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SUPPLEMENTARY MATERIAL

A: SCALING ARGUMENT FOR BRAGG GLASS

The energy scaling argument by Imry and Ma considering an XY model [1], and by Fukuyama and Lee considering
a disordered CDW [2], indicates that only short ranged correlations are allowed in continuous symmetry broken states
below 4 dimensions, based on an assumption of a disorder potential linearly coupled to the phase. However for
the CDW, the true potential is non-linear and a periodic function of phase. Nattermann [3] took this periodicity
into account and showed that the modified scaling argument supports the quasi-long range order of the Bragg glass.
Here we recall the scaling arguments, starting with Imry and Ma’s analysis and its shortcoming, and then follow
Nattermann’s analysis [Ref. 3] supporting the Bragg glass order in 3D. We start with a charge density wave,

ρ(r⃗, ϕ) = ρ0 cos[q⃗c · r⃗ + ϕ(r⃗)] (1)

with an incommensurate wave vector q⃗c, a constant amplitude ρ0 and a phase ϕ(r⃗) that can spatially vary due to
thermal fluctuations and disorder interactions. The interaction with quenched disorder in D spatial dimensions can
be described with an elastic model whose Hamiltonian is given by [4],

H =
C

2

∫
dDr |∇⃗ϕ(r⃗)|2 + V0

∫
dDr Σ(r⃗)ρ(r⃗, ϕ) (2)

where the first term is the elastic part with C as the elastic stiffness, and the second term is the disorder potential
due to quenched impurities exerting a potential V0 on the charge density, and distributed with a probability density
Σ(r⃗). We assume there are no topological defects in the system so that ϕ(r⃗) is single valued and the elastic model is
well defined, which is a necessary condition for a Bragg glass [5–7]. A spatially modulated phase ϕ(r⃗) increases the
elastic energy, but can lower the potential energy by conforming ρ(r⃗) to the impurity distribution. The disordered
phases arise from this competition between the elastic energy cost and the potential energy gain. These phases are
distinguished by the fluctuations in ϕ(r⃗) relative to an arbitrary reference point ϕ(r⃗ = 0), given by

W 2(|r⃗|) = ⟨(ϕ(r⃗)− ϕ(0))
2⟩ (3)

where ⟨. . . ⟩ denotes a thermal average and (. . . ) denotes a disorder ensemble average. To simplify, we fix ϕ(0) = 0,
and assume that fluctuations are spherically symmetric with respect to r⃗ = 0.
We first identify the scaling of elastic energy cost from Eq. (2). For a phase that varies by an amount W (R) over

a distance R, the elastic energy (EE) in the volume RD scales as

EE ∝ 1

2
C

(
W (R)

R

)2

RD (4)

This shows that for D > 2, the elastic energy cost increases with phase fluctuations over larger distances. In the
absence of disorder, this energy cost protects the long range order.

Now we discuss the scaling of the potential energy in a volume RD. We imagine each site is independently occupied
by an impurity with probability nI , the impurity concentration. The volume includes nIR

D impurities, and each
random impurity site r⃗i contributes a potential energy V (r⃗i) given by,

V (r⃗i) = V0ρ0 cos[q⃗c.r⃗i + ϕ(r⃗i)] (5)

Imry-Ma scaling: Imry and Ma’s argument is valid when ϕ(r⃗i) is small and a linear approximation applies to
Eq. (5), given by

V (r⃗i) = V0ρ0 (cos(q⃗c · r⃗i)− sin(q⃗c · r⃗i)ϕ(r⃗i)) +O(ϕ2(r⃗i)) (6)

where we can discard the first term that sets a constant offset, and the second term gives the potential energy gain
from ϕ(r⃗i). To estimate the magnitude of this energy gain in a volume RD, we note that a typical impurity site has a

position |r⃗i| ∼ R and the phase |ϕ(r⃗i)| ≈
(
⟨ϕ2(r⃗i)⟩

)1/2
∼ W (R). Hence, the magnitude of potential energy gain from

each impurity, V0ρ0 |sin(q⃗c · r⃗i)ϕ(r⃗i)|, has a typical value ∼ V0ρ0W (R), and the magnitude of total potential energy
(PE) scales as

PE ∼
(√

nIRD
)
V0ρ0W (R) (7)
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where the factor
√

nIRD follows from central limit theorem giving the root mean squared value from nIR
D indepen-

dent random impurities.
Equating the elastic energy cost [Eq. (4)] to potential energy gain [Eq. (7)] gives the optimal W (R) given by

CRD−2W 2(R) ∼
(√

nIRD
)
V0ρ0W (R) (8)

⇒ W (R) ∼

(
V0ρ0n

1/2
I

C

)
R(4−D)/2 (9)

For D < 4, W (R) grows algebraically with R, tempting one to conclude that the system is short-range-ordered for
arbitrarily small disorder strength. A length scale for the short range order was estimated as the length R0 at which
W (R0) ∼ π, the maximum value for the fluctuation. From Eq. (9), an estimate for this length scale R0 (also known
as the Fukuyama-Lee length [2]) is given by

R0 =

(
C

V0ρ0n
1/2
I

)2/(4−D)

(10)

R0 is also a length scale that highlights the breakdown of the above scaling argument. At these length scales, ϕ(r⃗) is
large and inconsistent with the linear approximation in Eq. (6). The full periodic nature of the potential needs to be
considered to understand the fluctuations beyond R0.

Nattermann’s scaling: Retaining the periodic nature of the potential energy in Eq. (5), we can now get the

new scaling estimate for the magnitude of potential energy in a volume RD as follows. Each impurity contributes to

the potential energy by a magnitude V0ρ0 |cos(q⃗c.r⃗i + ϕ(r⃗i))| ∼ V0ρ0e
−⟨ϕ2(r⃗i)⟩/2. In a volume RD, since the typical

position |r⃗i| ∼ R, V0ρ0e
−⟨ϕ2(r⃗i)⟩/2 ∼ V0ρ0e

−W 2(R)/2, and the total potential energy (PE) thus scales as

PE ∼
(√

nIRD
)
V0ρ0e

−W 2(R)/2 (11)

where the factor
√
nIRD follows from fluctuations of nIR

D independent random impurities.
Equating the elastic energy cost [Eq. (4)] to potential energy gain [Eq. (11)] gives the optimal W (R) given by

CRD−2W 2(R) ∼
(√

nIRD
)
V0ρ0e

−W 2(R)/2 (12)

⇒ W 2(R) ∼ (4−D) log(R/R0) +O (log(log(R/R0))) (13)

where R0 is the same length scale from Eq. (10). Thus for D < 4, W 2(R > R0) grows logarithmically to leading
order. This is the Bragg glass order.

