
nature physics

https://doi.org/10.1038/s41567-023-02360-5Article

Hopping frustration-induced flat band and 
strange metallicity in a kagome metal

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41567-023-02360-5


Supplementary Materials:

Hopping frustration-induced flat band and strange

metallicity in a kagome metal

1



CONTENTS

SI. Structural characterization of Ni3In 3

SII. Density functional theory analysis of the electronic structure of Ni3In 3

SIII. Tight-binding modeling of the flat band in Ni3In 7

a. Effective tight-binding model: atomic orbital basis 7

b. Effective tight-binding model: molecular orbital basis 8

c. Ni3In static susceptibility: numerical implementations 10

SIV. ARPES of Ni3In 13

SV. Magnetotransport responses of Ni3In 17

SVI. Additional transport data and modified Kadowakoi-Woods ratio 22

SVII. High field magnetization 24

SVIII. Metallic character of binary kagome metals 24

SIX. Heat capacity of Ni3In 25

SX. Magnetic susceptibility of Ni3In 27

SXI. Effects of Sn-doping 28

References 30

2



SI. Structural characterization of Ni3In
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FIG. S1. Structural characterization of Ni3In (a) Optical and (b) Scanning Electron Micro-

scope (SEM) image of Ni3In single crystals; the majority of the crystals are of a hexagonal prism

morphology and exhibit metallic reflections. (c) Transmission Electron Miscroscopy (TEM) cross

section view of single crystalline Ni3In from the [210] orientation; the TEM pattern is partially

overlaid with the crystal structure viewed from the same direction. (d) Powder X-ray diffraction

pattern (purple) and theoretical XRD pattern; the latter is calculated from ICSD structure [S1]

with lattice constants updated to fit the experimentally observed peak positions (a = 4.2351 Å, c

= 5.3288 Å).

SII. Density functional theory analysis of the electronic structure of Ni3In

The electronic structure of Ni3In with and without spin-orbit coupling along the high

symmetry lines are shown in green and black, respectively in Fig. S2. The energy position

and the band width of the flat band are largely unaffected by the introduction of spin-orbit
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FIG. S2. Band dispersions of Ni3In Density functional theory (DFT) band structure of Ni3In

along the high symmetry lines with (green) and without (black) spin-orbit coupling.

coupling apart from near the gap openings at the crossings between the highly dispersive

bands and the flat band. We expand on the nature of this band crossing below. Close to

E = −0.5 eV, we observe a Dirac-like crossing at K which is gapped by spin-orbit coupling

similar to that previously seen in other kagome metals [S2]. The non-symmorphic symmetry

of space group No. 194 (P63/mmc) requires the bands to be degenerate (in addition to the

spin degeneracy) at the kz = π/c plane in the absence of spin-orbit coupling [S3]. With

spin-orbit coupling only bands along A− L are left bound in this fashion.

In the following we examine the nature of the crossing between the steep band dispersions

close to the Fermi level EF . In the non-relativistic band structure, the crossing point (Dirac

nodes) are found to form a closed loop that lies in the kz = 0 plane as illustrated in Fig.

S3(a), which we refer to as “Dirac nodal ring” hereafter. Within the kz = 0 plane, the wave

vector on the nodal ring kNR = (0.218 ± 0.002) Å
−1

appears isotropic with a weak six-fold

variation with the polar angle ϕ as shown in Fig. S3(b). The nodal energy ENR = (25± 7)

meV evolves with ϕ in a similar manner. We note that ENR falls within the width of the

flat band over the entire kz = 0 plane so that we may view these nodes as degenerate with

the flat band states. Without spin-orbit coupling, our analysis of the wave function suggests

that the nodal ring is protected from gap opening due to the mirror symmetry of the kz = 0

plane, as the electron-like and hole-like branches composing the nodal ring possess opposite

mirror eigenvalues as shown in Fig. S3(c). The introduction of spin-orbit coupling opens a
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FIG. S3. Analysis of the Dirac nodal ring in Ni3In (a) Location of the nodal ring (blue

circle) in the Brillouin zone, where the translucent blue plane represents the kz = 0 plane. (b)

Top view of the nodal ring within the kz = 0 plane and where the radial coordinate is the nodal

ring wave vector kNR. The polar angle ϕ is defined with respect to the Γ−K direction. (c) The

evolution of the nodal energy ENR with ϕ along the nodal ring. (d) The band dispersion without

spin-orbit coupling labeled by the eigenvalue of the wave function under the xy-mirror operation.

The red (blue) bands are odd (even) under the mirror operation. The inset depicts the time-

reversal invariant momenta (green markers) Γ,M1,M2,M3 with respect to the Brillouin zones

(black hexagons); the corresponding products of parity eigenvalues at each momentum are also

labeled.

topologically non-trivial gap on the order of 20 meV, as we verify the 2D Z2 invariant ν = 1

at the kz = 0 plane via evaluating the parity eigenvalues of all filled bands at the time-

reversal invariant momenta Γ,M1,M2,M3 (depicted schematically in Fig. S3(d) inset) [S4].

Similar action of spin-orbit coupling converting Dirac nodal rings into gapped topological

insulating states has been suggested for a variety of nodal line semimetallic materials [S5].

Although a vanishing Fermi surface size of the nodal line states suggest that they contribute

little to transport, it is intriguing to reveal the consequences of the hybridization of the

nodal line states with the flat band.

To elucidate the origin of the unusual band structure figures of Ni3In it is useful to

examine the orbitally decomposed contributions of the electronic structure (shown in Fig.
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FIG. S4. Orbital decomposition of the electronic structure The band structure without

spin-orbit coupling decomposed to (a) In (b) Ni 3dz2 (c) 3dx2−y2 − dxy and (d) 3dxz − dyz orbitals,

respectively. The intensity in panel (a) is multiplied by a factor of three relative to (b)-(d) for

clarity.

