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I. LOGIC CIRCUIT CONSTRUCTION USING QUAND

In the main text, we have shown the efficient decomposition for multi-qubit controlled-Z (n-CZ) using the QuAND
gate, which extends the classical AND logic to qubits. Basically, any multi-qubit controlled-unitary (CU) gates can
be implemented efficiently in a same three-step procedure: embedding, controlled-unitary, and recovery (Fig. S1a).
Figure S1b and S1c also show alternative way to synthesize generalized Toffoli and Fredkin gate (controlled-SWAP),
which are important quantum logics.

Since our QuAND gate is a quantum implementation of AND logic leveraging ancilla level and since NAND gate
is universal in classical circuit, all classical logic circuits can be efficiently constructed by adapting classical circuit
optimization techniques with single-qubit, two-qubit CZ and QuAND gates. In fact, compared to the traditional
Toffoli decomposition scheme, our scheme requires fewer ancilla qubits and gate operations. The QuAND gate is
readily applicable to a large category of circuits and useful in simplifying circuit synthesis. Here we show three
examples of leveraging QuAND gates for efficient synthesis of basic arithmetic circuits.

Figure S2 shows an efficient decomposition for incrementer using QuAND. The first half of the circuit – a sequence
of QuAND gates – computes the carry information. The second half – a sequence of CNOT and reverse QuAND gates
– recovers the original binary encoding and completes the incrementation. Figure S3 shows an efficient decomposition
for constant adder using QuAND. The first half of the circuit – a sequence of G0 or G1 (constructed by QuAND
and single-qubit X gates) gate depending on the corresponding bit value of b – computes the carry information. The
second half of the circuit – a sequence of reverse G0 or reverse G1, and CNOT gates – recovers the original binary
encoding and completes the addition operation. Figure S4 shows an efficient decomposition for adder using QuAND,
as inspired by [1]. The M gate – constructed by QuAND and CNOT gates – computes the majority function and the
carry information. The U gates undo the M gates and complete the addition of the two integers.

Depth of these circuits may be further reduced on topology with higher connectivity by the carry-lookahead tech-
nique. Other arithmetic and boolean logic circuits can be constructed in a similar way that replaces AND gates in
classical circuits with QuAND gates.
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FIG. S1. Circuit decomposition of generalized Fredkin gate. (a) A circuit decomposition of multi-qubit controlled-U
gate (left) using using QuAND, reversal QuAND and controlled-U gates (right).(b) A circuit decomposition of multi-qubit
Toffoli gate (left) using n-qubit CZ and Hadamard gates (right).(c) A circuit decomposition of generalized Fredkin gate (left)
using n-qubit Toffoli and CNOT gates.
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FIG. S2. A circuit decomposition of incrementer using QuAND. The n-qubit binary input |a⟩ = |an−1 . . . a1a0⟩ is
incremented to |a+ 1⟩ at the output. The subscript indicates the index of the binary digit.

II. MULTI-QUBIT TOFFOLI DECOMPOSITION

To compare different schemes for synthesizing n-qubit Toffoli gate, we list relevant references and their main
properties in Table.S1 for all-to-all connection and in Table. S2 for 1-D chain topology.

In prior works, multi-qubit Toffoli gate can be decomposed to qubit-only circuit with linear circuit depth and size
by using ancilla qubits. The textbook approach [2] reduces a big Toffoli to standard (3-qubit) Toffoli and costs n− 2
ancilla qubits for concatenating the AND results. He et.al.[3] provides a way to trade off between the number of
ancilla qubits and circuit depth, but requires additional cost for feedback control or large constant factor. A similar
approach from Barenco et.al.[4] uses the last control qubit as ancilla, saving ancilla qubit at the cost of circuit depth.
Other works have focused on simplifying n-qubit Toffoli by ancilla levels. Ralph et.al.[5] and Lanyon et.al.[6] utilizes
n-level qudit system to achieve 2n circuit depth and size by swapping the target state out of qubit space when the
control qubits are not |1⟩. Gokhale et.al.[7] and Inada et.al.[8] proposes leveraging qutrit control to achieve at most 2n
circuit depth and size. In particular, Gokhale et.al. [7] proposes a novel approach which utilizes |2⟩ state for storing
the AND result of control qubits and propagate the results with Toffoli-like gate conditioned on |2⟩ state, achieving
logarithmic depth.

