eigen-states

Wiower) = {|Wa-1(0,9)), [¥5-1(0,9)), [Va-1(0,9)), |V5-1(6,0))}, (S35)
310 with the explicit expressions
Wa_+(0,0)) = \% (cos @ cos ¢ + isin ¢, — cos @ sin ¢ + i cos ¢, 0,sin 6, 0,0, 0, 0)
Up_+(0,0)) = = (isinf cos ¢, —isinfsin ¢, 1, —icosh,0,0,0,0),
Ws1(0,6)) = 35 ) 556
(Wa_(0,0)) = \% (0,0,0,0,cosf cos ¢ + isin ¢, — cos @ sin ¢ + i cos ¢, O,Sinﬁ)T,
Wp_,(0,0)) = \%(0 0,0,0,isin6 cos ¢, —isinfsin ¢, 1, —icosf).
311
sz The second-order perturbed Hamiltonian is given by
e 1 >
AH fr AE <<‘Ilupper‘ (%soc + HkQ (k))Plower (%soc + HkQ (k)) |\Ilupper>> 5 (837)

313 where AF = E, — E_ = 2A,k is the energy difference and the projection operator Piower =

|Wiower) (Wiower | Onto the lower four bands in Eq. (S35). To simplify the problem, we only consider

3

>

s the mixed terms of H,. and H;z2(k), given by

3
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. 1
AHET® o (W wpper | Hsoc| Viower ) (Wiower | iz () [Wypper)) + hic., (538)

316 The matrix elements of A?—[;f 7 are,

:AH;ff(Z): no 2sin*(0) sin(¢) cos(¢) (sin®(8) sin(¢) + sin(g) cos() cos(¢) — cos®(9))
(S39)
:A’H;ff@): T sin?(6) cos(¢)(sin?(0) sin(2¢) + 2i cos(f) sin(¢)(cos(8)(cos(f) cos(¢)
+ sin()) + sin(¢) (sin?(#) + i cos(h)))), (S40)
_AH;f ! @’_ |, = e sin(9) cos(6) (sin(20) (sin(30) sin(¢) + 4 cos’ (6)) — 8sin(6) cos* (6)
sin(¢) cos?(¢) + 8i cos() sin®(@) + (—2 + 6i) sin(0) cos(¢) + (2 + 2¢) sin(6)
cos(3¢)), (S41)
[A’H;ff@)] s e~ sin(0)((cos(f) — 1)(cos®(6) cos(¢) + isin(f) sin(¢) cos(¢)(— cos?(0)

+ sin(#)(cos(6) + i) cos(¢)) + sin(f) cos() sin®(¢)(—1 — isin(d) cos(¢)))
— 2i cos®(£)(—i cos®(0) cos(¢) cos(2¢) + sin(¢) cos(¢)((cos®(0) + cos(0))
cos(¢) — isin®(6) cos(¢) + sin(#) cos®(6)) + sin(#) cos(f) sin?(¢)(sin(0)

cos(¢) +i))) (542)
and
NG o = —Hsi’(0)sin(0) sin(20)
(cot?(8)(—4 cot(f) csc() + 4 cot(¢) — 1) + esc?(6) + 3) , (S43)

:AHff / <2>: 1o = 3674sin(6) cos(0)(—4 sin(4) (sin(6) sin(9) + (2 +24) sm2(g) cos?(¢))+

cos®(0) sin(2¢)(—4i sin®(%) cos(¢) + 2isin(f) + csc(@)) + cos() csc(e)

(—(2 + 2i) sin®*(£) sin®(2¢) + sin®(£) sin(4¢) + 4i sin*(6) sin®(¢) cos(¢)

+5in(20))), (S44)
NG 4 = 8¢ sin(60) cos(8) (8 cos’(6) sin(26) — 16 sin(6) cos? (6) sin(9) cos(¢)

+ 16i cos(#) sin®(¢) + cos(¢) (4 sin(30) sin(¢) + (—3 + 12i) sin(6))
+ (3 + 44) sin(8) cos(39)), (545)
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317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

333

334

335

and

[AH;f ! <2>] = —45in’(8)sin(9) sin(20)

