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1 Segmentation of cell doublets

Individual 3D cell segmentation was performed using a semi-automated segmentation method.
The segmentation was done on Z-stack images (∼ 40 slices of thickness ∆z = 1.0 µm, and in-plane
resolution of ∆` = 0.206 µm or 0.103 µm) of cells expressing fluorescent E-cadherin (E-cadherin
mn-Green) that were obtained using spinning disk confocal microscopy. The 3D volumes were
segmented using an ImageJ 3D image segmentation tool LimeSeg [1] with parameters that had to
be adapted depending on the quality of the E-cadherin intensity signal. Prior to the segmentation
computation, contour seeds were drawn on each z-slice to help the algorithm to converge. After
each 3D analysis converged, each segmentation result was checked and confirmed by controlling
how the boundary of the segmented cells fitted the original signal. In the case of cells expressing
Myosin Regulatory Light Chain (MRLC) - MRLC-KO1 - as well as E-cadherin-mnG, both signals
were used to check the quality of the segmentation. If the segmentation result was not accurate, a
custom-made ImageJ macro was designed to enable the operator to re-draw the contour seeds or
either vary the parameters used in LimeSeg. The coordinates of the vertices in the final meshes
are given in dimensionless units (x/∆`, y/∆`, z/∆`) with (x, y, z) the coordinates of the vertices
in µm.

2 Rotation vector computation

In general, one can decompose the movement of two points (of positions r1(t) and r2(t)) into a
translation with velocity vt, a rotation characterized by ω and an extension with velocity ve:

v1 = vt −
1

2
ω × r12 −

r12

||r12||
ve,

v2 = vt +
1

2
ω × r12 +

r12

||r12||
ve,

(1)

with r12 = r2 − r1, and ω · r12 = 0. The three components are uniquely defined as:

vt =
v1 + v2

2
, ve =

(v2 − v1) · r12

2||r12||
, ω =

r12 × (v2 − v1)

||r12||2
. (2)

The orientation of ω corresponds to the axis of rotation (which is by definition perpendicular to
r12), and its amplitude to the angular velocity. Since, experimentally, we only have access to
discrete time points, we use a slightly different formula to estimate ω from the cell displacements
between time t and t+ ∆t:

ω∆t =
1

∆t

u12(t)× u12(t+ ∆t)

||u12(t)× u12(t+ ∆t)||
arccos(u12(t) · u12(t+ ∆t)) with u12(t) =

r12(t)

||r12(t)||
. (3)

This formula is obtained by first establishing a differential equation on r12 derived from Eq. 1:

dr12

dt
= ω × r12 +

2r12

||r12||
ve. (4)

This equation then translates into an equation for u12(t):

du12

dt
= ω × u12. (5)

Assuming that ω is constant between t and t + ∆t, and that ω · u12(t) = 0, one can obtain Eq.3
by solving Eq. 5 between t and t+ ∆t.
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3 Doublet shape analysis

We quantify the elongation of a cell doublet as follows. We use segmentation meshes of the two cells
of the doublet. The segmentation meshes are given by the vertices {v1i = {v1ix, v1iy, v1iz}}, {v2i}
representing the surfaces of cell 1 and 2 of the cell doublet. We define a distance threshold of
dth = 10 in the dimensionless units defined in section 1 and select all vertices (from both cells)
that are less than a distance dth away from the other cell. These vertices {vint} are defined to be
the interface vertices and will be used for the interface analysis in the next section. The remaining
vertices {vouter,i = {vi,x, vi,y, vi,z} for i ∈ {1, ..., Nouter}} are used to define a shape tensor of the
doublet:

Q3d
αβ =

1

Nouter

Nouter∑
i=1

(vouter,i,α − 〈vouter,α〉) (vouter,i,β − 〈vouter,β〉) with α, β in {x, y, z},

with 〈vouter,α〉 =
1

Nouter

Nouter∑
i=1

vouter,i,α .

(6)

Diagonalising the tensor provides three eigenvalues wa ≥ wb ≥ wc associated with three orthonor-
mal eigenvectors (qa, qb, qc). Each eigenvector defines a principal direction of elongation of the cell
doublet, to which we can associate three principal radii (a, b, c) = (

√
wa,
√
wb,
√
wc). We consider

their relative values (a/b, 1, c/b) to quantify the aspect ratio of the doublet, in a way that is in-
variant with respect to the doublet’s total size. In Figs. 2c and 4g, we correlate the directions of
elongations qi with the rotation vector ω by computing the following quantities:

Cω,qi =

〈
3

2

(
ω

||ω||
· qi
)2

− 1

2

〉
. (7)

This quantity is invariant by qi → −qi, reflecting the nematic property of an elongation axis. It is
equal to 1 if the vectors are always parallel, −1/2 if they are always perpendicular, and 0 if they
have uniformly distributed random orientations.

In Fig. 2c, we also correlate the longest elongation vector qa with the vector r12 joining the
center of masses of the cells, using the following formula:

Cr12,qa =

〈∣∣∣∣ r12

||r12||
· qa
∣∣∣∣〉 . (8)

4 Interface shape analysis

In this section we explain how the interface between the cells is extracted from segmented meshes,
how the interface shape is analysed quantitatively and how it is correlated with the doublet rota-
tion.

4.1 Interface extraction

For every frame t of every segmented movie, the segmentation process produces meshes with
vertices {v1i = {v1ix, v1iy, v1iz}}, {v2i} representing the membranes of cell 1 and 2 of the cell
doublet. As discussed above, we define a distance threshold of dth = 10 pixels and select all
vertices (from both cells) that are less than a distance dth away from the other cell, in order to
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obtain the vertices of the interface {vint,i for i ∈ {1, ..., N}}. We then use the method of principal
component analysis (PCA) to find the direction which minimizes the variance of the coordinates
of the points. We start by computing the center of mass of the interface vertices C = 1

N

∑
i vint,i.

In order to reduce the dependency of C on the discreteness of the meshes, we define another center
C ′ which is the projection of C onto the r12 axis:

C ′ = r1 + r12
r12 · (C − r1)

||r12||2
, (9)

where r1 is the center of mass of cell 1. We then do the PCA by performing a singular value de-
composition of the matrix Mji = vint,ij−C ′j with j ∈ {x, y, z} and i = {1, ..., N} [2]. This generates
three orthonormal vectors that are aligned according to the principal directions of elongations of
the point set {vint,i}. We define the plane of the interface as the plane normal to the unit vector
N12 which is aligned to the direction of minimum elongation, and going from cell 1 towards cell
2. The other two vectors (eX , eY ) define a two-dimensional basis in the interface plane. This
allows us to define a set of local coordinates (X, Y,H) such that the vertices of the interface have
positions:

vint,i = C ′ +XieX + YieY +HiN12 . (10)

The first step to analyse the shape of the interface is to analyse its shape in the (eX , eY ) plane.
For this we construct a tensor of rank 2 Q2d defined as:

Q2d
αβ =

1

N

N∑
i=1

(vint,i,α − C ′α)(vint,i,β − C ′β) with α, β in {X, Y } . (11)

This symmetric tensor can be diagonalized, which gives two eigenvalues (w1, w2) (w1 ≥ w2) asso-
ciated to two unit eigenvectors (κ1,κ2).

