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Supplementary Information: Multimode photon blockade

I. CRYOGENIC SETUP AND CONTROL
INSTRUMENTATION
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Supplementary Figure 1 | Schematic of the cryogenic setup,
microwave wiring and filtering, and control instrumentation.

The multimode cavity device is heat sunk to an OFHC
copper plate connected to the base stage of a Bluefors
LD-400 dilution refrigerator (7-8 mK). The sample is
surrounded by a can containing two layers of µ-metal
shielding, with the inside of the inner layer connected to
a can made out of copper shim that is painted on the in-
side with Berkeley black and attached to the copper can
lid. A schematic of the cryogenic setup, control instru-
mentation, and device wiring is shown in SFig. 1. The
device is machined from a single piece of 5N5 aluminium
and consists of a readout cavity and a multimode stor-
age cavity fabricated using the flute method described
in [1]. The cavities are bridged by a 3D transmon circuit
whose fabrication is detailed in the next section. All con-
trols are performed through the readout cavity, by driv-
ing at the qubit and storage mode frequencies. The pulses

are directly digitally synthesized using a four-channel, 64
GSa/s arbitrary waveform generator (Keysight M8195A).
The combined signals are sent to the device after being
attenuated at each of the thermal stages, as shown in
SFig. 1. The transmitted signal from the readout res-
onator passes through three cryogenic circulators (ther-
malized at the base stage) and is amplified using a HEMT
amplifier (anchored at 4 K). Outside the fridge, the sig-
nal is filtered (tunable narrow band YIG filter with a
bandwidth of 80 MHz) and further amplified. The am-
plitude and phase of the resonator transmission signal
are obtained through a homodyne measurement, with
the transmitted signal demodulated using an IQ mixer
and a local oscillator at the readout resonator frequency.
The homodyne signal is amplified (SRS preamplifier) and
recorded using a fast ADC card (Keysight M3102A PXIe
500 MSa/s digitizer).

II. FABRICATION OF THE TRANSMON
CIRUIT

The transmon qubit was fabricated on a 430 µm
thick C-plane (0001) sapphire wafer with a diameter of
50.8 mm. The wafer was cleaned with organic solvents
(Toluene, Acetone, Methanol, Isopropanol, and DI wa-
ter) in an ultrasonic bath to remove contamination, then
annealed at 1200 ◦C for 1.5 hours. Prior to film de-
position, the wafer underwent a second clean with or-
ganic solvents (Toluene, Acetone, Methanol, Isopropanol,
and DI water) in an ultrasonic bath. The junction was
made out of aluminum using a combination of optical
and electron-beam lithography. The base layer of the
device, which includes the capacitor pads for the trans-
mon, consists of 120 nm of Al deposited via electron-
beam evaporation at 1Å/s. The features were defined
via optical lithography using AZ MiR 703 photoresist
and exposure by a Heidelberg MLA150 Direct Writer.
The resist was developed for 1 minute in AZ MIF 300
1:1. The features were etched in a Plasma-Therm induc-
tively coupled plasma (ICP) etcher using chlorine based
etch chemistry (30 sccm Cl2, 30 sccm BCl2, 10 sccm Ar).
This was followed by a second layer of optical patterning
and thermal evaporation of 50 nm of Au for the align-
ment marks used for ebeam lithography. The resist was
subsequently removed by leaving the wafer in 80◦C N-
Methyl-2-pyrrolidone (NMP) for 4 hours. The junction
mask was defined through electron-beam lithography of
a bi-layer resist (MMA-PMMA) in the Manhattan pat-
tern using a Raith EBPG5000 Plus E-Beam Writer, with
overlap pads that allow for direct galvanic contact to the
optically defined capacitors. The resist stack was devel-
oped for 1.5 minutes in a solution of 3 parts IPA and
1 part DI water. Before deposition, the overlap regions
on the pre-deposited capacitors were milled in-situ with
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an argon ion mill to remove the native oxide. The junc-
tion was then deposited with a three step electron-beam
evaporation and oxidation process. First, an initial 35
nm layer of Al was deposited at 1 nm/s at an angle of
29◦ relative to the normal of the substrate, azimuthally
parallel to one of the fingers in the Manhattan pattern.
Next, the junction was exposed to 20 mBar of a high-
purity mixture of Ar and O2 (80:20 ratio) for 12 minutes
to allow the first layer to grow a native oxide. Finally,
a second 120 nm layer of Al was deposited at 1 nm/s
at the same 29◦ angle relative to the normal of the sub-
strate, but azimuthally orthogonal to the first layer of
Al. After evaporation, the remaining resist was removed
via liftoff in 80◦C NMP for 3 hours, leaving only the
junction directly connected to the base layer. After both
the evaporation and liftoff, the device was exposed to an
ion-producing fan for 30 minutes to avoid electrostatic
discharge of the junction.

III. CALIBRATION OF THE MULTIMODE
HAMILTONIAN

The Hamiltonian of the multimode cavity QED system
realized by the transmon and the storage modes is:

H = ωq |e〉 〈e|+
N−1∑

m=0

{ωma†mam + χma
†
mam |e〉 〈e|

+
km
2
a†mam(a†mam − 1)}+

∑

n6=m

kmna
†
mama

†
nan,

(1)

