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DATA REPRODUCIBILITY

Figure 1 and Figure 2 show the relative change of elastic moduli as a function of temperature as obtained when
different echoes from a single experiment are used for the data analysis. Figure 3 and Figure 4 show the relative
change of elastic moduli for different carrier frequencies of the excited sound pulse. We find no significant dependence
on either the echoes, or the frequencies used for any of our measurements.
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FIG. 1. Echo Analysis Compressional Moduli. The relative change of compressional elastic moduli as obtained from
different echoes in a single pulse-echo ultrasound experiment. The colors indicate the echoes used for each curve. The data in
red are the data shown in the main. The left column shows data for samples with one superconducting transition, the right
column is for samples with two transitions.
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FIG. 2. Echo Analysis Shear Moduli. The relative change of shear elastic moduli as obtained from different echoes in a
single pulse-echo ultrasound experiment. The colors indicate the echoes used for each curve. The data in red are the data shown
in the main. The left column shows data for samples with one superconducting transition, the right column is for samples with
two transitions.
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FIG. 3. Frequency Dependence Compressional Moduli. The relative change of compressional elastic moduli at different
frequencies. The data in red are the data shown in the main. The left column shows data for samples with one superconducting
transition, the right column is for samples with two transitions.
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FIG. 4. Frequency Dependence Shear Moduli. The relative change of shear elastic moduli at different frequencies. The
data in red are the data shown in the main. The left column shows data for samples with one superconducting transition, the
right column is for samples with two transitions.



NOISE ANALYSIS

Figure 5 shows the relative change of all elastic moduli also shown in the main. In order to estimate the noise of
our data, a second order polynomial has been fitted to the normal state data (highlighted by a red background in
Figure 5). In Figure 6 we show the same elastic moduli with that polynomial subtracted from the data. We then
estimate its noise as the RMS of the background-subtracted data above the transition, i.e. the same temperature
range which we used to fit said polynomial background (red shaded region). The resulting RMS values lie between
0.04 ppm and 0.41 ppm (on average less than 1.9 x 1077).



kls-\ T T T Lls\

\S/ 0_ i 850

g_10_ | gZS

g . . . S 0.0

< < 45 16 17 18 19
e 20 e

o o

— (|

- 0 .

g g

a a

g it

e e ' '

o 0 o OF |
S S

S S -2f -
372 3

(@] QO

< < 1 1

UI;\ T T T T T kls\

= =

- Or -

<) <

3 A

(@] (@]

< <

e e oF ' ' '

o o

S S

& S -10¢ ]
3 3

S S 20

< 16 1.7 1.8 < 75 16 1.7 1.8

T(K) T(K)

FIG. 5. Background Subtraction. Temperature dependence of all elastic moduli shown in the main (black points). A second
order polynomial (red line) has been fitted to each modulus in the normal state above Tt (red shaded region). The left column
shows data for samples with one superconducting transition, the right column is for samples with two transitions.
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FIG. 6. Noise Estimate. Elastic moduli from Figure 5 with the normal state background (see Figure 5) subtracted. A RMS
is calculated for each modulus in the same temperature range that was used to fit the background in Figure 5 (red shaded
region). The purple/red shaded temperature regions are identical to those in Figure 5. The left column shows data for samples

with one superconducting transition, the right column is for samples with two transitions.



LANDAU FREE ENERGY CALCULATIONS

Elastic moduli are the second derivative of the free energy with respect to strain, i.e. they are the strain susceptibil-
ity, in analogy with the heat capacity, which is the second derivative of the free energy with respect to temperature. If
strain couples linearly to the square of the order parameter 7 (just like temperature does in the term (7 — T,.)n?), the
respective elastic modulus will exhibit a discontinuity at the phase transition (just like the specific heat does). The
reason for these discontinuities is that immediately below T, the system has a new degree of freedom that can respond
when you apply strain (in the case of elastic moduli) or change temperature (in the case of heat capacity). This new
degree of freedom means that the response below T is entirely distinct from that above T,: even though the order
parameter itself changes continuously, the system’s susceptibility to changes in the order parameter is discontinuous.

For a single-component order parameter, only compressional moduli can exhibit this discontinuity. For a two-
component order parameter, on the other hand, discontinuities in compressional moduli and certain shear moduli are
allowed. This is because for single-component order parameters, the only quantity that can respond to strain is the
magnitude of the order parameter. The bare “amplitude” of the order parameter breaks gauge symmetry and thus
cannot enter directly into the free energy or couple linearly to external parameters like strain. As the magnitude of
the order parameter is a scalar (simply a number), this means that it couples to scalar strains, i.e. compressional
moduli.