In the case of an ellipse of large radius λRe oriented along the axis x and small radius Re/λ
oriented along the axis y, in the continuous limit for points homogeneously distributed, we have
(here for the Q2d

xx component):

Q2d(ellipse)
xx =

1

πR2
e

∫ λRe

x=−λRe
dx

∫ Re
λ

√
1− x2

λ2R2
e

y=−Re
λ

√
1− x2

λ2R2
e

dyx2 =
λ2R2

e

π

∫ 1

x=−1

dx

∫ √1−x2

y=−
√

1−x2
dyx2 =

λ2R2
e

4
. (12)

The other component can be computed similarly, which leads to:

Q2d(ellipse) =

(
λ2R2

e

4
0

0 R2
e

4λ2

)
, (13)

from which one can show that the eigenvalues w1, w2 are related to λ and Re by:

Re = 2 (w1w2)1/4 , λ =

(
w1

w2

)1/4

. (14)

We use these formulas to compute an effective radius Re and an effective aspect ratio λ ≥ 1 for
the interface. Then, we compute the planar coordinates (Up,i, Vp,i) of the interface points in the
reference frame defined by the perpendicular eigenvectors (κ1,κ2):

Up,i = Xiκ1x + Yiκ1y ,

Vp,i = Xiκ2x + Yiκ2y .
(15)
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We then bring back the interface onto a dimensionless disk of unit radius by rescaling the coordi-
nates (Up,i, Vp,i) into (U ′p,i, V

′
p,i) given by:

U ′p,i =
Up,i
Reλ

,

V ′p,i =
λVp,i
Re

.

(16)

Finally, we express the rescaled coordinates in the original reference frame as (X̃i, Ỹi, H̃i):

X̃i = U ′p,iκ1x + V ′p,iκ2x ,

Ỹi = U ′p,iκ1y + V ′p,iκ2y ,

H̃i =
Hi

Re

.

(17)

Note that we also divided Hi by Re to preserve the aspect ratio of the interface in the vertical
dimension. The mode decomposition of the interface is then performed on the reduced coordinates
(X̃i, Ỹi, H̃i).

4.2 Mode decomposition

On a unit disk D1 defined by (x, y) ∈ R2 such that x2 + y2 ≤ 1, we want to find a function H(x, y)
that is smooth and passes as close as possible to the experimental points (X̃i, Ỹi, H̃i). We choose
to pick H among the set of polynomials of degree n ≤ 3, which represents a good compromise
between the quality of the fit to the experimental points and the complexity of the description.
We therefore define the interface polynomial P which satisfies the following linear least square
problem:

P (x, y) =
3∑
i=0

i∑
j=0

aijx
i−jyj with {aij} such that

N∑
k=1

(
P (X̃k, Ỹk)− H̃k

)2

is minimized . (18)

Once the polynomial P is found, we seek to represent it in a basis that is well suited for the study
of the symmetries of the cell-cell interface shape. We propose the following basis:

Mode of degree 0:
1√
π
.

Modes of degree 1:
2x√
π

,
2y√
π
.

Modes of degree 2: B = 2

√
3

π

(
x2 + y2 − 1

2

)
,

S1 =

√
6

π
(x2 − y2), S2 = 2

√
6

π
xy .

Modes of degree 3: Tf1 = 2

√
2

π
x(x2 − 3y2), Tf2 = 2

√
2

π
y(y2 − 3x2) ,

Yy1 = 6

√
2

π
x

(
x2 + y2 − 2

3

)
, Yy2 = 6

√
2

π
y

(
y2 + x2 − 2

3

)
.

(19)
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which, up to a normalisation, corresponds to Zernike polynomials of order up to 3 [3]. This basis
is orthonormal on the unit disk with the following definition of the scalar product:

A ·B =

∫
D1

dxdyA(x, y)B(x, y) (20)

Also, special care has been taken to construct basis vectors with specific symmetries. The S1 and
S2 polynomials are saddle-nodes and belong to the D2d symmetry group. B is an isotropic mode
with a “bowl” shape belonging to the C∞v group. Tf1 and Tf2 have three-fold symmetry and
belong to the D3d group. Finally, Yy1 and Yy2, the “yin-yang” modes, belong to the C2h group
(Supplementary Table 1).

The interface polynomial P can be projected in the basis and reads:

P (x, y) =
a0√
π

+ a1
2x√
π

+ a2
2y√
π

+ a3S1(x, y) + a4S2(x, y) + a5B(x, y)

+a6Tf1(x, y) + a7Tf2(x, y) + a8Yy1(x, y) + a9Yy2(x, y) .

(21)

The coefficients ai contains all the information about the shape of the interface (assuming that
it is well represented by the polynomial P ). For instance one can compute the average squared
deflection of the interface 〈H̃2〉:

〈H̃2〉 =
1

π

∫
D1

dxdyP (x, y)2 =
1

π

9∑
i=0

a2
i , (22)

The average deflection of the interface in real units can be expressed as:

√
〈H2〉 =

Re√
π

(
9∑
i=0

a2
i

)1/2

, (23)

with Re the radius of the interface computed in Eq. 14. Each factor a2
i can be seen as a quantifi-

cation of the weight of the mode i in the interface deflection. Particularly, we are interested in the
weights of the “saddle-node”, “bowl”, “three-fold” and “yin-yang” modes:

WS = a2
3 + a2

4

WB = a2
5

WT = a2
6 + a2

7

WY = a2
8 + a2

9

(24)

We ignore the weights of the remaining modes, of order zero and one, which have vanishing or
small amplitude. Indeed these modes describe a deviation of the interface towards a new plane,
which we expect is removed to a large extent by the plane fitting procedure described above. We
then divide each term in Eq. 24 by the sum WS + WB + WT + WY to generate relative mode
amplitudes that are shown in Fig. 2g, Fig. 4f,j and Ext. Fig. 8d.

4.3 Mode directions and correlation with rotation

In order to correlate the modes of the interface with the rotation of the doublet, we need first to
identify their principal directions in the plane (X, Y ) as a function of the coefficients ai. These
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Mode Symmetry group Invariant symmetry operation
Bowl

+
C∞v cZ∞, σX,Y∞

Yin-yang

+ C2h cX2 , σX , I

Three-fold
+

+ +

D3d I, σX , σa, σb, cX2 ,ca2, cb2, cZ3 , cZ−3, sZ6 , sZ−6

Saddle-node
+

+

D2d σX , σY , cc2, cd2, cZ2 , sZ4 , sZ−4

Supplementary Table 1: Classification of interface deformation modes and associated symme-
tries. See Ext. Fig. 5b for a schematic of axis orientations. The Z axis corresponds to the axis
along the vector N12. I indicates the inversion symmetry. cα2 , cα3 c

α
−3 are the rotations by π, 2π/3

and −2π/3 around the axis given by α. cZ∞ is the set of rotations by any angle around the Z axis.
σα is the mirror symmetry with respect to the plane normal to the α direction, σX,Y∞ denotes the
set of mirror symmetries with respect to a plane containing the Z axis. sZ4 , sZ−4, sZ6 and sZ−6 are
improper rotations of π/2, −π/2, π/3 and −π/3 around the Z axis. The vectors a, b, c, d are
obtained by rotation of angle −2π/3, 2π/3, π/4, −π/4 of the vector eX along the vector eZ (Ext.
Fig. 5b).
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directions can only be defined up to the rotational symmetry of each mode, as illustrated on Ext.
Fig. 5a, and also exist only relatively to the oriented plane of the interfaceN12, going from cell 1 to
cell 2. We define the normalized vectors Y12, S12 and T12 associated respectively to the yin-yang,
saddle-node and three-fold modes as follows:

Y12 =
a8eX + a9eY√

a2
8 + a2

9

,

S12 = cos(α)eX + sin(α)eY with α =
1

2
arctan (a3, a4) + nπ ,

T12 = cos(α)eX + sin(α)eY with α =
1

3
arctan (−a6, a7) +

2nπ

3
,

(25)

where arctan(x, y) is the arc tangent of y/x (taking into account in which quadrant the point is
located), and n is an arbitrary integer, representative of the rotational symmetries of the saddle-
node and three-fold modes. The vectors are transformed in the following way under a switch of
cell indices:

Y21 = −Y12 (sign change),

S21 = N12 × S12 (90◦ rotation),

T21 = −T12 (sign change).