(cot?(8)(—4 cot(f) csc(e) + 4cot(¢) — 1) + csc?(6) + 3) | (S46)
[AH;f / <2>] = —1sIn(0) sin(0) cos(9) (2 cos’(9) cos(9) + 2cos? (6) sin(6) + i sin(4))

+ sin(6) (sin(26) sin(¢) — 2isin(6) cos(6))), (S47)

and

[A’Heff(z } = 2sin?(f) sin(¢) cos(¢)(sin’(0) sin(¢) + sin(#) cos?(6) cos(¢) — cos®(H)),

4.4

(548)

And the other parts are related by conjugation [A’Hef US ] [AHef ! (2)} . The second-order
@] Iyt
perturbation corrections provides the spin-flipping terms in the effective model and thus generates

a tiny gap for the emergent nodal lines on the Fermi surfaces, as shown in Fig. S22 (c).

To simplify the above discussion, we can further project the above four-band P model to the
effective model that only consists of the two bands forming the nodal plane. To do that, we
consider the eigen-states of the model Hamiltonian (S30) and consider two eigen-states {|a =
+,8 = —),|la = —, 8 = +)} that give the eigen-energies E,—, 35— and E,—_ 3. in Eq. S34.

eff(1)

Within these two eigen-states, the effective Hamiltonian H can be reduced to

Heff =€y + dz(k)az, (S49)

where ¢y = Co+ B1k*+ Ak and d, (k) = A\ — Y2Ck?| sin 2 sin 20 sin 6] = Ao —/3C Eekukl,
This Hamiltonian is the exactly two-band model discussed in the main text. Due to the SOC with
k - s in the P-model (S34), the spin texture is hexagonal on each Fermi surfaces ({(s) ~ ak with

= =£). Moreover, we plot the spin texture on Eo—q3-_1(k,0,¢) = € + d.(k) = Ey in
Fig. S23 (a), and that for E,—_; g—11(k,0,¢) = €y — d.(k) = Ey in Fig. S23 (b). It indicates
that the crossings between these two Fermi surfaces have opposite spin-polarization. Therefore,
according to the low-energy effective Hamiltonian, we can conclude that the spin-conservation
plays the role of the quasi-symmetry.

Now we discuss the breaking of the quasi-symmetry by second-order perturbation corrections.
To see that, we can further project ’H;f 7@ into the subspace of {|a = +,5 = —),|la = —,8 =

+)} and the effective Hamiltonian will include two more terms as
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Heff@) = 0d, (k)ax + 5dy(k)0y’ (S50)

which are due to the spin-flipping terms, breaking the quasi-symmetry. As a result, the co-
dimension of the nodal plane becomes 3 instead of 1, explaining the gap opening. While the
detailed expressions for dd, and dd, are complex, we give an estimate of the typical magnitude
of the gap Asp2) = 24/(0d,)? + (6d,)% ~ 0.8 meV for kp = 0.13 A~, being the same order
with the DFT estimations [see FIG. S11]. By solving d,(k) = 0 in Eq. (S49), we can find the

nodal line on the ' — R — M plane (¢ = m/4) that is shown in Fig. S23 (c¢). Furthermore, we
calculate the energy gap (1/(dd,(k))? + (dd,(k))?) for the nodal line on the ' — R — M plane,

shown in Fig. S23 (d). Please note that the gap vanishes for the type-II Weyl point which locates
at @ = arcsin(1/2/3) ~ 0.96 (along the I" — R line), due to the C3 protection (the two Weyl states

have different Cs-eigenvalues).