where ωq is the frequency of the transmon |g〉 - |e〉 tran-
sition, ωm the memory mode frequencies, χm the dis-
persive shifts, km the self-Kerr shift of each mode, and
kmn the cross-Kerr interactions between the modes. The
value of ωq is accurately obtained through a standard
Ramsey measurement on the transmon. The χm are ini-
tially calibrated by performing qubit spectroscopy with
a resolved pulse swept near the qubit frequency, follow-
ing a coherent drive at the cavity frequency. The χm
are then determined more precisely with a Ramsey ex-
periment on the transmon |g〉 - |e〉 transition after the
addition of a photon in the cavity mode, as shown in
SFig. 2(a). The photon is added to the cavity either
by initializing the transmon in |f〉 and then driving the
|f0〉 − |g1m〉 transition, or by performing a Rabi oscilla-
tion on the cavity in the presence of a blockade at |2〉,
as described in the main text. The self-Kerr shifts km
of the cavity modes are obtained by performing a cav-
ity Ramsey experiment, with the measured values shown
in SFig 2(b). This experiment is conducted by varying
the time (τ) between two coherent cavity pulses (with
the the phase of the second cavity pulse advanced by
2πνRτ) and subsequently measuring the population in
|0〉 using a resolved transmon π pulse. The magnitude
of the coherent state α injected in the cavity is also
swept, and the resulting data is fit to the expression:
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Supplementary Figure 2 | Calibrations of multimode cavity
dispersive shift and self-Kerr interactions. (a) Dispersive shift
calibration for each of the manipulable modes. The
measurement is performed by placing a photon in a mode,
followed by a qubit Ramsey and fitting to the resulting
oscillation frequency. An example is shown in the inset. (b)
Self-Kerr calibration for each of the modes. The measurement
is performed through cavity Ramsey and fitting to the resulting
spectrum vs. time and the magnitude |α| of the cavity
displacement. (c) Self-kerr data for cavity mode number 3. (d)
Cross-shift between mode pairs. The measurement is performed
by placing a photon in mode m, then sweeping the cavity
frequency when probing the 0 to 1 photon peak of mode n.

P0(t) = | exp(−α2)
∑
n

1
n!α

2n exp(−itn(ωm + kmn/2))|2,
as shown in SFig. 2(c) for cavity mode 3. The cross-
Kerrs kmn are obtained by adding a photon to mode m
and performing cavity spectroscopy on a different mode
n. This procedure is also repeated, on the same mode
to verify the consistency of the self-Kerr shifts. The val-
ues of kmn are shown in SFig. 2(d). A summary of all
the measured parameters of the Hamiltonian, as well as
Liouvillian terms corresponding to transmon and cavity
decoherence and decay, is provided in STable 1.

The minimal description of the dynamics during the
blockade of a single mode includes the dispersive coupling
between the transmon and the cavity, a Rabi drive on the
transmon |g〉-|e〉 transition, the self-Kerr of the mode,
and the cavity drive. The corresponding Hamiltonian in
the frame rotating at the dressed mode and transmon
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Parameter Hamiltonian/Liouvillian Term Quantity Value
Transmon frequency ωq |e〉 〈e| ωq/(2π) 4.99 GHz

Storage cavity frequencies ωma
†
mam ωm/(2π) see SFig. 1

Readout frequency ωra
†
rar ωr/(2π) 7.79 GHz

Readout dispersive shift χra
†
rar |e〉 〈e| χr/(2π) 1 MHz

Storage mode dispersive shifts χma
†
mam |e〉 〈e| χm/(2π) see SFig. 2

Storage mode self-Kerrs km
2
a†mam(a†mam − 1) km/(2π) ”

Storage mode cross-Kerrs kmna
†
mama

†
nan kmn/(2π) ”

Transmon |e〉 → |g〉 relaxation 1
T

q
1

(1 + n̄)D
[
|g〉 〈e|

]
T q1 86± 6 µs

Transmon |g〉 − |e〉 dephasing ( 1
T

q
2
− 1

2T
q
1

)D
[
|e〉 〈e|

]
T q2 58± 4 µs

Readout linewidth κrD[ar] κr/(2π) 0.52 MHz
Storage mode relaxation 1

Tm
1
D[a] Tm1 ∼ 2 ms, see [1]

Transmon thermal population n̄
T

q
1
D
[
|e〉 〈g|

]
n̄ 1.2± 0.5 %

Storage mode dephasing " Tm2 ∼ 2− 3 ms, see [1]

Supplementary Table 1 | Multimode cQED system parameters

frequencies is:

Ĥ = χâ†â |e〉 〈e|+ κ

2
â†â

(
â†â− 1

)

+ {Ω(t) |g〉 〈e|+ ε(t)â+ c.c.} .
(2)

To blockade the |n0〉 Fock state of a single mode, the
transmon is driven at frequency ωq + χn0. The blockade
drive can thus be expressed as Ω(t) = Ω̃e−iχn0t. We
make the blockade drive term static through the frame
transformation Û = e−iχ|e〉〈e|n0t, resulting in:

˜̂
H = χ

(
â†â− n0

)
|e〉 〈e|+ κ

2
â†â

(
â†â− 1

)

+ {Ω |g〉 〈e|+ ε(t)â+ c.c.} . (3)

The blockade is valid in the regime that ε
√
n0 < Ω <

χ. The first of these conditions prevents leakage to
|g̃, n0〉 , |ẽ, n0〉, while the second selectively blockades only
the |g, n0〉 ↔ |e, n0〉 transition and minimally affects
transitions corresponding to other photon numbers. This
Hamiltonian can be simplified by individually diagonal-
izing each photon number subspace (|g, n〉, |e, n〉). The
blockade drive is resonant with |g, n0〉 → |e, n0〉, splitting
those levels by 2Ω and mixing them equally. For levels
on either side of n0, the dressing between the ground and
excited states is proportional to Ω/ (χ (n− n0)) to lead-
ing order in Ω/χ. The Hamiltonian can be rewritten in
terms of these dressed states as:

˜̂
H − χ

(
â†â− n0

)
|e〉 〈e| − κ

2
â†â

(
â†â− 1

)
=
∑

n

ξ(t)
(√

n+ 1 |g̃, n〉
〈
˜g, n+ 1

∣∣∣+ c.c + . . .
)

+
∑

n

√
χ2 (n− n0)

2
/4 + Ω2

(
|ẽ, n〉 〈ẽ, n| − |g̃, n〉 〈g̃, n|

)
(4)

In the above, we have dropped the drive terms that cou-
ple the dressed ground and excited states, which are off-
resonant and suppressed by Ω/χ. The physics of the

blockade can be approximated within a truncated Hilbert
space that involves only the dressed transmon ground
state, described by the following Hamiltonian:

H ≈
∑

n

([
κ

2
n(n− 1) + χ(n− n0)−

√
χ2 (n− n0)

2
/4 + Ω2

]
|g̃, n〉 〈g̃, n|+ ξ(t)

(√
n+ 1 |g̃, n〉 〈g̃, n+ 1|+ c.c

))

≈
∑

n

([
κ

2
n(n− 1)− Ω2

χ (n− n0)

]
|g̃, n〉 〈g̃, n|+ ξ(t)

(√
n+ 1 |g̃, n〉 〈g̃, n+ 1|+ c.c

))
. (5)

We note that the dressed cavity Fock state energies are corrected by the self-Kerr interaction of the cavity, as well
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as the photon number dependent Stark shift induced by
the blockade drive.