(26)

Now, the correlation between these vectors and the rotation vector ω of the doublet must be
constructed in such a way that it is independent of the arbitrary choice of the indices of the
cells, and is also invariant under change of the variable n describing the rotation symmetries of
individual modes. To this effect, we introduce the vector u12 = N12 × ω/||N12 × ω|| and define
the correlations as follows:

Cω,Y = 〈Y12 · u12〉 ,
Cω,S = 〈cos (4 arccos (S12 · u12))〉 ,
Cω,T = 〈cos (3 arccos (T12 · u12))〉 .

(27)

These three formulas are used to compute the correlations presented in Figs. 2h and 4g. Note the
necessity of introducing a 4-th degree correlation function for Cω,S because of the peculiar way it
transforms itself under a cell index switch. Indeed we have:

arccos(S21 · u21) = arccos(−(N12 × S12) · u12) . (28)

In the reference frame (u12,N12 × u12,N12), the coordinates of S12 are (cos(θS), sin(θS), 0). θS
can be defined to be in the interval [−π, π], in which case we have:

arccos(S12 · u12) = arccos(cos(θS)) = ±θS, (+ if θS ∈ [0, π]) ,

arccos(S21 · u21) = arccos(sin(θS)) =


(θS − π

2
, if θS ∈

[
π
2
, π
]
,

−
(
θS − π

2

)
, if θS ∈

[
−π

2
, π

2

]
θS + 3π

2
, if θS ∈

[
−π,−π

2

] ,
(29)

where the second line is obtained using Eq. 28. From Eq. 29, we see that in order to get an
invariant quantity after index switch, one need to multiply by (at least) 4 and take the cosine:

cos(4 arccos(S21 · u21)) = cos(4 arccos(S12 · u12)) ∀θS ∈ [−π, π] . (30)

Concerning the bowl mode, we rename its coefficient a5 into B12, a signed scalar quantity which
indicates the direction of it with respect to the vector N12 (see Ext. Fig. 5a).
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4.4 Doublet and interface symmetries

In order to apply the Curie principle, we need to determine symmetry point groups of the doublet
which are compatible with the interface deformation. In Table 2, we list a set of possible symmetry
groups to which the cortical myosin distribution of the doublet can belong, and by comparison of
the invariant transformations also leaving interface modes invariant (Table 1), we find compatible
interface deformations (Fig. 4j).

Example Symmetry group
Invariant symmetry

operations
Compatible interface

deformation mode

D∞h cZ∞, cX,Y2 , sZ∞, σZ , σX,Y∞ , I None

C2h cX2 , σX , I C2h, D3d

C∞v cZ∞, σX,Y∞ C∞v

C2v cZ2 , σX , σY C∞v, D2d

Cs σX C∞v, D3d, C2h, D2d

Supplementary Table 2: Classification of doublet symmetry properties and associated interface
deformation modes. I indicates the inversion symmetry. cα2 the rotation by π around the axis given
by α. σα the mirror symmetry with respect to the plane normal to the α direction. cZ∞ denotes
the set of rotation symmetry by any angle around the Z axis. σX,Y∞ denotes the set of mirror
symmetries with respect to any plane containing the Z axis. sZ∞ denotes the set of improper
rotations by any angle around the Z axis. cX,Y2 denotes the set of rotation by π around any axis
contained in the X, Y plane. See Ext. Fig. 5b for a schematic of space orientation. Compatible
deformation modes are obtained using the Curie principle and Table 1.

5 Analysis of cortical myosin fluorescence intensity profiles

In this section, we describe how a polarity vector and nematic tensor are extracted for each cell from
the distribution of cortical myosin, as measured from the MRLC fluorescence intensity profiles.

5.1 Obtention of cortical myosin profiles

The first step of the polarity analysis process is to extract the myosin fluorescence signal from the
microscopy images and associate it to the vertices {v1i}, {v2i} of the segmented cell membranes.
One challenge to overcome is that typical segmentation errors often put the mesh slightly away
from the real cell membrane location, so that the vertices are not perfectly colocated with pixels
belonging to the cell cortex. To solve for this issue, we sample voxels in a rectangular prism around
each vertex as described on Ext. Fig. 5c. The larger the sampling rectangular prism, the higher
the chance there is to correct for a mismatch of the vertex position relative to the cell cortex, but
a larger sampling region also captures dark voxels outside of the cell, which artificially decreases
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the overall signal. To avoid this issue, we choose to average the values of the n brightest pixels in
the sampling rectangular prism. In this study we used a rectangular window of 11x11x3 voxels in
size and a fraction of n = 20% of the brightest voxels within the window.

In order to compensate for the background signal due to the cytosolic concentration of myosin,
which we assume does not play a role in the modulation of the cortical tension, we average the
signal of all the voxels inside of the mesh (which are at least 3 µm away from the cell membrane)
and subtracts this value to the signal on the vertices. Furthermore, since the signal observed at the
vertices of the cell-cell interface most probably is a superposition of the signal coming from both
cells, we divide by two the value of the measured signal, before subtracting the cytosolic value.

5.2 Correction of signal intensity

5.2.1 Signal decrease away from the microscope

The z axis of the coordinate system of the fluorescence images is the axis that measures the distance
to the microscope. The larger the z values of a voxel, the more materials there is between this
voxel and the microscope. This can lead to an artificial bias in the signal measured. In order to
quantify this, we display the membrane myosin signal (after attaching it to vertices following the
procedure in section 5.1) of individual doublets along x, y, and z (Ext. Fig. 5d). We typically
observe a decrease along z, but not along x and y. We measure this bias more precisely by fitting
exponential profiles to the time averaged signals of each doublets:

cfit(x) = Ax exp (λxx) , cfit(y) = Ay exp (λyy) , cfit(z) = Az exp (λzz) . (31)

We extract λix, λ
i
y, λ

i
z for each doublet i, and we see that only the λz coefficients are significantly

negative (Ext. Fig. 5e). We therefore constructed a corrected myosin signal ci({x, y, z}, t) for each
doublet i:

ci({x, y, z}, t) = exp
(
−λizz

)
ci,measured({x, y, z}, t) . (32)

We perform this correction on all the voxels of all the microscopy images. We then re-compute
the myosin signal on vertices (section 5.1) and continue the analysis. The correction made here is
valid under the hypothesis that the signal decrease observed along z is due to optical effects and
has no biological origin.

5.2.2 Intensity modulations induced by the point spread function

We discuss here the effect of an anisotropic point spread function (PSF) much larger in the z
direction than the x,y directions. Because of PSF anisotropy, we expect the cortical myosin signal
intensity measured in a given voxel to be modulated depending on the amount of cortex intersecting
the PSF. This is illustrated in Supp. Fig. 1a. Indeed when analysing the average myosin signal
profile on single cells we observe a strong increase in signal intensity near the middle of the cell
along the z axis, where the cell membrane is vertical (Supp. Fig. 1c). In order to correct for this
particular distortion of the signal, we proceeded as follow. We took images of small fluorescent
spherical beads of 0.093 µm (TetraSpeck Sample Kit), using the same imaging procedure that was
used to acquire the cell images. Due to PSF anisotropy, the images of the beads were distorted
in the z direction (Supp. Fig. 1b (left)). We then applied the FIJI filter ”Gaussian blur 3D”
with a blurring effect only in the x and y directions, with a standard deviation such that the
resulting bead images became approximately isotropic (Supp. Fig. 1b (right)). We then applied
this same filter to the experimental images of cell doublets and single cells. Although this procedure
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lowers resolution in x and y, we reasoned that it corrects the intensity modulation introduced by
the anisotropic PSF by mimicking an isotropic PSF. Indeed, we observe a strongly reduced bias
around the middle of the cell for single cells after correction (Supp. Fig. 1d).