B: SAMPLE PREPARATION AND X-RAY DETAILS

Samples were grown using a Te self-flux method as described in Ref. 8. Small amounts of Pd were included in the melt
to produce the palladium intercalated crystals. Crystals produced had an area of 1-2mm across and varied in thickness
with intercalation level. Since the CDW transition temperature is well characterized for different intercalation levels,
resistivity measurements of the sample batches used were taken to determine the intercalation levels of the samples
studied [9]. Samples were shipped to Argonne in sealed vials filled with inert gas and removed and mounted on the
tips of polyimide capillaries just before measurement to avoid degradation from water and oxygen exposure. During
measurements, samples were cooled using an Oxford N-Helix Cryostream, which surrounded samples with either N2

or He gas. Measurements were taken with incident x-ray energy of 87 keV in transmission geometry, with samples
continuously rotated at 1◦ s−1 and a Pilatus 2M CdTe detector taking images at 10 Hz. For each sample at each
temperature, three such 365◦ rotation scans were collected, with the detector slightly offset and the rotation angle
slightly changed to fill in detector gaps and allow for removal of detector artifacts (detailed in Ref. 10).

C: PEAK WIDTH OF A DISORDERED CDW

We describe the relationship between the CDW peak width and the density correlations in a Bragg glass and
short-range-ordered phase, following the analysis from Refs. [4, 11, 12]. Consider a 3D lattice with N sites, and atoms
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arranged at r⃗n = R⃗n + c⃗n where R⃗n are the crystal lattice positions, and c⃗n are the lattice displacements due to a
CDW. Let us describe the lattice displacements due to a unidirectional CDW with an incommensurate modulation
vector q⃗c, given by

c⃗n = c⃗0 cos(q⃗c · R⃗n + ϕn) (14)

where ϕn is a non uniform phase with fluctuations due to disorder interaction, and c⃗0 is a uniform amplitude (amplitude

fluctuations are energetically more expensive, hence neglected). The scattering intensity at a momentum Q⃗ is given
by

I(Q⃗) =
∑
n,m

eiQ⃗·(R⃗n−R⃗m)⟨eiQ⃗·(c⃗n−c⃗m)⟩
ϕ

(15)

where ⟨· · · ⟩
ϕ
denotes ensemble average over disordered phase configurations {ϕn}, and we assume a uniform disorder

averaged form factor set to unity for all atoms. For small c⃗0, the I(Q⃗) is simplified to,

I(Q⃗) =
∑
n,m

eiQ⃗·(R⃗n−R⃗m)

[
1− 1

2
⟨
(
Q⃗ · (c⃗n − c⃗m)

)2
⟩
ϕ

]
+O(|Q⃗ · c⃗0|4)

≈
∑
n,m

eiQ⃗·(R⃗n−R⃗m)

[(
1− 1

2
(Q⃗ · c⃗0)2

)
+

1

4
(Q⃗ · c⃗0)2

(
eiq⃗c·(R⃗n−R⃗m)⟨ei(ϕn−ϕm)⟩

ϕ
+ e−iq⃗c·(R⃗n−R⃗m)⟨e−i(ϕn−ϕm)⟩

ϕ

)]

From the above expression, we can deduce the two CDW satellite peaks at Q⃗ = G⃗ ± q⃗c around each Bragg peak at
G⃗. Focusing on the satellite peak around G⃗+ q⃗c, the intensity profile is given by

I(Q⃗ = G⃗+ q⃗c + δq⃗) =
1

4
(Q⃗ · c⃗0)2

∑
n,m

eiδq⃗·(R⃗n−R⃗m)⟨e−i(ϕn−ϕm)⟩
ϕ

(16)

where |δq⃗| ≪ |q⃗c|. The density correlations ⟨e−i(ϕn−ϕm)⟩
ϕ
, which using the Gaussian approximation for small fluctu-

ations get simplified to,

⟨e−i(ϕn−ϕm)⟩
ϕ

= e−
1
2 ⟨(ϕn−ϕm)2⟩

ϕ +O[⟨(ϕn − ϕm)4⟩
ϕ
]. (17)

Due to translational symmetry of the disorder averaged phase fluctuations, we can define the density correlation
function in terms of fluctuations relative to a reference point, given by

Cϕ(r⃗) = e−
1
2 ⟨(ϕ(r⃗)−ϕ(0))2⟩

ϕ , (18)

where ϕ(r⃗ = R⃗n) ≡ ϕn. Substituting Eq. (17) and (18) in Eq. (16), we get the CDW satellite intensity as

I(Q⃗ = G⃗+ q⃗c + δq⃗) ≈ 1

4
(Q⃗ · c⃗0)2Nv−1

∫
(d3r⃗)eiδq⃗·r⃗Cϕ(r⃗) (19)

where we have replaced the discrete lattice sum with an integral over r⃗ ≡ R⃗n − R⃗m, and v−1 is the volume of a
unit cell. The profile of the CDW peak is thus determined by Cϕ(r⃗), whose long distance behavior distinguishes
long-range-ordered, Bragg glass, and short-range-ordered CDW phases.

1. Long range ordered CDW: Cϕ(r⃗ → ∞) ̸= 0 for a CDW with perfect long range ordered phase. Here, Eq. (19)
gives delta function peaks with ideally zero peak width.

2. Short range ordered CDW: When Cϕ(r⃗) ∼ e−r/ζ , with a correlation length ζ, Eq. (19) gives a broadened

(nearly Lorentzian) peak at Q⃗ = G⃗± q⃗c + δq⃗ given by

I(Q⃗) ∝ (Q⃗ · c⃗0)2ζ3
1

(1 + ζ2|δq⃗|2)2
(20)

whose full width at half maxima (FWHM) is (2
√√

2− 1)ζ−1. Thus the observed peak width is determined by the

inverse phase correlation length ζ−1, and is independent of the momentum Q⃗ of the peak.
3. Bragg glass ordered CDW: A Bragg glass phase is distinguished by a power law decaying phase correlation:

Cϕ(r > R0) ∼ (r/R0)
−η

where η ≈ 1 in 3D is a universal exponent as shown by Refs. [5, 13], and R0 is a small
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distance cut-off [see Eq. 10] that sets the onset of power law decay. For the Bragg glass, Eq. (19) in the limit |δq⃗| → 0

can be solved to get the intensity at Q⃗ = G⃗± q⃗c + δq⃗ as

I(Q⃗) ∝
(
|δq⃗|η−3

)
(Q⃗ · c⃗0)2Rη

0 (21)

For 3D where η = 1, the peak intensity of a Bragg glass diverges as |δq⃗|−2. As with long range order, the observed
width will be the resolution limit of the detector [4].

