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Supplementary Note 1 . Computation of the Holevo and Nagaoka bounds

In this Supplementary Note we describe the computation of the single-copy Nagaoka, two-copy Nagaoka and Holevo

bounds. For the qubit rotation estimation problem discussed in this work we consider the state |0〉 subject to rotations

θx and θy about the x and y axes of the Bloch sphere respectively. The rotation operators are given by

Rx(θ) =

(
cos( θ2 ) −i sin( θ2 )

−i sin( θ2 ) cos( θ2 )

)
and Ry(θ) =

(
cos( θ2 ) −sin( θ2 )

sin( θ2 ) cos( θ2 )

)
. (1)

After the rotations, the probe is subject to the decoherence channel. Assuming the rotations are small, the density

matrix and its derivatives are given by

ρ =

(
1− ε

2 0

0 ε
2

)
and ∂xρ =

(
0 i

2 (1− ε)
−i
2 (1− ε) 0

)
and ∂yρ =

(
0 (1−ε)

2
(1−ε)

2 0

)
, (2)

where ε is the decoherence strength and ∂i represents the partial derivative with respect to the parameter θi. The

parameters θx and θy can be estimated using a positive operator valued measure (POVM). A POVM is described

by a set of non-negative operators, {Πl}, which sum to the identity,
∑
l Πl = I. Each measurement outcome occurs

with a certain state-dependent probability, pl = tr[ρθΠl]. The series of measurement results are used to construct

unbiased estimators, θ̂x and θ̂y, for the parameters of interest, θx and θy. Our goal is to minimise the mean squared

error (MSE) between the true θ and the estimated value θ̂. The MSE matrix is given by

[V (θ̂)]jk =
∑
l

(θ̂j(l)− θj)(θ̂k(l)− θk)pl , (3)

where the sum is over all possible measurement outcomes. The Holevo and Nagaoka bounds are lower bounds for the

trace of the MSE matrix when using collective and separable measurements respectively.

The Holevo bound is obtained by solving the following non-trivial minimisation problem [1, 2]

Tr[V ] ≥ H := min
X

Tr[Zθ[X]] + TrAbs[ImZθ[X]] , (4)

where Zθ[X]jk := Tr[ρXjXk], ImZθ[X] represents the imaginary part of Zθ[X], and TrAbs[ImZθ[X]] is the sum of

the absolute values of the eigenvalues of the matrix ImZθ[X]. The minimisation is over the Hermitian matrices X,

subject to the unbiased conditions

Tr[ρXi] = 0

Tr[∂iρXj ] = δij .
(5)

The Holevo bound applies when we allow for collective measurements on infinitely many copies of the probe state.

When restricted to separable measurements, the Nagaoka bound provides an upper limit on the attainable precision.

For estimating two parameters, the Nagaoka bound is given by [3, 4]

Tr[V ] ≥ N := min
X

Tr[Zθ[X]] + TrAbs[ρ[X1, X2]] , (6)

where [A,B] = AB −BA and the Hermitian matrices X are subject to the same unbiased conditions as before.

The following Hermitian matrices simultaneously solve the optimisation problem for the Holevo bound and the

single-copy Nagaoka bound

Xx =

(
0 i

1−ε
−i

1−ε 0

)
and Xy =

(
0 1

1−ε
1

1−ε 0

)
. (7)
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By substituting into Eq. (4) it is easily verified that these matrices give a Holevo bound of

vx + vy ≥ H =
4− 2ε

(1− ε)2
, (8)

where vx(y) is the variance in the estimate of θx(y). Similarly, by substituting into Eq. (6), the single-copy Nagaoka

bound is given by

vx + vy ≥ N1 =
4

(1− ε)2
. (9)

For computing the two-copy Nagaoka bound it is no longer sufficient to consider the state and derivatives in

Eq. (2). To find the attainable precision when performing collective measurements on two copies of the quantum state

simultaneously, we make the transformation

ρ→ ρ⊗ ρ, ∂xρ→ ∂xρ⊗ ρ+ ρ⊗ ∂xρ and ∂yρ→ ∂yρ⊗ ρ+ ρ⊗ ∂yρ . (10)

The Hermitian matrices which solve the two-copy Nagaoka bound are given by

Xx =


0 i

2(1−ε)
i

2(1−ε)
1−i

2(1−ε)
−i

2(1−ε) 0 0 i
2(1−ε)

−i
2(1−ε) 0 0 i

2(1−ε)
1+i

2(1−ε)
−i

2(1−ε)
−i

2(1−ε) 0

 and Xy =


0 1

2(1−ε)
1

2(1−ε)
1+i

2(1−ε)
1

2(1−ε) 0 0 1
2(1−ε)

1
2(1−ε) 0 0 1

2(1−ε)
1−i

2(1−ε)
1

2(1−ε)
1

2(1−ε) 0

 . (11)

We note that these solutions are not unique and multiple optimal solutions were found for the two-copy Nagaoka

bound. This solution gives the two-copy Nagaoka bound as

vx + vy ≥ N2 =
4− 2ε+ ε2

2(1− ε)2
. (12)

As both the Holevo and Nagaoka bounds can be computed efficiently [5, 6] we can be sure our solutions are correct.

Supplementary Note 2 . POVMs saturating the Nagaoka bounds

In this Supplementary Note we present measurement strategies, i.e. POVMs and estimator functions, which saturate

the single- and two-copy Nagaoka bounds. A POVM which saturates the single-copy Nagaoka bound is given by

Π1 =
1

4
(−i |0〉+ |1〉)(i 〈0|+ 〈1|) ,

Π2 =
1

4
(i |0〉+ |1〉)(−i 〈0|+ 〈1|) ,

Π3 =
1

4
(|0〉+ |1〉)(〈0|+ 〈1|) ,

Π4 =
1

4
(− |0〉+ |1〉)(−〈0|+ 〈1|) .

(13)

The probability of each of the four outcomes is 1
4 . By attaching an estimator coefficient ξj,k to each measurement

outcome, it is possible to construct unbiased estimators for the parameters we want to sense, θ̂j =
∑
k pkξj,k, where

pk is the probability of the kth POVM outcome occuring. From this particular POVM, we can construct unbiased

estimators using the following estimator coefficients ξx,2 = ξy,3 = −ξx,1 = −ξy,4 = 2/(1− ε) and ξi,j = 0 for all other

i and j. These estimators then give individual variances of

vx =
1

4
(ξ2
x,1 + ξ2

x,2) , (14)

vy =
1

4
(ξ2
y,3 + ξ2

y,4) , (15)
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which gives a total variance of vx + vy = 4/(1 − ε)2 coinciding with the single-copy Nagaoka bound N1, Eq. (9).