D. The Berry curvature distributions

In this section, we show the topologically physical consequence for the emergent nodal lines
(near crossing), characterized by the Berry curvature distributions in the momentum space. We
calculate the Berry curvature based on the 2-model in the I' — R — M plane. Here, we take a

standard formula to compute the gauge-invariant Berry curvature

0,00 = _1m 3" (A % (| V(R s51)

where the velocity operators are given by V = VH (k) £ (V,, Vy, V.). Similar to the analysis
in Re. [6] (see Eq. (37) in the Supplementary Materials for the Nature paper of MnSi), we find that
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10
SouT (ki kg, k2) = (—k by, ko) and Qi ky k) = Q(—koo by k) | 0 41 0 |,
0 +1
(S52)
Soy T+ (ko kg i) = (ko —ky, k2) and Q(ky, by, k2) = Qky, —k 10 |,
0 +1
(S53)
+1 0
So. T+ (ki kg ) = (ko by, —k) and Q(ky, ky, k2) = 0 +1 0 |,
(S54)

where we take the vector for Berry curvature as €2, (k,, ky, k.) = (2, Qi 2y oy ) fOr the
n-th band. The calculated results are shown in Fig. S24 on the I' — R — M plane, confirming the
above symmetry requirements. Here we present the Berry curvature for the 1~ -band (see the band
notation in Fig. 2 (d) in the main text). Namely, this band is just the second upper-band from the
k - p-bands, shown in Fig. S21 (c). The three components are shown in Fig. S24 (a),(b) and (c),
where the four Fermi surfaces are shown with £y = —0.06 eV. Moreover, the Berry curvature
distribution coincides with the emergent nodal lines, illustrated in Fig. S24 (d),(e) and (f). At the
R-point or Weyl points, the U(1) Berry curvature is not well defined due to degeneracy, which
corresponds to the singularity. In Fig. S24 (a), (b) and (c), the singularity at the R-points is due to
the 6-fold degeneracy. And the type-II Weyl points are shown in Fig. S24 (d) for the singularity
(marked by the dark-red solid circle).

E. The strain effects on the crystalline symmetries and quasi-symmetries

In this subsection, we study the strain effect on the electronic bands, which is characterized by

the strain tensor

(Bt + O, us) (S55)

Ui; =

l\.’)ln—
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where u; is the displacement at x. And w;; transfers as k;k; under point group symmetry operators.
Thus, the leading order correction to the 8-band R-model in Eq. (S19) due to the strain-induced

Hamiltonian is generally given by

Hstrain - DO(U:MC + uyy + uzz) + Dl (uxyngO + uyzUOTz + uwzngz)

(S56)

+ Do (Uspy 0Ty — Uy 00Ty + Ug20570) + D3 (Upy0u Ty — Uy 0y Ty — Uy, 0,7y

a5 It 1s invariant under both all the symmetry generators of the space group 198 and the time-reversal
6 Symmetry operator 7 = 45,/ with X the complex conjugate.

Here, we first describe the calculation of the strain tensor resulting from an uniaxial stress

of magnitude P along an arbitrary direction. Analysis begins by adopting a coordinate system

(2’9, 2") in which the 2’ axis is parallel to the stress direction. This system is related to the

coordinate system (z, y, z) of the primary crystallographic axes of the semiconductor by a rotation

cos(f) cos(¢) cos(f)sin(¢) — sin(6)
U, ¢) = —sin(¢) cos() 0 (S57)
sin(6) cos(¢) sin(f)sin(¢) cos(0)

where 6 and ¢ are the polar and azimuthal angles of the stress direction relative to the crystal-
lographic coordinate system. In the primed coordinate system, the stress tensor has only one
non-zero component, o, = P. The stress tensor in the crystallographic system can be calculated

from
045 = UaiUﬁjalag . (S58)

If uniaxial stress is applied along one of the directions [100], [110], and [111], the related stress

tensors in the principal system become:

P00 P/2 P/2 0 P/3 P/3 P/3
oo = |0 00| ,0m0=|P/2 P/20]|,0nuy=1|P/3 P/3 P/3|, (S59)
000 0 0 0 P/3 P/3 P/3

Then, we study with the (110) strain, whose lowest order strain Hamiltonian reads,

H(llO)str(m’n = DO(“x:ﬁ + uyy) + Dl (unyzTO) + DQ(unyxTx) + DB(unyxTz)' (860)

In the following, the u,, and u,, are absorbed into the Fermi energy, thus only u,,-terms will be

considered. Let us check the symmetry breaking, the S;, = io,7 and Sy, = io,7, are broken,
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while the Sy, = 70,7, is still preserved because of
[8227 H(ll(])stram] = 0. (861)

It indicates that the strain-induced gaps only appear for two high-symmetry planes: k£, = 0 or
k, = 0; while the £, = 0 plane still has twofold degeneracy. Moreover, let us also check the R-
point with k, = k, = k. = 0, only 7 and S5, are preserved, all the other symmetries are broken,
then, each state is twofold degenerate.