D: DISORDER PINNING AND ASYMMETRY

Here we show that the presence of an asymmetry between the satellite peak intensities signals the disorder pinning
of lattice modulations. The derivation below follows from Refs [11, 14]. While the asymmetry signature was exper-
imentally observed for short range ordered CDW materials [11, 15, 16], they were also predicted to occur in Bragg
glass ordered CDW in Ref. [4, 12].

Consider a 3D lattice with atoms arranged at r⃗n = R⃗n + u⃗n where R⃗n are the crystal lattice positions and u⃗n is a
displacement from the nth lattice site. The Fourier component of the displacement modulation is given by

u⃗q⃗ = N−1/2
∑
n

u⃗ne
−iq⃗·R⃗n (22)

where N is the total number of sites. Let us model the intercalation (disorder) as modifying the original form factor
to a new value fj at random sites j. The Fourier component of the modulated form factor is given by

f̃q⃗ = N−1/2
∑
n

fne
−iq⃗·R⃗n . (23)

The scattering intensity at a momentum Q for this model with intercalation disorder and small lattice displacements
is given by

I(Q⃗) =
∑
n,m

eiQ⃗·(R⃗n−R⃗m)⟨fnfmeiQ⃗·(u⃗n−u⃗m)⟩ (24)

=
∑
n,m

eiQ⃗·(R⃗n−R⃗m)⟨fnfm
[
1 + iQ⃗ · (u⃗n − u⃗m)

]
⟩+O

(
|Q⃗ · (u⃗n − u⃗m)|2

)
(25)

where ⟨· · · ⟩ denotes thermal and disorder average.

We are interested in the asymmetry of the intensities I(Q⃗) between the two satellite points G⃗ ± q⃗ across a Bragg

peak at G⃗, where q⃗ is within the first Brillouin zone. Substituting the inverse Fourier transforms of Eq. (22) for u⃗i

and Eq. (23) for fi in to Eq. (25), we get the satellite asymmetry to be

I(G⃗+ q⃗)− I(G⃗− q⃗) = 2if̃0G⃗ ·
(
⟨u⃗−q⃗ f̃q⃗⟩ − ⟨u⃗q⃗ f̃−q⃗⟩

)
+O

(
|G⃗ · u⃗q⃗|2

)
(26)

where N−1/2f̃0 = N−1
∑

j fj is the average form factor of the disordered lattice. If the lattice displacement modula-

tions are not correlated with the intercalant positions (no disorder pinning), then the term ⟨u⃗q⃗ f̃−q⃗⟩ = ⟨u⃗q⃗⟩⟨f̃−q⃗⟩ = 0
since ⟨u⃗q⃗⟩ = ⟨u⃗−⃗q⟩ = 0. The ⟨u⃗q⃗⟩ = 0 is true for both incommensurate long range ordered CDW (since the CDW
phase in each disorder configuration is arbitrary) and for short range ordered displacements (the disorder average of
the displacements is zero). Thus the leading order contribution to the intensity asymmetry is zero in the absence of
disorder pinning of lattice modulations.
On the other hand, in the presence of disorder pinning, ⟨u⃗q⃗ f̃−q⃗⟩ ≠ ⟨u⃗q⃗⟩⟨f̃−q⃗⟩ and hence not trivially 0. To explicitly

see this non-vanishing of satellite asymmetry from disorder pinning, we discuss a simple model put forward in Ref. [15].

Consider a single impurity at a random site R⃗0 that interacts with the charge density such that the phase of the charge

density is fixed to a value ϕ0 at site R⃗0. The pinned CDW is given by ρn = ρ0 sin
[
q⃗c · (R⃗n − R⃗0) + ϕ0

]
. The lattice

modulations are in quadrature with the CDW and is given by u⃗n = u⃗0 cos
[
q⃗c · (R⃗n − R⃗0) + ϕ0

]
. Taking fI as the

atomic form factor of the impurity and f0 as that of the pure atom, the satellite asymmetry [Eq. (26)] for this single
impurity pinning gives,

I(G⃗+ q⃗)− I(G⃗− q⃗) = 2N−1/2f0(fI − f0)(G⃗ · u⃗0) sin(ϕ0) (27)
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A maximum asymmetry is when (fI −f0) sin(ϕ0) = 1 which corresponds to the CDW having a maximum or minimum
over the impurity depending on whether the interaction is attractive or repulsive. This picture describes strong
pinning, where the CDW is pinned to a constant phase ϕ0 above each impurity. However, the pinning for a Bragg
glass is weak, where the phase is modulated by the collective interaction of impurities. A calculation of the asymmetry
for Bragg glass was carried out in Refs. 12 and 4, and was shown to be an experimentally observable effect in principle.

E: MOMENTUM DEPENDENCE OF CDW PEAK WIDTH

In addition to the phase fluctuations that destroy long range CDW order, displacement of atoms from their ideal
lattice sites (displacement fluctuations) that destroy long range lattice order will also contribute to the broadening

of the CDW peaks. Here we show that the width due to displacement fluctuations is momentum (Q⃗) dependent,

in contrast to the Q⃗ independent broadening due to CDW phase fluctuations. Our model is similar to that of a
paracrystal [chapter. 9 of Ref.[14]], with the modification of introducing a CDW with phase fluctuations on top of the
lattice displacements. Using the same 3D lattice with N sites as in SM-B, but with an additional lattice displacement
u⃗n that can arise from thermal vibrations or disorder interaction, the atoms are arranged at r⃗n = R⃗n+ c⃗n+ u⃗n where
R⃗n are the lattice sites and c⃗n are the CDW displacements. The scattering intensity at a momentum Q⃗ [Eq. (15)] is
modified for the disordered lattice as,