Alternatively, from the POVM, it is possible to compute the classical Fisher information without using the estimator

coefficients.

This measurement strategy is theoretically optimal when measuring probe states individually. However, it requires

four measurement outcomes, meaning it is necessary to use an ancilla qubit to implement this POVM. In this case

Naimark’s theorem can be used to convert the POVM to a projective measurement in a higher dimensional Hilbert

space [7], but this comes at the cost of increasing experimental complexity. This can be avoided by noting that this

POVM is equivalent to measuring σx half of the time and σy half of the time, where σx and σy are the usual Pauli

matrices. Thus we can simply split our measurement in two. We measure θx with half of the probe states using the

following POVM

Πx1 =
1

2
(−i |0〉+ |1〉)(i 〈0|+ 〈1|) ,

Πx2 =
1

2
(i |0〉+ |1〉)(−i 〈0|+ 〈1|) ,

(16)

and θy with the remaining probe states using

Πy1 =
1

2
(|0〉+ |1〉)(〈0|+ 〈1|) ,

Πy2 =
1

2
(− |0〉+ |1〉)(−〈0|+ 〈1|) .

(17)

The new estimator coefficients are reduced by a factor of two ξ∗x,2 = ξ∗y,1 = −ξ∗x,1 = −ξ∗y,2 = 1/(1−ε), the probability

of each outcome is now 1
2 and each estimate uses half as many resources. Therefore the variances in estimating θx

and θy are given by

vx = 2(
1

2
)((ξ∗x,1)2 + (ξ∗x,2)2) =

1

4
(ξ2
x,1 + ξ2

x,2) , (18)

vy = 2(
1

2
)((ξ∗y,1)2 + (ξ∗y,2)2) =

1

4
(ξ2
y,3 + ξ2

y,4) , (19)

coinciding with the original measurement, Eq. (13).

For the two-copy measurement we write the POVM as Πj = |ψj〉 〈ψj | where

|ψ1〉 =


1√
3

−exp(iπ/4)√
6

−exp(iπ/4)√
6

exp(iπ/2)√
3

 , |ψ2〉 =


1√
3

exp(−iπ/12)√
6

exp(−iπ/12)√
6

exp(−iπ/6)√
3

 , |ψ3〉 =


1√
3

exp(i7π/12)√
6

exp(i7π/12)√
6

exp(−i5π/6)√
3

 , |ψ4〉 =


0
1√
2
−1√

2

0

 . (20)

The first three POVM outcomes occur with probability (4+ε(ε−2))/12 and the fourth outcome occurs with probability

ε(2− ε)/4. We use the following estimator coefficients

ξx,1 =
1

1− ε
, ξx,2 =

√
3− 1

2(1− ε)
, ξx,3 =

−
√

3− 1

2(1− ε)
and ξx,4 = 0 (21)

ξy,1 =
−1

1− ε
, ξy,2 =

√
3 + 1

2(1− ε)
, ξy,3 =

1−
√

3

2(1− ε)
and ξy,4 = 0 . (22)

The individual variances are then given by

vx =
1

4
+

3

4(1− ε)2
, (23)

vy =
1

4
+

3

4(1− ε)2
, (24)

and the sum coincides with the two-copy Nagaoka bound, Eq. (12). A geometrical interpretation of this POVM is

provided in Supplementary Note 12 .
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Supplementary Note 3 . Optimised three- and four-copy projective measurements surpassing the preceding

Nagaoka bound

In this Supplementary Note we present the details of the three- and four-copy measurements mentioned in the main

text, which surpass the two- and three-copy Nagaoka bounds respectively. A three-copy POVM and estimator function

which surpass the two-copy Nagaoka bound were found numerically for ε = 0.5. For this particular decoherence

strength, the Holevo bound on the variance when measuring θx and θy, per qubit, is 12 rad2. The single-, two- and

three-copy Nagaoka bounds on the variance are 16 rad2, 13 rad2 and 12.716 rad2 respectively. Our specific three-copy

measurement is theoretically able to attain a variance of 12.719, almost the same as the three-copy Nagaoka bound.

We use the following 8 POVM elements to obtain this variance.

∣∣ψ3c
1

〉
=



0.4993 + 0.0260i

−0.2887 + 0.0006i

−0.2887 + 0.0006i

0.2882− 0.0162i

−0.2887 + 0.0006i

0.2882− 0.0162i

0.2882− 0.0162i

−0.4970 + 0.0551i


,
∣∣ψ3c

2

〉
=



0.4968− 0.0563i

0.2847− 0.0480i

0.2847− 0.0480i

0.2816− 0.0633i

0.2847− 0.0480i

0.2816− 0.0633i

0.2816− 0.0633i

0.4812− 0.1359i


,
∣∣ψ3c

3

〉
=



0.4086− 0.2881i

0.1789 + 0.2266i

0.1789 + 0.2266i

−0.2166 + 0.1909i

0.1789 + 0.2266i

−0.2166 + 0.1909i

−0.2166 + 0.1909i

−0.3504− 0.3566i


,

∣∣ψ3c
4

〉
=



0

−0.0076− 0.0237i

−0.4459− 0.2057i

−0.4754 + 0.1796i

0.4535 + 0.2294i

0.4528− 0.1900i

0.0226 + 0.0104i

0


,
∣∣ψ3c

5

〉
=



0

0.0015− 0.0248i

−0.3411− 0.3532i

0.5082 + 0.0049i

0.3396 + 0.3781i

−0.4909 + 0.0130i

−0.0173− 0.0179i

0


,
∣∣ψ3c

6

〉
=



0

−0.4038 + 0.4119i

0.2011− 0.2275i

0.2740 + 0.0008i

0.2026− 0.1844i

0.3020− 0.0320i

−0.5760 + 0.0313i

0


,

∣∣ψ3c
7

〉
=



0

0.5637 + 0.1225i

−0.2997− 0.0491i

0.1452 + 0.2323i

−0.2640− 0.0734i

0.1879 + 0.2386i

−0.3331− 0.4709i

0


,
∣∣ψ3c

8

〉
=



0.0574 + 0.4967i

0.2846− 0.0486i

0.2846− 0.0486i

−0.0640− 0.2815i

0.2846− 0.0486i

−0.0640− 0.2815i

−0.0640− 0.2815i

−0.4809 + 0.1370i


.