In our scheme, the circuit depth and size are both in line with the best value from previous works. However, it
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FIG. S4. A circuit decomposition of adder using QuAND. Two n-qubit binary inputs, |a⟩ = |an−1 . . . a1a0⟩ and
|b⟩ = |bn−1 . . . b1b0⟩, are summed up at the output.

requires only one additional operation with the ancilla level, i.e. the |11⟩ ⟨20|+ |20⟩ ⟨11| SWAP gate, which is naturally
available in state-of-the-art hardware. The scheme features resource-efficient implementation in the sense that it is
low-depth, free from ancilla qubits, and simple in control. These advantages plus compatibility with state-of-the-
art hardware are the key to our successful realization of the large-scale multi-qubit Toffoli gate and Grover’s search
algorithm.

Our scheme shows better scalability on qubit arrays with higher connectivity. The circuit depth can be reduced to
2
√
n on a 2-D square array and to 2log2 n on a binary tree, as shown in Fig. S5.
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Depth Size Constant Ancilla qubits Control Requirement Intuition

Nielson and Chuang [2] log2 n n 12 n− 2 Qubits

|c1⟩ • •
|c2⟩ • •
|0⟩ •
|c3⟩ • •
|c4⟩ • •
|0⟩ •
|t⟩

He et.al. [3] log2 n n 4 n− 2 Qubits

|c1⟩ •
|c2⟩ •
|0⟩ • H 



|c3⟩ •
|c4⟩ •
|0⟩ • H 



|t⟩

He et.al. [3] n n 24 1 Qubits

|c1⟩ • •
|c2⟩ • •
|c3⟩ • •
|c4⟩ • •
|c5⟩ • •
|t⟩ H • • H

|a⟩ S S† S S†

Barenco et.al. [4] n2 n2 48 0 Qubits

|c1⟩ • • •
|c2⟩ • • •
|c3⟩ • • •
|c4⟩ • •

|t⟩ Ry(π/4) Ry(−π/4) Ry(π/4)

Gokhale et.al. [7] log3 n n 2 0 Three-Qutrit control

|c1⟩ 1 1
|c2⟩ X12 2 X12

|c3⟩ 1 1
|c4⟩ 1 1
|c5⟩ X12 2 X12

|c6⟩ 1 1
|t⟩

Ralph et.al. [5, 6] n n 2 0 n-level Qudit control

|c1⟩
|c2⟩
|c3⟩ •
|t⟩ H X12 X13 • X13 X12 H

This work log2 n n 2 0 |11⟩ ⟨20|+ |20⟩ ⟨11|

|c1⟩ ��
|c2⟩ & &

OO

|c3⟩ �� ��

OO

|c4⟩ & & • & &

OO

|t⟩

TABLE S1. Comparison of multi-qubit Toffoli gate decomposition assuming all-to-all connectivity.
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Depth Size Constant Ancilla qubits Control Requirement Intuition
Nielson and Chuang [2] n n > 12 n− 2 Qubits |c1⟩ • •

|c2⟩ • •
|0⟩ • •
|c3⟩ • •
|0⟩ •
|c4⟩ •
|t⟩

He et.al. [3] n n > 4 n− 2 Qubits |c1⟩ •
|c2⟩ •
|0⟩ • H 



|c3⟩ •
|0⟩ • H 



|c4⟩ •
|t⟩

Inada et.al. [8] n n 2 0 Qutrit control |c1⟩ 1 1
|c2⟩ X12 2 2 X12

|c3⟩ X12 2 2 X12

|c4⟩ X12 2 X12

|t⟩ Xij

This work n n 2 0 |11⟩ ⟨20|+ |20⟩ ⟨11| |c1⟩
��

|c2⟩ &
��

&

OO

|t⟩ H & • &

OO

H

|c3⟩ & • &

��|c4⟩ &

OO

&

��|c5⟩
OO

TABLE S2. Comparison of multi-qubit Toffoli gate decomposition assuming a 1-D chain.

FIG. S5. Schematics of synthesizing multi-qubit CZ gates on 2-D square array (left) and a binary tree (right).
Circles indicate qubits and arrows indicate QuAND gates, pointing from child to parent. Color gradient indicates the temporal
order. The reverse QuAND sequence is omitted.
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III. DEVICE AND EXPERIMENTAL SETUP

A. Wiring

The processor is made of aluminum on sapphire following a similar recipe as described in Ref. [9]. It is mounted
inside a dilution refrigerator at a base temperature of 10 mK. We magnetically shield the processor with two Cryoperm
cylinders. Inside the refrigerator, we use a total of 10 coaxial lines for the qubit/coupler control, 1 input and 1 output
line for qubit readout. Attenuators and filters are installed at different temperature stages for thermalization and
noise attenuation. At the lowest-temperature stage, we use customized low-pass IR filters on all the control lines for
attenuating (20-30 dB) signal at qubit frequency while passing DC and low-frequency signal. The output signals are
amplified by a high electron mobility transistor (HEMT) amplifier (40 dB gain) at the 4K stage and another low-noise
amplifier (50 dB gain) at room temperature. Circulators and filters are placed on the output line to block noises from
higher temperature stages. The output signals are finally down-converted to intermediate frequency and demodulated
by two analog-to-digital converters (ADCs).