I(Q⃗) =
∑
n,m

eiQ⃗·(R⃗n−R⃗m)⟨eiQ⃗·(c⃗n−c⃗m)⟩
ϕ
⟨eiQ⃗·(u⃗n−u⃗m)⟩

u
(28)

where ⟨· · · ⟩
u
denotes ensemble average over lattice displacement configurations {un}, and we have assumed the lattice

displacements are uncorrelated with the phase fluctuations. The CDW intensity around Q⃗ = G⃗ + q⃗c in Eq. (16) is
now modified to

I(Q⃗ = G⃗+ q⃗c + δq⃗) =
1

4
(Q⃗ · c⃗0)2

∑
n,m

eiδq⃗·(R⃗n−R⃗m)⟨e−i(ϕn−ϕm)⟩
ϕ
⟨e−iQ⃗·(u⃗n−u⃗m)⟩

u
(29)

where the factor ⟨e−iQ⃗·(u⃗n−u⃗m)⟩
u
under the Gaussian approximation gives

⟨e−iQ⃗·(u⃗n−u⃗m)⟩
u

= e−
1
2 ⟨(Q⃗·(u⃗n−u⃗m))2⟩u +O[⟨(Q⃗ · (u⃗n − u⃗m))4⟩

u
]. (30)

where ⟨(Q⃗·(u⃗n−u⃗m))2⟩
u
quantify the mean squared fluctuations in relative lattice displacements. Defining a correlation

function Cu(r⃗, Q⃗) for the displacements relative to a reference point given by,

Cu(r⃗, Q⃗) = e−
1
2 ⟨(Q⃗·(u⃗(r⃗)−u⃗(0)))

2⟩u , (31)

where u⃗(R⃗n) ≡ u⃗n, the CDW peak intensity in Eq. (19) is modified to,

I(Q⃗ = G⃗+ q⃗c + δq⃗) ≈ 1

4
(Q⃗ · c⃗0)2Nv−1

∫
(d3r⃗)eiδq⃗·r⃗Cϕ(r⃗)Cu(r⃗, Q⃗) (32)

What sets the displacement fluctuations apart from CDW phase fluctuations is the Q⃗ dependence of Cu(r⃗, Q⃗).

It is this distinction that leads to the Q⃗ dependent broadening signature for the displacement fluctuations. To

see this, consider an exponentially decaying form for the displacement correlation given by Cu(r⃗, Q⃗) ∼ e−|Q⃗|2(γur).
Here γu with dimensions of length can be interpreted as the root mean square value of the relative displacement
between neighboring atoms. When combined with the short range phase correlation Cϕ(r⃗) ∼ e−r/ζϕ , Eq. (32) gives

an approximately Lorentzian peak profile at Q⃗ = G⃗± q⃗c + δq⃗ given by

I(Q⃗) ∝ 1(
1 +

|δq⃗|2

(ζ−1
ϕ + |Q⃗|2γu)2

)2 (33)

whose full width at half maxima (FWHM) is given by

FWHM ∝ ζ−1
ϕ + |Q⃗|2γu (34)
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(a) (b)

FIG. 1. (a): Numerically calculated intensity of a CDW peak, and (b): the momentum (Q) dependence of the full width at
half maxima (FWHM) of the CDW peaks, in a 1D lattice with 1000 sites. The intensities are calculated for three disorder
configurations: (1) pristine CDW with no disorder, (2) CDW with only phase fluctuations and (3) CDW with both phase and
lattice fluctuations. Both configurations (2) and (3) lead to a broadening of the peak [panel(a)]. However, the FWHM remains
independent of Q for the configuration with only phase fluctuations, while the FWHM for the configuration with both phase
and lattice fluctuations show a Q2 dependence. From the intercept of the Q2 dependent FWHM, we can isolate the broadening
contribution of the phase fluctuations.

This shows the quadratic in momentum broadening due to displacement fluctuations. While the above form was
obtained for a simple displacement correlation function that decay isotropically, a more general form for the broadening
would be

FWHM ∝ ζ−1
ϕ + γHQ2

H + γKQ2
K + γLQ

2
L (35)

and we do not include terms like QHQK etc. as they violate the reflection symmetry of the lattice. From a quadratic
fit to the momentum dependence of the FWHM, the contribution from phase fluctuations: ζ−1

ϕ can be extracted as
the intercept.

The momentum dependence of the widths were studied in the 1980’s but for quasi one dimensional ordered materials
with short range order [17–20]. Such an analysis in 3D materials has so far remained a challenge due to the large
number of peaks in the reciprocal space that need to be analyzed.

Numerical illustration of momentum dependent peak broadening: To complement the above derivation,
we numerically calculate the scattering intensity [Eq. (28)] for a 1D lattice model with short range ordered CDW
phase and lattice displacements.

On a lattice with 1000 sites, we set the CDW modulation qc = 2/7 to mimic the CDW of RTe3, and set the CDW
amplitude = 0.01. To generate a disordered phase configuration with short range correlation Cϕ(|n−m|) ∼ e−|n−m|/ζϕ

between sites n and m, we start with the n = 0 site where ϕ0 = 0 and the phases ϕn for each site n > 0 are selected as
ϕn = ϕn−1 + dϕ where dϕ is drawn from a normal distribution with zero mean and standard deviation σϕ (=0.025).
This distribution generates phases whose mean square fluctuations are given by ⟨(ϕn − ϕm)2⟩ϕ = |n − m|σ2

ϕ, and

the phase correlation [Eq. (18)] given by Cϕ(|n − m|) = e−|n−m|σ2
ϕ/2. Similarly, to generate a short ranged lattice

displacement configuration, the lattice displacements un are generated as un = un−1 + du where du is drawn from
a normal distribution with zero mean and standard deviation σu (=0.001), starting with u0 = 0. This generates
displacement configurations with mean squared fluctuation ⟨(un − um)2⟩u = |n−m|σ2

u. We generate 400 realizations
of phase and displacement configurations and calculate the intensity using Eq. (28).

We show the calculated intensity profile of a CDW peak and the momentum (Q) dependence of the peak width in
SM Fig. 1. We see that while a short range ordered phase broadens the CDW peak whose width is independent of
Q, a short range ordered lattice leads to broadening that is proportional to Q2. In the presence of both short range
ordered phase and lattice displacements, the Q independent broadening due to phase only disorder can be extracted
from the intercept of the Q2 broadening.