(25)

These POVMs, combined with the following estimator coefficients

ξx1 = −0.1338, ξx2 = 0.1338, ξx3 = −2.4681, ξx4 = 0.7817,

ξx5 = −0.7817, ξx6 = 0.7156, ξx7 = −0.7156, ξx8 = 2.4681
(26)

and

ξy1 = −2.4680, ξy2 = 2.4680, ξy3 = 0.1338, ξy4 = 0.7157,

ξy5 = −0.7157, ξy6 = −0.7819, ξy7 = 0.7819, ξy8 = −0.1338 ,
(27)

give rise to a variance of 12.719. There is an extremely small difference of 0.003 rad2 in the variance of this measurement

and the three-copy Nagaoka bound, but this is not due to numerical error. Indeed, we were able to find a 10 outcome
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POVM with a variance equal to the three-copy Nagaoka bound (up to numerical error ≈ 10−6). However, in the

main text, the near-optimal 8 outcome POVM was implemented, because this does not require any ancilla qubits,

simplifying the experimental realisation.

In the main text we also presented simulations based on a projective four-copy measurement, which theoretically

surpasses the three-copy Nagaoka bound. The details of this POVM are found in our publicly available repository [8].

The four-copy Nagaoka bound on the variance is 12.368 rad2. Our four-copy projective measurement attains a variance

of 12.508 rad2, which is below the three-copy Nagaoka bound, but does not saturate the four-copy Nagaoka bound.

Due to computational restraints, we only searched for projective four-copy measurements, so saturating the four-copy

Nagaoka bound may still be possible with a more general four-copy POVM.

Supplementary Note 4 . Experimental implementation of optimal POVMs

1. Single- and two-copy POVM implementation

In this Supplementary Note we describe how to convert the optimal POVMs into experimentally realisable quantum

circuits. The quantum processors used in our experiments make measurements in the z basis. Therefore, in order to

implement the POVMs it is necessary to diagonalise them in this basis. For example, for the two qubit POVM, we

aim to find a unitary matrix U such that

U
[
|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

]
, (28)

is diagonal in the computational basis, where
[
|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

]
is a 4 × 4 matrix. Implementing this unitary

matrix and measuring in the z basis is equivalent to implementing the desired POVM.

We start with the single qubit POVM for estimating θx, Eq. (16). We write

|ψx1〉 =
1√
2

(−i |0〉+ |1〉) and |ψx2〉 =
1√
2

(i |0〉+ |1〉) , (29)

so that we wish to diagonalise
[
|ψx1〉 |ψx2〉

]
. It is easy to verify that this is diagonalised by the following unitary

matrix

Ux =
1√
2

(
i 1

−i 1

)
. (30)

In Fig. 1 of the main text, single qubit unitary matrices are shown as green boxes in the circuit diagram. We use

the following definition for the most general single qubit gate characterised by three parameters, θ, φ and λ

U1q(θ, φ, λ) =

(
cos( θ2 ) −eiλsin( θ2 )

eiφsin( θ2 ) ei(λ+φ)cos( θ2 )

)
. (31)

With this definition, up to a global phase factor, we can write Ux = U1q(3π/2, 0, 3π/2). Following the same approach,

to implement the POVM for estimating θy, Eq. (17), we require the following unitary matrix

Uy =
1√
2

(
1 1

−1 1

)
. (32)

This can be implemented as Uy = U1q(3π/2, 0, 0) = Ry(3π/2).

Optically these unitary matrices are implemented through a motorised quarter-wave plate (QWP) followed by a

half-wave plate (HWP) and then another QWP. The HWP and QWP set to a specific angle θ implement the following
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unitary transformations

HWP(θ) = e−iπ/2

(
cos(θ)2 − sin(θ)2 2cos(θ)sin(θ)

2cos(θ)sin(θ) −cos(θ)2 − sin(θ)2

)
, (33)

and

QWP(θ) = e−iπ/4

(
cos(θ)2 + isin(θ)2 (1− i)cos(θ)sin(θ)

(1− i)cos(θ)sin(θ) icos(θ)2 + sin(θ)2

)
. (34)

To implement Ux, we use the following angles QWP(−π/4)HWP(−3π/4)QWP(π/2), which is equivalent to Ux up

to a global phase shift. To implement Uy we use QWP(0.788913939)HWP(-1.174581359)QWP(0.003515755). This is

not an exact implementation, but the numerical error in the implementation of Uy is significantly smaller than the

expected MSE, hence can be ignored.

For the two-copy POVM, Eq. (20), note that 〈ψ1|, 〈ψ2|, 〈ψ3| and 〈ψ4| are orthonormal hence the unitary matrix

which diagonalises [|ψ1〉 , |ψ2〉 , |ψ3〉 , |ψ4〉] is [〈ψ1| , 〈ψ2| , 〈ψ3| , 〈ψ4|]T . Any two qubit unitary matrix can be implemented

by three CNOT gates, four arbitrary single qubit unitary matrices, Eq. (31), and three single qubit rotations [9]. This

is the circuit shown in Fig. 1 (f) in the main text. The rotation parameters needed to implement this unitary matrix

to an accuracy of 1 part in 10 million are given in Tables. S1 and S2.

U1 U2 U3 U4

θ 1.332047081999419 1.332047066929274 2.328216659679420 0.813375851824116

φ 0.896361779524331 0.674434373615608 1.509056929793133 0.461859523404381

λ 0.228222830422120 1.342573324008889 2.257150772710729 -0.686354414697494

TABLE S1. Parameters required to implement the arbitrary single qubit unitary matrices for the optimal two-copy circuit in

Fig. 1 (f) from the main text.

Ry Ry Rz

θ 0.505232912711076 -0.705293075042498 1.378157349320011

TABLE S2. Parameters required to implement the single qubit rotations for the optimal two-copy circuit in Fig. 1 (f) from the

main text.

2. State preparation

The final step before running these optimal measurement circuits is to prepare the correct probe state. For a given

decoherence strength ε and rotation angles θx and θy we need to prepare three different states per qubit with the

appropriate probabilities. The state |ψθ〉 = Ry(θy)Rx(θx) |0〉 is prepared with probability 1− ε and the states |0〉 and

|1〉 are prepared with probability ε/2 for each qubit. For implementing collective measurements, each two qubit state

is a Kronecker product of two states and is prepared with a probability equal to the product of the probabilities for

each individual state. For example, the state |ψθ〉 ⊗ |0〉 is prepared with probability (1− ε)ε/2.