S4). For example, it becomes clear that the flat band at EF arises primarily from the Ni

dxz −dyz states. The overall band structure of Ni3In reflects several key features of the ideal

kagome lattice (e.g. symmetry-protected band crossing at K near -0.6 eV) with a varying

degree of dependence on kz, which reflects the nature of the underlying d orbital (a locally

rotated coordinate frame can be defined at each kagome site to further elucidate the local

orbital orientations). We therefore note that the orbital degrees of freedom, together with

the presence or absence of honeycomb spacer layers (e.g. stanene, germanene) between the

kagome layers, are key factors for engineering the electronic dimensionality of kagome metals

[S6].
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SIII. Tight-binding modeling of the flat band in Ni3In

To gain further insights into the flat band states from a DFT perspective, one may

derive Wannier tight-binding models using proper basis states for the projection. We define

them as the (full) ab initio Wannier tight-binding model and the numerical projections are

implemented in the PYFPLO code. This complete model contains the s/p/d orbitals of Ni

and In as the basis states. As we show in the following, a small subset of basis states suffice

to capture the near EF states including the flat band features. We introduce two flavors of

effective Wannier tight-binding models as such using either the atomic dxz orbital state or

the molecular orbital states at the cluster sites as their respective basis states.

a. Effective tight-binding model: atomic orbital basis

Motivated by the orbital configuration as illustrated in Fig. S5(a,b), we have constructed

a tight-binding model on the bilayer kagome lattice with hopping parameters ranging from

t0− t4 shown in Fig. S5(c) to account for the six-band hopping based on the local dxz orbital

(in rotated coordinate) and to illustrate a possible mechanism for the reduced dispersion at

the kz = 0 plane. Among the hopping paths shown in Fig. S5(c) we take t0 as the strongest

hopping where the local dxz orbital lobes show the most significant overlap (dashed line in

Fig. S5(a)). The tight-binding bands in Fig. S5(d) are obtained with t0 = 1, t1 = 0.5, t2 =

0.3, t3 = 0.2, and t4 = −0.1 and that in Fig. S5(e) with t0 = 1, t1 = 0.5, t2 = 0.3, t3 = 0.2,

and t4 = −0.15. Contrasting these with the DFT bands over the range of −2.5 eV to 0.5

eV in Fig. S5(f), our tight-binding model is able to reproduce the kz = 0 flat dispersion

and its strong kz evolution, together with the band features within the energy range −1.7

eV ∼ −1 eV on the A− L− H− A plane. The wave function amplitude at Γ for the flat

band is found to be uniform on all the sublattice sites, consistent with the Wannier function

shown in Fig. S5(a,b). Through comparing the hopping parameter sets in Fig. S5(d) and

(e), we note that the flat dispersion results primarily from an interference of the hopping

parameters t2 and t4 with the bandwidth being |t2+2t4|. In our model, the opposite signs of

inter-cluster hopping parameters t2 and t4 – resulted from the particular d-electron orbital

texture – appear to play a central role in flattening the dispersion within the kagome lattice

plane.
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FIG. S5. Tight-binding model of Ni3In (a,b) Wannier wave function of the flat band in kz = 0

in a side view in (a) and a three-dimensional view in (b). The wave function with opposite sign is

illustrated in red and blue. (c) Schematic of the hopping parameters t0 − t4 on the bilayer kagome

model. Gray atoms are on the upper plane and orange atoms on the lower plane. The bonds within

a cluster are highlighted with black solid lines. (d) Model band dispersion for t0 = 1, t1 = 0.5, t2 =

0.3, t3 = 0.2, and t4 = −0.1. (e) Model band dispersion for t0 = 1, t1 = 0.5, t2 = 0.3, t3 = 0.2, and

t4 = −0.15. (f) DFT band structure without spin-orbit coupling from -2.5 eV to 0.5 eV.

b. Effective tight-binding model: molecular orbital basis

An alternative way of building an effective model is to use Wannier functions constructed

from linear combinations of atomic orbitals with a particular orbital character. In contrast

to the previous effective model, the new basis functions are molecular-like and their centers

lie in between the respective atomic sites. A convenient choice is to construct such states

for triangles of the kagome lattice (there are two types of triangles in the kagome lattice

and the breathing mode breaks the symmetry; here we focus on the smaller triangle with

shorter atomic distance). The main advantage is the reduction of the basis: since we are

primarily interested in the dxz and dxy orbitals that dominate at the Fermi level, and a unit
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FIG. S6. Effective model in the molecular-orbital basis (a) GGA band structure of Ni3In

(thin lines) in comparison with Fourier-transformed Wannier Hamiltonian of the effective model in

the molecular-orbital basis (thick lines). Each basis state of this model comprises a sum of atomic

dxz or dxy orbitals (given in the local coordinate frame) of three Ni atoms forming a triangle in

the kagome lattice. Real-space pictures of the Wannier states for the same isosurface value (0.12)

reveal the spatial confinement (absence of sizable offsite contributions) of the xz states forming the

flat band (b) in contrast to the xy states contributing to the dispersive band (c).

cell of Ni3In contains two triangles, we can construct a minimal model with only four basis

states. To this end, we choose the local coordinate system such that they are compatible

with the symmetry elements of the space group. In this case, a sum of atomic contributions

fulfills the symmetry requirements trivially (alternatively, it is possible to choose a common

coordinate frame for all atoms and take the coefficients in the form of ei
n
6
π with 0 ≤ n ≤ 5).

This model provides an excellent description of the flat band along the Γ−K−M−Γ path in

Fig. S6(a) and of the dispersive bands along Γ−A. Due to the minimal basis, it can neither

account for the dispersive bands forming Dirac crossings, nor for the involved momentum

dependence of the states deep in the valence band.