For a two component order parameter, there are two new gauge-invariant quantities that can couple to strain: the
relative phase between the components of the order parameter, and the overall “orientation” of the two components
in order-parameter space. These are new degrees of freedom that can be probed by shear strain, and thus are what
allow for discontinuities in the shear moduli at 7.

Below, we elaborate on these concepts within the Landau theory of second-order phase transitions.

Elastic Free Energy

The elastic free energy of a solid is given by %ZH €iCij€5, with strain & = {eyy, eyy, €22, 26y2, 264, 264y} and
the elastic tensor ¢ in Voigt notation. In an orthorhombic crystal environment (i.e. point group Day,), all individual
elements of the strain tensor transform as a particular irreducible representation of the point group Dsp. In particular,
we can rewrite

€= {638327 Eyyr €2z, 2€yza 259¢Za 2€wy} = {5Ag,la €Ag,2,€A9,3,EB3g;EB2g> 6Blg}; (1)
where the subscript now refers to the irreducible representation. Consequently, the elastic free energy can be rewritten

as

1
2 2 2
=5 (Cagi€higr + Cagaghhy s T Cagachys + 2Cag4849.1649.2 + 2CAg 564916 49,3 + 2CAg 6EAg 26 49,3 (2)

2 2 2
+CB3¢ER3y t CB2gER2y + CBQQEBQg) .

Here, we have rewritten the elastic tensor according to

ci1 ¢ci2 ci3 0 0 0 CAg,1 CAg4 CAgs O 0 0
c12 c2 c23 0 0 0 CAg4 CAg2 CAgs O 0 0
c ci3 c23 ¢33 0 0 0 | _ [cags cage cag3 0 0 0 3)
0 0 0 cyga O O 0 0 0 c¢p3g O 0
0 0 0 0 e5 O 0 0 0 0 ¢y O
0O 0 0 0 0 cg 0 0 0 0 0 c¢Big

Order Parameter Free Energy and Coupling to Strain:
One-Component Order Parameter

A single-component superconducting order parameter (OP) can be parametrized as ne®”, with an amplitude 1 and
phase v, both real. However, since the free energy needs to obey global gauge symmetry, the OP can only appear in
even powers and the phase factor e becomes unobservable. Only one degree of freedom remains, the amplitude (or
superfluid density) . The phase factor is thus dropped in the following discussion. In this case, the OP free energy
expansion to fourth order reads

a b
fop = 5772 + ?74, (4)
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One-Component OP Bsy + B3y
=4/ (60,70) = (w/4,+7/2)
—2
o = £/ bvby 01
) g7 a1(—2ag(b1+bs—ba)gf g +a1(—(b1+bs—ba)(gd)>+4bagf gi —(b1—bs+ba)(g5)?))

Ocag,i 2b () a3 (b3—4bZ—(b3—bs)?)+4arazbz (b1 +bz—bs)—aZ(br1+b3—bs)? (1,6)
0cB1g 0 -5 ()
(5CBzg 0 0
(50339 0 0

TABLE I. Discontinuities in elastic moduli for different OP configurations. Magnitudes of discontinuities in elastic
moduli at 7. for one and two-component OPs, along with the particular degree of freedom that causes the discontinuity (given
in parentheses after the expression for the discontinuity). For a one-component OP, only compressional moduli ca,,; show a
discontinuity, caused by fluctuations in the order parameter amplitude 7. For a Bg, + iBs, two-component OP, compressional
moduli and the ¢p14 elastic modulus are allowed to show a discontinuity. The discontinuity in the compressional moduli is due
to fluctuations in the absolute amplitdue n of the OP, as well as fluctuations in the relative amplitude 6 between individual
components. The discontinuity in cpi4, however, is caused by fluctuations of the relative phase v between different order
parameter components.

where a = ag (T —T¢). ap > 0, and b are phenomenological constants, T, is the critical temperature.