5.3 Computation of polarity from cortical myosin distribution

We wish to quantify the heterogeneity of the cortical myosin distribution. We first define the cell
surface center of mass

rg =
1

A

∫
dSr , (33)

with A the surface area. We then construct a polarity vector, originating from rg, that points
towards the region of higher myosin signal. There can be multiple ways to define such a polarity
vector. On a surface S, with a myosin signal c(r), we adopt the following definition of p:

p =

∫
S
dS ′ ∆r

||∆r||c(r)∫
S
dS ′c(r)

, (34)

with ∆r = r − rg, and dS ′ is the projection on a unit sphere centered around rg, of the area
element dS around a point r on the surface. Defined in this way, p is invariant by a rescaling of
the signal c(r), and a rescaling of space. Also, if all the signal is concentrated in an infinitely small
spot rc (c(r) = αδ(r − rc)) one can show that we have ||p|| = 1. Integrating on a unit sphere,
instead of on the actual surface S, reduces the dependency of the polarity on cell elongation. On
a triangle mesh, assuming a homogeneous signal c(r) = ci on each triangle ti with area Ai, we
compute first the center of mass rg as:

rg =

∑Nt
i=1Airi
A

with ri =
1

Ai

∫
ti

dSr and A =
∑
i

Ai . (35)

We then compute the coordinates (θi, φi) of the center of each triangle, in the spherical coordinate
system defined as:

∆rx
||∆r||

= sin(θ) cos(φ) ,

∆ry
||∆r||

= sin(θ) sin(φ) ,

∆rz
||∆r||

= cos(θ) .

(36)

We then create equally spaced bins in θ, φ and we compute the signal in each bin, which is the
average of the signal ci of all the triangles ti whose projected center has its coordinates (θi, φi)
inside the bin. If a bin contains no triangle, we take the signal of the closest projected triangle
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center. We finally compute the polarity using the following integral, discretised on the bins:

px =
1

〈c〉

∫
θ,φ

dθdφ sin(θ) sin(θ) cos(φ)c(θ, φ) ,

py =
1

〈c〉

∫
θ,φ

dθdφ sin(θ) sin(θ) sin(φ)c(θ, φ) ,

pz =
1

〈c〉

∫
θ,φ

dθdφ sin(θ) cos(θ)c(θ, φ) ,

〈c〉 =

∫
θ,φ

dθdφ sin(θ)c(θ, φ) .

(37)

5.4 Polarity orientiations in a cell doublet

In a rotating doublet, we describe the orientations of the polarities p1 and p2 of the two cells by
introducing a set of angles α1, α2 and β. Using the vector r12 joining the center of mass of cell 1
to the center of mass of cell 2, we define αi as:

α1 = arccos

(
p1

||p1||
· r12

||r12||

)
,

α2 = arccos

(
p2

||p2||
· −r12

||r12||

)
.

(38)

These are the angles between the polarities and the axis r12 of the doublet (Fig. 3h,i,k). In order
to quantify how the polarities are organised in the plane perpendicular to r12, we first introduce
projected polarities p⊥i :

p⊥i = pi − (pi · r12)
r12

||r12||2
. (39)

We then define a 2D basis (u1,u2) around p⊥1 :

u1 =
p⊥1
||p⊥1 ||

, u2 =
r12

||r12||
× u1 . (40)

We define β as the angle of p⊥2 in this basis:

cos(β) =
p⊥2
||p⊥2 ||

· u1 , sin(β) =
p⊥2
||p⊥2 ||

· u2 . (41)

When the vectors p1, p2 and r12 are coplanar, β is equal to 0 or π. β = 0 means that p⊥2 and p⊥1
are parallel in the same direction, and β = π means that p⊥2 and p⊥1 are parallel in the opposite
direction. The distribution of β is shown on Fig. 3j for all time points of all doublets. We define
the average of the distribution {βi} for N doublets in a way that is suited to a distribution of
angles:

〈β〉 = arctan

(
1

N

∑
i

cos(βi),
1

N

∑
i

sin(βi))

)
, (42)

where the arctan function is defined in the same way as in Eq.25. The corresponding average is
shown as a red line in Fig. 3j, and is slightly lower than π (p = 0.73, non-significant difference
from π, the p value is obtained as the probability of observing β > π).
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5.5 Correlation of myosin polarity with rotation vector and interface
modes

In order to test the assumption that the doublet rotation ω is correlated with the orientation of
the cell polarities p1 and p2, we need to construct a parameter that quantifies this correlation.
We choose to correlate ω with r12 × (p1 − p2), as these two quantities are pseudovectors and are
invariant under an exchange of cell indices 1↔ 2 (Fig. 3l):

C(ω, r12 × (p1 − p2)) with C(a, b) =

〈
a

||a||
· b
||b||

〉
. (43)

This correlation takes values between −1 and 1 and is invariant under a change of cell indices.
Additionally, we can correlate the polarity orientations with the “yin-yang” deformation mode of
the interface defined in Eq. 25 (Fig. 3m):

C(Y12,p1 − p2) , (44)

with the same definition of C(a, b) as in Eq. 43. Again this quantity is invariant under a change
of cell indices.

5.6 Generation of time averaged polarity maps

In Figs. 3, 4 of the main text (and Ext. Fig. 7), we generate maps in spherical coordinates of the
averaged cortical myosin distribution on the cell surface. We average the signal on all time points
and on all the cells. We define two orthogonal reference frames that are locally defined around
each cell i and can be used to represent the signal. The first kind of reference frame is constructed
around ωi (the rotation vector of the doublet containing cell i) and rini (ni being the other cell in
the doublet containing cell i), and the second kind is constructed around the polarity vector itself
pi and rini :

(e(i)
x , e

(i)
y , e

(i)
z )1 =

(
ωi
||ωi||

, e(i)
z × e(i)

x ,
rini
||rini ||

)
,

(e(i)
x , e

(i)
y , e

(i)
z )2 =

(
pi
||pi||

× rini
||rini ||

, e(i)
z × e(i)

x ,
pi
||pi||

)
.

(45)

We use spherical coordinates to define a couple of angles (θj, φj) for each vertex j of a cell i:

rj − r(i)
g

||rj − r(i)
g ||

= cos(φj) sin(θj)e
(i)
x + sin(φj) sin(θj)e

(i)
y + cos(θj)e

(i)
z , (46)

with r
(i)
g the center of mass of cell i. We make equally spaced bins in θ, φ and we accumulate the

normalized myosin signal of each triangle of each cell (for every doublet and every time point) into
the bins to finally construct an average myosin signal profile, which is represented on Fig. 3,4 and
Ext. Fig. 7. We normalize the myosin signal of a given time point of a given cell by rescaling it
such that its average value on the unit sphere (θ ∈ [0, π], φ ∈ [−π, π]) is 1. The average value on
the unit sphere is obtained from discretisation of the following averaging operation for the field I:

〈I〉 =
1

4π

∫ 2π

0

dφ

∫ π

0

dθ sin θI . (47)
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5.7 Second order description of the myosin signal heterogeneity

The polarity vector p can be considered a lowest order characterisation of the heterogeneity of the
myosin profile around the cell. To go further, one can calculate the nematic tensor associated to
the cortical myosin fluorescence intensity profile c(r):

Qαβ =

∫
S
dS(∆rα∆rβ − 1

3
δαβ(∆rγ∆rγ))c(r)∫

S
dSc(r)

with ∆r =
r − rg
||r − rg||

. (48)

This tensor is symmetric and traceless. Since the cell surface is represented by triangular meshes,
the formula must be adapted to work with triangles. We attribute a homogeneous signal to each
triangle ti of the mesh, equal to the average of the signal of its three vertices. We then use the
following discretised version of Eq.48:

Qαβ =

∑Nt
i=1 q

(i)
αβAic(ti)∑Nt

i=1 Aic(ti)
with q

(i)
αβ = ∆r(i)

α ∆r
(i)
β −

1

3
δαβ(∆r(i)

γ ∆r(i)
γ ) , (49)

where we have used the same conventions as in Section 5.3.