Microwave signals for single-qubit XY control and dispersive readout are up-converted from carriers generated by
a microwave source using IQ mixing. We use diplexers to combine the XY and the Z signals at room temperature.
For better impedance matching, an isolator is added to the XY port.

B. Device parameters

We summarize the measured device parameters in Table.III. Over time, we observe coherence fluctuations for some
qubits, likely due to coupling to spurious two-level systems (TLSs).

We observe significant dephasing (Ramsey decay time <200 ns) from flux noise when performing two-qubit oper-
ations by adjusting the coupler frequency close to the qubit frequency. We fit the dephasing time to the slope of
corresponding energy spectrum in order to extract the flux noise amplitude σΦe

= 116µΦ0 according to the relation
Γs
ϕ(Φe) =

1√
2
∂ω̃s

∂Φe
σΦe . The relaxation time of the couplers are measured by swapping excitation from a neighboring

qubit to the coupler, delaying for a varying amount of time, and swapping the remaining excitation back to the qubit.
The strong flux noise and shorter relaxation time of the couplers explain majority of the two-qubit gate error.

Since the second excited state of the (child) qubits are used for temporary storage, their coherence will affect the
performance of Toffoli gate. In the transmon design, the second excited state is subject to larger charge dispersion,
making it more sensitive to charge noise. The average relaxation time of |2⟩ is measured to be 8.8 µs, about half
the relaxation time of |1⟩ (15.5 µs), which is consistent with the relation |⟨2|n̂|1⟩|2 = 2|⟨1|n̂|0⟩|2. With our design
parameters, the charge dispersion on the |2⟩ state is estimated on the order of 0.03 ∼ 5 kHz, leading to negligible
dephasing. The measured average T2 of the |2⟩ state (relative to |0⟩) is 9.5 µs, shorter than that of the |1⟩ state (16.6
µs), mainly due to the shorter relaxation time.

We use randomized benchmarking (RB) to characterize gate errors. For single qubit gates, the gate fidelity in both
isolated and simultaneous benchmarking is near the coherence limit. For two-qubit gates, we observe worse error rate
– typically 2-3 times – when performing simultaneous two-qubit RB experiments on all eight qubits. We suspect the
cause to be the spectator effect in the presence of unwanted stray coupling present as discussed in Ref. [10].

C. Crosstalk

Crosstalk is a major technical challenge for building large-scale processors. In Fig. S7, we show the measured
microwave (XY ) crosstalk, flux (Z) crosstalk and residual ZZ interaction. The effect from microwave (XY ) crosstalk
between neighboring qubits (not shown) are negligible in this device due to large detuning between red-band and
blue-band qubits. In the experiment, we calibrate microwave crosstalk for qubits in the same frequency band using
the method presented in Ref. [11]. After the calibration, there is negligible XY crosstalk effect on gate performance as
evident by the isolated and simultaneous single-qubit gate RB results (Table S3). The Z crosstalk is strongest between
neighboring qubits (average: 0.23%, standard deviation: 0.16%), and is calibrated using Ramsey-type experiments.
The ZZ crosstalk is also strongest between neighboring qubits (average: 52 kHz, standard deviation: 26 kHz). The
low-level residual ZZ interaction has a negligible contribution to gate errors.
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Qubita Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

Frequency (GHz) 6.257 7.015 6.359 7.152 6.424 7.142 6.504 7.184
Anharmonicity (GHz) -0.255 -0.236 -0.252 -0.239 -0.252 -0.238 -0.250 -0.239

Readout resonator frequency (GHz) 4.973 4.979 5.018 5.023 5.064 5.071 5.112 5.120
Readout resonator linewidth (MHz) 0.7 0.8 0.7 0.8 0.8 0.8 0.8 0.8