To confirm the above symmetry analysis, we plot the bands without/with strain effect in
Fig. S26, where we use the strain parameters: Dy = 0.003, Dy, = 0.001, and D3 = 0.002 in
unit of eV. From Fig. S26 (a) and (b), we can see the bands along &, = 0 line are still degenerate.
However, in (c) and (d), the bands along k,, k, = 0 are no longer degenerate due to strain effect
(crystalline symmetry breaking). In (e), the Weyl point is no longer along the I' — R line since the

(5 rotation is broken. Based on the bands in the I' — R — M plane, we define two gaps as

Acs = |E1+(0,0,0.2) — E1-(0,0,0.2)], (S62)
Ay = min | By (k, k, k.) — Eor (k, k. k)| . (S63)

where the crystalline-symmetry gap A represents the breaking of Sy, and the quasi-symmetry
gap A is for the qausi-symmetry gap (near degeneracy). As shown in (f), we conclude that the
quasi-symmetry is almost unaffected by the strain.

Next, we further consider the the (119) and (111) strain effects, whose Hamiltonian can be

represented as

H(ll(S)strain = Dl (unyzTO) + D2(u:cy0-x7-x) + D3(uxyax7z) + D4(uxy0-07_z)a (S64)

H(lll)st'rain =D (umyUzTO + Uy200T% + uszsz)- (S65)

The additional terms due to (116) strain might be in principle smaller than those parameters used
for (110) strain. Notice that the Hamiltonian for (11) strain has been simplified, so only a D,
term is added, compared with the Hamiltonian of (110) strain. To illustrate clearly the breaking of
S, rotation by D, term, we take D, as the same order as D;.

To schematically demonstrate these strain effects on the electronic Fermi surfaces, we plot the
Fermi surfaces perpendicular to (100), (110) and (111) axes in Fig. S27. As expected, once the
crystalline symmetry is easily broken by the strain, the crystalline symmetry-protected twofold

degeneracy is spitted. Thus, we may conclude that, the breaking of crystalline symmetry due
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a2 to strain effect, more magnetic orbits can be observed due to trivial magnetic breakdown. It is
ss3 consistent with the experimental observations of quantum oscillation measurement.

By using perturbation theory discussed in Sec. VII C, we discuss the strain effect on the robust-
ness of the quasi-symmetry in CoSi. To the first-order perturbation, we find the P-model around
R-point that is modified as,

HP - %:(ch—&- + Heff(l + Hstram; (866)
where each part reads
Hfjfﬁ’ = Ao (AzSz + Aysy + Ass2) wo,
’szr:ﬁl) = 50 (dywy + dywy + d,w,) , (S67)
Hstrain = So (d;(ﬂx + d;wy + d’zwz) ,
where the coefficients are defined as
(Az, Ay, A) = (sin 6 cos ¢, sin @ sin ¢, cos 0) = %
d, = Ck sin 6 sin(26) sin(2¢)(cos ¢ + sin ¢),
d, = Ck sin 0 sin(260) sin(2¢)(sin @ 4 cos 6(cos ¢ — sin ¢)),
d, = Cf sin 6 sin(26) sin(2¢)(cos  — sin f(cos ¢ — sin @)). (S68)
d), = uxy cos(0) (—dy sin(¢) + dz cos(¢)),
dy, = txy c08(6) (—dy cos(0) cos(p) — d3 cos(0) sin(¢) — dy sin(0))
d’, = uxy cos(0) (sin(f) (ds sin(¢) + da cos(¢)) + dy cos(h)) .
As aresult, we find that the new P-model in Eq. (S66) with corrections from the strain effect is still
a stabilizer code Hamiltonian, the quasi-symmetry M. is still preserved. Thus, the dispersion

consists two parts,

By = ado+ B/ (de + )2 + (dy + )2 + (ds + )7, (569)

where the second part is give by

1 ~ o
3 \/30216% sin®(0) cos?(0) sin®(2¢) + Cduxyk? sin®(26) sin(2¢) + 4 (d? + d3 + d2) cos2(0)u2