5.8 Correlation of myosin nematic tensor with interface modes

We now wish to determine whether a correlation exists between the orientation of the myosin
pattern described by Q and the direction of the saddle-node mode of the cell-cell interface, repre-
sented by S12 defined in Eq. 25. In the same spirit as in Eq. 43, we define a correlation operator
C operating on two tensors A, B:

C(A,B) =

∑
α,β AαβBαβ

||A|| · ||B||
, (50)

where we use the norm of a tensor defined as:

||A|| =

(∑
α,β

Aαβ

)1/2

. (51)

Given a vector S12 for the orientation of the saddle-node deformation mode, a nematic tensor can
be defined according to:

QS12
αβ = S12αS12β −

1

3
S12γS12γδαβ . (52)

One can then calculate a correlation between the cortical myosin nematic tensor and the orientation
of the saddle-node deformation mode, according to:

C(Q1 −Q2,QS12) , (53)

which is invariant by the exchange of cell indices 1↔ 2. This correlation function is used in Fig.
4m.
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6 Polarity dynamics of single cells

In Ext. Fig 1c, we compare directly the polarity dynamics in single cells and in cell doublets. For
this, we extract the myosin polarity (defined in section 5.3) p(i)(t) of cell i at time t where and we
look at how the polarity direction changes in time by computing an angle ∆θ(i)(t,∆t):

∆θ(i)(t,∆t) = arccos

(
p(i)(t)

||p(i)(t)||
· p

(i)(t+ ∆t)

||p(i)(t+ ∆t)||

)
. (54)

We then compute an average displacement ∆θ(∆t) by averaging ∆θ(i)(t,∆t) on all cells i and all
times t. By definition we have ∆θ(0) = 0. In Ext. Fig. 1c, we see that for single cells, the angle
does not significantly increase with time once ∆t is larger than 2 min, showing that the polarity
fluctuates around a fixed position. In cell doublets, the angle ∆t increases linearly with time,
indicating a rotation of the polarity at a constant speed.

7 Planar projections of interfacial signal

In Ext. Fig. 4 we generate planar maps of the E-cadherin signal on the cell-cell interface. For each
timepoint, we created maps based on the coordinates of the vertices of the segmented cell meshes.
As discussed above, the interface vertices can be obtained from the segmented meshes. It is also
possible to associate to each of these vertices an intensity signal.

7.1 Alignment of maps using the rotation vector

We wish to project the fluorescent signals on the plane perpendicular to the N12 axis in order
to generate interface maps of the E-cadherin signal, as illustrated on Ext. Fig. 5f. Since the
doublet rotates between time points, the reference frames must be rotated accordingly to prevent
introducing a spurious rotation around the r12 axis. Therefore, for each time series, we compute
the rotation matrices describing the rotation around the normalised rotation vector ωn = ω(t)

||ω(t)||
between time t and t+ ∆t:

R(t) =

 cos β + ω2
nx (1− cos β) ωnxωny (1− cos β)− ωnz sin β ωnxωnz (1− cos β) + ωny sin β

ωnyωnx (1− cos β) + ωnz sin β cos β + ω2
ny (1− cos β) ωnyωnz (1− cos β)− ωnx sin β

ωnzωnx (1− cos β)− ωny sin β ωnzωny (1− cos β) + ωnx sin β cos β + ω2
nz (1− cos β)

 ,

(55)
where β = arccos(u12(t) ·u12(t+ ∆t)) is the angle of rotation and u12 is the vector defined in Eq.
3.

7.2 Interfacial planar maps

In order to generate a planar map of the interface, we use the outcome of the interface shape
analysis pipeline (section 4), which consists of a reference frame of the interface (eX , eY ,N12), a
set of coordinates of interface vertices {(Xi, Yi, Hi) for i ∈ {1, ..., N}} in this reference frame, and a
polynomial P (X, Y ) fitting the interface. We use the fitted profile of the interface to generate a grid

of points of coordinates {(X(grid)
i , Y

(grid)
i , Z

(grid)
i = P (X

(grid)
i , Y

(grid)
i )) for i ∈ {1, ..., n2

p}} defined as
on Ext. Fig. 5g. The points are regularly spaced on a (150× 150) grid, and are selected based on
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the 2D convex hull of the points {Xi, Yi}. We transform these interface-based coordinates back to
the 3D coordinates of the image:

r
(grid)
i = X

(grid)
i eX + Y

(grid)
i eY + Z

(grid)
i N12 . (56)

We extract the E-cadherin signal on these vertices. Finally, in order to generate the interfacial
maps, we define rotated reference frames:

eproj
x =erot −

(
erot ·

N12

||N12||

)
N12

||N12||
,

(eproj
X , eproj

Y , eproj
Z ) =

(
eproj
x

||eproj
x ||

, eproj
Z × eproj

X ,
N12

||N12||

)
,

(57)

where erot(t + ∆t) = R(t)erot(t) and erot(t = 0) = eX(t = 0). We create new coordinates
(Xproj, Y proj) in which we display the interfacial maps:

Xproj = r(grid) · eproj
X ,

Y proj = r(grid) · eproj
Y .

(58)

8 Measurement of myosin clusters dynamics

In Ext. Fig. 4e, we generate maps in spherical coordinates of the average myosin distribution of
the cell surface for individual cells (in rotating doublets imaged every 2 minutes) centered around
the brightest myosin cluster. Here the correction described in section 5.2.2 is not applied to avoid
the loss of resolution it entails. We start from the vertices {r(i)

1 , r
(i)
2 , ...} of a mesh i on which the

myosin signal is {c(i)
1 , c

(i)
2 , ...}. We look for the brightest region on the surface by selecting the set

S(i) of vertices (of size N (i)) defined as:

S(i) = {j ∈ {1, 2, ...} such that c
(i)
j ≥ c

(i)
min + 0.9(c(i)

max − c
(i)
min)} . (59)

From this we define a vector u
(i)
s pointing towards the brightest region as:

u(i)
s =

 1

N (i)

∑
j∈S(i)

r
(i)
j

− r(i)
g , (60)

where r
(i)
g is the center of mass of mesh i. We define a reference frame that follows the brightest

cluster in time:

(e(i)
x , e

(i)
y , e

(i)
z ) =

(
u

(i)
s

||u(i)
s ||

,
rini
||rini ||

× e(i)
x , e

(i)
x × e(i)

y

)
, (61)

where rini is the vector pointing towards the other cell in the doublet (as in section 5.6). We then
generate maps in spherical coordinates using the same procedure as in section 5.6. Some examples
are shown on Ext. Fig. 4e, where we see that (by construction) the brightest spot is located at
θ = π/2 and φ = 0. Increasing values of θ away from θ = π/2 go towards the basal part of the cell,
while decreasing values of θ away from π/2 go towards the cell-cell interface. We then average the
signal in a band around the cluster between φ = −60◦ and φ = 60◦ to generate profiles along θ
which we stick together in time to generate the kymographs shown on Ext. Fig. 4g. We observe
that there is an overall relative movement of myosin clusters towards the brightest spot.