Dispersive shift of |1⟩ (MHz) -0.55 -0.22 -0.50 -0.22 -0.47 -1.20 -0.50 -0.28
Dispersive shift of |2⟩ (MHz) -1.65 -0.75 -1.85 -0.67 -1.75 -0.60 -1.40 -0.80

Readout error of |0⟩ (%) 3.3 1.4 1.3 1.1 1.1 3.9 4.0 1.2
Readout error of |1⟩ (%) 10.1 14.4 8.9 10.3 7.3 22.3 14.2 8.8

Readout (three state) error of |0⟩ (%) 3.8 1.3 0.9 0.9 1.5 4.8 8.8 0.9
Readout (three state) error of |1⟩ (%) 23.4 19.6 15.1 15.3 9.9 23.0 19.5 9.7
Readout (three state) error of |2⟩ (%) 16.6 20.4 20.3 16.1 16.8 20.7 30.9 24.6

Relaxation time of |1⟩ (µs) 21 10 15 19 22 7.3 12 18
Relaxation time of |2⟩ (µs) 14 6.1 8.0 10 12 4.6 7.1 8.9

Ramsey decay time of |1⟩ (µs) 25 11 19 13 26 12 18 9.0
Ramsey decay time of |2⟩ (µs) d 8.0 3.6 7.7 12.0 12.7 \ 10.2 12.1
Spin echo decay time of |1⟩ (µs) 32 15 23 32 36 11 21 30

1-Q gate errorc (isol.)(%) 0.07 0.16 0.11 0.11 0.06 0.19 0.11 0.14
1-Q gate errorc (simul.)(%) 0.10 0.17 0.12 0.13 0.07 0.23 0.14 0.13

Coupler C01 C12 C23 C34 C45 C56 C67 C70

Frequency (sweet spot) (GHz) 8.08 8.13 8.04 8.28 8.38 8.27 8.40 8.32
Relaxation time (µs) 4.6 4.9 7.5 6.7 4.5 7.1 3.1 3.3

Flux noise strength (µΦ0) 118 120 116 117 97 108 144 110
Coupling coefficientbrqc (left qubit) 0.0186 0.0189 0.0185 0.0070 0.0184 0.0185 0.0186 0.0061

Coupling coefficientb rqc (right qubit) 0.0155 0.0175 0.0177 0.0098 0.0175 0.0176 0.0178 0.0076
CZ gate errorc (isol.)(%) 0.92 0.97 1.20 3.50 1.40 1.50 1.2 3.0

CZ gate errorc (simul.)(%) 2.5 5.0 3.4 7.5 3.0 5.1 2.4 6.0
a The qubit parameters are measured with the coupler idly biased at the sweet spot.
b The coupling strength between the qubits and the coupler is frequency dependent, as gqc = rqc

√
ωqωc. We extract the

coupling coefficient by fitting the measured level spectra versus the flux bias on the coupler.
c The gate errors are measured using single(two)-qubit randomized benchmarking (RB). For two-qubit RB, we extract CZ gate

errors by subtracting single qubit errors from the average errors of two-qubit Cliffords. The simultaneous two-qubit RB is
performed in group of (Q0-Q1,Q2-Q3,Q4-Q5,Q6-Q7) and (Q1-Q2,Q3-Q4,Q5-Q6,Q7-Q0).

d Measured in a different cooling down. There is a stronger TLS that fluctuates Q5, causing unclear T2 result.

TABLE S3. Device parameters.

D. Readout correction

To correct state preparation and measurement (SPAM) error, we first find the transfer matrix R by preparing all
computational states of the joint system and measured the final probability distribution, as shown in Fig. S8. Given
the relatively small single-qubit gate error (0.14%), we have ignored the error of R itself. We then use R to correct
readout results in subsequent experiments according to

|φcorrected⟩ = R−1|φraw⟩. (1)

IV. COUPLER-ASSISTED iSWAP GATE BETWEEN FIXED-FREQUENCY QUBITS

In the rest of this supplementary material, unless specified otherwise, by iSWAP we mean the coherent swapping
operation between |11⟩ and |20⟩, but not the usual definition which is between |01⟩ and |10⟩. For optimal state transfer
during the iSWAP gate, the following four factors need to be considered when choosing the operation point: (1) short
gate time considering the limited coherence time; (2) avoiding unwanted transitions during pulse rise and fall; (3)
smaller parametric modulation amplitude to avoid high-order interaction; (4) avoiding spurious transitions during the
parametric modulation.