In Fig. S6(b,c), we plot these Wannier molecular orbital basis states in real space. There

are two types: one comprising atomic dxz orbitals and another comprising atomic dxy or-

bitals. With the isovalue surface, we can see the distribution of electron densities. Comparing

the two types of states, the local dxz type is found to be more localized within the sites of a

triangular cluster with almost no offsite contributions. This spatial localization is also con-
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sistent with the destructive interference between hopping channels as discussed above which

depends sensitively on the orbital types and orientations. In contrast, the local in-plane

dxy type has visible contributions on the neighboring atoms and beyond. The inter-cluster

coupling controls the in-plane flat band dispersions in the electronic structure.

c. Ni3In static susceptibility: numerical implementations

In this section, we discuss the calculations for Ni3In static susceptibility based on the

effective molecular orbital model derived above. For a single-band Hamiltonian H(k⃗), the

non-interacting Green’s function is given by

G0(k⃗, iωn) =
1

iωn −H(k⃗)
, (S1)

where ωn = (2n+1)π
β

is the fermionic Matsubara frequency, with integers n and thermody-

namic beta β = (kBT )
−1. The momentum-dependent non-interacting magnetic susceptibil-

ity in imaginary time is given by the following Matsubara sum:

χ0(q⃗, ipn) = −2µ2
B

β

1

Nk⃗

∑
k⃗,iωn

G0(k⃗, iωn)G
0(k⃗ + q⃗, iωn + ipn), (S2)

where the bosonic Matsubara frequency pn = 2nπ
β
. The k⃗-summation can be replaced by

averaging over the grid points sampled in the Brillouin zone. To relate to the static sus-

ceptibility in the real-time axis, one first performs the analytic continuation ipn → ω + iη

and sets ω = 0 for the static susceptibility. Numerically, this can be evaluated by first

analytically computing the iωn sum and obtaining the expression in the real-time before

setting ω=0. On the other hand, one could also directly evaluate numerically the iωn sum

assuming ipn = 0, in the imaginary time formalism. The two approaches (from real-time or

imaginary-time axes) are equivalent since the analytic function at ω=0 is at the intersection

of the real-time and imaginary-time axes. Below we give the numerical expressions for both

formalisms when applied to the electronic structure computations.

For the effective models derived for the electronic structure of the materials, we have more

than one site/basis state in the unit cell, and the Hamiltonian becomes a matrix Hij(k⃗), as

does the Green’s function:

G0
ij(k⃗, iωn) = [iωnδij −Hij(k⃗)]

−1. (S3)
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FIG. S7. Ni3In static susceptibility derived from the effective 4-band model (a) The mode

decomposition for χ0
q⃗(ω = 0) along a high symmetry line, by diagonalizing the χ0

q⃗(ω = 0) matrix,

evaluated at kBT = 10 meV. (b) The dominant mode max[χq⃗=(qx,qy ,0)] on the plane qz = 0. (c)

Temperature dependence of the static local susceptibility χloc in the unit of µ2
B/eV/unit cell. Inset

shows a fit to the high-temperature part of 1/χloc. (d) Comparison as a function of temperature

of the calculated χloc (gray curve) with the experimentally observed χc (blue curve) assuming

a g-factor of 2. Note that here χ is shown in µ2
B/eV per formula unit. Inset shows χloc with

temperature in the unit of Kelvin.

The susceptibility matrix is hence:

χ0
ijkl(q⃗, ipn) = −2µ2

B

β

1

Nk⃗

∑
k⃗,ωn

G0
il(k⃗, iωn)G

0
jk(k⃗ + q⃗, iωn + ipn), (S4)

and we would like to focus on the static χ0
ijij(q⃗, ipn → 0 + iη) terms, which can be written

out explicitly with the eigenstates and basis state expansions as:

χ0
q(ω = 0) = −2µ2

B

β

∑
k,iωn

∑
α1,α2,i,j

⟨i|ψα1
k ⟩⟨ψα1

k |j⟩⟨j|ψα2
k+q⟩⟨ψ

α2
k+q|i⟩

(iωn − ϵα1
k )(iωn + iη − ϵα2

k+q)
, (S5)

where the Matsubara sum over iωn is carried out numerically in the imaginary-time axis while

taking the static limit ipn → 0 + iη. The cutoff in the iωn sum is checked for convergence.

11



On the other hand, the Matsubara sum over iωn and analytic continuation to the real-time

axis can be exactly derived, and gives

χ0
q(ω) = 2µ2

B

∑
k

∑
i,j

∑
α1,α2

⟨i|ψα1
k ⟩⟨ψα1

k |j⟩⟨j|ψα2
k+q⟩⟨ψ

α2
k+q|i⟩

ϵα2
k+q − ϵα1

k − (ω + iη)
(nF (ϵ

α2
k+q)− nF (ϵ

α1
k )). (S6)

Here, i, j denotes the orbital degrees of freedom and αi the band index. The static limit is

derived by setting ω=0 and a small numerical η value.

To analyze the static susceptibility matrix, we can focus on the total response by summing

over states i and j. When taking the limit q → 0, the susceptibility would approach the limit

χ0
0 → 2µ2

Bρ(Ef ) with the density of states smeared by temperature β−1 at the Fermi level Ef .

On the other hand, one could consider the mode decomposition of the response matrix χ̄0
ij =

χ0
ijij and sort the eigen modes by their eigenvalues ϵn, from χ̄0

ijen = ϵnen. This analysis allows

us to extract the dominant response mode in the susceptibility. In Fig. S7(a,b), we computed

the susceptibility mode decomposition along the high-symmetry line (a) and on the qz = 0

plane (b), respectively. This can be contrasted with the conventional ferromagnetic state

where the response is dominated at the Γ point. Here the response is dominated on the

qz = 0 plane with maximum values around the BZ boundary.