In order to measure the velocity associated to this displacement, we extract slopes dθ/dt from
the kymographs, and using the average distance R from the center of mass to the cell surface to
the basal side, we compute a velocity vs = Rdθ/dt which we found to be around 0.3 µm.min−1.
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9 Interacting active surfaces simulations

9.1 Description of the framework

In order to simulate a rotating doublet, we use the interacting active surfaces (IAS) framework
developed by Torres-Sanchez et al [4] (Fig. 4d, Ext. Fig. 8f,g). The following section recapitulates
the main features of IAS and additions that were brought to it in the present work. We use the
same notation as in Ref. [4]. Cells are described as active surfaces, and the governing equations
for the cell surface mechanics are discretised using a finite element method. In the limit of low
Reynolds number, the mechanics of a single surface S can be described by the following statement
of the principle of virtual work:

δW =

∫
S

dS

{
1

2
t̂ijδgij + m̄ijδCij − fαδXα

}
= 0 , (62)

where δX is an infinitesimal displacement of the surface, and δgij and δCij the associated infinites-
imal variation of the metric and curvature tensors. This equation is equivalent to the statement
of balance of linear and angular momentum at low Reynolds number. Constitutive equations are
specified for the mechanical tensors t̂ij and m̄ij. We denote by v the velocity field on the cell
surface, which is assumed be an active viscous layer, with a bending rigidity:

t̂ij = 2ηνij + γ(r)gij + κC k
k

(
1

2
C k
k g

ij − 2Cij

)
,

m̄ij = κC k
k g

ij ,

(63)

where νij is the strain rate tensor on the surface:

νij =
1

2

(
∇ivj +∇jvi + 2Cijvn

)
, (64)

with ∇i the covariant derivative operator. Here, η is the surface viscosity and γ(r) is the surface
tension of the cell, which we define in this study to be spatially modulated. The external force
density acting on a single cell is given by:

fα = Pnα − ξvα , (65)

where ξ is a friction coefficient with the outside medium and the pressure P is adjusted to impose
a value of the cell volume.

9.2 Cell-cell adhesion

The previous equations are modified by the presence of an adhesion potential φ(|XI −XJ |) oper-
ating between pair of points of cell I and cell J . Each cell interaction with a cell J is contributing
an additional external force density on cell I, and an additional isotropic tension to cell I:

fIJ = −
∫
SJ

dSJφ
′(|XI −XJ |)

XI −XJ

|XI −XJ |
,

tijIJ =

∫
SJ

dSJφ(|XI −XJ |)gijI .

(66)
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The potential of interaction is of the following form:

φ(r) = D

{[
1− exp

(
rmin − r

l

)]2

− 1

}
w(r, rmin, rmin + 3l) , (67)

with the cut-off function w given by:

w(r, r1, r2) =


1 if r ≤ r1(

r2−r
r2−r1

)3
[
6
(
r2−r
r2−r1

)2

− 15
(
r2−r
r2−r1

)
+ 10

]
if r1 < r < r2

0 if r ≥ r2

(68)

This potential has a minimum at r = rmin with minimum value −D, and is also peaked around
its minimum with characteristic length l. It goes to zero exactly at a distance rmin + 3l.

9.3 Simulation setup and dimensionless parameters

We simulate a doublet of two cells 1 and 2 in contact. Each cell i has a tension profile γi(r):

γi(r) = γ0
i + γmi (r) , (69)

where γ0
i is the part of the surface tension (assumed to be spatially homogeneous) not linked to

the myosin, and γmi (r) is the tension created by the myosin which is modulated around a unit
polarity vector Pi:

γmi (r) = γm0
i + ∆γi

bi exp
(
biPi · r

||r||

)
− sinh(bi)

bi exp(bi)− sinh(bi)

 . (70)

Here, γm0
i is a baseline tension and ∆γi is the amplitude of the tension modulation. The parameter

bi represents how broad the tension modification around the point indicated by Pi is (Ext. Fig.
8a). For b→ 0 we reach the following tension modulation:

γi(r) = γ0
i + γm0

i + ∆γiPi ·
r

||r||
. (71)

Then the size of the spot becomes smaller as b increases (Ext. Fig. 8a,c). The maximum tension
is γ0

i + γm0
i + ∆γi and the average tension on a spherical cell is γ0

i + γm0
i . This average tension is

noted γai in the following. We fix the angle θp between the cell polarity vector Pi of cell i and the
vector rij joining the center of mass of cell i to the center of mass of cell j, using the following
formulas:

P1 = cos(θp)
r12

||r12||
+ sin(θp)ez ×

r12

||r12||
with ez = (0, 0, 1) ,

P2 = cos(θp)
r21

||r21||
+ sin(θp)ez ×

r21

||r21||
.

(72)

The doublet is initialized at t = 0 in such a way that r12 · ez = 0, which ensures that the rotation
will occur around the axis defined by ez. In order to explore more complex tension profiles, we
may add a second-order term γnem,i(r) to the tension profile γi(r) defined in Eq. 69:

γnem,i(r) = ∆γn,i

((
Pi ·

r

||r||

)2

− 1

3

)
. (73)
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On a spherical cell this term has a zero average. We make the system dimensionless by choosing
units of time, space, and mass as follows:

T =
η

γa
, L =

(
3V

4π

)1/3

= R,M =
η2

γa
with γa =

1

2
(γa1 + γa2 ) , (74)

with V the volume of cell i, assumed identical to the volume of cell j. According to this choice,
the remaining dimensionless parameters describe the phase space of the problem:

γa1
γa2

,
∆γ1

γa1
,

∆γ2

γa2
,

∆γn,1
γa1

,
∆γn,2
γa2

, b1, b2, θp,
κ

γaR2
,
ξR2

η
,
DR2

γa
,
rmin
R

,
l

R
. (75)

9.4 Comparison of simulations with experiments

Here we discuss the relationship between active tension profiles used in simulation and experimen-
tally obtained cortical myosin profiles. We assume that the fluorescence intensity I(r) of myosin
is proportional to the myosin generated tension γm(r):

γm(r) = νI(r) . (76)

We quantify the contrast in the experimental myosin signal using the standard deviation divided
by the average:

σI
〈I〉

=

√
〈I2〉 − 〈I〉2
〈I〉

=

√
〈I2〉
〈I〉2

− 1 , (77)

where the averages 〈...〉 are computed after projection on a unit sphere, like in section 5.3. In
simulations, we compute the tension contrast similarly as σγ/〈γ〉. Using Eq. 69 and Eq. 76, we
get the following relation between the total tension γ and the intensity:

γ = γ0 + νI , (78)

which leads to:
σI
〈I〉

=
σγm

〈γm〉
=

(
1 +

γ0

ν〈I〉

)
σγ
〈γ〉

(79)

This shows that in order to compare a simulation result to an experimental result, one should
use σγm/〈γm〉. However, because of the underlying and unmeasured tension γ0, this requires to
determine the value of the unknown scaling coefficient λ = (1+γ0/(ν〈I〉)). We determine the value

of λ by superimposing the experimental and simulated curves of
√
〈H2

y−y〉/R, since the deflection

of the interface is a purely geometric quantity that should be identical in an experiment and its
equivalent simulation. This leads to λ = 6, which would mean that the average unmeasured tension
γ0 is typically 5 times higher than the average measured tension ν〈I〉. We use this value of λ on
Fig. 4h and Fig. 4i to compute σγm/〈γm〉.

We now consider two cells 1 and 2 of a doublet with two homogeneous, but possibly distinct
surface tensions γ1 = γa1 = γ0 + γm1 and γ2 = γa2 = γ0 + γm2 . We would like to compare this
situation with the shape of a doublet with average myosin fluorescence intensity 〈I1〉 and 〈I2〉.
Here we assume that the unmeasured tension γ0 is the same for both cells, as well as the conversion
coefficient ν. Eq. 76 then shows that we have:

γm1 − γm2
γm1 + γm2

=
〈I1〉 − 〈I2〉
〈I1〉+ 〈I2〉

. (80)
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where the averaging operator 〈〉 has been defined in Eq. 47. Since λ is defined in average on a
population of cells, we can assume that:

λ = 1 +
γ0

ν 〈I1〉+〈I2〉
2

= 1 +
2γ0

γm1 + γm2
. (81)

From this we obtain that γa1 + γa2 = 2γ0 + γm1 + γm2 = λ(γm1 + γm2 ), which means that the left hand
side of Eq. 80 can be computed as:

γm1 − γm2
γm1 + γm2

= λ
γa1 − γa2
γa1 + γa2

. (82)

We use this formula to compare the experimental and simulated curves of the bowl mode amplitudes
in Fig. 4l.