Short gate time can be realized by shortening either the adiabatic rising/falling edges or the parametric pulse
length. To loosen the adiabatic condition and ease the pulse shaping efforts, operation points closer to the idling bias
(towards the left in the Fig. S9a and d) are preferred. It’s worth noting that there is generally a small avoided level
crossing (∆gap ≈ 2 MHz) between |110⟩ and |002⟩, which we want to pass as fast as possible to avoid transition to |110⟩
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FIG. S6. Schematic diagram of the experimental setup. (Left) Schematic diagram of the 8-qubit quantum processor and
10 control lines (the readout line and the resonators are not shown). Adjacent qubits and couplers are capacitively coupled.
The shared control lines are inductively coupled to qubits for XY drive and to coupler SQUID for frequency modulation.
(Right) The schematic diagram of control electronics and wiring.

during the adiabatic falling edge. Shortening the parametric pulse requires stronger parametric modulation amplitude
and/or a larger transition matrix element |⟨s|a†cac|101⟩| (s=200 or 002). Too strong a parametric modulation results
in high-order interaction term that cannot be ignored in the Jacobi-Anger expansion. For small modulation amplitude
and short length, the working point towards lower coupler frequency is preferred as the transition matrix element
becomes significantly stronger due to wavefunction hybridization.

To avoid spurious transitions to other states, we compare their impact on the target transition across the bias
range. Figure S9b and e show the calculated AC Stark shift δ = (

√
∆2 + (r Ω0)2 − |∆|), a metric to quantify the

spurious effect by taking into consideration both detuning from targeted to unwanted transition ∆ and drive strength
r ∗Ω0, where Ω0 is the Rabi frequency of the targeted transition given a certain drive amplitude, and r is the relative
strength of the unwanted transition. In the experiments, we choose the extremum (black dot) as our operation point,
balancing both the spurious effect and adiabatic constraint. The working points can be roughly identified from the
transition spectroscopy experiment by comparing theory and experimental result, as shown in Fig. S9b and S9e.

At the selected operation points, we identify |101⟩↔|200⟩ transition through a swap-spectroscopy experiment
(Fig. S10a). The targeted transition is well-separated from other spurious transitions. Finding the parametric fre-
quency, we calibrate the iSWAP gate (pulse width: 30 ns) by sweeping the pulse amplitude, as shown in Fig. S10b.
We check the integrity of the selected transition by counting the probability at each computational state, and repeat
it for four different input states. Residual transition errors (2.7% on average) are mainly caused by energy relaxation
during the pulse.
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with all the couplers biased at the sweet spot.
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FIG. S8. Multi-qubit readout correction matrix. Readout matrix for 8-qubit system |Q0Q1Q2Q3Q4Q5Q6Q7⟩.The readout
matrix is measured by traversing 28 = 256 eigenstates of the system (lowest two states for each qubit). For each prepared state,
we repeat multiplexed state measurement for 50000 times.

V. IMPLEMENTATION OF n-QUBIT CZ GATES

A. Gate decomposition

The n−CZ gate scheme can be decomposed into iSWAP gates calibrated for connected qubit pairs on the 8-qubit
ring and single-qubit X gates. The circuit for implementing the n−CZ gate with n = 4, 6, 8 are illustrated in Fig. S11a.
There are two considerations when selecting the qubits in each case. First, the qubit pairs at both ends of the ladder,
Q0–Q7 and Q3–Q4, have a relatively weak qubit–coupler interaction strength (g/2π ≈ 40 MHz), leading to a tighter
adiabatic condition and an inferior gate performance. Second, the frequency of Q3 is unstable, showing random
telegraph behavior, possibly as a result of spurious two-level systems. The waveforms for qubit-XY and coupler-Z
control in the 8-CZ case is shown in Fig. S11b. To suppress the correlated flux noises, we idle all couplers at their
respective sweet spot and use two-pole flux modulation in the flux pulses of the QuAND and reverse QuAND gates.
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FIG. S9. Optimizing the operation point for the iSWAP gate. a, Energy level spectra of the qubit(Q4)-coupler-
qubit(Q5) system versus the coupler flux bias Φe (solid lines). The inset shows the small avoided level crossing between |002⟩
and |110⟩. b, AC Stark shift induced by spurious transitions from the parametric drive versus flux bias. At each bias, we assume
a drive amplitude that corresponds to 10 MHz |101⟩-|002⟩ swapping rate, i.e. Ω =10 MHz. Several prominent transitions are
identified. c, Transition spectroscopy (initial state: |101⟩, measured qubit: Q4) by sweeping the frequency of the parametric
pulse and the the flux bias amplitude. The experiment sequence is shown in the left. Here we identify transitions by measuring
the probability of |0⟩, since the chosen readout frequency doesn’t discriminate the first and second excited state. The black
dots sharing the same horizontal axis indicate the optimal operation point for the parametric swap between |101⟩ and |002⟩.
d, Same as a but the transition is to |200⟩. e, Same as b but the resonant transition is between |101⟩-|200⟩. f, Same as c but
the measured qubit is Q5.