Xy
(S70)

here C' = C) — Cy + Cs and d = dy — ds + ds. Please note that
sin?(6) cos(#) sin(2¢) x cos(f) = isinQ(ZH) sin(2¢), (S71)
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therefore, Eq. (S70) becomes

%\/(é’ff + dyuyy COS(Q))2 + (él;: + dguyy COS(@))2 + (é’/;: — dotyy cos(@))2 (S72)

where we have defined k& = k2 sin?(0) cos(6) sin(2¢) = 2k,k,k./k,. The constraint equation for

the nodal plane is

Ao = %\/(C’fﬁ + dyuyy COS(Q))2 + <C~'l;: + dstyy cos(é’)>2 + (é’f@ — datyy COS(Q))2. (§73)

The general solution is plotted in Fig. S28. Recall that, in the d; = dy = d3 = 0 limit (no strain),
the above equation is g = /3C|k,k,k.|/k,, which is reduced back to our previous results.

Next, let us consider a simple case with by setting ds = d3 = 0, the equation becomes
1 [/~ 2 -\2 C
No= 3 (Ck +d cos(9)> 42 (Ck) =<

where u,, = 11is used for simplicity. In principle, it could also leads to the nodal plane solution,

ks

ky

X \/ (2k,ky + di)? + 8k2k2 (S74)

which indicates that the quasi-symmetry protected nodal plane are robust against strain effect. And

Eq. (S74) gives rise to the following results,

1.) k., = 0, each band has two-fold degeneracy. Thus, the are only two Fermi surfaces. Since

(s, is still preserved for the (110) strain.

2.) ky = 0ork, = 0, the crystalline symmetry protected twofold degeneracy is broken, and the
gap is about

A = \/d} + d3 + d3uy,| cos )| (S75)

3.) If Eq. (S74) has physical solutions, it means there is quasi-symmetry protected nodal plane.
First, let us analytically understand Eq. (S74). By fixing k. # 0, we get the equation in the
ky — k, plane,

(2kaky + d1)* + 8KZK. = (falka, Ky, k) (S76)

ki

where f)\(kxa ky> kZ) = 2o k.

c
dy > 0, and it is increased, at the critical value

> (. For d; = 0, nodal plane locates at k&, # 0. When

2
é ’

with each other at k, = k, = 0, forming a single nodal plane. We further increase d;, then,

two nodal planes with k,k, > 0 touch

the location of nodal planes depends on the value of k..
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As a brief conclusion, the quasi-symmetry is a symmetry of the lowest Hamiltonian, but not
symmetry of the crystal. It explains that the strain effect does not affect the quasi-symmetry, which

is consistent with the experiments.
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FIG. S1. (a) Optical microscope image of a CoSi single crystal sample. (b) Laue diffraction pattern of
the grown CoSi single crystal, superimposed with a theoretically simulated one confirming high crystalline
quality. (C) Temperature dependence of resistivity of device-1 measured with electrical current applied

along [100] direction.

FIG. S2. Ab-initio-calculated band structure of CoSi.
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Fermi surface 1+ Fermi surface 1-

Fermi surface 2+ .
Fermi surface 2-

FIG. S3. Fermi surface identification. Two pairs of Fermi surfaces are presented and labelled with their

band characters, consistent with the identification in band structure calculations.
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(a) Fermi surface 1%,1° e

[001]

[ofoTk“ o0 S S—

Fermi surface 2*,2"
(b)