9.5 Parameter values used in simulations

The parameters rmin/R and l/R are chosen so that for a cell of typical radius 5µm we have
rmin = 600nm and l = 200nm. The value rmin sets the distance between the cortices of the
interacting cells. The width of an adherens junction is roughly 20nm [5],and a typical cortex
thickness is 200nm [7], bringing the total distance between the middle of the two cortices to
∼ 220nm. Here we use a larger value, but with the right order of magnitude. We note that it is
important for numerical stability that the parameters rmin, l are not small compared to the typical
length scale of the triangle mesh used for the simulation. Here we use meshes with 20480 triangles
with a typical length (square root of area) of 0.03/R, and we have chosen a value of l/R = 0.04
and rmin/R = 0.12.

For all the simulations, we set the angle θp of the polarity to π/2, which is close to what is
experimentally measured (Fig. 3k). We also fixed the adhesion strength to DR2/γa = 38.9. The
value of the adhesion strength (relative to the surface tension) sets the equilibrium area of contact
between the two doublets and is chosen here so that the doublet has an overall spherical shape
when it is not rotating (see Fig. 4j, D∞h).

For the bending rigidity we operate around the value of κ/(γaR
2) = 10−2 which, for a typical

cortical tension γa ≈ 10−4N.m−1 [8], corresponds to κ ≈ 6 × 103kBT . This is compatible with a
typical cortical Young modulus E ≈ 1 kPa, and a cortex thickness h ≈ 200 nm, which lead to an
estimated bending rigidity Eh3 ≈ 2× 103kBT .

For ξR2/η we choose a default value of 10, which corresponds to a typical hydrodynamic length√
η/ξ ≈ 1µm. This quantity can be expected to vary a lot depending on the friction with the

outside medium. It has been estimated in C.elegans zygotes to be around 14µm [9]. The values
of the remaining parameters are listed in Table 3.

Simulations can be run with the normalized time tγa/η and space coordinates normalized by R.
In Fig. 4h, we obtain rotation velocities comparable to experiments by setting η/γa = 1min, and
in Ext. Fig. 8f we then obtain cortical flow velocities in µm/min by setting in addition R = 5µm.

All simulations are started from a doublet initially at rest at tγa/η = 0 (steady-state configu-
ration of Fig. 4j) and are run until the rotational velocity reaches a steady-state. We typically see
small oscillations in the interface deflection (Ext. Fig. 8e). For the laser ablation simulation (Fig.
5d,e), the tension modulations of both cells are turned to 0 at a time tγa/η = 175 corresponding
to the steady-state of the reference simulation (Fig. 4e).
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Figure
γ01
γ02

∆γ1
γ01

∆γ2
γ02

∆γn,1
γ01

∆γn,2
γ02

b1 b2
κ

γaR2
ξR2

η

4e,f,g, Ext.Fig.8e,f 1 0.3 0.3 0 0 0 0 10−2 10
4h,i 1 x x 0 0 0 0 10−2 10

4j:D∞h 1 0 0 0 0 0 0 10−2 10
4j:C2h 1 0.3 0.3 0 0 0 0 10−2 10
4j:C∞v 1.171 0 0 0 0 0 0 10−2 10
4j:C2v 1 0 0 0.1 0 0 0 10−2 10
4j:Cs 1.041 0.288 0.3 0.072 0 3 3 9.8 · 10−3 10

4l x 0 0 0 0 0 0 10−2 10
5d,e 1 0.3 0.3 0 0 0 0 10−2 10

5f,g,h 1 0.3 0.3 0 0 0 0 10−2 10
Ext.Fig.8d 1 0.3 0.3 0 0 x x 10−2 10
Ext.Fig.8h 1 0.3 0.3 0 0 0 0 x x

Supplementary Table 3: Parameter values used in simulations. An “x” is shown in the table
above when the parameter values are directly indicated on the corresponding figures.

For the optogenetic simulation (Fig. 5f,g,h), we also start from the steady-state of the reference
simulation and we introduce an additional tension modulation on cell 1:

γopto(r) = ∆γopto

bopto exp
(
boptoPopto · r

||r||

)
− sinh(bopto)

bopto exp(bopto)− sinh(bopto)

 , (83)

with Popto a unit vector. We choose ∆γopto/γa = 0.3 and bopto = 4. The position of the spot
is adjusted to follow the rotation of doublet (which is around the axis ez = (0, 0, 1)) using the
following formula:

P1 = cos
(π

2

) r12

||r12||
+ sin

(π
2

)
ey

Popto = cos
(
− π

1.8

) r12

||r12||
+ sin

(
− π

1.8

)
ey

with ey =
ez × r12

||ez × r12||
.

(84)

9.6 Effect of tension spot size on interface deformation

As is seen on Fig. 4j (second row), and on supplementary table 1, the yin-yang and three-fold
modes are similar in the sense that they both possess the necessary symmetries to be observed in
a typical rotating doublet simulation like the one of Fig. 4e. However, for a broad tension profile
(b = 0), only the yin-yang mode is observed (Fig. 4f). Interestingly, on Ext. Fig. 8d we show that
by reducing the size of the active tension spot, one can generate rotating doublets with a three-
fold deformation mode, in addition to the yin-yang mode. For b > 3, the three-fold mode even
dominates in amplitude. We chose a range for the b parameter based on the experimental values
found when fitting a profile of the type of Eq.70 to the experimental myosin signal at different
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individual time points:

I = 〈I〉+ ∆I

b exp
(
bP · r

||r||

)
− sinh(b)

b exp(b)− sinh(b)

 , (85)

with P being the normalised polarity vector defined in Eq.37. The fitted values of b and ∆I/〈I〉
are shown on Ext. Fig. 8b.

9.7 Effect of bending rigidity and friction

On Ext. Fig. 8h, we test the effect of the dimensionless bending rigidity κ/(γaR
2) and the

dimensionless friction coefficient ξR2/η on the rotational velocity and the interface deflection.We
see that the bending rigidity acts on both observables, but mostly acts on the interface deflection.
For increasing rigidity, the interface is less deflected. The friction coefficient, on the opposite, acts
mostly on the rotational velocity. A higher friction coefficient leads to a slower rotation.

10 Analysis of optogenetic and laser ablation experiments

In Fig. 5g-h, we analyse quantitatively the result of optogenetic experiments (and the correspond-
ing simulation) where an additional myosin spot is induced temporarily, leading to a slow down
of the rotation and a transient movement of the doublet center of mass. Here we perform the
analysis of the effect on doublet rotation in two dimensions. First, the doublet rotation is tracked
manually using bright field microscopy images taken in the x − y plane, at the z position corre-
sponding to the center of the cell doublet, as follows. A fiducial marker (intracellular organelle)
is tracked manually inside each cell, which follows the cell rotation. We call f1(ti) and f2(ti) the
position vectors of these markers; where ti is the time of frame i in the movie, starting from i = 0.
Additionally, a 2D segmentation of the doublet outline is performed from which a center of mass
rg(ti) is extracted. From this we define three vectors that rotate with the cell doublet:

u1g = f1 − rg ,
u2g = f2 − rg ,
u12 = f1 − f2 .

(86)

We compute the angles ∆θ
(i)
1g , ∆θ

(i)
2g and ∆θ

(i)
12 by which the vectors rotate between time ti and ti+1.

This allows to define a robust rotation angle ∆θi for the cell doublet by taking the average:

∆θi =
1

3

(
∆θ

(i)
1g + ∆θ

(i)
2g + ∆θ

(i)
12

)
. (87)

We define a number of revolution N r
i as a cumulative sum of ∆θ, such that N r

0 = 0 and for i ≥ 1:

N r
i =

i∑
j=1

∆θj−1 . (88)

We also use the angles ∆θi to define a frame of reference that rotates with the cell doublet. We
start by defining a vector ex(tact) at the time tact (index i = act) when the optogenetic activation
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starts. The vector is defined as the unit vector going from the optogenetically activated spot
towards the center of mass of the doublet. We then rotate the vector so that it can be defined at
any time ti and follows the rotation of the doublet:

∀i > act ex(ti) = Rot

(
ex(tact),

i−1∑
j=act

∆θj

)
,

∀i < act ex(ti) = Rot

(
ex(tact),

i∑
j=act−1

−∆θj

)
.