Another quantity of interest is the static local susceptibility χ0
loc defined as

χ0
loc(ω=0) = −2µ2

B

β

∑
ij

∑
iωn

G0,loc
ij (iωn)G

0,loc
ji (iωn), (S7)

where the local Green’s function G0,loc
ij is

G0,loc
ij (iωn) =

1

Nk⃗

∑
k⃗

G0
ij(k⃗, iωn). (S8)

We compute χ0
loc for the effective model and the result is shown in Fig. S7(c) (we note that

χ0
q⃗=0 is of a similar magnitude and shows a similar temperature evolution). In contrast to

metallic systems in the limit of weak correlation whose χ0
loc is expected to be temperature-

independent [S7], the enhancement of χ0
loc with decreasing temperature suggests the pre-

formation of local moments. Fitting the high-temperature part with χloc(T ) =
µ2

3(T+2TK)
gives

µ = 0.95µB and TK = 440 K. Since correlation effects are severely underestimated in DFT,

we expect that in our procedure the Kondo temperature TK is strongly overestimated [S8]. In

Fig. S7(d) we compare the calculated χloc with the experimentally measured χc; the latter

appears approximately two orders of magnitude larger, implying that correlation effects
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need to be considered to achieve a quantitative understanding of the experimental magnetic

susceptibility of Ni3In. For instance, more advanced interacting theories are needed to

account for the vertex corrections beyond correlations at the one-particle level. Nevertheless,

this model suggests that the flat band of Ni3In supports the formation of local moments even

in the absence of explicit correlation effects [S8]. The relative flatness of the response within

the in-plane momentum near qz = 0 (Fig. S7(a,b)) points towards an interaction beyond

simple itinerant magnetism where well-defined momentum space hot spots are believed to

be the driving force of magnetic order, whereas a flat momentum-dependence of χ(q) is

associated with local moment-based magnetic fluctuations [S9]. The fundamental nature of

the magnetic instability of the system is the subject of ongoing investigation.

SIV. ARPES of Ni3In

To identify the high-symmetry points along the kz momentum-space direction, we ob-

tained photon energy-dependent ARPES spectra over a wide energy range from 70 eV to

230 eV. The corresponding kz is calculated by assuming the nearly-free-electron final state

with inner potential 10 eV. The energy range investigated here covers more than two full

Brillouin zones of Ni3In as shown in Fig. S8 (a,b).

The kz = 0 (mod 2π/c) planes could be identified near two photon energies, 124 eV

(corresponds to kz = 5.93 Å
−1

or 8π/c) and 200 eV (corresponds to kz = 7.41 Å
−1

or

10π). It is noteworthy that the spectra at kz = 8π/c and kz = 10π/c exhibit very different

matrix elements as contrasted in Fig. S8(c,d) (both agree with part of the predicted band

dispersions scaled with a factor of 80% shown as green lines). For example, the spectrum

obtained at kz = 10π/c (Fig. S8(d)) displays a prominent electron pocket at Γ and intense

hole-like bands at M, while these features are absent in the spectrum obtained at kz = 8π/c

(Fig. S8(c)), despite the fact that they represent same momentum-planes in the Brillouin

zone. We attribute this strong matrix element effect to the bilayer kagome structure in the

unit cell of Ni3In: the photo-electrons from two kagome layers in the unit cell may interfere

differently at kz = 8π/c and kz = 10π/c resulting in the doubling of apparent periodicity

observed in Fig. S8(a,b) from the real periodicity of the Brillouin zone in Ni3In.

In Fig. S8(d) at kz = 8π/c, we observe a clear crossing between the electron-like and

hole-like bands near the zone center Γ. As shown in the Fermi surface of Fig. S8(e), the
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FIG. S8. Photon-energy dependent ARPES and the Dirac nodal ring in Ni3In (a,b)

kx − kz cut at EF along K−M−K−Γ (a) and along M−Γ (b), respectively. (c,d) The measured

band structure along Γ − K − M directions at kz = 8π/c (c) and kz = 10π/c (d) overlaid with

the overall DFT band structure renormalized by 80% (green lines). (e,f) Constant energy maps

at E = EF (e) and E = EF − 0.25 eV (f) at kz = 10π/c. The energy positions of (e) and (f) are

denoted in (c) by red and blue markers, respectively.

crossing between electron- and hole-like bands gives rise to the Dirac nodal ring at EF

as predicted by the density functional theory calculations (see Fig. 1(e) and Fig. S3 for

example). At EF (Fig. S5(e)) we observe the Fermi wave vector kF = (0.21 ± 0.02) Å
−1

along Γ−K and kF = (0.23±0.03) Å
−1

along Γ−M directions, respectively, consistent with

the DFT nodal ring wave vector kNR given above. We estimate the Fermi velocity of the

electron-like dispersion of the nodal ring as (11.2± 1.4)× 105m · s−1 and the hole-dispersion
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to be (−5.1 ± 0.4) × 105m · s−1. Away from EF , the degeneracy of the nodal ring is lifted

in k-space, and two split pockets (small electron- and large hole-pockets) can be observed

in the constant energy contour at E = EF − 0.25 eV as displayed in Fig. S8(f).
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FIG. S9. Angle-resolved photoemission spectroscopy (ARPES) of Ni3In (a-d) ARPES

spectra measured at 20 K of Ni3In (a,c) contrasted with corresponding DFT band structure (b,d).

(a,b) are along an in-plane Γ − K − M − Γ momentum cut and (c,d) are along an out-of-plane

H−K−H momentum cut. The DFT band dispersions in (b,d) are renormalized by a factor of 0.8.

In Fig. S9 we focus on the flat band states of Ni3In in ARPES: in Fig. S9(a) in the

Γ − K − M − Γ plane, ARPES intensity at EF can be found near M; additionally, since

the in-plane flat band is expected to disperse along H − K − H, that the band top touches

EF at K (Fig. S9(c)) is consistent with the expectation that the in-plane dispersion of the

same band is at EF . By renormalizing the DFT bands by a factor of 0.8, we find reasonable

agreement with the overall dispersive features from ARPES, suggesting that the flat band

placed at EF by DFT sets an adequate starting point for the understanding of the unusual

transport and thermodynamic responses observed in Ni3In.

In Fig. S10 we performed second derivative analysis of the ARPES intensities and overlay

them with the DFT dispersions with 80% renormalization. Derivatives are taken along the

energy and momentum directions for Fig. S10(a) and Fig. S10(b,c), respectively. In Fig.