F: X-RAY TEMPERATURE CLUSTERING: X-TEC

The underlying principle of X-TEC is to identify the distinct temperature trajectories through a Gaussian mix-
ture model clustering [21]. In SM-Fig. 2, we show a simplified illustration of the GMM in action. A collection of
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(a) (b) (c)

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

g

I(g
)

data1
Cluster mean
Cluster std
data4
data5
data6

FIG. 2. A simplified illustration of X-TEC to cluster distinct intensity-temperature trajectories, I(T ), given the collection of
series {Iq⃗(T1), Iq⃗(T2), . . . , Iq⃗(Td)} (d = 19 in this figure) at various momentum q⃗ in the reciprocal space. The raw trajectories

rescaled as log[Ĩq⃗(Ti)] = log[Iq⃗(Ti)] − ⟨log[Iq⃗(Ti)]⟩T [panel (a)] can be mapped to a simple Gaussian Mixture Model (GMM)
clustering problem on a d-dimensional space, whose 2D projection (along T = 30K and T = 135K) is shown in panel (b). The
GMM identifies two distinct clusters and assigns them different colors. From the cluster means (star symbol) and standard

deviations (colored ellipsoids) of the GMM [panel (b)], we get the distinct trajectories of log[Ĩ(T )] and their standard deviation,
with colors reflecting their cluster assignments [panel (c)].

raw intensity-temperature trajectories [SM-Fig. 2(a)] given by {Iq⃗(T1), Iq⃗(T2), . . . , Iq⃗(Td)} at various momenta q⃗ in
reciprocal space can be represented as a distribution of points in a d dimensional hyperspace, whose axis spans the
intensities at each temperature. For visualization, a 2D cross-section of this hyperspace is shown in SM-Fig. 2(b). The
figure shows that the points are separated into two distinct groups (clusters). A Gaussian Mixture Model (GMM)
clustering classifies these points into different clusters and assigns a mean and standard deviation for each cluster.
The cluster mean reveals the distinct temperature trajectories in the data [SM-Fig. 2(c)], while the standard devi-
ation shows that the clusters are well separated. In this example, a visual inspection of the raw intensities and a
2D projection can reveal the distinct clusters. However, the real data is messier [See Fig. 1(e)] and requires a GMM
clustering on the entire hyperspace to identify the distinct trajectories.

XTEC analysis of intercalated samples

In the Fig. 2 (a-c) of the main text, we benchmarked the XTEC clustering on the pristine sample. In this section
[and SM Fig. 3], we provide further details on the X-TEC analysis, using x = 2% intercalation as a representative
example. We list the details in the following steps,

1. All the intensity slices in the (H,L) plane with integer K values are loaded. The first preprocessing step is the
automated thresholding that removes the low-intensity background noise, as explained in Ref [21].

2. Next, we implement XTEC with label smoothing (XTEC-s) through peak averaging (Ref [21]). For this,each
set of connected pixels (that passed the thresholding) in the reciprocal space is identified as a single peak. The
intensity of each peak is given by its peak average value. This step removes the resolution-limited pixel-to-pixel
fluctuations in the intensity. After this step, ∼ 100, 000 non-Bragg peaks are identified, which include CDWs,
detector artifacts, and background scattering.

3. The peak averaged intensities are rescaled as log[Iq⃗(Ti)] = log[Iq⃗(Ti)] − ⟨log[Iq⃗(Ti)]⟩T . This step ensures that
the clustering reveals the distinct intensity-temperature trajectories rather than the absolute magnitude of
intensities.

4. The next step is to identify the optimal number of clusters. A Bayesian information criterion (BIC) [22, 23] can
provide a heuristic estimate of the optimal number. For the 2% intercalation shown in SM Fig 3(a), the elbow
method roughly points to 4 or 10 clusters. To move forward, a physicist’s intervention is required to identify
and interpret each cluster.
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(a) (b) (c)

(d)

(e)

(f) (g) (h)

FIG. 3. Interpreting clusters for the x=2% intercalation. (a): The BIC score for different numbers of clusters. Two heuristic
estimates of 4 and 10 clusters are marked. (b,c): Cluster mean (lines) and variance as one standard deviation (shaded region)
for GMM with 10 clusters in (b) and 4 clusters in (c). (d,e): Probability distribution of the 4 clusters in (c) along L (panel (d))
and H (panel (e)) axis of the reduced Brillouin zone. (f,g): Distribution of the 4 clusters in the H-L plane at K = 1 (panel
(f)) and K = 2 (panel (g)). (h): Mean (lines) and one standard deviation (shading) of the intensity-temperature trajectories
in the CDW-1 (blue) and CDW-2 (red) clusters.
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(a) (b) (c)

FIG. 4. CDW-1 masks for the (a): K = odd planes and (b): K = even planes. (c): The cluster mean (lines) and variance
(shading) of the X-TEC clustering with three clusters of CDW-1 trajectories filtered with the mask. This eliminates the weak
and noisy peaks (purple and thistle colored) to isolate the CDW-1 peaks with well-defined trajectories (blue).

SM Fig. 3 (b) and (c) show the clustered trajectories given by the cluster mean and one standard deviation of each
cluster. From the trajectories, we see that 4 clusters are sufficient to reveal all the unique trajectories. To understand
the physical significance of each cluster, we analyze the location of each cluster in the momentum space. For the
2% intercalation, as shown in SM Fig. 3 (d,e), we see that the blue and purple cluster is predominantly made of
pixels located at (H,L) ≡ (0, 0.29) corresponding to CDW-1, while the red clusters are located at (H,L) ≡ (0.29, 0)
corresponding to CDW-2. The last cluster (thistle colored) has no characteristic location in the momentum space and
corresponds to the background intensity. The reciprocal space with the pixels assigned their cluster colors [SM Fig. 3
(f,g)] shows that CDW-1 and CDW-2 are arranged in the same 3D pattern as that of the pristine sample [Main Fig. 2
(b,c)]. The blue and red clusters identify with the primary CDW-1 and CDW-2 peaks, respectively, while the purple
cluster captures the higher-order peaks of CDW-1. Having identified which pixel correspond to the CDW peaks, we
can look at the average intensity of each cluster (the peak height of CDWs) [SM Fig. 3 (h)]. Compared to the pristine
sample [Main Fig. 2 (a)], a 2% intercalation strongly suppresses the CDW-2 with no sharp onset behavior.