(89)

The frame of reference is then completed by a unit vector ey(ti) perpendicular to ex(ti). We plot
the trajectory of the center of mass rg(ti) in the (ex(ti), ey(ti)) reference frame on Fig. 5g, using
coordinates normalised to the average radius R of the doublet. R is defined as

√
DMDm/2 where

DM and Dm are the major and minor diameters an ellipse fitted to the outline of the doublet. In
order to assess whether there is a significant displacement of the center of mass in the ex direction,
we compute the following quantity:

∆x = |rgx(tact + ∆t)| − |rgx(tact −∆t)| , (90)

where ∆t is the duration of the optogenetic activation. If ∆x is positive in average, it means
that there is a significantly larger displacement after activation compared to any displacement
that could be occurring before activation. We find ∆x to be in average equal to 0.73 µm which is
significantly positive with a p value of 0.002 estimated using bootstrapping (Fig. 5g, the p value
corresponds to the probability of observing a negative value of ∆x). For the plot of the number
of revolution as a function of time (Fig. 5h) we define the following relative times and number of
revolution:

N r′

i = N r
i −N rfit

act ,

t′i = ti − tact ,
(91)

where N rfit
i is obtained by doing a linear regression on the profile of N r

i for ti ≤ tact. On Fig. 5h,
N r′
i is plotted as a function of t′i. We also performed a linear regression on N t

i for tact ≤ ti ≤ tdeact,
from which we extract the slope as a measure of the rotation velocity during optogenetic activation.
We compared this slope to the slope before activation, using bootstrapping, and found that there
was a significant decrease in rotation velocity (p = 0.005, the pvalue corresponds to the probability
of observing an increase of the rotation velocity).

In Fig. 5e, we use a similar approach to analyse the results of the laser ablation experiments.
We extract the slope of a linear regression made on the number of revolution as a function of time
for t < tablation. We then extract another slope for tablation ≤ t ≤ tablation +10min, which we compare
to the first one. We found that there is a significant slowing down of the rotation (p = 3.10−5, the
p value corresponds to the probability of observing an increase of the rotation velocity).
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Supplementary Figure 1: Correcting a bias induced by the point spread function
(PSF). a. Scheme showing how the measured fluorescence intensity for a planar object depends
on its orientation with respect to the anisotropic PSF. b. Left: Image of a spherical bead of
0.093 µm, deformed in the z direction due to the anisotropy of the PSF. Right: Same image after
applying a gaussian blur filter in the x-y direction, correcting the anisotropy. Scale bar: 2 µm.
c. Map of average myosin intensity of single cells, in spherical coordinates around the reference
frame of the microscope. d. Same map, but after applying the gaussian blur filter to correct for
the anisotropy.
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12 Supplementary Videos legends

• Supplementary Video 1 - All doublets rotate spontaneously. MDCK cells expressing E-
cadherin-mNG (in green) and Podocalyxin-mScarlett (in red). Time in hh:mm, scale bar:
20 µm.

• Supplementary Video 2 - All doublets rotate with similar velocity. MDCK cells expressing
E-cadherin-mNG (in grey). Time in hh:mm, scale bar: 5 µm.

• Supplementary Video 3 - The doublet also rotates when two cells meet. MDCK cell ex-
pressing E-cadherin-GFP (in green) and E-Cadherin-DsRed (in magenta). Time in hh:mm,
scale bar: 5 µm.

• Supplementary Video 4 - E-cadherin KO doublet rotates. MDCK cadherin KO cells with
labelled Sir-Actin (Grey). Time in hh:mm, scale bar: 5µm.

• Supplementary Video 5 - A typical segmentation of cells. The doublet (left) expressing
E-cadherin-mNG is shown next to its segmented version (right). Time in hh:mm, scale bar:
5 µm.

• Supplementary Video 6 - F-actin localises at the cell-cell interface and within protrusions.
MDCK cells expressing E-cadherin-mNG (in green) and F-actin labeled with SiR-actin (in
grey). Time in hh:mm, scale bar: 5 µm.

• Supplementary Video 7 – Focal adhesions localize near the cell-cell interface. MDCK cells
expressing VASP-GFP (in grey). Time in hh:mm, scale bar: 5 µm.

• Supplementary Video 8 - Myosin clusters localize near the cell-cell interface. MDCK cells
expressing E-cadherin-mNG (in green) and MRLC-KO1 (in grey). Time in hh:mm, scale
bar: 5 µm.

• Supplementary Video 9 - Actin protrusion dynamics during rotation. MDCK cells with two
cells expressing actin of different colours. Actin-GFP (yellow) and Actin-iRFP (magenta).
Time in hh:mm, scale bar: 5 µm.

• Supplementary Video 10 – A myosin cluster pulls and deforms the cell-cell interface. MDCK
cells with triple label, myosin-KO1 (Grey), SiR-Actin (Red) and E-cadherin-mNG (Green).
Time in hh:mm, scale bar: 5 µm.

• Supplementary Video 11 – Reference simulation shown in Fig. 4e. Cross-section of a
rotating doublet showing a yin-yang interface deformation mode. The colormap indicates
the active tension γ/γa on the membranes. Dimensionless time tγa/η is indicated. See
Supplementary Information section 9.5 for simulation parameters.

• Supplementary Video 12 - Myosin activity is needed for rotation. The doublet rotates
and stops its motion when blebbistatin is added (time 01:00); rotation starts again after
washout. MDCK cells expressing E-cadherin-mNG in green and MRLC-KO1 in grey. Time
in hh:mm, scale bar: 5 µm.
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• Supplementary Video 13 - Interfering with actin dynamics with the Arp2/3 inhibitor CK-666
affects doublet rotation. The doublet rotates and stops its motion when CK-666 is added
(time 00:30); rotation starts again after washout. MDCK cells expressing E-cadherin-mNG
in green and MRLC-KO1 in grey. Time in hh:mm, scale bar: 5 µm.

• Supplementary Video 14 - Interfering with actin dynamics with the Rac1 inhibitor affects
doublet rotation. The doublet rotates and stops its motion when the Rac1 inhibitor is added
(time 00:30); rotation starts again after washout. MDCK cells expressing E-cadherin-mNG
in green and MRLC-KO1 in grey. Time in hh:mm, scale bar: 5 µm.

• Supplementary Video 15 - Myosin clusters ablation corresponds to rotation arrests and
changes in interface shape. MDCK cells expressing MRLC-GFP (in grey). Time in hh:mm,
scale bar: 5 µm.

• Supplementary Video 16 – Laser ablation simulation. Cross-section of a rotating doublet
at steady-state, whose tension modulation is switched off at t=0. The colormap indicates
the active tension γ/γa on the membranes. Dimensionless time tγa/η is indicated. See
Supplementary Information section 9.5 for simulation parameters.

• Supplementary Video 17 - Local activation of Rho at time 0 (red square) leads to the
generation of myosin clusters and this shifts the rotation to translation. The center of
mass is tracked throughout the movie and is indicated with changing colours. MDCK cells
expressing MRLC-iRFP. Time in hh:mm, scale bar: 5 µm.

• Supplementary Video 18 – Optogenetic simulation. Cross-section of a simulated rotating
doublet initially at steady-state. Active tension is increased in a spot in one of the cells, from
time tγa/η = 0 to tγa/η=16.57. The added spot impairs the rotation, makes the doublet
asymmetric and creates a drift of its center of mass. See Supplementary Information section
7.5 for simulation parameters.

• Supplementary Video 19 – Myosin clusters appear as a remnant from the cytokinetic ring.
MDCK cells expressing MRLC-GFP (in grey). Time in hh:mm, scale bar: 5 µm.
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