We characterize the blockade of a single mode using the
experiments shown in SFig. 3. SFig. 3(a) shows the en-
ergy level diagram describing the blockade of the |2〉 state
of mode i by driving the the transmon |g2i〉− |e2i〉 tran-
sition with a Rabi strength Ω, which shifts each level by
±Ω. As is evident from the Hamiltonian SEqn. (5), the
blockade drive also Stark shifts the other cavity states.
We find the optimal Stark-shifted cavity drive frequency
via spectroscopy in the presence of the blockade with
a weak cavity drive near mode i with strength ε � Ω
as shown in SFig. 3(b). Driving weakly at this fre-
quency in conjunction with blockade of |g2i〉 generates
high-contrast Rabi oscillations between |g0i〉 and |g1i〉
as shown in SFig. 3(c), which is used to add a single pho-
ton in that mode in SFig. 3(d). The complete blockade
spectrum is probed using a spectroscopy experiment in
which we first prepare cavity mode i in Fock-state |1〉,
sweep the frequency of a weak cavity drive tone (over a
larger range than in (b)), and monitor the population of
|g1i〉 as a function of the Rabi amplitude (Ω) of the block-
ade drive as shown in SFig. 3(e) . In addition to the peak
corresponding to the Stark shifted |0〉 - |1〉 transition, we
also see two Rabi split |1〉 - |2±〉 transitions. The Rabi
amplitude Ω is calibrated separately using transmon Rabi
oscillations.

As described in the main text, despite no direct oc-
cupation, the infidelity of state preparation using pho-
ton blockade is limited by decay and dephasing of the
transmon in the limit of no intrinsic cavity loss. This
infidelity is due to a combination of leakage (in this case
to the dressed |2〉 state) and subsequent decay via the
transmon (ε/(Ω2T q)), and Purcell decay of cavity states
from additional dressing due to the off-resonant block-
ade drive (Ω2/(εχ2

mT
q) for the |1〉 state). Here, T q is

the qubit decoherence time that is the minimum of T q2
and T q1 . Optimizing the cavity drive strength results in
a minimum infidelity of ∼ 1/(χmT

q) for preparing |1〉
(blockade π pulse). This infidelity is comparable to that
from qubit decay and dephasing for SNAP gates and is
indicated by the dashed black line in SFig. 3(f). We also
show the calculated infidelity with the inclusion of in-
trinsic cavity decay, which is larger for state preparation
via photon blockade due to the weaker cavity drives and
correspondingly longer pulse times.

IV. GENERATION OF OPTIMAL CONTROL
PULSES IN THE PRESENCE OF THE

BLOCKADE DRIVE

Optimal control pulses were generated with the
GrAPE algorithm using the package developed in [2] us-
ing two methods. The first approach used the Hamilto-
nian in SEqn. (3), which is in the frame rotating at the
blockade frequency, using a Hilbert space with 2 trans-
mon levels and 5-7 cavity levels,. It includes a fixed
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Supplementary Figure 3 | Blockade calibrations. (a) Energy
level diagram demonstrating the physics of single-mode photon
blockade in a frame rotating at the applied blockade drive
frequency. (b) Cavity spectroscopy experiment in the presence
of a blockade drive resonant with |g2i〉 − |e2i〉 transition
(depicted by the red and black arrows in (a)). The fitted center
frequency is marked by the vertical dashed black line, and
indicates the Stark shift of the |g0i〉 − |g1i〉 transition from the
bare cavity resonance frequency due to the blockade. The
population of |g1i〉 is monitored with a resolved |g1i〉 → |e1i〉
π pulse. (c) Populations over time produced by a constant
cavity drive (ε/(2π) = 10 kHz) at the Stark-shifted cavity
resonance, in the presence of a blockade drive (Ω/(2π) = 107
kHz) resonant with |g2i〉 − |e2i〉. (d) Wigner tomography of
|1〉 prepared using blockaded cavity Rabi oscillation π pulse,
with a fidelity of F = 0.967± 0.024. The dashed green circle
(with radius

√
2) indicates the boundary in phase space

enforced by the blockade, and as expected all population is
contained within it. (e) Cavity spectrum showing the energy
splitting of the |2±〉 due to the blockade as well as the Stark
shift of the |0〉 - |1〉 transition (central vertical blue line). The
theoretical curves for the Rabi split |1〉 - |2±〉 transition are
indicated by the dashed black lines. (f) Theoretical blockade
infidelity as a function of the the time required for a blockade π
pulse (1/(2ε)), for different blockade drive strengths Ω, as a
result of both transmon decoherence and cavity decay.

transmon blockade drive included in the drift Hamilto-
nian and a cavity drive term in the control Hamiltonian.
The cavity drives were written as real time-dependent
fields (x(t), y(t)) acting on the quadratures x̂ = a + a†

and ŷ = −i(a − a†). We impose amplitude constraints
on the optimal control pulses to satisfy the blockade cri-
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terion ε
√
n0 < Ω < χ, setting a maximum allowed cavity

drive amplitude of 2π × (10− 15) kHz ≈ Ω/10. We also
explicitly forbid population of the dressed eigenstates at
and above the blockaded level to reduce unwanted leak-
age.

The initial pulses produced had a bandwidth much
greater than χ. While this could be decreased by adding
bandwidth constraints during the optimal control pulse
generation, here we filtered the pulses to a bandwidth of
±χ/2 about the cavity frequency after generation, with
no detriment to the simulated or experimentally mea-
sured fidelities.

The second approach used the simplified Hamiltonian
given by SEqn. (5), which includes only the cavity photon
number states below the blockade level (n0) and the cav-
ity drive (ε). It correctly incorporates the Stark shifts of
the cavity levels, but approximates the blockade as per-
fect, with leakage minimized solely by constraining the
cavity drive strength. This simpler optimal control prob-
lem resulted in faster pulse convergence and had similar
experimental performance for the state preparation se-
quences of |1〉 , |2〉 while blockading |3〉. This improved
convergence arises from not needing to manage inter-
ference effects to cancel leakage through the blockaded
level. It also allowed for the implementation of a qutrit
shift gate operation that simultaneously takes |0〉 → |1〉,
|1〉 → |2〉, and |2〉 → |0〉. The pulses heuristically resulted
in a gate fidelity of ∼ 0.8, which was 5% worse than the
simulated fidelity when including mode and transmon de-
coherence and decay in accordance with STable 1. The
decay and decoherence times of all of the manipulable
cavity modes are >∼ 2 ms [1].