FIG. S4. (a) and (b) present the slice-and-view of Fermi surfaces 1+ and 2+ respectively. As one can clearly
see the sliced orbits of 1~ or 2™ are always larger than 17 or 27 at any level. This difference is due to spin
splitting caused by spin-orbital coupling (SOC). (c) The summarized view of all four Fermi surfaces. It
displays four orbits intersect with each other in a complex pattern which results in the degenerate points

protected by either crystalline symmetry or quasi-symmetry.
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FIG. S5. (a) Illustration of the rotation of magnetic field and the corresponding extremal cross section
of Fermi surfaces. Here 6 is defined as the angle between field direction and [001] direction, while the
square planes stand for the planes perpendicular to the magnetic field. (b) Angle-dependent Fermi surface
orbits. The crystalline symmetry and quasi-symmetry protected degeneracies are denoted with pink and
blue circles respectively. (c) Momentum difference from R-point Ak as a function of ¢, which is defined in

(b), different types of degenerate points are colored following the color-code in (b).
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FIG. S6. (a) and (b) display the results of ab-initio band structure calculation around R-point without and
with SOC respectively. When SOC is neglected, spin degeneracy is preserved and therefore all bands are at
least two-fold degenerate. At the Brillouin zone boundary (i. e. R to M) all four bands are degenerate due to
the protection of crystalline symmetry. Taking SOC into account, the spin degeneracy is therefore lifted and
only at the Brillouin zone boundary the bands are fully two fold degenerate due to orbital degree of freedom.
This spin splitting effect is also clearly demonstrated with the Fermi surface orbit presented in (c) to (f). At
the high symmetry (100) plane, the orbits sit exactly at the zone boundary and therefore for (c) non-SOC
case all four orbits are degenerate while for (d) SOC-included case they are doubly degenerate. Meanwhile
for orbits sit at the (110) plane, the non-SOC scenario features two spin-degenerate orbits that show four-fold
degeneracy only at the zone boundary. While for SOC-included case, the four non-degenerate orbits display
a intersecting pattern which results in not only the similar degeneracy protected by crystalline symmetry but

also quasi-symmetry protected degeneracies that are not located at the high symmetry directions.

30



Fermi surface 1, Fermi surface 1, 2°

FIG. S7. To clearly demonstrate the intersecting pattern of the Fermi surfaces, here we plot the Fermi

surfaces 17/2~ and 17/27, they intersect at the quasi-symmetry protected degenerate rings.
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FIG. S8. Fermi energy-dependence of Fermi surfaces 17 and 2. Except for the natural reduction of Fermi
surface size, the degenerate rings also become smaller with lower Fermi energy. And when the Fermi level

locates exactly at the type-II Weyl node, the rings shrink and reshape to eight Weyl points.
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FIG. S9. Fermi surfaces 17/2" and quasi-symmetry protected degenerate planes. They intersect exactly at

the eight degenerate rings.

FIG. S10. The eight quasi-symmetry protected degenerate planes.
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FIG. S11. (a) Scanning electron microscope (SEM) image of device-1. A long bar of a 6 by 6 ym? cross
section is fabricated with FIB. The golden part stands for the deposited gold thin film for obtaining low
resistance ohmic contact and the CoSi crystalline part is colored purple. (b) Illustration of field and current
orientation of Shubnikov-de-Hass oscillation measurements. 6 is defined as the angle between the applied
field and [001] axis. (c) SAH oscillations as a function of angle 6. Here p,sc = Ap/ppa with Ap the
oscillating part of the magnetoresistance (MR) and ppc the MR background subtracted by a 3"%-order
polynomial function. (d) Fast-Fourier-transformation spectrum of SdH oscillations displayed in (c). The

two main peaks correspond to two pairs of Fermi surface orbits with same cross section areas.
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FIG. S12. Analysis of angle-dependent frequencies corresponding to the second harmonic oscillations.
Despite of the larger error bar, the angular dependence of the extracted frequencies can still be nicely
described by the quasi-symmetry-protected breakdown orbit scenario. These results are consistent with the

analysis of first harmonics presented in Fig. 3.
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FIG. S13. (a) SEM image of device-2. Here the gold thin film is covered with FIB-deposition of Carbon
thin film (grey) for protection of ion beam tail during microstructure fabrication. The current is applied
along [110] axis. (b) Demonstration of field and current orientation of SdH measurements. For device-2 the
magnetic field is applied within the (110) plane, and 6 is defined as the angle between the applied field and
[001] axis. (c) Angular dependence of SAH oscillations pys.. (d) FFT spectrum of SdH oscillations. Again
two and only two mean frequencies are observed. (e) Angular dependence of SdH oscillation frequencies