Filtering the CDW-1 peaks

In the previous section, we showed a brute-force XTEC analysis on the full data. That analysis identified the CDW
peaks and their 3D structure in the reciprocal space. We can now more precisely target the CDW-1 peaks by filtering
out only the pixels of the primary CDW-1 peaks with a mask. We apply the mask shown in SM Fig 4(a,b) on the raw
intensities before feeding to XTEC. We select the mask with sufficiently large windows to capture broad peaks such
that the results are robust to the size of the mask. The filtered intensities are then fed into the XTEC pipeline, as
described in the previous section. A clustering on these filtered intensities [SM Fig 4 (c)] eliminates the background
as well as the noisy and weak CDW-1 peaks (purple and thistle clusters). This procedure gives us a collection of
∼ 3, 000 intense and well-defined CDW-1 peaks (blue cluster) that can be robustly analyzed to extract their peak
height and spread. The results in main Fig. 2(d-f) and Fig. 3 follow this analysis.

G: CONVENTIONAL PEAK WIDTH ANALYSIS

The conventional approach of extracting the peak width would be to take one-dimensional line cuts through CDW
peaks in the binned data and extract intensity and width parameters from fitting. Fitting domains must be chosen
arbitrarily in relation to diffuse scattering and spurious crystallographic imperfections, making this approach difficult
to apply to the entire dataset. Moreover, the necessity of determining the goodness of fit makes this approach
impractical to scale. Applying this approach to an ad-hoc choice of peaks at hkl = 4 2 3 ± qc in SM Fig. 5 for the
2% intercalation shows that the spurious signals make it difficult to find a uniform way to fit even a small number of
peaks in these data, and even the best-fitted parameters will have low precision. It is also clear from SM Fig. 5 that it
is impossible to extract any power law tails from fitting these peaks. Thus, relying on power law tails as a signature
of Bragg glass is not feasible.

The challenge in estimating the subtle peak height asymmetry or the profile asymmetry of the CDW satellite peaks
in intercalated samples is also clear from SM Fig. 5. The peak intensities from the Gaussian fit on two pairs of satellite
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1D cuts and Gaussian fits through Pd0.02ErTe3 peaks at 423 ± qc

FIG. 5. A set of three one-dimensional Gaussian functions can be used to fit superstructure peaks and extract intensity and
width parameters to characterize peaks. This approach is applied here to the 432 ± qc,qc ≈ 2

7
c∗ superstructure peaks in

Pd0.02ErTe3. For all rows, the left two figures are cuts taken through superstructure peaks, with circles indicating data and
dotted lines representing fitted Gaussians; the right two figures are fitted parameters at different temperatures. Top row: Line
cuts taken along h. Middle row: Line cuts taken along k. Note that the peak become so broad along k above T ≈ 210 K that
the fitting function fails. Bottom row: Line cuts taken along l. It is notable that the full-width half maximum (FWHM) of
the fit approaches the bin width at low temperatures, indicating that the peak is resolution-limited.

CDW-1 peaks do not reveal a stark asymmetry. Comparing the magnitude of the peak intensity (∼20,000 counts)
and the strength of the asymmetry seen in the diffuse scattering (∼10 counts, see main Fig 4), the scale of asymmetry
is too small to be detected from the fluctuations of peak height intensity. The peak widths of the two satellite peaks
are also nearly identical, and hence we do not detect a clear signature of profile asymmetry.

H: EXTRACTING PEAK SPREAD ANALYSIS WITH X-TEC

In this section, we first provide details of the steps to extract the peak spread Γq⃗(T ) [Eq. (1) of main text] from the
XRD data and benchmark them with line cuts on selected CDW-1 peaks [SM Fig. 6]. We then show the underlying
quadratic momentum dependence of Γq⃗, and the extraction of the q⃗ independent term Γ0 that quantifies the broadening
purely due to CDW phase fluctuations [SM Fig. 8].
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(c)

(a)

(b)

(d) (g)

(f)

(e)

(i)

(h)

FIG. 6. Benchmarking the peak spread. (a): Line cut along a CDW-1 peak at various temperatures T for the pristine sample
(x = 0%). The intensities (symbols) are averaged along H = 4̄± 0.02 r.l.u and K = 2, and normalized with its maximum value
at the peak. The minimum intensity in the line cut is subtracted to remove any background offset. The lines are Gaussian fits.
(b): The intensity of the CDW-1 peak in the K = 2 plane [same peak as in (a)] at T = 30K, with the X-TEC determined peak
boundaries (red contour) for the x = 0%. (c): The peak spread (Γ) [Eq. (1) of main text] for the CDW peak in (a-b), along
with the FWHM from line cuts along H (FWHM-H) and L (FWHM-L), at various T for x = 0%. (d,e,f): Same as panels
(a-c) respectively but for x = 2% intercalated sample. (g,h,i): Same as panels (a-c) but for x = 2.9% intercalated sample.

1. Benchmarking peak spread

The conventional approach to extract a FWHM is shown for a CDW-1 peak at the three levels of intercalation in
SM Fig. 6 (a), (d) and (g). Our high throughput measure Γq⃗ [Eq. (1) of main text] directly provides a measure for
the spread of the peak (in units of the number of pixels). This is achieved by using X-TEC to identify the connected
pixels whose intensity trajectories belong to the CDW order parameter cluster. This is shown in SM Fig. 6 (b),
(e) and (h), where the red boundary determined by X-TEC marks the extent of the CDW peaks. We quantify the
spread of this CDW peak (centered at momentum q⃗) with Γq⃗ which is the ratio of the total intensity inside the peak
boundary to the maximum intensity of the peak. We restrict to the in-plane peak spread with intensities at integer
K values of the out of plane (b∗) axis, to avoid the lower resolution along b∗ axis [0.1 (r.l.u.) compared to 0.02 (r.l.u.)
for the in-plane] from limiting the overall resolution of the spread. The estimated Γq⃗ is compared with the FWHMs
of the line cuts in SM Fig. 6 (c), (g) and (i). We see that the Γq⃗ faithfully captures the features of the FWHMs, in
particular, the rapid onset of broadening above a transition temperature.