S10(a) near EF there is intensity originating from the Fermi-Dirac distribution with an

enhancement near K and M. Additionally, the intensity at EF near K can be seen to

strongly disperse downward in Fig. S10(c). These observations capture the key predicted

characteristics of the flat band in Ni3In: (I) in the kz = 0 plane the flat band is depleted near

Γ while occupied near M and K; (II) along kz the same band disperses down in energy and
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FIG. S10. Second derivatives of Ni3In ARPES spectra overlaid with DFT bands (a)

Second-derivative (energy) of ARPES intensity in the kz = 10π/c plane. (b) Second-derivative

(momentum) of ARPES intensity in the kz = 8π/c plane. (c) Second-derivative (momentum)

along the H-K-H direction. Black solid lines in (a-c) depict DFT dispersion and are scaled by a

factor of 80%. The raw data to which we apply the derivative analysis to generate (a-c) can be

found in Fig. S8(c), (d), respectively.

its band maxima is at the kz = 0 plane. In Fig. S10(b) we show the momentum (kx) second-

derivative of ARPES intensity at the kz = 8π/c plane, which captures the predicted non-flat-

band features in DFT at kz = 0–the agreement between DFT and ARPES is apparent for

both the highly dispersive Dirac nodal ring feature enclosing Γ and the downward-bending

quadratic dispersion near M.

Comparing the ARPES spectra of Ni3In with that of the isostructural compound Ni3Sn

provides an additional view of the flat band. We first contrast the DFT electronic structures

of Ni3In with that of Ni3Sn in Fig. S11. The characteristic band features including a flat

band in the kz = 0 plane and a crossing near K are similar in both compounds with an

overall upward shift of EF in Ni3Sn by approximately 0.2 eV with respect to the flat band.

This suggests that we can utilize the electron filling of Ni3Sn to better spectroscopically

investigate the flat band present across this class of nickel-based binary kagome metals.

In Fig. S12 we show the ARPES spectra obtained from single crystals of Ni3Sn; we con-

trast in particular the kz-dispersion of Ni3Sn and Ni3In. In both Ni3In and Ni3Sn we observe

a quadratic, downward-bending dispersion whose maximum locates near K (highlighted by

the arrows in Fig. S12(a,b)). In Ni3Sn since the in-plane dispersion is fully below EF , we

observe a flat dispersion with bandwidth ∼ 60 meV within the in-plane momentum cut
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FIG. S11. Electronic structure of Ni3In and Ni3Sn Calculated electronic structure of Ni3In

(a) in comparison with Ni3Sn (b). Ni3In exhibits a flat band in the Γ−M−K− Γ at EF while in

Ni3Sn a similar flat band is near -0.2 eV.

in Fig. S12(c) (highlighted by a blue arrow). To better visualize these bands, we further

took the second derivatives of Fig. S12(a,b) (momentum) and Fig. S12(c) (energy) and

the resulting spectra are overlaid with DFT with 80% renormalization in Fig. S12(d-f).

That the band-top-intensity near K in Ni3Sn (Fig. S12(b,e)) is moved to EF in Ni3In (Fig.

S12(a,d)) suggests a rigid band shift picture; although a complete resolution of the in-plane

flat dispersion is smeared by the Fermi-Dirac distribution in Ni3In, the observation of the

flat dispersion across the entire in-plane momenta in Ni3Sn (Fig. S12(c,f)) provides strong

evidence of the flat band. We note that moderate intensities at EF in Fig. S12(f) arise from

taking the second order energy derivative of the Fermi-Dirac distribution.

SV. Magnetotransport responses of Ni3In

The magnetoresistance (MR) response ∆ρab ≡ ρab(H) − ρab(H = 0) is shown in Fig.

S13(a). The dominant response is a negative MR that grows rapidly with decreasing T ,

which we ascribe to field-induced suppression of magnetic fluctuations akin to that observed

in magnetic metals above their ordering temperatures [S10]. At the lowest T and highest

H a positive curvature appears. The positive MR is found to be stronger with fields in the

ab-plane than along the c-axis in field rotation measurements, consistent with the steep band

dispersion perpendicular to the kagome planes. Limiting our discussions to the low H- and
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FIG. S12. ARPES of Ni3Sn (a,b) H−K−H cut of ARPES intensity in Ni3In (a) and Ni3Sn (b);

(c) shows the ARPES intensity of Ni3Sn in the kz = 0 plane along K−M−K− Γ−K−M−K.

(d,e) Momentum second-derivative of (a) and (b), respectively. (f) Energy second-derivative of

(c). The arrows in (a-f) highlight the photoemission signatures that are associated with the flat

band. Solid black lines in (d-f) are the DFT bands of Ni3In (d) and Ni3Sn (e-f) renormalized with

a scaling factor of 0.8.

elevated T - regime where negative MR is observed, we find the MR can be scaled against

µ0H/(T + T ∗) with T ∗ = 8.5 K (see Fig. S13(b) and (c)). This form of scaling was first

applied to the experimental data of heavy fermion compound UBe13 with T ∗ comparable

with the Kondo temperature characterizing the antiferromagnetically coupled local moments

and conduction electrons [S11], suggesting a local moment component of the fluctuating

magnetism in Ni3In.

In particular, we followed the J = 1/2 Bethe-ansatz solution of the Kondo model [S12] to

capture the negative component of the MR in Ni3In. The MR in Kondo systems originates

from the lifting of the local moment degeneracy by the magnetic field, which in turn re-

duces the strength of Kondo resonance responsible for scattering of the conduction electrons
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FIG. S13. Negative Magnetoresistance and its scaling based on the Bethe-ansatz solu-

tion of the Kondo model (a) In plane MR ∆ρab = ρab(T,H)−ρab(T, 0) as a function of magnetic

field µ0H at selected T . (b,c) ρab(T,H)/ρab(T, 0) scaled against the renormalized magnetic field

µ0H/(T + T ∗) displayed in the linear (b) and logarithmic scale (c). In (b,c) each color represents

data taken at a constant temperature (color scale shown in the legend). Inset in (b) shows the

measurement configurations. The black solid line in each panel represents a fit to Eq. (S9).