Since the OP has to appear in even powers in the free energy, the lowest possible coupling to strain is quadratic in
OP and linear in strain. Furthermore, since the OP transforms as a one-dimensional irreducible representation of Dayy,,
its bilinear will always transform as the A, irreducible representation, irrespective of the particular representation.
Thus, quadratic in OP and linear in strain coupling terms are only allowed for A, strains, and to lowest order, the
terms in the free energy coupling the OP to strain are

1
fcoupling = 5 (glgAg,l + 92€Ag,2 + g35Ag,3) 772' (5)
Following the formalism outlined in [1], coupling of strain to the OP leads to a discontinuity of the respective elastic
moduli at T, according to
ZmZ
0Cmn = — ﬂ;/ 2 , (6)
N—10,Em—0

where Z,, = 8252}"8“;’5"9, Y = 62:]02”, and ny = \/% is the equilibrium value for the OP defined by dfop/dn = 0.
From Equation 6 it is straightforward to see that coupling terms in the free energy which are quadratic or higher
order in strain will not lead to a discontinuity of the respective elastic modulus at T, which justifies the truncation
of Equation 5 after terms linear in strain. Consequently, in the case of a one-component OP, no shear modulus (i.e.
CB1g, CB2g, OF CB3g) is allowed to show a discontinuity at T, (note that a discontinuity in its derivative is allowed [2]).
This is a general statement purely based on the dimensionality of the order parameter and irrespective of its particular
irreducible representation. Combining Fquation 5 and Equation 6, all A, elastic moduli exhibit a discontinuity at the
critical temperature. The magnitudes of these discontinuities based on the free energy in Equation 4 and Equation 5
are summarized in Table I.

Order Parameter Free Energy and Coupling to Strain:
Two-Component Order Parameter

Next we discuss discontinuities in the elastic moduli with a two-component OP 1 = {n;,7,}. In the D, point
group, all irreducible representations are one dimensional. A two-component order parameter therefore has to consist
of two one-component order parameters, meaning 7, and 7, can belong to different irreducible representations and
are not related by symmetry. The example of 7, and 7, transforming as the By, and Bs, irreducible representations,
respectively, as suggested for the superconducting OP in UTey by authors in Hayes et al. [3] and Wei et al. [4], will be
|2

)

used in the discussion below. For this particular OP, three independent bilinear combinations can be formed: |7,
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|ny|2, and (%U; + n;ny) transforming as Ay, Ay, and By, representations respectively. The Landau free energy reads

for =

2 az 2 2
S (el + ) + 5 (1ne = in?) (7)
1 1) | b2 4 4y b3 2, 2, ba €\ 2 N2
2 (et 1) + 22 (el = ) + 2 el 4 2 () + 3,2

where a1 2 = ag % (T —T¢), a1,2 > 0, and b; are phenomenological constants. Based on these considerations, the free

energy couphng the OP to linear powers of strain can be written as

1 s s s 2 2 1 a a a 2 2
Jeoupting = 5 (932491 + G302 + 93 a08) (10 + Iy *) + 5 (9 a0t + g3 a02 + gieag)] (Il = In*)  (8)
94 * *
+ 5 esig (natly +1my) -

Coupling of By, strain to the second power of the OP as in the free energy above is only possible for the particular
example of a {Bay,, B3, } OP. However, linear coupling of shear strain (i.e. Big, Bag, or B3, strain in Dap,) to a bilinear
of the OP is in general only possible for a two-component OP.

In order to calculate the discontinuities of elastic moduli in the presence of a two-component OP, Ghosh et al. [1]
generalized the expression in Equation 6 to

OCmn = —ZZ1

9)

N—Mg,Em—0 ’

where Z,, = % and Y = £ J;OP. Parametrizing the OP as = 7 {cosf, e sinf}, the derivative 9/0n
becomes 9/9{n,0,v}. Assuming a chiral order parameter (6y,v9) = (7/4,£7/2), the equilibrium amplitude 7y,

defined by dfop/0n| 10,0040 = 0> 1S then given by no = £/ bl;gﬁ. This assumption is motivated by the observation
of time-reversal symmetry breaking (TRSB) [3, 4] in the superconducting state of UTes. For this order parameter

configuration, one finds

a —|— 2 (b1 + b3 — b4) —2n9 (a2 + bﬂk%) 0

Y = —2n9 (az + band) (b1 —bs+bs)my 0 |, (10)
g; Mo 0 0

Zagi= -9 |, Zpig = 0 L | ZB23yg = |0 (11)
0 i 0

where ¢ = 1,2,3. From Equation 10 and Equation 11 in can be seen that for a chiral {Ba,, Bs,} order parameter
in a Dgy, point group, all compressional moduli (i.e. the elastic moduli corresponding to A, strains) show a step
discontinuity at T, due to coupling of the corresponding strain to the absolute amplitude of the OP (the superfluid
density), as well as the relative amplitude of the different components (this is in contrast to a multi-component OP
where the different components are related by symmetry, for which compressional strains only couple to the absolute
amplitude of the OP [I]). Among all the shear moduli, only cp14 shows a step discontinuity at T¢, due to the coupling
of By, shear strain to the relative phase between the different components of the OP.