B. Calibration procedures

As discussed in the Methods, rotation angle of an iSWAP operation can be changed by varying the phase of the
parametric modulation and only the relative phase between two consecutive iSWAP gates affects the final conditional
phase accumulation on state |11⟩. This is a more convenient way, compared to the previously demonstrated approach
based on resonant interaction, in which the pulse length has to be varied to calibrate a π-SWAP gate and a 3π-SWAP
gate for cancelling the conditional phase [12]. An example of the paired QuAND sequence producing an identity
operation and the corresponding process tomography result (after calibration) is shown in Fig. S12.

The phase calibration of an n-CZ gate starts with the CZ gate in the middle, and then progressively extends to
the outermost part of the circuit. In each iteration, we set the phase of first parametric pulse (in QuAND) to 0,
calibrate the phase of the second parametric pulse (in reverse QuAND) through a conditional Ramsey experiment.
In the following, we articulate our calibration procedures step-by-step:

(i) iSWAP calibration. We first calibrate all the iSWAP pulses between adjacent qubits – optimizing the frequency
and amplitude of the parametric modulation – in order to make the excitation swap as complete as possible, as
illustrated in Fig. S10.
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FIG. S10. Implementation of the coupler-assisted iSWAP gate. a, iSwap spectroscopy (starting from |101⟩)by sweeping
the length and frequency of the parametric pulse at Φe = 0.26 Φ0, using a weak parametric pulse amplitude (Ap ≈ 0.01).
Several prominent transitions are identified. b, Measured probability distribution of the final state after the iSWAP pulse
(coupler traced out) versus the parametric pulse amplitude, repeated for four different input states. The parametric pulse
length is 30 ns.

(ii) Single-qubit phase calibration. Because the qubit frequency is modulated during the iSWAP pulse, the
pulse itself induces single-qubit phases (ϕ1 and ϕ2) on both qubits as well as a conditional phase as mentioned
before. The conditional phase will be handled later, and we can ignore it for now. The single-qubit phases may
be compensated by adding virtual-Z gates in the circuit, which can be calibrated using the pulse train method,
as illustrated in Fig. S13a-b.

(iii) Conditional phase calibration. We then apply the iSWAP gates (single-qubit phase corrected) to the CCZ
circuit by sandwiching a previously calibrated CZ gate with a pair of QuAND and reverse QuAND gate, as shown
in Fig. S13c. In general, the equivalent circuit is a CCZ gate plus a controlled-phase gate CZ(φzz), which results
from the nontrivial phase accumulated during the idling period and during the iSWAP pulses. The conditional
phase φzz can be calibrated using the standard conditional Ramsey technique. As we discussed before, the phase
of the first iSWAP gate can be made arbitrary. Without loss of generality, we set it to zero. We then sweep the
phase of the second iSWAP gate and find the correct phase which gives φzz = 0, as illustrated in Fig. S13d. Note
that the conditional phase only shifts with the pulse phase in the case when the Q0 is prepared at the ground
state, because there is an X pulse before the iSWAP gate in QuAND and the |11⟩-|20⟩ iSWAP is effective only
when Q0 starts at the ground state.

(iv) Extension to more qubits. The procedure can be extended to a n-qubit controlled phase gate by adding
more QuAND pairs into the circuit. For example, Fig. S13e describes how to synthesize an n-CZ gate from an
existing (n− 1)-CZ gate. Similar to the CCZ case, there is an unwanted conditional phase arising from the two
added iSWAP gates, which can be calibrated away in the same way as described in the last step. Note that
since we can position the CZ gate in the middle of the qubit chain, the process can be expedited by calibrating
QuAND pairs on both sides of the CZ gate in parallel.

(v) Final check. The final calibration result can be verified by running a full-scale conditional Ramsey experiment
(Fig. S13f).