[S13]. The functional form has been given quantitatively in the Bethe-ansatz solution of

the Coqblin-Schrieffer (Kondo) model in the ground state by Schlottmann [S12] (black solid

curve in Fig. S13(b) and (c)) as:

ρ(H)/ρ(0) =
2

sin−2(πn+) + sin−2(πn−)
. (S9)

Here n+ and n− are the occupation numbers of spin up and spin down local moments,

respectively. n± may be obtained via n± =
1

2
±mi where the impurity magnetization per

site mi

mi =
1

4
+

i

4π3/2

∫ +∞

−∞

dy

y
Γ(

1

2
+ i

y

2
) · e−iy ln(H/H∗)(−iy + 0)−i y

2 . (S10)

Here H∗ is a characteristic energy scale of the Kondo coupling. At finite T , H∗ is empirically

found to grow in proportion to kBT , where H
∗ =

kB(T + T ∗)

gµeffµ0

, and T ∗ plays the role of

the Kondo temperature [S11]. We show the MR of ρab with µ0H/(T + T ∗) in linear and

logarithmic scales, respectively, in Fig. S13(b,c) with T ∗ = 8.5 K. Eq. (S9) reasonably

describes the behavior above 20 K, with a deviation seen when the positive MR (described

above) sets in below T = 20 K. From this we find that g = 3.9 if we assume that for

each Ni atom µeff = 1µB as inferred from the magnetic susceptibility measurements (χc).

Alternatively, if we assume that for each triangular plaquette µeff = 1.77µB (deduced from
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FIG. S14. (a-d) Resistivity power law in two different current/field orientations for the ab plane

response measured on a FIB sample. (a,c) show α(H,T ) and (b,d) show the corresponding R(T )

from which α is extracted via α ≡ ∂ ln(R(T ) − R0)/∂ lnT where R0 is an extrapolated zero

temperature limit.

χc), we then find g = 2.3.

Examining the evolution of the temperature-exponent α in ρ(T ) ∼ Tα at fixed H pro-

vides additional perspective on the nature of conduction electrons near the Fermi surface

in Ni3In in the context of the observed non-Fermi liquid behavior (such analysis has been

applied to a series of field-tuned non-Fermi liquid systems [S14]). In Fig. S14(a) and (c)

we contrast α(H,T ) obtained from H ∥ c, I ∥ a∗, and H ∥ ab,H ⊥ I. The evolution of α

with temperature and magnetic fields are little affected by the configuration: in both Fig.

S14(a,c), magnetic field acts to bring the system closer to a Fermi liquid state (α → 2) as we

schematically illustrate in main text Fig. 4(a)–this is consistent with an isotropic coupling

between the applied magnetic field and underlying quantum fluctuations likely of magnetic

nature.

In Fig. S15 we summarize the low temperature transport of ρab of Ni3In at selected

magnetic fields. The presence of a low temperature Fermi liquid regime where ρ(T ) =
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FIG. S15. Low temperature transport of Ni3In (a,b) ρ(T ) plotted with T (a) and T 2 (b) at

selected magnetic fields applied out of the kagome plane, respectively. (c) ρ − ρ0 with respect to

T in a log-log plot. Data taken at different magnetic fields are offset for clarity. The inset shows

the estimated ρ0 at each field. (d) Left axis: A coefficient at different magnetic fields for Ni3In

obtained from fitting below 1.25 K; right axis: TFL at each field below which ρ(T ) ∼ ρ0 +AT 2.

ρ0 +AT 2 holds is most clearly seen in Fig. S15(b) when ρ is plotted against T 2 and in Fig.

S15(c) where ρ− ρ0 is shown against T in a log-log plot: the coefficient A (slope of dashed

lines in Fig. S15(b)) decreases with applied H while the temperature regime below which

T 2 is observed increases with H. These trends are further summarized in Fig. S15(d). Both

the considerable decrease of A with H and the increase of TFL with H are consistent with

magnetic field suppression of underlying quantum fluctuations of magnetic nature and the

system being driven away from a potential quantum critical point.
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SVI. Additional transport data and modified Kadowakoi-Woods ratio
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FIG. S16. At-pressure resistivity of Ni3In At-pressure in-plane ρ(T ) of Ni3In between 2 to

25 K, from which we extract the α(P, T ) displayed in main text Fig. 3c. The curves taken under

different pressures are offset for clarity.

ρ(T ) curves used to extract the at-pressure resistivity exponents are shown in Fig. S16.

The pressure-induced “flattening out” of the curves at the low temperature end is apparent

in the curves, which corresponds to enhanced α in the lower right corner of the P −T phase

diagram displayed in main text Fig. 3c.

In Fig. S17a we show the ab plane normalized resistivity ρ/ρ300 K(T ) for three different

samples, and the main features in the ρ(T ) curves, including the roll-over around 100∼150K,

and near-linear-T behavior below 100 K are reproduced in all these measurements. In Fig.

S17(b,c) we discuss the c-axis resistivity ρc of Ni3In. The overall value of ρc is lower than

that of ρab, and crucially it also shows a strong deviation from a prototypical Fermi liquid

behavior: a test fit to Tα of ρc between 1.7 to 10 K yields α = 1.198 ± 0.003 (dashed line

in Fig. S17c). Thus, in our experiments both ab-plane and c-axis transport exhibit strong

deviation from the conventional FL behavior (observed in many of the other kagome metals,

see e.g. Fig. S19).

In addition to the Kadowaki-Woods plot shown in main text Fig. 2(c), we also compare

Ni3In with other systems in the context of the modified Kadowaki-Woods ratio discussed

in Ref. [S16]. Using DFT values of carrier density (ntot =
∑

|ni|, where we sum over

all bands at the Fermi level) ntot = 7.29 × 1027m−3, bare density of states D0 = 1.19 ×
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FIG. S17. (a) Normalized in-plane resistivity ρ/ρ300 K as a function of T in three different samples

of Ni3In. (b) ρ(T ) over 1.7-300K at 0 T (black curve) and 9 T(purple and blue symbols, the

respective current/field configurations are noted in the legends). (c,d) Resistivity along the c-axis

ρc of Ni3In shown from 1.7-300 K (c) and 1.7 to 30 K (d). Dashed line in (d) indicate a fit of ρc

between 1.7 to 10 K to ρ0 +ATα, and the obtained exponent is α = 1.198± 0.003.