While the details of the above calculation depend on the exact OP parameter configuration, the main statement is
general: a multi-component OP is required for a discontinuity in any shear modulus.
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HEAT CAPACITY MEASUREMENTS

Heat capacity measurements (Figure 7) were performed in a He cryostat using the quasi-adiabatic method: a fixed
power was applied to the calorimeter to raise it approximately 1% over the bath temperature. The power was then
turned off to allow the calorimeter to relax back to the bath temperature. The heat capacity was extracted from
these heating and cooling data by fitting them to exponentially-saturating curves. The sample was affixed to the
calorimeter with Apiezon N grease. The background heat capacity of the grease and the calorimeter were measured
separately and subtracted from the data in Figure 7.

EHRENFEST ANALYSIS

The discontinuity observed in the compressional moduli dc;; at T is directly related to the jump in the heat capacity
divided by temperature, AC/T, via Ehrenfest relations. For a single component order parameter they read

AC (dT.\>

The derivative of critical temperature with respect to compressional strain dT./de;; can therefore be calculated by
extracting the discontinuities of the corresponding elastic modulus and the heat capacity at T,. The heat capacity was
measured in sample S3 (see Figure 7) and the size of its discontinuity at 7, is determined to be (196418) mJ/(mol K?).
The magnitudes of the discontinuities in Ac/c for all compressional moduli are extracted according to Figure 8 and
the values are given in Table IT. Using these values, as well as the elastic moduli of UTes [5], the absolute values of
dT,/de;; (it = zx,yy, 2z) are calculated (see Table II).

350 i T T T T |
X 300 . -
g .
% 250 B O 7
=
= 200 . -
) .

150 e ]

150 155 1.60 165

T(K)

FIG. 7. Heat Capacity. Heat capacity divided by temperature as a function of temperature measured on sample S3. The
jump at T, is (196 £ 18) mJ/(mol K?), determined according to linear fits below and above the transition (red lines). The
uncertainty is estimated from the finite temperature range close to 7. in which the data deviates significantly from these fits.
This range is indicated by the blue shaded region.

The derivatives of the critical temperature with respect to stress can be calculated from the derivatives with respect
to strain via

-1

dT./do gy cll cl2 c13 dT./de gy
dT./doy, | = | c12 22 ¢23 dT/deyy | - (13)
dT./do . c13 23 ¢33 dT./de .
The resulting values are given in Table 11, along with values measured in uniaxial stress experiments [6]. The elastic
tensor used for this calculation is again taken from Theuss et al. [5]. Note that the analysis in Equation 13 requires

knowledge about the signs of dT../de;;, whereas the Ehrenfest relations in Equation 12 only yield their absolute values.
For a correct analysis from our data, signs according to Girod et al. [6] were assumed.
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FIG. 8. Step Discontinuities in Compressional Moduli. Relative changes in compressional moduli across T. (black
points). The magnitude of the step discontinuity in compressional moduli is defined as the difference between polynomial fits
to the data above and below T, (red lines). The uncertainty is estimated from the finite temperature range close to T¢ in which
the data deviates significantly from these fits (indicated in blue). Extracted values are given in Table II. The elastic moduli
shown are c11 (panel a) and cs3 (panel c) for samples with one transition and c22 (panel b) and c33 (panel d) for samples with
two transitions. The inset of panel b shows the relative change in co2 close to T..