In principle, there should be no error in the value of ε used in our experiments, as the exact probability with which

we prepare each state is known. However, in practice, due to non-zero state preparation error, there will be some

error in the value of ε used. We now estimate the error in ε, σε, given a certain state preparation error. We ignore

readout error when calculating σε as this does not affect the actual state we prepare. For simplicity, we will consider

the case when θx = θy = 0, so that the state we wish to prepare is (1 − ε/2) |0〉 〈0| + ε/2 |1〉 〈1|. Using N qubits for



8

FIG. S1. Three-copy measurement circuit which surpasses the two-copy Nagaoka bound. Circuit reads from left

to right and continues from top to bottom. In total the circuit requires 43 CNOT gates, 20 arbitrary single qubit unitary

matrices, 6 Hadamard gates and 28 single qubit rotations, a total of 88 free parameters to optimise. The gates labelled U are

as defined in Eq. (31). The circuit diagram was constructed using the IBM Q QISKIT package.

the complete experiment, the true ε value is given by

ε = 2− 2N0,prep

N
, (35)

where N0,prep is the number of |0〉 states which are actually prepared. We assume that the state preparation error is

symmetric for preparation of both the |0〉 and |1〉 state, which we denote pp. This is the probability of initialising the

wrong qubit state. We can then write ε in terms of the number of |0〉 and |1〉 states which would ideally be prepared

and the probability of incorrect initialisation

ε = 2− 2N(1− εi/2)(1− pp)
N

− 2Nppεi/2

N
, (36)

where εi is the ε value which would be prepared in an ideal experiment. Finally, assuming that the |0〉 and |1〉
initialisation errors are independent, we find the variance of ε as

σ2
ε =

4

N
pp(1− pp) . (37)

As we average our results over 400 repetitions of the same experiment, σ2
ε is decreased by a further factor of 400. Using

the calibration data for our devices, we find that σε is on the order 10−4 or smaller for all devices, hence horizontal

error bars on Fig 2 (e) in the main text would be negligible and we do not include them.
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3. Three- and four-copy POVM implementation and noisy simulation

In order to implement the three-copy POVM presented in the Supplementary Note 3 we need a unitary matrix

which diagonalises
[∣∣ψ3c

1

〉
,
∣∣ψ3c

2

〉
,
∣∣ψ3c

3

〉
,
∣∣ψ3c

4

〉
,
∣∣ψ3c

5

〉
,
∣∣ψ3c

6

〉
,
∣∣ψ3c

7

〉
,
∣∣ψ3c

8

〉]
. This POVM is constructed such that the∣∣ψ3c

i

〉
are orthonormal. Therefore, the unitary matrix to be implemented experimentally is[∣∣ψ3c

1

〉
,
∣∣ψ3c

2

〉
,
∣∣ψ3c

3

〉
,
∣∣ψ3c

4

〉
,
∣∣ψ3c

5

〉
,
∣∣ψ3c

6

〉
,
∣∣ψ3c

7

〉
,
∣∣ψ3c

8

〉]†
.

Using the technique presented in Ref. [10], we are able to convert this unitary matrix to a three qubit quantum circuit,

shown in Fig. S1. This circuit consists of 43 CNOT gates, 20 single qubit unitary matrices, 6 Hadamard gates and

28 single qubit rotations, and is an extensive circuit. When implemented on various superconducting processors, the

results of this measurement did not reach the theoretical limits. This can possibly be attributed to the gate error

rates of the different processors or crosstalk between qubits. The quantum circuit corresponding to our four-copy

POVM can be found in our publicly available repository [8]. The decomposition of the four-copy measurement which

we use contains 115 CNOT gates, hence unsurprisingly the four-copy POVM cannot reach the theoretical limits with

even small amounts of noise. In Fig. 2 (f) in the main text we simulated implementing these measurements on noisy

quantum computers. This simulation used the IBM Q QISKIT package noise models and noise was modelled as

depolarising noise for different gate error rates. The results of this simulation suggest that with realistic future noise

levels, quantum processors may be able to implement three-copy measurements with a precision approaching the

theoretical limits. Four-copy measurements, on the other hand, will require considerably lower gate error rates to

reach the theoretical limits. Although this discussion comes with the caveat that modelling noise in such a complex

system is unlikely to be overly accurate, we do observe good qualitative agreement between simulation and experiment

for the three-copy measurement.

The results presented for the noisy simulations in Fig. 2 (f) in the main text use a slightly different error mitigation

method than that used for the experimental data. This is done to avoid erroneously predicting small variances from

our noisy simulations. In Fig. S2 we plot the predicted values of θx using our four-copy measurement as a function

of the input θ, simulated for two different gate error rates. Qualitatively, it is clear that as the noise is increasing the

estimator is predicting values closer to 0. Hence, we would expect such an estimator to perform worse with increasing

gate error rate. Quantitatively however, without any error mitigation, the MSE actually decreases with increasing

gate error rate for θ = 0. With gate error rates of 1× 10−3, the MSE is 11.89 rad2, for gate error rates of 5× 10−3,

the MSE is 11.71 rad2. The fact that higher gate error rates give a lower MSE indicates something is not correct, but

even more alarming is that both of these MSEs are below what is allowed by the Holevo bound. The reason for this

is that the high gate error rate biases the estimator. For an input angle of θ = 0, an estimator which predicts θ̂ = 0

every time will have a MSE of 0 rad2. Hence, for our noisy simulations, the calibration model we use corrects for

both the gradient of the estimator and the offset, θ̂x = mxθ̂noisy,x + cx. As we will stress in Supplementary Note 5 ,

a calibration model of this form can actually bias the estimator itself. Hence, we only use this form of calibration for

our noisy simulation results. This is more a reflection of the limitations of our simulations than anything else. It is

likely that a more comprehensive noise model is needed to completely capture the noise of a real quantum processor.

The results of our three- and four-copy collective measurements show the trade-off between what is gained by

implementing a theoretically better measurement versus what is lost by the increased experimental complexity of such

a measurement. However, this work may be viewed as one small step towards implementing collective measurements

on a large number of copies of the probe state simultaneously. For comparison, we will now briefly discuss alternative

approaches to implementing collective measurements. All previous approaches have been restricted to implementing

collective measurements on two copies of the probe state [11–15] and have relied on optical systems. Owing to the

way that two copies of the quantum state were created in these approaches, it is difficult to extend to measurements

on more than two copies of the quantum state simultaneously. Experiments using three degrees of freedom of a single
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FIG. S2. Noisy simulation of our four-copy measurement under depolarising noise. Shown are the predicted values

of θx using our four-copy measurement as a function of the true θ, simulated for two different gate error rates. The black line

shows the true θ value.

photon may offer a way around this problem [16]. Another possible way of implementing collective measurements on

more than two copies of a quantum state simultaneously is through quantum walks. Quantum walks were originally

proposed and demonstrated for implementing POVMs on single qubit states [17–19] and it was a very similar technique

which has enabled some of the recent demonstrations of two-copy collective measurements [13–15]. The theory of

quantum walks as a measurement tool has been extended to POVMs on qudit states [20]. This, combined with recent

advances in optical quantum state engineering [21, 22], may some day allow optical approaches to collectively measure

more than two copies of the quantum state simultaneously. It is likely that the continued development of collective

measurements on multiple platforms will be useful.