and theoretical prediction which successfully reproduced the experimental results.
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FIG. S14. (a) Fast-Fourier-transformation spectrum of the SdH oscillations presented in Fig. 3(a) with the
field window of 3 to 14 T. Two main peaks can be clearly observed. The suppression of peak amplitude with
increasing temperature is due to the thermal damping effect. (b) Lifshitz-Kosevich fit to the temperature
dependence of cyclotron mass. The fitting yields a cyclotron mass m. ~ 0.84 m., comparable to the

previously reported values’3.
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FIG. S15. (a) Scanning electron microscope image of CoSi microdevice with a short bar along [111] di-
rection (device-4). This configuration generates a tensile strain along [111] which breaks all C5 rotation
symmetries. (b) SdH oscillations with field and current applied along [111] axis at 7' = 50 mK. (c¢) FFT
spectrum of SdH oscillations. (e) Enlarged view of satellite peaks correspond to the 15¢ and 2"% harmonic
oscillations. The red, purple and blue vertical lines correspond to the FFT spectrum produced by the fully
symmetric, crystalline-symmetry-preserved and quasi-symmetry-preserved scenarios respectively. (f) Cor-
responding Landau orbits for three different scenarios. Here the colored area illustrates the orbital area
difference compared to the fully-symmetric case. Only the quasi-symmetry-preserved scenario reproduces

FFT peaks that match well with the experimental data.
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FIG. S16. 3-peak (a) and 5-peak (b) Guassian fitting of the FFT spectrum of quantum oscillations measured

with field and tensile strain applied along [110] axis at 7" = 50 mK.
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FIG. S17. 3-peak (a) and 5-peak (b) Guassian fitting of the FFT spectrum of quantum oscillations measured

with field and tensile strain applied along [111] axis at 7" = 50 mK.
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FIG. S18. Illustration of different magnetic breakdown scenarios. For the adding-up type, according to
semi-classical theory, the oscillation frequency and cyclotron mass of the breakdown orbit can be simply
calculated by summing up the values from the original orbits. While for the intersecting type since there

exists more than one breakdown orbits the situation is more subtle.
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FIG. S19. Fermi surface orbits with field applied along different directions obtained from DFT band struc-
ture calculations. Here € is defined the same as in Fig. S3(a). The largest estimated breakdown gap A ~ 2

meV occurs when field is applied along [110] axis (6 = 90°).
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FIG. S20. (a) Band structure calculation of PtAl, PtGa and RhSi. The similarity of electronic structure
among these materials are expected as they share the crystal structure. (b) Fermi surface orbits with field
applied along [110] axis for all three materials. The crystalline symmetry and quasi-symmetry-protected

degeneracies are denoted with purple and blue circles respectively.
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FIG. S21. DFT-calculated Band structures (black) and % - p model fitting (red) around the R-point. (a) The
fitting along the R — M line generates parameters Cy, A1, By for the k - p Hamiltonian without SOC. The
remaining parameters C'1, Cs, C'3 are obtained for the k - p Hamiltonian without SOC along the R — I line.
(b) Fitting the strength of SOC )\ for the k - p Hamiltonian with SOC (the R-model) along the ' — R — M

line.
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FIG. S22. Fermi surfaces at £y = —0.06 eV in the I' — R — M plane. (a) Fermi surfaces generated from
the R-model, eight near crossings are found and marked by light-blue solid circles. As a comparison, the
Fermi surfaces for the P-model is shown in (b), which display eight exact crossings (marked by purpose
solid circles). The zoomed plots for the near/exact crossings are shown in (c),(d) and (e). (c) R-model
calculations indicate a very tiny gap for the near crossings. (d) The exact crossings in P-model with only
first order perturbation is shown for a comparison, of which the two-fold degeneracy is protected by the
quasi-symmetry. (e) After adding the second-order perturbation corrections to the P-model, the quasi-
symmetry is broken and thus the exact crossings are gapped. In all figures, the unit for energy is eV and