VI. ERROR ANALYSIS

A. Process tomography

The truth table measures the probability distribution of the final states given a set of eigenstates as input. It may
underestimate phase errors in the corresponding process. To fully characterize the multiply controlled gate synthesized
from QuAND, we perform standard process tomography for the 4-qubit CZ (CCCZ) gate. Unfortunately, process
tomography with larger matrix is unattainable due to limited memory. The reconstructed process matrix χexp from
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FIG. S12. Identity operation from a QuAND pair. a, Pulse sequence for QuAND and reverse QuAND gate. The two
iSWAP pulses swap the excitation from |11⟩ to |20⟩ and back to |11⟩, however, with a phase factor which can be calibrated away
by adjusting the relative phase of the parametric modulation (θ2 − θ1). b, Real part of the experimentally measured process
matrix χexp of a calibrated identity operation formed by the paired QuAND gates in a. The process fidelity Fp = Tr(χexpχI) is
89.0%, corresponding to a gate fidelity of Fg = 91.2%. The idling time tidle between the QuAND and the reverse QuAND gate
is 100 ns. The process fidelity is lower than the average state fidelity 95.1%, which is a consequence of the higher sensitivity to
phase errors in process tomography. The measured leakage rate of the QuAND pair is about 0.35%.

44 = 256 distinct input states gives process fidelity Fp = Tr(χexpχideal) =82.6% (Fig. S14). Corresponding CCCZ
gate fidelity FCCCZ = (16∗Fp+1)/17 = 83.6% is lower then the 4-qubit Toffoli truth-table fidelity shown in the main
text (both using Q4Q5Q6Q7), and is close to the fidelity (84.4%) fitted from the Grover’s success fidelity (Fig. 4c in
the main text). In the following, we discuss the main error processes including relaxation and leakage.
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by the iSWAP gate. The unitary of a native iSWAP pulse, iSWAP∗(θ) is different from an iSWAP gate, iSWAP(θ), by single-
qubit Z rotations on both qubits (ϕ1 and ϕ2). We use the pulse train method by repeating a subcircuit n times for enhanced
sensitivity. b, Example of progressively calibrating ϕ1 with increasing number of repeated cycles. c, Circuit diagram of the
sequence for calibrating a CCZ gate using previously calibrated iSWAP gate (single-qubit phase corrected) from a and a CZ
gate between Q1 and Q2. The bold lines are used to indicate that part of the circuit diagram should be interpreted differently
from the traditional description based on binary states. For example, the iSWAP gate here is not the conventional |01⟩-|10⟩
iSWAP, but involving an ancilla state, which should also be considered for the idling period between the two iSWAP gates.
A conditional Ramsey sequence is applied to Q0 (control qubit) and Q1 (target qubit) for measuring the conditional phase.
The X1/2(φ) gate denotes a π/2 pulse with a varying phase of φ. d, The measured response from the sequence in c with
varying phase of second iSWAP gate θ and with Q0 initialized at |0⟩ or |1⟩ state. As expected, the conditional phase ϕzz

changes linearly with θ. The ϕzz = 0 condition is met at a specific θ (dashed linecuts) where the phase responses are aligned.
e, Circuit diagram showing how to extend the calibration from a (n-1)-CZ gate to a n-CZ gate and the equivalent circuit. f,
Multi-qubit conditional Ramsey experiment for verifying the phase calibration for an n-qubit CZ gate (n = 4, 6, 8). In the
shown example, Q0 is used as the target qubit, while all the other qubits are prepared at either |0⟩ or |1⟩ state to traverse all
possible combinations. Obviously, the phase of the target qubit is flipped only if the control qubits are prepared at |1⟩ state
(red curve), confirming the phase calibration result.
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FIG. S14. Process tomography of the 4-CZ or CCCZ gate (color bar: experiment; frame: theory).

B. Relaxation error

We estimate the T1-limited gate fidelity (FT1) by segmenting the circuit (in Fig. S15) and taking the product of
T1-limited fidelity of each segment FT1 = Πj,kF j,k

T1 . The relaxation rate of an instantaneous eigenstate during a flux
pulse generally keeps varying during the pulse, due to the varying wavefunction participation of different bare states
[10]. The average relaxation rate of the eigenstate is calculated by summing up contribution from all bare states.
The rate is larger than that of idle status, because of the strong overlap with the relatively short-lived coupler (see
Table. S3).