Supplementary Note 5 . Effect of error mitigation on the bias of an estimator

When calculating the various bounds in Supplementary Note 1 it was assumed that the rotations to be estimated

are small, meaning the estimators are unbiased exactly at θ = 0. It is not guaranteed that the estimators will remain

unbiased away from θ = 0. Fig. S3 shows the predicted angles, θ̂, for a range of different input angles, θ. Evidently,

the estimator remains approximately unbiased for a large range of θ. It is important for any estimator to be unbiased

to ensure a fair comparison is being made. Provided we have sufficiently many probe states available, it is always

possible to operate in the region where the estimator is unbiased. This can be done by taking a small sample of

the probe states,
√
N � N , where N is the number of available probe states, to obtain a rough estimate of θ. The

measurement apparatus can then be adjusted to operate in the unbiased region by taking into account this rough

estimate.

In this work error mitigation was used to allow us to observe quantum-enhanced metrology. An important require-

ment on any error mitigation technique used is that it does not introduce any bias into the estimator. We primarily

focused on Clifford data regression error mitigation [23] which essentially amounts to producing a model for the system

being interrogated. In the main text we used a model of the form

θ̂x(y) = θ̂noisy, x(y) + cx(y) , (38)

where cx(y) is a constant which accounts for the offset of the true estimate from the noisy estimate. However, the

authors who introduced this form of error mitigation originally proposed a linear model [23] of the form

θ̂x(y) = mx(y)θ̂noisy, x(y) + cx(y) , (39)



11

FIG. S3. Predicted θx values. For θ close to 0 the estimator is unbiased, i.e. θ̂ = θ. However, for larger θ the estimator is

no longer unbiased. This is to be expected as the estimator was constructed to be unbiased in the region around θ = 0. (a)

and (b) show results for the single-copy and two-copy estimator respectively. Results for estimating θx and θy are similar. The

black line shows the true θ values.

where the extra term mx(y) is another constant, determining the slope of the model. Given that the linear model

proposed is motivated by depolarising noise, it seems a natural choice. While this may be true for many other

applications of quantum processors, it is not true for quantum metrology. For quantum metrology θ̂noisy, x(y) will

be some distribution of estimated angles with a certain variance. If we were to multiply this distribution by some

constant mx(y) which is less than 1, we would artificially reduce the variance of the estimator. It then becomes

possible to have variances which appear smaller than the minimum allowed by quantum mechanics. The effect of

naively applying error mitigation based on Eq. (39) to quantum metrology is shown in Fig. S4. In this example the

fitted gradient depends on the value of ε: for larger ε, m is smaller. As Fig. S4 shows, with this error mitigation

model, we apparently surpass the two-copy Nagaoka bound in some regions, whereas, with an unbiased estimator

this is not possible. Thus, it is clear that error mitigation cannot be naively applied to quantum metrology. Other

error mitigation techniques were investigated, including zero noise extrapolation [24–26] and quantum readout-error

mitigation [27, 28], however they were not found to be as effective as Clifford data regression. Specifically, zero noise

extrapolation introduces a large overhead, which is not ideal for quantum metrology, and quantum readout-error

mitigation offered only marginal improvements in the MSE. Further study is needed to fully understand what error

mitigation protocols are best for quantum metrology. Indeed, recent error mitigation proposals, specifically designed

for quantum metrology, may prove more effective [29].

Supplementary Note 6 . Further three-copy measurement results

Fig. 2 in the main text shows the results of our three-copy measurement implemented on the Rigetti Aspen-9 and

F-IBM QS1 processors. Although these measurements did not reach the theoretical limit, the MSE for the F-IBM

QS1 processor is within a factor of 2 of this limit. This perhaps suggests that with minor improvements in gate

error rates, the theoretical limits on three-copy measurements may be approached. However, as we now show, this is

not necessarily true. We estimated a range of angles using the three-copy measurement on several different quantum

processors. The results of this are shown in Fig. S5, where it is evident that the three-copy measurements are effectively

useless at distinguishing different angles. For all devices tested, there was no meaningful correlation between the input

angle and the estimated angle. This is in stark contrast to the single-copy and two-copy measurements, shown in
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FIG. S4. Effect of naive error mitigation on estimation performance. We show the same results as presented in Fig. 2

(e) of the main text for the IBM Q System One device, however now the error mitigation (EM) is performed using the model

given by Eq. (39), instead of the model used in the main text, Eq. (38). Data is presented for ε = 0.3, 0.5 and 0.7. We show

the MSE obtained both with and without error mitigation. For ε = 0.3 the MSE is now considerably larger than in the main

text, while for ε = 0.7 it is considerably reduced. This can be explained by the fitted value of mx(y). As in the main text the

dashed pink, purple and green lines correspond to the single-copy Nagaoka, two-copy Nagaoka and Holevo bounds respectively.

Figs. 1 and 2 in the main text. The data-set measured for the Rigetti Aspen-9 device differs slightly from the IBM

Q devices, due to different device accessibility. Further theoretical and experimental studies will be required to fully

understand the utility of three-copy collective measurements for metrology.

Supplementary Note 7 . Problem where collective measurements on many copies of the probe state are

necessary

For the problem considered in this work, two-copy measurements are able to achieve almost the same precision

as the Holevo bound. Performing collective measurements on three or more copies of the probe state offers only

marginal improvements in the precision at the cost of greater experimental complexity. Thus, it is natural to wonder

if it is truly necessary to implement collective measurements on more than two copies of the quantum state. In this

Supplementary Note we provide an example which clearly shows that collective measurements on many copies of the

quantum state are necessary.

We examine a similar problem to the main text, estimating qubit rotations subject to the amplitude damping

channel, using the probe state |1〉. After the rotations and amplitude damping, the probe and its derivatives are given

by

ρ =

(
p 0

0 1− p

)
, ∂xρ =

i
√

1− p

2

(
0 −1

1 0

)
, and ∂yρ =

√
1− p

2

(
0 −1

−1 0

)
, (40)

where p is the amplitude damping strength. The following matrices then optimise the Holevo and Nagaoka bounds

Xx =
i√

1− p

(
0 −1

1 0

)
and Xy =

1√
1− p

(
0 −1

−1 0

)
. (41)

By direct substitution it can be verified that these matrices satisfy the unbiased conditions, Eq. (5). The corresponding



13

FIG. S5. Three-copy measurement implemented on several quantum processors. We show the estimated θx and θy

values, predicted by the three-copy measurement, as a function of the true angle θ, shown as the black line. For all devices,

there is no meaningful correlation between the true and predicted values, rendering them effectively useless as estimators.