A. Qubit and cavity drive calibrations

To convert between the optimal control pulse ampli-
tudes (in frequency units) and the control voltages out-
put by the arbitrary waveform generator (AWG), we
measured transfer functions for the blockade and cav-
ity drives. The cavity transfer function was determined
by driving the target cavity mode for varying times and
drive amplitudes and measuring the photon number dis-
tribution of the resulting coherent state (|α〉) using re-
solved qubit spectroscopy. For a given cavity drive am-
plitude, we measured |α| as a function of the drive du-
ration (τ) and extract the cavity drive strength from the
slope (|ξ| = 2|α|/τ). This process was repeated for differ-
ent cavity drive amplitudes to obtain the transfer func-
tion for the cavity drive strength versus the AWG control
amplitude in SFig. 4(a). The qubit transfer function was
obtained by driving the transmon |g〉 - |e〉 transition at
a fixed amplitude and fitting the resulting Rabi oscilla-
tion. The blockade Rabi drive strength Ω extracted as
a function of the control voltage is shown in SFig. 4(b).
While the transfer functions are linear at higher ampli-
tudes, they become nonlinear at amplitudes < 25 mV
due to rounding/digitization artifacts from the AWG (8
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Supplementary Figure 4 | Cavity and qubit drive calibrations.
(a) Qubit calibration performed by fitting to Rabi oscillations as
a function of AWG amplitude, with an example oscillation
shown in the inset. For both the qubit and cavity, the
calibration function is not strictly linear at all amplitudes due to
digitization effects from the 8-bit control electronics. (b) The
cavity drive calibration is performed by populating the cavity
with coherent states and fitting the resulting photon number
Poisson distribution, as a function of AWG amplitude. An
example of a prepared state and fit is shown in the inset. The
function is calibrated individually for each mode involved in our
experiments. (c) Fourier transform of the optimal control pulse
used to generate Fock state |1〉 in the cavity. The theoretical
and experimental spectrums are in good agreement, particularly
around the mode frequency where most of the contribution
resides.

bit). When input into the experiment, the transfer func-
tion data was linearly interpolated with an odd copy re-
flected about the origin to handle negative drive fields
produced by the optimal control. The optimal control
pulses are finally shifted back to the lab frame according
to f(t) = x(t) cos(ωmt)− y(t) sin(ωmt), where ωm is the
frequency of the target mode.
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1. Measuring the FFT of the optimal control pulses

The Fourier transform of the optimal control pulse can
be measured in-situ by using the cavity as a narrow band
(∼ 20 Hz) spectral filter. We apply the optimal control
pulse to the cavity mode (with the blockade drive off)
while varying the central carrier frequency, and measure
the resulting photon number distribution via resolved
qubit spectroscopy. Since the mode only responds on
resonance, the magnitude of the resulting coherent state
(|α(ωc)|) as a function of the carrier frequency (ωc) allows
us to determine the FFT of the optimal control pulse.
The experimentally measured |α(ωc)| and the theoreti-
cal FFT of the AWG output pulse with the calibrated
transfer function are shown in SFig. 4(c).

V. WIGNER TOMOGRAPHY

Single mode Wigner tomography is performed via a
measurement of the photon number parity (Π̂) following
a series of displacements of the cavity mode. This effec-
tively measures the Wigner operator, Ŵ(α) = D̂αΠ̂D̂−α.
The measurements of the Wigner operator for a set of
mode displacements αi, xi = Tr[Ŵ(αi)ρ] were inverted to
reconstruct the density matrix ρ following the procedure
described in [3]. By converting the Wigner operator and
density matrix to vectors, we express xi = 〈〈W(αi)|ρ〉〉,
and construct a matrix M with Mij = 〈〈W(αi)|j that
represents measurements of the Wigner operator at all
the displacements. The number of columns of M is d2,
where d is the truncated dimension of the Hilbert space
of the cavity up to which the tomography is valid, while
the rows correspond to the points in phase space where
measurements are sampled (> d2). Since M is a non-
square matrix, we calculate the density matrix by act-
ing the Moore-Penrose pseudoinverse of M on the vec-
tor of measurements ~x , i.e., |ρ〉〉 = (MTM)−1(MT~x).
The density matrix extracted from this inversion is made
physical by forcing it to have unit trace and imposing
positive semi-definiteness. We constrain the trace of the
density matrix through the use a Lagrange multiplier (λ)
and perform the inversion as below:

[
|ρ〉〉
λ

]
=

[
MTM 〈〈I|T
〈〈I| 0

]−1 [MT~x
1

]
. (6)

Positive semi-definiteness is usually imposed with
Cholesky decomposition or other methods. We instead
impose that condition using the algorithm presented
in [4], involving diagonalizingM, iteratively redistribut-
ing any negative eigenvalues equally across the remaining
positive ones, and subsequently reconstructing ρ.

The displacements we perform are to an optimized set
of points in phase space that are chosen with the method
described in [3], and are shown in SFig. 5(a). In partic-
ular, the set of points minimizes the condition number
κ—the absolute value of the ratio of the maximum to
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Supplementary Figure 5 | Multimode Wigner tomography
calibrations. (a) Pulse sequence for Wigner tomography of 3
modes. Sequential cavity displacements are followed by a qubit
Ramsey measurement with wait time τR. (b) Set of cavity
displacements used to reconstruct the cavity state with Wigner
tomography. The 75 points used in the single mode case (blue)
and the 18 points used for each mode in the three-mode
tomography case (orange) are shown. Dashed circles indicate
the square root of the maximum photon number to which the
reconstruction is accurate. (c) Ramsey sequence after the
addition of a single photon in each mode. Dashed vertical lines
indicate the times that correspond to a perfect parity
measurement for each mode. This is subsequently used to
calibrate the angles θj that correspond to a wait time τR. (d)
Calibrating the bandwidth of the parity measurement. The
pulse sequence is a cavity displacement followed by two π/2
pulses, where the second π/2 pulse either has phase 0 (blue) or
π (orange). The finite bandwidth of the qubit π/2 pulses and
the increasing dispersive shift at larger |α| result in imperfect
π/2 pulses, reducing the range of possible measurement results.
(e) Calibration of the cross-Kerr between the readout resonator
and a cavity mode. The pulse sequence is a cavity displacement
of magnitude |α| followed by readout. This does not
significantly affect the measurements presented in this work,
since the values of |α| used in the Wigner tomography
experiments were < 2.