1048m−3J−1, average Fermi velocity in the ab plane 5.67×104 m/s, and the experimental value

of volumic Sommerfeld coefficient 1.64×103 J K−1m−3 we obtain γ2/fdx(n) = 8.16×10−128

kg4m9s−6K−4. This puts Ni3In close to the modified Kadowaki-Woods scaling discussed in

Ref. [S16] and suggests that the reduced Fermi velocity of the flat electronic dispersions

near EF plays a key role in the large Kadowaki-Woods ratio of the system.
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obtained from in-house VSM measurements.

SVII. High field magnetization

We have performed pulsed field magnetization measurements up to 60 T on polycrystalline

samples of Ni3In; the results are shown in Fig. S18 where no field-induced magnetic ordering

is observed. This is consistent with the observed α(T,H) shown in main text Fig. 3b and

proposed phase diagram in main text Fig. 4a that magnetic field appears to promote a

Fermi liquid state from the non-Fermi liquid state near zero field, and likely away from a

potentially nearby ordered state.

SVIII. Metallic character of binary kagome metals

We show in Fig. S19 the resistivity as a function of T for different single crystals in the

binary kagome metal family. These include ferromagnetic Fe3Sn and Fe3Ge, antiferromag-

netic FeSn, Pauli paramagnets Ni3Sn and CoSn, and the presently studied Ni3In. Aside from

Ni3In, the resistivities of these kagome metals saturate at low temperature, showing typical

Fermi liquid metallic behavior regardless of the underlying magnetic order. Ni3In stands

out in this way in showing non-Fermi liquid behavior and also that among these materials

it is the only which has a flat band at EF . We note that at T < 1 K, the resistivity of

Ni3In tends to saturate to a Fermi-liquid like behavior as shown in Fig. S19(f) inset. One
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FIG. S19. Temperature evolution of resistivity in binary kagome lattice single crystals

(a) Fe3Sn, (b) Fe3Ge, (c) FeSn, (d) Ni3Sn, (e) CoSn and (f) Ni3In. The inset of (f) shows the

resistivity of Ni3In below 1 K.

possibility is that further fine tuning may be required to achieve the quantum critical point

at the milli-Kelvin temperature scale. We obtain a quadratic coefficient A = 0.5µΩ·cm·K−2

(ρ(T ) = ρ0 + AT 2).

SIX. Heat capacity of Ni3In

In Fig. S20(a) we compare the overall Cp/T to that predicted by the Debye model

(Eq.S11) [S15]:

Cp(T ) = 9NkB(
T

TD
)3
∫ TD/T

0

y4ey

(ey − 1)2
dy + γT. (S11)

Here N is the number of atoms, kB is the Boltzmann constant, γ the Sommerfeld coefficient

and TD is the Debye temperature characterizing the energy scale of phonons in the system.

The experimental Cp/T compares reasonably well with the prediction of the Debye model

with TD = 327 K. The associated resistivity induced by phonon scattering (Eq.S12) is given

by the Bloch-Grüneisen model [S15]:

ρcal(T ) = ρph(
T

TD
)5
∫ TD/T

0

y5ey

(ey − 1)2
dy. (S12)
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FIG. S20. Heat capacity of Ni3In (a) Cp/T over a wide T range (circles) as compared to the

Debye model with TD = 327 K together with a Sommerfeld term with γ = 51.6 mJ·K−2·mol−1

(black solid line). The inset shows the expected resistivity ρcal calculated from phonon scattering

(see supplementary text). (b) Fit of ∆Cp/T ≡ Cp/T − βT 2 − γ to T−3. The dashed line in inset

indicates βT 2 + γ. (c) Cp/T with respect to T at selected magnetic fields.

Here ρph is a material dependent parameter proportional to the electron-phonon coupling.

The resistivity ρcal(T ) associated with the above Debye model is shown in Fig. S20(a) inset.

This trend and the temperature range of phonon-induced T -linear resistivity qualitatively

resembles the ρ(T ) of the non-magnetic and magnetically ordered kagome metals as shown

above, suggesting that these materials are sufficiently distant from quantum criticality and

that phonon scattering dominates ρ(T ) at elevated T . Also, it suggests that TD of these

cousin kagome metal materials are comparable, perhaps unsurprising given their similar

structural and elemental composition. The qualitative difference between ρ(T ) of Ni3In and

ρcal implies that conventional phonon scattering cannot account for the peculiar ρ observed

therein.

We also briefly discuss potential contribution to the heat capacity from a nuclear Schottky

anomaly. That the low T -rise in Cp cannot be fit with T
−2 (Fig. S20(b)), and that magnetic

fields tend to suppress Cp instead of increasing Cp (Fig. S20(c)) contradicts a nuclear

Schottky scenario [S17]. Instead we attribute the low T -rise in Cp/T to an electronic non-

Fermi liquid origin; that a Fermi-liquid-like behavior is partially recovered at 9 T in Cp/T

(main text Fig. 3a) is also consistent with our proposed tendency of field-induced Fermi

liquid phase from transport.
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SX. Magnetic susceptibility of Ni3In
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FIG. S21. Magnetic susceptibilities of single crystalline Ni3In (a) In-plane magnetic sus-

ceptibility χ (purple line) measured with an applied field of 0.2 T. The solid black line represents

a Curie-Weiss fit from 60 to 300 K. (b) Out-of-plane χ (green line) measured at 0.1 T. The solid

black line represents a Curie-Weiss fit from 86 to 300 K. The insets of (a) and (b) show the fitting

range dependence of the quality of the respective fits. We note that we have checked the linearity

of M with H up to 0.2 T. (c,d) The black curve depicts a fit of χ along a (c) and c (d) below 60

K to a modified Curie-Weiss law χ−1 = A+BTα.