Elastic Modulus Step in £¢ fj‘- (o) “ilaT; (&) 4= (K-) from [0]
e (1T)) —(2240.2) x 1077 —0.23+0.02 —0.50 £ 0.03 -0.87
22 (2T.)  —(0.13£0.07) x 10~° —0.07 £0.02 —0.09 = 0.02 —
css (1T.)  —(44+£0.3)x107°  0.344£0.02  0.60+0.03 0.56
33 (2T.)  —(47+£0.2)x107°  0.354+0.02 0.62+0.03 0.56

TABLE II. Ehrenfest Analysis. Derivatives of the critical temperature with respect to strain d7./de are calculated based
on the magnitudes of the discontinuities in Ac/c extracted according to Figure 8. Values of the absolute elastic moduli and
respective uncertainties are taken from Theuss et al. [5] and the size of the specific heat jump (or more precisely AC/T) is
taken to be 196 £ 18 mJ/(mol K?) from Figure 7. Knowledge of the signs of dT./de is required for the correct calculation of
dT./do. Since 12 only yields their absolute value, the signs are chosen according to uniaxial stress experiments [6]. The last
column shows a comparison to values from said uniaxial stress experiments in Girod et al. [(].
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[0.80:1.48]

Energy (eV)

FIG. 9. DFT Fermi Surface and Band Structure. (a) Fermi surface of UTes calculated with U = 2 eV. Fermi surfaces
are colored according to their orbital Tel p, Te2 p, U d, and U f content, from left to right, respectively. Color scales are
rescaled between each plot, but respective minimum and maximum values are given to the bottom left of each panel. (b) Band
structure calculated with the same parameters as in (a). Orange circles are sized according to the orbital weight of Tel p, Te2
p, Ud, and U f (from left to right) on each individual band. (c¢) UTez Brillouin zone.

UTE., FERMI SURFACE AND SUPERCONDUCTING GAP

Density Functional Theory

Density-functional theory calculations are used to examine the orbital character of the electronic states in the
vicinity of the chemical potential. The self-consistent field calculation is performed in the same way as in Theuss
et al. [5], by additionally considering the Hubbard U for the uranium 5f electrons. The full-potential linearized
augmented plane wave method [7] calculations employed the generalized gradient approximation [8] for the exchange
correlation, wave function and potential energy cutffs of 16 and 200 Ry, respectively, and muffin-tin sphere radii of
1.35 A. Spin-orbit coupling was fully taken into account in the assumed nonmagnetic state. We set U = 2 eV to obtain
a quasi 2D Fermi surface [9, 10], which qualitatively accounts for the recent experiments. Along the high-symmetry
lines in the Brillouin zone (A, X, and A lines, see Figure 9¢) and on a dense 50x50x50 k-point mesh, the (Kramers
degenerate) band energy and wave functions are generated, and the orbital components of each doublet are calculated
within the atom-centered spheres of radius 1.35 A. In Figure 9, the orbital components are shown on the Fermi surface
(panel a—the visualization of the Fermi surface is done with FermiSurfer [11]) and along the band dispersion (panel
b).

Tight Binding Model

Figure 9 motivates a tight binding model constructed from two quasi-one-dimensional chain Fermi surfaces: one
chain from the Te(2) 5p orbitals, and one from the U 6d orbitals. This model faithfully captures the shape of the Fermi
surface measured by quantum oscillations (see [12]). This Fermi surface is quite similar to that calculated for ThTe,,
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. DFT parameters
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FIG. 10. Tight Binding Model. (a-c) Tight binding model with parameters to match DFT results. (a) Unhybridized bands
formed by uranium 6d (yellow) and tellurium (2) 5p (gray) electrons. Bands crossing the Fermi level are hybridized in (b) and
the resulting Fermi surface is shown in (c). Colors represent a projection on original U/Te(2) bands. (d) Fermi surface from
tight binding model with parameters to match quantum oscillation results [12].

which has no f electrons—while the f electrons in UTe,; hybridize strongly with both bands, the predominant effect
is to enhance the cyclotron masses and shift the chemical potential, without strongly modifying the Fermi surface
shape.

There are two uranium atoms that form a dimer in the center of the conventional unit cell shown in Figure 5a of
the main text. The dominant tight binding parameters will be the chemical potential uy, the intra-dimer overlap Ay,
the hopping ¢y along the uranium chain in the a direction, the hopping ¢{; to other uranium in the dimer along the
chain direction, the hoppings t.; v and t’ch7U between chains in the a — b plane, and the hopping ¢, v between chains
along the ¢ axis. The two bands from the two uranium sites then come from diagonalizing the following matrix:

—ikz¢/2 cos kg & cosky §

ikzc/2 a

E py — 2ty coskga — 2ty coskyb —Ay - 2t{jcoskga — 2t,, ycoskyb — 4t ye
U= cos kg & cos ky & py — 2ty cos kga — 2ty 1 cos kyb

—Ay - 2ty coskga — 2t yeoskyb — 4t ye

(14)