The relaxation-limited gate fidelities (total duration) for the 4-qubit, 6-qubit, and 8-qubit Toffoli gates are 92.5%
(0.4 µs), 66.7% (1.3 µs, staggered pulses), and 62.3% (1.1 µs), respectively, and are responsible for approximately
70% of the total error. Note that the gate length of 6-Toffoli is longer because we stagger the flux pulses for reducing
the otherwise strong spectator effect [10].
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segment 0 segment K-1

FIG. S15. Fidelity analysis and pulse sequence for n-qubit Toffoli. Sketch of segmented circuit for fidelity estimate.
Fj,k

T1 represents T1-limited fidelity of qubit j in segment k.

C. Leakage error

In Fig. S16, we show an extended 4-qubit Toffoli gate truth table with |2⟩ state included in the readout for analyzing
the leakage effect. The average leakage rate to higher energy levels over 16 inputs is about 0.82%. The state leakage
mainly arises from the two pair of QuAND gates (∼0.35% for each pair) and the CZ gate (∼0.1%) in between.
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FIG. S16. 4-qubit Toffoli gate truth table including state |2⟩.

VII. GROVER’S SEARCH ALGORITHM

The Grover’s search algorithm generally includes four steps (as shown in Fig. 3a in the main text): (i) initialize the
n-qubit system into an equal superposition of all possible bit-string states 1

2n/2

∑2n−1
s=0 |s⟩; (ii) encode the solution j

with a phase oracle Oj =
∑

s ̸=j |s⟩ ⟨s| − |j⟩ ⟨j|, i.e. a conditional π-phase shift on state |j⟩; (iii) diffuse the encoded
phase and amplify the probability of finding |j⟩; (iv) measure the final state. Step (ii) and (iii) may be repeated for
M times for further amplification. The algorithm promises quadratic speedup, reaching the optimal amplification at
M = 2n/2.

A. Error model for algorithm success probability

Here we provide a simple model for estimating the success probability (ASP) in Grover’s search algorithm with
non-ideal gate fidelity. To find one solution among an unstructured list of size 2n using Grover’s algorithm, the
ideal ASP after M cycles of oracle queries is ASP = sin2

(
(2M + 1) arcsin(2−

n
2 )
)
. When the coherence is completed

destroyed, the measurement outcome is a uniformly random number between 0 and 1 because the last layer of the
circuit is a layer of Hadamard gates. Hence, the ASP is 1

2n . Since the circuit of each encoding-diffusing cycle contains
two n-qubit CZ gates with fidelity F (ignoring single-qubit gate error), the fidelity of the whole circuit with M cycles
is then F2M . A empirical ASP model can be written

ASP = F2M sin2
(
(2M + 1) arcsin(2−

n
2 )
)
+

1−F2M

2n
. (2)

B. Leakage in Grover’s Search
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FIG. S17. 4-qubit Grover’s search result (M = 2) including state |2⟩.

In Fig. S17, we show the measured leakage to non-computational states in the 4-qubit Grover circuit. We find
that the majority of leakage goes to the second excited state of Q4 and Q7, which are used as the ancilla states for
temporary storage. Moreover, we find that the leakage of the Grover circuit increases with its length or the number
of oracle-amplification cycles M , as shown in Fig. S18. The increment slows down with larger M , because the leaked
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FIG. S18. Average leakage rate (over 16 encoded states) of 4-qubit Grover’s search versus the number of
oracle-amplification cycles. The data are presented as mean values +/- standard deviation.

population can decay back into the computational subspace. The measured leakage rate per cycle (1.3∼1.5%) is
consistent with the 4-qubit Toffoli gate leakage (0.82%), given two CCCZ gates in each cycle.

C. Multi-solution Grover’s Search

Multiple arbitrary solutions can be conveniently encoded in our scheme with concatenated oracles, as shown in
Fig. S19a. Examples of experimental results for two-solution and three-solution Grover’s search are shown in Fig. S19b
and S19c.
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FIG. S19. Multiple solution Grover’s search algorithm. a, Circuit diagram for implementing multi-solution Grover’s
search algorithm. During the encoding process, we apply multiple phase oracles in succession. An example of a 4-qubit phase
oracle is shown on the right. b, Four-qubit two-solution Grover’s search result (M = 1). With the first encoded state fixed as
|0100⟩ (left) or |1000⟩ (right), the matrix shows how the measured probabilities of 24 = 16 states vary with the second encode
state (y-axis). When state |0000⟩ is encoded twice (bottom), the net effect equals to no encoding and all states are measured
with about equal probability. c, Four-qubit three-solution Grover’s search result (M = 1). The first, second encoded states are
fixed as |0000⟩,|1000⟩ (left) or |0100⟩,|1100⟩ (right) . The third one traverses over all the 16 logical states (y-axis).