All data points are based on at least 17,000 shots and all error bars correspond to one standard deviation obtained through

bootstrapping.

Holevo bound is given by

HAD =

{
4 for p ≤ 1/2 ,
4p

1−p for p > 1/2 .
. (42)

The single-copy Nagaoka bound is given by

N1,AD =
4

1− p
. (43)

Considering measurements on two copies of the probe state simultaneously, the following matrices optimise the

two-copy Nagaoka bound

Xx =
i

2
√

1− p


0 −1 −1 0

1 0 0 −1

1 0 0 −1

0 1 1 0

 and Xy =
−1

2
√

1− p


0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 . (44)
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FIG. S6. Attainable precision with separable and collective measurements in the amplitude damping channel.

(a) Inverse of the single-copy Nagaoka, two-copy Nagaoka and Holevo bounds as a function of the amplitude damping strength

p. Although the two-copy Nagaoka bound is closer to the Holevo bound that the single-copy Nagaoka bound, there still remains

a large gap between the two-copy Nagaoka and Holevo bounds. (b) The difference between the Holevo and Nagaoka bounds

as a function of the amplitude damping strength. The large gap between the two-copy Nagaoka bound and the Holevo bound

can only be narrowed by collective measurements on more than two copies of the probe state.

The two-copy Nagaoka bound is given by

2N2,AD =
4

1− p
− 4p , (45)

where we include the factor of two to account for the resources used.

The inverse of the single-copy Nagaoka, two-copy Nagaoka and the Holevo bounds are shown in Fig. S6 (a).

Although the two-copy Nagaoka bound is closer to the Holevo bound, there remains a considerable gap between these

two bounds. The difference between both Nagaoka bounds and the Holevo bound is shown in Fig. S6 (b). For this

example, it is evident that measurements on more than two copies of the probe state will be required if the ultimate

limits in quantum metrology are to be attained. This is also a physically relevant channel, as the amplitude damping

channel can be used to model the decay of an atom from its excited state to its ground state. We can expect that

many other tasks in quantum information will require collective measurements on many copies of the probe state.

Supplementary Note 8 . Computing Lu and Wang’s metrological bound based on Heisenberg’s uncertainty

principle

Recently Lu and Wang derived a trade-off relation between measurement variances when estimating two parameters

based on uncertainty relations [30]. As in the main text, we shall refer to this bound as the LW uncertainty relation.

We now compute the LW uncertainty relation for the problem considered in the main text. To do so we first compute

the symmetric logarithmic derivative (SLD) quantum Fisher information matrix F ,

Fjk = Re(Qjk) = Re(Tr[LjLkρ]) , (46)

where Lj satisfies (Ljρ+ ρLj)/2 = ∂jρ. It is easily verified that the matrix Q is given by

Q =

(
(1− ε)2 i(1− ε)3

−i(1− ε)3 (1− ε)2

)
. (47)
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Based on this the c̃jk terms (Eq. (7) of Ref. [30]) can be computed as c̃11 = c̃22 = 0 and c̃12 = c̃21 = 1. These terms

then allow the following metrological bound to be derived (Eq. (8) of Ref. [30])

1

vx
+

1

vy
≤ (1− ε)2 . (48)

The LW uncertainty relation provides a tradeoff relation between the variances which can be attained for estimating

the two rotation angles. The minimum total variance is achieved when vx = vy = 2/(1 − ε)2, which coincides with

the single-copy Nagaoka bound. Therefore, our two-copy collective measurement, which surpasses the single-copy

Nagaoka bound, can also surpass the LW uncertainty relation. To the best of our knowledge, this is the first time that

a “universally valid” uncertainty principle has been surpassed, albeit indirectly, i.e. through measurement variances

as opposed to directly probing the observables.

The LW uncertainty relation is based on previously derived measurement uncertainty relations which explicitly

assume that only separable measurements are used. These previous bounds are based on the usual notion of uncertainty

relations for operators, whereas Lu and Wang were the first to map this to quantum parameter estimation. It is

possible to calculate a two-copy version of the LW uncertainty relation, however this is unsatisfying as it gives a

bound which cannot be reached even with collective measurements on infinitely many copies of the probe state. In

Supplementary Note 11 we present one possible way to modify the LW uncertainty relation so that it accounts for

collective measurements.

Supplementary Note 9 . POVMs violating the LW uncertainty relation with unbalanced variances

Fig. 3 in the main text shows single-copy measurements which verify the LW relation when restricted to separable

measurements for a range of vx and vy values. For vx = vy, this is achieved using the single-copy POVMs presented

in Supplementary Note 2 , with an equal number of qubits used for estimating θx and θy. For vx 6= vy the same

POVM is used, but now a different number of qubits are used for estimating θx and θy. The total number of qubits

used in each experiment remains fixed. By assigning more qubits to estimating θx, we can reduce vx at the expense

of increasing vy and vice versa.

For the measurements violating the LW uncertainty relation, the two-copy measurement in Supplementary Note

2 is sufficient for the point where vx = vy. However, for the points where vx 6= vy, a new POVM is required. The

purple line in Fig. 3 is obtained from the weighted Nagaoka bound, i.e. the two-copy Nagaoka bound computed with

non-identity weight matrices. Changing the weight matrix corresponds to a transformation of the parameters being

estimated [31]. Hence, after computing the weighted Nagaoka bound, we transform from the weighted variances wxvx

and wyvy to the variances in the parameters of interest vx and vy. Each different weight matrix produces a line in

the vx − vy plane. The purple curve is then the envelope of all these lines. The line corresponding to the weighted

Holevo bound is calculated similarly.

Similarly, when finding measurements where vx 6= vy, which violate the LW uncertainty relation, we find a mea-

surement which minimises wxvx + wyvy. For wx = 1.4, wy = 0.6, we use the POVM {Πw1
i =

∣∣ψw1
i

〉 〈
ψw1
i

∣∣}, where

∣∣ψw1
1

〉
=


0.2813− 0.5023i

0.4284 + 0.0308i

0.4284 + 0.0308i

0.2318 + 0.4958i

 ,
∣∣ψw1

2

〉
=


0

−0.6664− 0.2366i

0.6664 + 0.2366i

0

 ,

∣∣ψw1
3

〉
=


−0.5584− 0.1590i

0.3481 + 0.0991i

0.3481 + 0.0991i

−0.6089− 0.1734i

 ,
∣∣ψw1

4

〉
=


−0.3415 + 0.4635i

0.2048 + 0.3776i

0.2048 + 0.3776i

0.5473 + 0.0066i

 .