We summarize the magnetic properties of single crystalline Ni3In in Fig. S21, where in

(a,b) we highlight a rise of the magnetic susceptibility χ with decreasing temperature T

under both in and out-of-plane H. The high T part of both χa and χc can be fit with a

Curie-Weiss form (black solid lines in Fig. S21(a,b)):

χ = χ0 +
C

T − θ
, (S13)

with χ0 as the temperature-independent part of χ, C the Curie constant, θ the mean-field

Curie-Weiss temperature. We note that both χa and χc at low T deviate from a Curie-
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Weiss behavior as can be seen from the rapid rise of the standard deviation of the fit below

approximately 60 K and 80 K for χa and χc, respectively (Fig. S21(a,b) insets). The solid

lines we show in Fig. S21(a,b) yield θa = −64.2±0.2 K and θc = −100.9±0.6 K. The effective

magnetic moments inferred from C =
µ0N

3kB
µ2
eff (µeff is the effective magnetic moment) are

1.1µB and 1.3µB per Ni for H ∥ a and H ∥ c.

We find that at low temperature (below ∼ 70 K) we may describe both χa(T ) and χc(T )

of Ni3In with a modified Curie-Weiss law in which T is replaced by a more generalized form

Tα, which has been discussed as a signature of non-Fermi liquid metals [S18, S19]:

(χ− χ0)
−1 = A+BTα. (S14)

The extracted α from the fitting shown in Fig. S21(c) is αa = 0.802 ± 0.002, and in (d)

αc = 0.805±0.003. Theoretically a modified Curie-Weiss law with α < 1 has been discussed

in the context of quantum criticality associated with localization of magnetic moments in

heavy fermion systems [S20]. Thus the magnetic susceptibility, resistivity, and heat capacity

all show consistent experimental signatures of non-Fermi liquid behavior in Ni3In near zero

field. We note that we may estimate the Sommerfeld-Wilson ratio RW [S21] of the system

using the magnetic susceptibility (Ma/Ha = 7.3 × 10−3 emu/mol) and γ = 52 mJ/mol/K2

at 7 T, which gives rise to RW =
π2k2Bχ

µ0(gµB)2γ
= 10.1.

SXI. Effects of Sn-doping

In Fig. S22 we contrast the experimental powder XRD pattern of Ni3In and Ni3Sn used

in this study. As the two materials are iso-structural (the structural prototype is Ni3Sn),

their XRD patterns are overall qualitatively similar; the difference in peak locations reflects

their different lattice constants.

To further examine the role of the partially filled flat band in determining the physical

properties of Ni3In reported in the main text – (magneto-)transport, heat capacity and

magnetic susceptibility – we prepared polycrystalline Ni3In1−xSnx. The characterization

of these materials are summarized in Fig. S23. As shown in Fig. S23(a), the T -linear-

like response in resistivity ρ observed in polycrystalline Ni3In gives way to a conventional

response in Ni3In0.9Sn0.1 (note that ρ for the former behaves as a mixing of ρab and ρc).

Similarly, the specific heat normalized by temperature CpT
−1 for Ni3In0.9Sn0.1 and Ni3Sn
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FIG. S22. X-ray diffraction pattern of Ni3In and Ni3Sn Powder XRD of Ni3In (blue curve)

and Ni3Sn (red curve) used in this work. The respective lattice constants extracted from the peak

positions are indicated in the legends.

shows the γ+ βT 2 form expected for a Fermi liquid, while CpT
−1 of Ni3In at low T shows a

deviation from such Fermi liquid behavior. The estimated γ of Ni3In assuming an identical

phonon contribution with Ni3In0.9Sn0.1 is 47 mJ·K2·mol−1 at the intercept of the dashed line

in Fig. S23(b), approximately twice of 25 mJ·K2·mol−1 for Ni3In0.9Sn0.1 and six times of 8

mJ·K2·mol−1 for Ni3Sn. We note that although it is well-known that in quantum critical

systems the nature of disorder introduced by doping may strongly influence the resulting

states [S22], the observed systematic decrease of γ with increasing Sn content suggest the

primary role of Sn-doping is to lift EF away from the flat band in pristine Ni3In.

In Fig. S23(c) we show the T -evolution of magnetic susceptibility χ for both Ni3In and

Ni3In0.9Sn0.1, where the former exhibits a strong Curie-Weiss type increase with decreasing

T , while 10% Sn doping suffices to suppress the Curie-Weiss behavior. The inset shows the

x-dependence of low-T χ, where a sharp increase in χ takes place near Ni3In (x = 1). This

suggests that the emergence of magnetic moments/fluctuations coincides with the placement

of EF at the flat band as schematically illustrated in Fig. S23(e). Additionally, an anomalous

rise in the Hall coefficient resembling the onset of a Curie-Weiss susceptibility (Fig. S23(d))

and a negative magnetoresistance (Fig. S23(d) inset) are also removed moving from Ni3In

to Ni3In0.9Sn0.1. The behaviors shown in Fig. S23 collectively suggest a suppression of

magnetic fluctuation and a recovery of a Landau Fermi liquid-like state with the introduction

of electrons via Sn doping to the system. We therefore arrive at the conclusion that the
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FIG. S23. Suppression of the non-Fermi liquid behavior in Ni3In with electron dop-

ing (a) Resistivity of polycrystalline Ni3In (red) and Ni3In0.9Sn0.1 (blue). The same color scheme

is adopted throughout (a-d). The dashed lines is linear in T . (b) Molar heat capacity Cp nor-

malized by T of Ni3In, Ni3In0.9Sn0.1, and Ni3Sn (green symbols). The dashed line is the re-

sponse of Ni3In0.9Sn0.1 offset to align with that of Ni3In. (c) Magnetic susceptibility of Ni3In and

Ni3In0.9Sn0.1. The black solid line is a Curie-Weiss fit to the high T part for Ni3In. (d) The Hall

coefficient of polycrystalline Ni3In and Ni3In0.9Sn0.1 as a function of temperature; the inset shows

the evolution of magnetoresistance ∆ρ(H,T ) ≡ ρxx(H,T )−ρxx(0, T ) at 8 T with T . (e) Schematic

of the electron filling of Ni3In, Ni3In0.9Sn0.1 and Ni3In with respect to the flat band and the Dirac

nodal ring.

stabilization and partial filling the 3d flat band at EF in Ni3In is key to the introduction of

non-Fermi liquid behavior and fluctuating magnetic moments onto the kagome lattice.
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