However, both the FWHMs and the Γq⃗ show an erratic temperature trajectory, reflecting the errors in the width
estimation from the small resolution peaks (the peaks are roughly spread over 2-3 pixels). Collecting all Γq⃗ with q⃗
spanning ∼ 3000 peaks, we find a wide variation in the range of values for the spread, [see SM Fig. 7 (a), (c), (e) and
(g)]. Buried under these seemingly erratic trajectories is the systematic q⃗ dependence from lattice distortions [see SM
Fig. 8] and the unique q⃗ independent spread Γ0 of the disordered CDW [see Fig. 3 of main text].
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(a) (c) (e) (g)

(b) (d) (f) (h)

FIG. 7. Extracting the peak spread. (a): The T trajectory of the peak spread (Γq⃗) of 4877 CDW-1 peaks in the x = 0%
data (thin colored lines). (b): Comparing Γ0 with the background intensity offset removed (BG removed), and Γ0 keeping the
background offset (Γ0 with BG). Lines are guides to the eyes. (c,d): Same as (a,b) respectively but for x = 2% sample with
3688 peaks. The peak spread saturates above a cutoff temperature. (e,f): x = 2.6% intercalated sample with 2251 peaks.
(g,h): x = 2.9% with 2713 peaks. In panels (d), (f) and (h), the peak spread saturates above a cutoff temperature, when the
peak intensity drops near the background value.

An important step in the estimation of Γq⃗ is the removal of the background intensity offset from the CDW peak
intensities. This background contribution is estimated as the average of the intensities outside the CDW boundary in
a 10x10 pixel neighborhood of the peak [the blue region outside the red boundary in SM Fig. 7 (b), (d), (f) and (h)],
and this offset contribution is subtracted from the total and maximum intensity of the CDW peak before estimating
Γq. In SM Fig. 7 (b), (d), (f) and (h), we show the effect of not removing the background offset on the Γ0. Keeping
the background intensity results in an overestimation of the spread, especially at higher temperatures where the peak
height is smaller. This is because the peak spread measure misinterprets the extra background intensity outside the
true peak as a genuine broadening of the peak.

In SM Fig. 7 (d), (f) and (h), the peak spread saturates at high temperatures above a cut-off temperature. Above
this temperature, the peak spreads beyond the boundaries of the peak determined by X-TEC [SM Fig. 6 (b), (e),
(h)]. This is also the point where the peak intensity drops low enough to a value near the background intensity (see
Fig. 2(d) of main text).

2. Momentum dependence of peak spread

In SM Fig. 8, we show that the spread Γq⃗ in the XRD data has a systematic broadening with quadratic dependence
in q⃗ as predicted in SM-E. To simplify the visualization of the 3D quadratic fit in Eq. (2) of main text, we project the
momentum dependence of Γq⃗ to one direction by averaging over the other directions. We show the H2 dependence of
Γq⃗ in SM Fig. 8 (a), and the L2 dependence in (c) and (e), for the three levels of intercalation. The Γq⃗ fits well with
the quadratic function.

The full 3D fit of Γq⃗ using Eq. (2) of main text extracts the quadratic coefficients γH , γK , γL as well as the
momentum-independent intercept Γ0. While Γ0 is reported in the main text [Fig. 3 (c-f)], in SM Fig. 8 (b), (d) and
(f) we report their respective γH , γK , and γL values.

I: BRAGG GLASS IN x = 0.5% INTERCALATION.

We show the analysis of 0.5% sample separate from the main figures, as this sample showed a much larger mosaic
spread compared to all other samples. In SM Fig. 9, we show the filtered CDW-1 peaks of the 0.5% intercalation.

Unlike the other intercalated samples (2%, 2.6%, and 2.9%), the 0.5% is much similar to the pristine sample, and
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(a) (c) (e)

(b) (d) (f)

FIG. 8. (a): The H2 dependence of the peak spread in the x = 0% sample at T=85K. The ⟨ΓH⟩ (symbols) is the spread
obtained by averaging Γq⃗ over K and L that share the same |H|. The error bars indicate standard deviation of Γq⃗ at |H|. The
markers are color-coded, and the color bar indicates the number of peaks determining the statistics of each marker. The fit:
γHH2+Γ0 agrees well with ⟨ΓH⟩ within the error markers. (b): The momentum coefficients γH , γK , γL from the 3D quadratic
fit [Eq. (2) of main text] to {Γq⃗} at various temperatures for the x = 0%. The lines are guides to the eye. (c): Same as (a)
but for the L2 dependence of the spread, ⟨ΓL⟩ (symbols) (by averaging Γq⃗ over H and K at |L|) for the x = 2% intercalated
sample at T=90K. The fit γLL

2 + ⟨ΓL⟩0 also agrees well within the standard deviation of Γq⃗ at L. (d): Same as (b), but for
the x = 2% intercalated sample. (e-f) Same as (c-d) respectively, but for x = 2.9% intercalated sample.

shows the BCS scaling order parameter Fig. 9(a), with a critical temperature of 235K. The peak spread is shown in
SM Fig. 9(b). Despite the similarity with the pristine sample, x = 0.5% is distinguished by the presence of asymmetry
in the diffuse scattering [SM Fig. 9(c,d)]. The presence of the distinct half-diamond asymmetry, similar to that of
other intercalated samples, shows that the 0.5% intercalation is disordered and different from the pristine sample.
Thus, long range order is forbidden in this sample, and the transition temperature at 235K corresponds to a Bragg
glass transition.

J: CDW SATELLITE PEAK ASYMMETRY.

In Fig 4 of the main text, we discussed the asymmetry in the diffuse scattering surrounding the CDW peaks. The
diffuse scattering asymmetry is present only in intercalated samples, and clearly distinguishes them as disordered. In
this section and in SM Fig 10, we investigate the asymmetry in the CDW peaks after removing the diffuse background.
As will be apparent from the following discussion, this analysis is prone to errors from the pixelation of peaks and
the interpolation of background diffuse scattering. Hence these results should be interpreted with a grain of salt.

We implement a punch-and-fill method to isolate the CDW peak heights from the diffuse background. As shown
in SM Fig. 10 (a), we identify the pixels of the CDW peaks (enclosed within the red boundary) with X-TEC. These
CDW pixels are punched out and filled with a linear spline interpolation of their neighboring intensities. A line cut
through the CDW-1 satellite peaks shows the CDW peaks (solid lines) and the interpolated background (dashed line)
in SM Fig. 10 (b). Subtracting the two isolates the CDW peaks from the diffuse scattering.