the minimum eigenvalue of M. Minimizing κ increases
the likelihood ofM being invertible, and reduces ampli-
fication of error from the inverted ρ—measurement noise
of magnitude ε results in an error no greater than κε in
the reconstructed density matrix. For our single mode
experiments, we used a total of 75 Wigner points with
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Supplementary Figure 6 | Density matrix reconstruction and multimode Wigner tomography data for a two-mode W-state. (a)
Real and (b) Imaginary part of the density matrix of the reconstructed two-mode state. The value of φ = −0.730 for the state
(|10〉+ eiφ |01〉)/

√
2 is determined by the maximum fidelity projection, and is shown in the inset. The corresponding state fidelity is

0.918± 0.012. c) The 6 orthogonal 2D slices of the two-mode Wigner function through the origin of phase space, involving all
combinations of the real and imaginary quadratures of both modes.

a maximum photon number of 7, with κ = 1.6. For the
multimode measurements of the single-photon W-state,
we used 18 Wigner points and a maximum photon num-
ber of 3 per cavity mode.

A. Generalized Wigner tomography

The parity measurement in Wigner tomography is per-
formed using a qubit Ramsey sequence that is composed
of two broadband π/2 pulses with opposite phases, sep-
arated by a wait time τ = 1/(2χm) during which the
qubit acquires a θ = π phase if a single photon is in cav-
ity mode i, followed by qubit readout. Since rotations
are only distinguishable modulo 2π, all odd (even) pho-
ton numbers will place the qubit in the excited (ground)
state, resulting in a measurement of photon number par-
ity Π̂ = cos(πN̂). A similar qubit Ramsey sequence
that idles for an arbitrary τ corresponds to a phase shift
of θ = 2πχmτ for a single photon in mode m, and a
measurement of Θ̂ = cos(θN̂). Displacing the cavity
mode prior to this general qubit Ramsey sequence allows
for the measurement of a generalized Wigner operator
Ŵ(α, θ) = D̂αΘ̂D̂−α. As long as θ is known, we can in-
vert the measurements of the expectation value of this
operator for a series of known displacements to obtain
the density matrix, like in the case of θ = π. The er-
ror in reconstruction fidelity is dependent on θ, with the
smallest error occurring around θ = π—where the gen-
eralized Wigner function has maximum contrast, and is
also the least sensitive to errors in the calibration of θ.

B. Multimode Wigner tomography

Multimode Wigner tomography has previously been
performed via measurements of the joint photon num-
ber parity following displacements of each of the cav-
ity modes, effectively corresponding to a measurement of
a joint Wigner operator. However, joint photon num-
ber parity measurements become challenging when the
modes do not have the same χm, requiring the use of
higher transmon levels [5], or additional transmons [6].
The generalized Wigner tomography protocol described
in the previous section provides a workaround, allowing
us to replace the joint photon number parity operator⊗

m Π̂m with a generalized operator
⊗

m Θ̂m. Since θm
need not be identical between modes, a single qubit Ram-
sey time τ that corresponds to different θm for each mode
m can be utilized to perform the measurement. We can
then characterize our state without engineering χm.

In the case of two modes, we used cavity modes 3
and 4 and combined the measurements at three differ-
ent Ramsey times τ1, τ2, and τ3 to reconstruct the state
density matrix. While only one τ is necessary, addi-
tional times improve the accuracy of the final state re-
construction. The set of τ ’s at which we measured was
{τj} =

[
419.8, 483.3, 454.0

]
ns, which corresponds to

{θ3} =
[
π, 3.63, 3.39

]
and {θ4} =

[
2.74, π, 2.94

]
. For

these sets of angles, the condition numbers are κ3,4 = 1.6.
For the three mode case, we used modes 2,3, and 4 of our
cavity, and chose the Ramsey time that corresponds to
θ3 = π. We made this choice because χ3 is between χ2

and χ4, resulting in a set of {θ} that are as close to π as
possible. This is desirable for reasons as discussed in Sec-
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Supplementary Figure 7 | State preparation with multiple
blockade drives. (a) Energy level diagram showing two drives
resonant with |g0〉 − |e0〉 and |g3〉 − |e3〉 that have Rabi
strengths Ω and used to simultaneously blockade |0〉 and |3〉,
respectively. (b) Populations over time produced by a constant
cavity drive (ε/(2π) = 10 kHz) with blockade drives
(Ω/(2π) = 107 kHz) at |0〉 and |3〉 after preparing the cavity in
|1〉. (c) Wigner tomography of |2〉 as prepared in (b)
corresponding to a fidelity of F = 0.925± 0.008. The dashed
green circle indicates the boundary of the blockaded subspace
(circle of radius

√
3).

tion VA. The resulting tomography angles for this single
value of τ are (in radians) {θ2, θ3, θ4} =

[
3.44, π, 2.64

]
.

The corresponding values of κ are κ2,3,4 = 1.6.
In addition to the density matrices of the multimode

W-states presented in the main text, here we provide 2D
slices of their multimode Wigner functions. These can
be seen for the two and three mode states in SFig. 6
and 8, respectively. The slices correspond to all pairwise
combinations of real and imaginary quadratures of each
of the modes, leading to 6 slices in the two-mode case
and 15 in the three-mode case.

C. Multimode state phase determination and
gauge freedom

We determine the phases φj of our multimode W-
states, (|10〉 + eiφ |01〉)/

√
2 in the two-mode case and

(|100〉+eiφ1 |010〉+eiφ2 |001〉)/
√

3 in the three-mode case,
by maximizing the fidelity of the projection onto those
states as a function of the φj ’s. That is, we map our pre-
pared state onto the appropriate (two- or three-mode)
expected W-state while sweeping the phase parameters,
and pick the angles that give us the projected value clos-
est to 1. This is shown in the insets of SFig. 6 and SFig. 8.