(49)
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This POVM, combined with the following estimator coefficients

ξw1
x,1 = −2.2810, ξw1

x,2 = 0, ξw1
x,3 = 0 and ξw1

x,4 = 2.2810

ξw1
y,1 = 1.5109, ξw1

y,2 = 0, ξw1
y,3 = −3.1423 and ξw1

y,4 = 1.5109 ,
(50)

gives rise to the data point in Fig. 3 with reduced variance in estimating θx.

Similarly, for wx = 0.6, wy = 1.4, the necessary POVM is {Πw2
i =

∣∣ψw2
i

〉 〈
ψw2
i

∣∣}, where

∣∣ψw2
1

〉
=


0.5530 + 0.1602i

0.4243− 0.0671i

0.4243− 0.0671i

0.4304− 0.3381i

 ,
∣∣ψw2

2

〉
=


0.5515 + 0.1651i

−0.3202− 0.2863i

−0.3202− 0.2863i

0.1784 + 0.5174i

 ,

∣∣ψw2
3

〉
=


0.2998− 0.4973i

0.3100 + 0.1869i

0.3100 + 0.1869i

−0.3269 + 0.5422i

 ,
∣∣ψw2

4

〉
=


0

−0.6643− 0.2423i

0.6643 + 0.2423i

0

 .

(51)

The estimator coefficients for this POVM become

ξw2
x,1 = 1.5109, ξw2

x,2 = 1.5109, ξw2
x,3 = −3.1423 and ξw2

x,4 = 0

ξw2
y,1 = 2.2810, ξw2

y,2 = −2.2810, ξw2
y,3 = 0 and ξw2

y,4 = 0 .
(52)

This measurement gives rise to the data point in Fig. 3 with reduced variance in estimating θy.

Supplementary Note 10 . Measurement surpassing universally valid uncertainty relations for operators

Surpassing Lu and Wang’s bound, should be equivalent to surpassing the measurement uncertainty relations for

operators on which it is based. We now show this explicitly. The LW uncertainty relation is based on an uncertainty

relation which was a cumulation of work from Ozawa and Branciard [32–35]. These works provided trade-off relations

for measuring two Hermitian operators A and B. When A and B do not commute, they cannot be jointly measured

and so instead we measure a pair of commuting observables A and B which approximate the ideal measurement. The

approximate observables are measured on an extended Hilbert space of the quantum state ρ combined with an ancilla

state η. The measurement errors for the ideal observables A and B are then given by

εA =
√

Tr[(A−A⊗ I)2(ρ⊗ η)] and εB =
√

Tr[(B −B ⊗ I)2(ρ⊗ η)] . (53)

The following uncertainty relation is then claimed to hold

ε2Aσ
2
B + ε2Bσ

2
A + 2

√
σ2
Aσ

2
B −D2

ABεAεb ≥ D
2
AB , (54)

where σA =
√

Tr[A2ρ]− (Tr[Aρ])2 and DAB = Tr[
∣∣√ρ(AB −BA)

√
ρ
∣∣]/2 where |X| =

√
X†X. In order to map our

measurements to this operator approach, we need the ideal operators A and B. For a parameter estimation problem

these are always given by the SLD operators, A = Lx and B = Ly. For the problem considered in this work, the SLD

operators are

Lx = −(1− ε)σy and Ly = (1− ε)σx . (55)

Substituting this in gives σA = σB = 1− ε. We can also evaluate DAB as (1− ε)2. The uncertainty relation for this

problem therefore becomes

ε2A + ε2B ≥ (1− ε)2 . (56)
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At this point we can proceed in one of two ways to show that this relation is violated. From a metrological

perspective, Lu and Wang define the “regret of the Fisher information” (hereafter abbreviated to regret), as the

difference between the classical Fisher information (CFI) of a specified measurement F and the SLD quantum Fisher

information F . Then an equivalence is drawn between the regret and the measurement errors for the ideal observables

Rxx = ε2A and Ryy = ε2B . Therefore, by computing the CFI for of our measurements we can evaluate the regret and in

turn the uncertainty relation, Eq. (56). Given a POVM {Πm} and a density matrix which depends on the parameters

of interest ρ(θx, θy), the CFI can be computed as

Fj,k =
∑
m

Tr[ρΠm]
∂log(Tr[Πmρ])

∂θj

∂log(Tr[Πmρ])

∂θk
, (57)

where log refers to the natural logarithm. Using the single- and two-copy measurements specified previously, Eqs. (13)

and (20) respectively, we can evaluate the CFI for our two measurements as

CFIρ =
(1− ε)2

2

(
1 0

0 1

)
, (58)

and

CFIρ⊗ρ =
2(1− ε)2

4− 2ε+ ε2

(
1 0

0 1

)
. (59)

Note that the two-copy CFI has been scaled by a factor of two to account for the fact that twice as many resources

are being used. Evaluating the regret and substituting into Eq. (56), shows that the uncertainty relation is saturated

for the single-copy measurement and violated for the two-copy measurement.

Equivalently, we can give the exact forms for the approximate observables A and B. For this we require the

measurement channel Φ : S(HS) → S(HR) introduced by Lu and Wang, which maps from the set of all density

matrices on a Hilbert space HS to density matrices on an alternative Hilbert space HR which acts as a register of all

the measurement outcomes. This channel is defined as

Φ : ρ 7→
∑
m

Tr[ρΠm] |m〉 〈m| , (60)

where |m〉 are states forming an orthonormal basis in HR. The new SLD operator for the density matrix Φ(ρ) is given

by

L̃j =
∑
m

∂Tr[ρΠm]

∂θj
|m〉 〈m| , (61)

The approximate observables can then be defined as A = U†(IS ⊗ L̃x⊗ IR)U and B = U†(IS ⊗ L̃y⊗ IR)U , where IS
and IR are the identity matrices on the system and register Hilbert spaces respectively. U is a unitary matrix which

satisfies

Φ(ρ) = Tr1,3[U(ρ⊗ η ⊗ η)U†] , (62)

for all density matrices ρ, where η is any state in the register Hilbert space and Tr1,3 denotes the partial trace over

the first and third systems.