There are in principle 4 Te(2) sites per conventional unit cell, but by including only nearest-neighbor hopping in the

a — b plane, the problem is again reduced to diagonalizing a 2 x 2 matrix. The dominant tight binding parameters are

then the chemical potential piTe, the intra-unit-cell overlap A, between the two Te(2) atoms along the chain direction,

the hopping ¢re along the Te(2) chain in the b direction, the hopping t.p e between chains in the a direction, and the
hopping ¢, 1. between chains along the c axis. The tight binding matrix is:

B = [ e — 2top Te €08 kza A — tree RYY 2t 1 coskz § coske & cosky § (15)
e .

— A — tree™®¥® — 2t coskz § cos ke & cosky § e — 2tep e €08 kga

The resultant bands are plotted in Figure 10a. The tight binding parameters were chosen to roughly match the
DFT result shown in Figure 9 and are given in Table ITI. The two bands crossing the Fermi energy can be hybridized
to form the electron and hole pocket. We use an isotropic in momentum hybridization § and chose its value to roughly
match the DFT result. The resultant two bands that cross the Fermi energy are shown in Figure 10b, and the 3D
Fermi surface is shown in Figure 10c. The predominant difference between the FS calculated with U = 2 eV and the
FS reported by Eaton et al. [12] is that the latter was chosen with the opposite-sign dispersion along the c-axis. Tight
binding parameters chosen to roughly match the FS reported in Eaton et al. [12] are also given in Table ITI, with the
resultant FS shown in Figure 10d.
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Au | tu | tu [tenutenu]| t20 | pre | Are | tre [tenme|tzme| 0
DFT|0.40{0.15(0.08| 0.01 | 0.00 |-0.03{-1.80|-1.50|-1.50| 0.00 |-0.05{0.09
QO (0.05(0.10(0.08| 0.01 | 0.00 | 0.04 |-1.80|-1.50|-1.50|-0.03 | -0.5 {0.10

TABLE III. All parameters given in eV.

Superconducting Gap

When considering the symmetries of superconducting gaps, it is necessary to distinguish the cases of weak and
strong spin-orbit coupling: UTey likely falls in the latter category. However, since the orthorhombic point group of
UTesy (Dsyp,) is inversion symmetric, one can still label irreducible representations as even or odd. This classification
is used to distinguish spin singlet (even) or triplet (odd) superconductors. Since UTes is most likely a spin-triplet
superconductor, the possible irreducible representations of the order parameter are A,, Biy, B2y, and Bs,. In the
strong spin-orbit limit, they correspond to the following d-vectors [13]

da, = {aky, Bk, vk}, (
dp,, = {aky, Bz, Ykokyk.} (
dp,, = {ahs, Bhukyk=, vha} | (18
dp,, = {akskyks, Bk, vky}, (

where «, 8, and 7 are real constants and the momentum dependence of the superconducting gap is given by

A(E):,/J-&i‘d’xi*. (20)

Here, d* is the complex conjugate of d. The A, order parameter is fully gapped, whereas the By, Ba,, and Bs, order
parameters have point nodes along the k., k,, and k, directions respectively. A Bi, gap is thus also fully gapped on
the Fermi surface of UTes found by quantum oscillations [12, 14] and only exhibits point nodes on a putative Fermi
pocket enclosing the T'-point [15].

The gap structures shown in the main text are calculated at k, = 0 with a = 8 = . A slight anisotropy in these
parameters can change the exact shape of the momentum dependence of the different gap symmetries, but will not
change their nodal structure.
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Normal State Elastic Moduli

<
3 -2 | -
S}
< — €11 (S2) — Ca4 (S1)
4l — c22(83) i Ces (S1) |

— ¢33 (S1) — Cep (S2)

0 50 100 150 200 250 O 50 100 150 200 250
T(K) T(K)

FIG. 11. Normal State Elastic Moduli. Relative changes of the normal state elastic moduli of UTes from about 2 K to
280 K. Compressional moduli (c11, c22, c33) and shear moduli (ca4, cs5, ces) are shown in the left and right panels, respectively.
The elastic moduli were measured at the following frequencies: 829 MHz (c11), 1316 MHz (c22), 1392 MHz (cs3), 1392 MHz
(caa), 1436 MHz (cs5), 829 MHz (ces). Our measurements of ¢33, caa, and css agree with the data previously reported by Ushida
et al. [10].
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