We are able to prepare states with different phases by
varying the relative phases of our cavity drives. There
is a 2π gauge freedom in the definition of the phase of
each cavity mode. For a given choice of these phases, we
determine the phase of the prepared states using Wigner
tomography. These phases can be can be modified by
a gauge transformation, allowing us to make the recon-
structed density matrices real, as in SFig. 5 of the main
text.

D. Systematic errors in Wigner tomography

In addition to experimental noise, the Wigner tomog-
raphy reconstruction has systematic errors that appear in
the parity measurement and come from two main sources.
The first source is the limited bandwidth of the parity
measurement. We mitigate this by using DRAG pulse
shaping to maximize the bandwidth of the pulses (Gaus-
sian pulse with σ = 5 ns). The second source is read-
out error arising from the cross-Kerr interaction between
the storage and readout modes. This results in a sys-
tematic shift in the readout voltage of transmon states
that depends on the number of photons in the storage
modes. We calibrate both these errors using the proto-
cols described below, and use them to correct the Wigner
tomography. The correction to the bandwidth of the par-
ity measurement is calibrated by displacing the cavity to
each of the phase space points used in the Wigner tomog-
raphy and subsequently applying two π/2 pulses with ei-
ther the same or opposite phase, with no wait time in
between. This would ideally place the qubit in either
the excited or ground state, corresponding to Pe = 1 or
0, respectively. However, despite the large bandwidth
of the qubit π/2 pulses, the dispersive shift takes the
pulses off resonance for larger |α|. As shown in SFig. 5(d),
this reduces the contrast of the parity measurement and
therefore the Wigner operator measurement. We com-
pensate for this effect by scaling the Wigner operator
measurement for a given state and displacement using
a linear transformation (W(α, ρ) → aW(α, ρ) + b), that
takes the upper and lower bounds for the parity mea-
surement (c1, c2) to their ideal values (1, 0), i.e. a, b =
1/(c1−c2),−c2/(c1−c2). This correction is performed for
each Wigner point used in the tomography, with varying
calibrated values of a and b. Wigner points with larger
values of |α| deviate more from the ideal 0 to 1 range,
as the magnitude of the cross-Kerr and dispersive shift
effects scales with |α|.

VI. EXTENSIONS TO MORE MODES (SITES)
AND PHOTONS (BODIES)

We present experiments where we extend photon
blockade beyond the discussion presented in the main
text. The experiments presented there all involve us-
ing a single drive to blockade one or more levels. Using
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Supplementary Figure 8 | Density matrix reconstruction and multimode Wigner tomography data for a three-mode W-state. (a)
Real and (b) Imaginary part of the density matrix of the reconstructed three mode state. The values of φ1 = −0.403, φ2 = −0.866
of the prepared state (|100〉+ eiφ1 |010〉+ eiφ2 |001〉)/

√
3 are again determined by the maximum fidelity projection, and shown in

the inset. The corresponding state fidelity is 0.864± 0.014. (c) The 15 orthogonal 2D slices of the three-mode Wigner function
through the origin of phase space, involving all combinations of the real and imaginary quadratures of the three modes.

multiple drive tones to simultaneously target different
transitions allows for more flexibility with blockade and
preparing more complex quantum states. We illustrate
this on a single mode by simultaneously driving |g0〉−|e0〉
and |g3〉− |e3〉, as illustrated in the energy level diagram
shown in SFig. 7(a). This results in the simultaneous
blockade of |0〉 and |3〉 by shifting both of those levels off
resonance from the cavity frequency, isolating |1〉 and |2〉
from the rest of the Hilbert space. As a result, initial-
izing Fock state |1〉 and driving at the cavity frequency
produces Rabi oscillations between those two levels, as
shown in SFig. 7(b), which can be used to prepare the
target mode in |2〉, as shown in SFig.7(c).

We also extend multimode photon blockade to more
modes (sites) by applying the protocol described in the
main text for preparing two- and three-mode W states
(where we simultaneously blockade all multimode states
with a total of 2 photons), to four and five modes.
Starting from the vacuum state and driving all the cav-
ity modes simultaneously in the presence of the block-
ade drive results in the correlated population oscillations
shown in SFig. 9(a) and (b). As before, this corresponds
to oscillations between the vacuum and four- and five-
mode W states which is consistent with the measured
populations. Completely characterizing the four- and
five-mode W states with our multimode Wigner tomog-

raphy protocol required a prohibitive number of measure-
ments and is omitted in this work. This may be overcome
in future experiments by increasing the experiment duty
cycle through active reset or by implementing efficient
protocols for state certification without full tomography.
The phase of the W-state can also be inferred by in-
terferometry experiments that can be implemented with
beamsplitter operations between modes. From master
equation simulations, we expect the fidelities of the four-
and five-mode W states to be F = 0.8 and F = 0.69,
respectively. The fidelities decrease with the addition of
more modes (sites) due to the mismatch in the disper-
sive shifts of different modes, which leads to imperfect
blockade when using a single tone. Achieving multimode
photon blockade therefore requires larger blockade drive
strengths, which in turn results in larger participation of
the transmon in cavity states and enhanced decay. We
note that these state preparation fidelities for W-states
with more modes may be improved by using multiple
drives to blockade different multimode states, or poten-
tially by using off-resonant charge-sideband drives [7] to
match the dispersive shifts across the modes.