The background removed in-plane intensities of CDW-1 satellite peaks around the Bragg peak at (H,L) = (1, 4)
and K averaged along all values in [−20, 20] is shown in SM Fig. 10 (c). Unlike the stark asymmetry apparent in the
background, the asymmetry is not obvious in the CDW peaks and is subtle, if any, even for the strongest intercalation.
Moreover, with only two data points to span the peaks, it is impossible to fit the peak profile.

Using the peak maxima as the estimate for the peak height, the asymmetry for the peaks around (H,L) = (1, 4) is
quantified in SM Fig. 10 (d), as α = (IL − IR)/(IL + IR) where IL and IR is the peak maxima of the left and right
CDW peak. A noticeable asymmetry is seen for the 2.9% intercalation. However, the very small height of peaks of
2.9% (an order of magnitude smaller than the pristine and 2% intercalation) makes them more sensitive to errors in
subtracting the background.



14

(a) (c)

(b) (d)

FIG. 9. x=0.5% sample. (a): The CDW-1 peak averaged intensity (peak height). The Ĩ is obtained from the average of all

the intensities in the CDW-1 cluster (2323 peaks), from which we subtract the background intensity contribution.
√

Ĩ(T ) fits

well to a power law ∝ (TBG1 − T )β giving TBG1 ∼ 235K and β = 0.5 matching the BCS order parameter exponent. (b):
The q⃗ independent broadening of CDW-1 peak spread, Γ0(T ), extracted from 2323 peaks by fitting their Γq⃗ to a quadratic
function of q⃗ [Eq. 2 of main text]. The TBG1 = 235K extracted from panel (a) is also shown. (c): The intensity at T = 30K,
in the H-L plane with K = 1.0, shows a diffuse scattering that is asymmetrically distributed between the two satellite peaks,
in the form of half diamonds. (see arrows for reference) (d): Two cluster X-TEC results color coded as red and blue, from
the temperature trajectories of the diffuse scattering intensities. The pixels are colored red (blue) if their intensity trajectory
belongs to the red (blue) cluster. The intensities of the CDW peaks and H+L = odd Bragg peaks (white pixels, identified
from a prior X-TEC analysis) are excluded from this two-cluster X-TEC, along with the H+L = even Bragg peaks removed
by a square mask (square white regions)

For a more accurate and comprehensive estimate of the asymmetry ratio, in Fig. 10 (e), we measure the peak
heights in the 2D (H,L) plane rather than along line-cuts. The panel shows the mean and standard deviation of
asymmetry from all pairs of in-plane CDW satellite peak intensities in the −1.5 ≤ H ≤ 2.5 and 3 ≤ L ≤ 8.5 (same
region shown in Fig 4 (a-b) of main text). In this region, the asymmetry ratio of only those pairs of peaks that are
present in all four samples are chosen. The figure suggests that intercalated samples have a slightly higher value of
asymmetry than the pristine sample. However, the overall small values of the ratio and their large variance, as well
as the susceptibility of the analysis to pixelation and background subtraction errors, prevent us from establishing
conclusive evidence of asymmetry in the peak heights, even at the highest intercalation (x=2.9%) which is a clearly
disordered sample. However, the diffuse asymmetry that surrounds the CDW peaks already makes the total peak
height asymmetric [Fig. 4(c-e) of main text]. This is a clear sign that intercalation introduces disorder pinning to the
modulations at and around the CDW.
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(a)

(b)

(c)

(d) (e)

FIG. 10. CDW satellite peak asymmetry. (a): The in-plane XRD near the (H = 1, L = 4) Bragg peak at T = 30K, withK (out-
of-plane axis) averaged over all values between −20 and 20 (r.l.u). The pixels identified by X-TEC as CDW-1 peaks are enclosed
within the red boundary. The horizontal dashed line marks the region considered for the line cuts in panel (b). (b): Line-cut
intensities across the CDW-1 peaks along L with intensity averaged over H ∈ [0.98, 1.02] (r.l.u) and K ∈ [−20, 20] (r.l.u). The
solid line shows the raw intensity, and the dashed line shows the interpolated intensities after removing the CDW pixels. (c):
The CDW-1 peak intensities after subtracting the interpolated (dashed line) from the raw intensities (solid line) of the panel
(b). (d): Asymmetry in the satellite peaks surrounding (H = 1, L = 4), quantified by the ratio α = (IL− IR)/(IL+ IR), where
IL and IR are the heights of the left and right CDW-1 peak intensities. (e): Mean (lines) and standard deviation (shading) of
α from all pairs of CDW satellite peaks in the −1.5 ≤ H ≤ 2.5 and 3 ≤ L ≤ 8.5.
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(a)

(b) (d)

(c)

FIG. 11. (a,b): The X-TEC analysis on 2.6% intercalation, with a slight misorientation error during the image transformation
to reciprocal space bins. The trajectory of all clusters including the blue CDW-1 cluster show sudden discontinuities. Panel
(a) shows the cluster mean (lines) and variance (shading) of the GMM with rescaled intensities. Panel (b) shows the average
and one standard deviation of the unscaled intensities in each cluster. (c,d): Same as panels (a) and (b) but for the correctly
oriented transformation of the same 2.6% intercalation.

K: CAVEATS WITH THE IMPROPER ORIENTATION OF XRD TRANSFORMATION.

In this section, we discuss the importance of ensuring the correct orientation at each temperature during the
transformation of images to the reciprocal space bins. In SM Fig:11, we show an instance of improper orientation on
the 2.6% sample. In panels (a-b), we see the blue X-TEC cluster that identify with the CDW-1 have an anomalous
hump, and an erratic trajectory. Sharp jumps in temperature are seen concurrently for all the clusters, including the
CDW-1 cluster.

A more careful transformation of the same 2.6% data, where the reciprocal space images at different temperatures
are ensured to have the same correct orientation, eliminates the erratic trajectories and sharp jumps. In SM Fig:11
(c,d), the X-TEC analysis shows smooth trajectories for the CDW-1 (blue cluster) as well as the other clusters of the
diffuse background.

The X-TEC analysis thus makes it easy for the scientist to visually inspect orientation errors during the transfor-
mation of images to reciprocal space. A misorientation will show up as sharp discontinuities occurring concurrently
in the majority of the clusters. These discontinuities should not be confused with a first-order phase transition, as in
the latter; only the cluster that captures the order parameter shows the discontinuity, while the remaining clusters
have smooth trajectories.
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