that for momentum is A1,
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FIG. S23. (a) The spin texture (colored arrow) for all four Fermi surfaces calculated from the P-model.
As discussed in the main manuscript, since the spin of the eigen-states is parallel or anti-parallel to the
momentum, Fermi surfaces with different spin character(+/-) have opposite spin-polarization at the same
momentum. (b) and (c) present the spin texture of Fermi surface orbits with field applied along [001] and
[110] direction respectively. (d) Nodal line on the I' — R — M plane with § € {0,7/2} and ¢ = 7/4

obtained by solving d.(k) = 0 in Eq. (S49). (e) Energy gap on the nodal line caused by the second-

order perturbation corrections, d s s(2) = 21/(0d;)? + (dd,)?, in unit of meV. This gap is resulted from the

second-order perturbation which involves the spin-flipping terms. The momentum £ is in unit of A=,
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FIG. S24. The Berry curvature distributions around the near crossings on the I' — R — M plane. In (a),(b)
and (c), the three component of the Berry curvature (€2, .) are shown for the the 17-band. The black
lines stand for the Fermi surface contour with £y = —0.06 eV. The zoomed plot for €2, in (a) is shown in
(d),(e) and (f), where we compare the Fermi surface flow as the distributions of §2,. The Fermi energies
are By = —0.097 eV, Ey = —0.09 eV, Ey = —0.08 eV for (d), (¢), and (f), respectively. The singularity
is at the type-II Weyl points, as well as that for the 6-fold degeneracy at the R-point. And the large Berry
curvature almost sits at the near crossings (marked by the dark-red solid circles) on the Fermi surface. In

all figures, the unit for energy is eV and for momentum it is A1,

46



Q] (A?)
3000

2000

k, k, k,
1000
K
K ko Ky 5 k

Increasing E;

0

FIG. S25. Energy-dependent Berry curvature in momentum space for the 1™ -band. The large Berry curva-

ture is a direct result of near-degeneracy due to quasi-symmetry.
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FIG. S26. The bands without/with strain effect. To model the [110] strain that breaks both Sy, and S,
screw rotations, we use D1 = 0.003, Dy = 0.001, and D3 = 0.002 in unit of eV. However, the Sy, rotation
is preserved for the [110] strain. In (a) without strain and (b) with strain, we can see the bands along k, = 0
line are still degenerate. However, in (c) and (d), the bands along k., k,, = 0 are no longer degenerate due to
strain effect (crystalline symmetry breaking). In (e), the Weyl point is no longer along the I' — R line since
the Cs rotation is broken. In (f), the band gap due to the breaking of S, and the quasi-symmetry gap are
shown for the bands in the I' — R — M plane, which indicates that the quasi-symmetry is almost unaffected
by the strain. In this schematic plot, we set Dy = D3 = 0 and D; # 0 for [110] strain. At zero strain

(D1 = 0), the gap for the Sy, breaking is exactly zero; while the quasi-symmetry gap is small ~ 0.1 meV.
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FIG. S27. The Fermi surfaces in planes perpendicular to the (100), (110) and (111) axes for three types
of strain effect: [110] strain (breaks Sz, and Sa,), [116] strain (breaks all crystalline symmetries) and
[111] strain (breaks Sz, S2, and Sa.), respectively. In (al, bl, c1), the Fermi surfaces for the [110] strain
(D1 =0.003, Dy = 0.001, and D3 = 0.002 in unit of eV). In (a2, b2, ¢2), the Fermi surfaces for the [11J]
strain (D7 = 0.003, Dy = 0.001, D3 = 0.002 and D4 = 0.004 in unit of eV). In (a3, b3, ¢3), the Fermi
surface for the [111] strain (D; = 0.003 in unit of eV). Note that a possible D, as the same order as other

parameters is assumed for the illustration of the Fermi surface plot where S2, rotation is also broken so that

the degeneracy at k, = 0 is broken.
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FIG. S28. The quasi-symmetry protected nodal planes with/without strain effect. In (a, c, e), the two Fermi
surfaces of the P-model show the intersecting features (see the red lines). In (b, d, f), the quasi-symmetry

protected nodal planes are found for both without and with strain effects.
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