Finally, we also implement a photon blockade inter-
action between N = 3 photons distributed across two
modes. Here, the blockade drive shifts the energy of all
two-mode 3-photon states and is applied at the mean
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Supplementary Figure 9 | Extensions of the blockade. Populations over time for simultaneous photon blockade of (a) four modes
(Ω/(2π) = 206 kHz) and (b) five modes (Ω/(2π) = 178 kHz) with constant, equal cavity drive strengths (ε/(2π) = 9 kHz and
ε/(2π) = 7 kHz, respectively). The results are oscillations between the ground state and entangled W states. Solid lines indicate
the fit to exponentially decaying sinusoidal oscillations and the dashed grey lines correspond to mode populations for an ideal W
state (0.25 and 0.2, respectively). The increase in population of the blockaded states is due to leakage to the two-photon manifold
and subsequent decay arising from participation of the transmon in those states due to the blockade drive. (c) Spectroscopy of a
state prepared with constant cavity drives while blockading all two-mode states with total of n = 3 photons. The x-axis is defined
relative to the transmon qubit frequency. The blockade drive frequency and drive strength are indicated by the green vertical line
and rectangle, respectively, and the relevant two-mode Fock state peaks are labeled. As expected, there are no visible peaks
corresponding to Fock states with of 3 or more total photons. (d) Populations over time produced by constant cavity drives in the
presence of a two-mode blockade of a total of N = 3 photons. The dashed gray vertical line indicates the time corresponding to the
spectrum shown in (c). Solid circles indicate points at which data was collected, and the dashed lines serve as a guide to the eye
and do not correspond to fits. (e) Simulated density matrix and (f) density matrix reconstruction from Wigner tomography
measurements of the state produced in (c). Multimode Fock states within the blockaded subspace are indicated in red (only every
other state is labeled). In both cases, the density matrix is nonzero primarily only for the Fock states in that subspace.

transmon frequency corresponding to 3 photons ((3χi +
3χj)/2), indicated by the green line in SFig. 9(c). Driving
both cavity modes uniformly in the presence of the block-
ade results in restricted dynamics in the Hilbert space of
two-mode Fock states with ≤ 2 photons, with very lit-
tle leakage outside the blockaded subspace. This is evi-
dent in the qubit spectroscopy plot shown in SFig. 9(c),
performed after uniform drives on both modes for 25 µs
(dashed vertical line in (d)), in the presence of the 3-
photon blockade drive. The dynamics are more compli-
cated compared to the blockade of N = 2 photons, and
there is no longer a time when the population fully re-
turns to the vacuum state, as shown in SFig. 9(d). The
restriction of population and coherences to within the
blockaded subspace is also evident in the density matrix,
shown in (f), reconstructed from Wigner tomography
measurements. These results are qualitatively similar to
those found in the corresponding master-equation simu-
lations, shown in (e). These experiments show that mul-
timode photon blockade can be implemented at higher
photon numbers, and demonstrate a 3-photon (3-body)
interaction between photons in two modes (sites).

VII. MASTER EQUATION SIMULATIONS OF
BLOCKADE DYNAMICS

We use QuTip [8] to simulate multimode blockade dy-
namics using a master equation that includes the decay
of the cavity modes (κm = 1/Tm1 ), as well as the decay
(γq = 1/T q1 ) and dephasing (γqφ = 1/T q2 −1/(2T q1 )) of the
transmon:

˙̂ρ =− i[Ĥ, ρ̂] +
∑

m

κmD[âm]ρ̂+ γqn
th
q D[|e〉 〈g|]ρ̂

+ γq(1 + nthq )D[|g〉 〈e|]ρ̂+ γφqD[|e〉 〈e|]ρ̂.
(7)

Here, D is the Lindblad dissipator, and Ĥ is the block-
ade Hamiltonian given by SEqn. (3) for the single-mode
case. We include the thermal occupation of the trans-
mon (nthq = 1.2 ± 0.5%), but ignore the thermal pop-
ulation of the storage cavity modes (nthm ≤ 0.01%).
For the case of multiple cavity modes and drives, this
Hamiltonian—written in a frame co-rotating with the
blockade (νb = νq + δνb) and cavity mode frequencies
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(νm), generalizes to:

Ĥ =

{∑

m

χmâ
†
mâm − δνb

}
|e〉 〈e|

+
∑

m

km
2
â†mâm

(
â†mâm − 1

)
+
∑

m 6=n

kmn
2
â†mâmâ

†
nân

+ {Ω |g〉 〈e|+
∑

m

εm(t)âm + c.c.},

(8)

where Ω is the blockade Rabi frequency, km, kmn the self
and cross-Kerr interactions, and εm(t) the time depen-
dent cavity drive amplitudes. All the drive tones are sent
through the readout port and are directly coupled only
to the readout resonator (Ĥd = εr cos(ωdt)(âr + â†r)).
However, the coupling between the transmon and the
modes and their resulting dressing leads to effective
transmon and storage mode drives when the readout is
driven on resonance with either of them. To lowest or-
der in the dispersive approximation, the resulting trans-
mon and storage mode drives are Ω ≈ εrgr/(2∆r) and
εm ≈ εrgrgm/(2∆r∆m), respectively. For generating
the optimal control pulses, we treat the drives as be-
ing directly on the transmon and the storage modes.
This approximation is valid because the detuning be-
tween the transmon and the readout (∆r) and storage
modes (∆m) is large compared to the coupling strengths
(gr, gm), which we additionally verify using master equa-
tion simulations that include the readout cavity/drive.

A. Single-mode optimal control pulses

We first use the master equation simulations to obtain
the expected fidelity in experiments involving the block-
ade of a single cavity mode, corresponding to the data
presented in Fig. 3 of the main text. An analysis of the
population evolution generated by a uniform cavity drive,
and the optimal control pulses used to prepare |1〉 and
|2〉 while blockading |3〉, is shown in SFig. 10.

The populations are extracted from the density matri-
ces reconstructed from Wigner tomography (diamonds),
as well as through number resolved qubit spectroscopy
(circles), from the raw data presented in Fig. 3 of the
main text. We note that we account for the measure-
ment error arising from the decay during the resolved
qubit pulse used for the spectroscopy—a Gaussian pulse
with σ = 0.9 µs (duration = 4σ), by normalizing by the
height of the |0〉 peak obtained from spectroscopy of the
vacuum state. No such normalization is performed for the
density matrices obtained from the Wigner tomography,
which accounts for the slightly lower extracted popula-
tions. Apart from this difference (∼ 5%), the populations
extracted using both these methods are consistent.