We will now present unitary matrices which satisfy Eq. (62) for both the single-copy and two-copy measurements,

allowing the approximate observables A and B to be obtained. For the single-copy measurement we first use the

Naimark extension [7] to convert the measurement in Eq. (13) to projectors. One possible Naimark extension is

|ψ〉1,E =
1√
2


1

0

i

0

 , |ψ〉2,E =
1√
2


1

0

−i

0

 , |ψ〉3,E =
1√
2


0

1

0

1

 and |ψ〉4,E =
1√
2


0

1

0

−1

 . (63)
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Using this projection we define the following unitary matrix

UΠ = |0〉 〈ψ|1,E + |1〉 〈ψ|2,E + |2〉 〈ψ|3,E + |3〉 〈ψ|4,E . (64)

We next define

U1 = I2 ⊗ C1,2 ⊗ I4 ,

U2 = UΠ ⊗ I8 ,

U3 = C1,4 ⊗ I2 and

U4 = I2 ⊗ C1,4 ,

(65)

where Id is the d−dimensional identity matrix and

C1,2 = |0〉 〈0| ⊗ I2 + |1〉 〈1| ⊗ σx and

C1,4 = |0〉 〈0| ⊗ I8 + |1〉 〈1| ⊗ I4 ⊗ σx .
(66)

The necessary single-copy unitary matrix is U1q = Uswap.U4.U3.U2.U1, where Uswap swaps modes 2 and 3 followed by

modes 1 and 2.

The two-copy measurement presented in Eq. (20) is already a projective measurement, hence we do not need

to invoke Naimark’s theorem. The necessary unitary matrix for the two-copy measurement is very similar to the

single-copy unitary matrix, however in the definition of UΠ we need to replace |ψ〉j,E with |ψ〉j from Eq. (20).

The unitary matrix Uswap now needs to swap modes 2 and 3, followed by modes 1 and 2, followed by modes 3

and 4 and finally modes 2 and 3. For the single-copy and two-copy measurements the total ancilla systems are

|x+〉 〈x+|⊗ |z+〉 〈z+|⊗ |z+〉 〈z+|⊗ |z+〉 〈z+| and |x+〉 〈x+|⊗ |z+〉 〈z+|⊗ |z+〉 〈z+| respectively, where |z+〉 = (1, 0)T and

|x+〉 = (1, 1)T /
√

2.

By inferring the approximate observables A and B we verify that the separable measurement saturates the uncer-

tainty relation whereas the two-copy measurement violates it. As A and B commute, the measurement of one does

not disturb any subsequent measure of the other. Hence, our collective measurement violating the LW uncertainty

relation can be mapped to a violation of error-disturbance type uncertainty relations [32]. We note here that, for

the two-copy measurement, we scale the errors εA and εB by a factor of two, because they are effectively estimating

the optimal operator twice. This rescaling by a factor of two is the same rescaling as for the two-copy CFI. This is

necessary, otherwise the same measurement repeated side by side on independent copies of the system would give a

measurement error for the complete system which is at least a factor of two greater than the measurement error for

the individual system.

It has been known for some time that the original formulation of the uncertainty principle was not a tight bound,

and indeed Heisenberg’s uncertainty principle has been violated experimentally [36–38]. However, prior to this work, it

was not demonstrated, theoretically or experimentally, that the universally valid uncertainty relations which succeeded

Heisenberg’s uncertainty principle, could be violated. The metrological bound derived by Lu and Wang [30] built on

several previous uncertainty relations [32–35]. There is nothing incorrect in any of these works, however they all rely

on a particular assumption from Ozawa’s paper. In Ref. [33] Ozawa states “We assume that any joint measurements

are carried out on single systems”. So it is built into the definition of all of these uncertainty relations that only

separable measurements are considered. As collective measurements offer no advantage over separable measurements

for pure states, we can expect the above uncertainty relations to hold for pure states.

Supplementary Note 11 . Adjusting Lu and Wang’s bound to allow for collective measurements

Eq. (19) of the supplemental material of Lu and Wang’s paper, Ref. [30], reads

RjjFkk +RkkFjj + 2
√
FjjFkk −D2

jk

√
RjjRkk ≥ D2

jk , (67)
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FIG. S7. Schematic for estimating SLD operators. As the SLD operators for this problem do not commute, it is necessary

to measure an approximate version of these operators on an extended Hilbert space. ρ is the input state and |η〉 is any ancilla

state. The unitary matrices to be implemented are those that satisfy Eq. (62). The two-copy measurement is able to estimate

the two-copy SLD operators better than what is allowed by the uncertainty relation, Eq. (56), after accounting for a factor of

two rescaling. L̃x(y) and L̃x(y),2 are the approximate observables measured in the single- and two-copy schemes respectively.

where we have replaced C2
jk with D2

jk, which strengthens the inequality. This bound holds when the regret is the

difference between the SLD Fisher information and a separable measurement precision, Rjj = Fjj − F sep
jj . However,

in reality when considering collective measurement precisions the regret can be reduced. By examining how much the

regret can decrease when allowing for collective measurements, the LW uncertainty relation can be altered to accounts

for collective measurements. We denote the CFI for the optimal collective measurement, i.e. a collective measurement

on infinitely many copies of the probe state, as F col
jj . Then the regret Rjj can be reduced a factor Sjj where

Sjj =
Fjj − F col

jj

Fjj − F sep
jj

≤ 1 . (68)

We can therefore modify Eq. (67) in the following way to account for collective measurements

RjjFkk +RkkFjj + 2
√
FjjFkk −D2

jk

√
RjjRkk ≥ D2

jk ×min(Sjj , Skk) . (69)

Unfortunately, Sjj is not easily computed as there is no known way to find F col
jj . Nevertheless, there are still situations

where Eq. (69) will be useful. For symmetric problems we have that F col
jj = F col

kk = 2/H. As the Holevo bound can

be computed efficiently, min(Sjj , Skk) can be computed efficiently in this case.

Supplementary Note 12 . Probability simplex

In order to extract information about θ, varying θ must change the probability of the measurement outcomes

obtained. The different possible probability distributions form a space known as a probability simplex [39]. In Fig S8

we plot the the probability simplex generated by varying θx and θy in the region 0 to 2π, as a geometrical interpretation

of our two-copy measurement. As we can only plot a 3D simplex we combine two of the outcome probabilities into

one axis. The three different axes of our simplex are p1, p2 and p3 + p4, where pi is the probability of obtaining the

ith measurement outcome from Eq. (20). The probability simplex is shown for different values of ε. When ε increases

the area occupied by the simplex decreases, meaning neighbouring states are harder to distinguish. As ε → 1 the

simplex shrinks to the point where all four measurement outcomes are equally likely for all values of θ. At this point

it is impossible to discern any information about θ and so the variance goes to infinity.
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