The master equation simulations of a uniform cavity
drive in the presence of a |g3i〉 ↔ |e3i〉 blockade drive
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Supplementary Figure 10 | Simulations of single-mode optimal
control. State evolution vs. time produced by a uniform cavity
drive (a) and optimal control pulses that prepare |g1〉 (b) or
|g2〉 (c), in the presence of a blockade drive at n = 3.
Populations were measured directly using qubit spectroscopy
(circles), and were also extracted from the density matrices
obtained from Wigner tomography (diamonds). The results of
the master equation simulations are represented by the solid
lines.

match well with the experimentally measured popula-
tions. We varied the Hamiltonian parameters relevant
for the blockade (χ, k,Ω, δ) in the simulations, and found
that the independently calibrated parameter values also
produced the best overlap with the measured state. De-
spite this, the population trajectories measured by ap-
plying slices of the optimal control pulses that prepared
|1〉 and |2〉 at varying times did not perfectly match
with the simulations. Given the close match between
the experimental and simulated trajectories for a uni-
form pulse, the discrepancy in the trajectory is believed
to be due to distortions of the optimal control pulse from
impedance mismatches along the drive line before reach-
ing the device. While the trajectories themselves deviate,
the final states prepared by the optimal control pulses
still result in fidelities of F = 0.953 ± 0.022 (|14〉) and
0.965 ± 0.022 (|24〉), compared to simulated fidelities of
0.981 and 0.974, respectively.

B. Simulations of multimode N-body interactions

We simulate the dynamics arising from the multi-
mode blockade interactions by using the Hamiltonian
in SEqn. 8 in the master equation in SEqn. 7). The
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Supplementary Figure 11 | Simulations of two- and
three-mode W-states. Populations of different multimode
states in the presence of uniform cavity drives and a blockade
drive at the mean of the frequencies corresponding to two
photons for (a) two (ν3, ν4; Ω/(2π) = 207 kHz) and (b) three
cavity modes (ν2, ν3, ν4; Ω/(2π) = 227 kHz). For two cavity
modes, in addition to monitoring populations through qubit
spectroscopy (circles), we extract populations from the
reconstructed density matrices obtained from Wigner
tomography (diamonds). For the 3 mode case, this comparison
to tomography is only made for a pulse corresponding to the
preparation of the three-mode W-state (τ = 15µs). In both
cases, the cavity drive strength on each mode was ε/(2π) = 10
kHz. The populations obtained through master equation
simulations in the presence of transmon decoherence and cavity
decay are represented by the solid lines.

Hamiltonian—co-rotating at the blockade and cavity fre-
quency, is valid for a single blockade drive frequency, as
is used in all the experiments presented in this work.

We prepare two- and three-mode W-states by using
a blockade drive detuned from the qubit frequency by
the average of the dispersive shifts from adding 2 pho-
tons in any combination of modes. For the two-mode
case, we study the temporal evolution arising from uni-
form (and equal strength) cavity drives on both modes
(3, 4) in the presence of the blockade drive using pho-
ton number resolved qubit spectroscopy and two-mode
Wigner tomography. The extracted populations in the
different multimode Fock states are shown as a function
of the drive duration in SFig. 11(a). At a time τ =
18.7 µs, this produces an entangled two-mode W-state,

|ψ〉 = (|10〉 + eiφ |01〉)/
√

2. The measured fidelity from
Wigner tomography (F = Tr [ρW ρ] = 0.918±0.012), and
that obtained from master equation simulations (0.919)
were consistent.

A similar comparison between the experiment and
master equation simulations for the three-mode W-state
preparation sequence is shown in SFig. 11(b). Here, the
populations are measured as a function of the cavity
drive duration using photon number resolved qubit spec-
troscopy. For both this experiment and the two-mode
case, we used a longer resolved qubit π pulse (Gaussian
pulse with σ ∼ 3 µs) than in the single mode case, in
order to accurately resolve the differences between the
dispersive shifts.

At the cavity drive duration that corresponds to the
W-state, we reconstruct the state using three-mode
Wigner tomography, resulting in the density matrices
and Wigner functions shown in SFig. 8. The simulated
fidelity of the three-mode W-state was F = 0.896, com-
pared to the experimental measured value of 0.864 ±
0.014. A comparison of the simulated, measured, and
ideal state populations that produce these fidelities is
shown in SFig. 12 for both the two- and three-mode W-
states. The simulations (yellow edge boxes) include loss
and decoherence effects from the transmon and cavity, as
well as the qubit temperature. The simulated and mea-
sured data are generally in good agreement. The ideal
W-states (black dashed edge boxes) are included to serve
as a guide. In order for the blockade drive to simultane-
ously address the dispersively shifted peaks correspond-
ing to two photons in any combination of modes, we pick
a blockade Rabi strength (Ω/(2π) = 227 kHz), which is
roughly twice that used in the single-mode blockade ex-
periments, resulting in 5% higher participation of the
transmon in the cavity levels from off-resonant dressing.

From the reconstructed density matrices for two- and
three-mode W-state preparation shown in SFig. 12(a)
and (b), we extract the W-state entanglement wit-
ness [9, 10],

ŴN =
N − 1

N
−|WN 〉 〈WN | ⇒

〈
ŴN

〉
=
N − 1

N
−F . (9)

where N is the number of entangled modes. For each
measured density matrix ρ, we extract the witness by
sweeping the free phases that characterize the W-state
to maximize the state fidelity F = Tr[ρρW ]. The results
of these measurements are presented in SFig. 12(c). In
the two-mode case, we evaluate the witness as a func-
tion of the duration of the cavity drive, while in the
three-mode case, we evaluate it at the single time cor-
responding to the creation of the W-state. We note that
−1/3 <

〈
Ŵ3

〉
= −0.2 < 0 indicates genuine tripar-

tite entanglement for the three-mode W-state (the orange
band in SFig. 12).
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Supplementary Figure 12 | Comparison of simulated, prepared, and ideal multimode W-states. (a) Absolute value of the
two-mode W-state density matrix. Populations are represented with colors ranging from red to blue. Dashed black boxes indicate
the ideal W-state populations, while yellow boxes show the simulated populations after accounting for the effects of cavity and
transmon decoherence and decay. (b) Same as (a), but for the three-mode case. (c) W-state entanglement witness for 2 and 3
modes. The purple circles correspond to measurements of the two-mode witness as function of the cavity pulse duration in the
presence of the blockade drive. The orange ? corresponds to the measured witness for the three-mode state at the time
corresponding to the W-state. The solid lines represent the result of master equation simulations of the witness. The orange band
between -1/3 and 0 are the witness values that indicate W-state-like tripartite entanglement.
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