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DATA REPRODUCIBILITY

Figure 1 and Figure 2 show the relative change of elastic moduli as a function of temperature as obtained when
different echoes from a single experiment are used for the data analysis. Figure 3 and Figure 4 show the relative
change of elastic moduli for different carrier frequencies of the excited sound pulse. We find no significant dependence
on either the echoes, or the frequencies used for any of our measurements.
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FIG. 1. Echo Analysis Compressional Moduli. The relative change of compressional elastic moduli as obtained from
different echoes in a single pulse-echo ultrasound experiment. The colors indicate the echoes used for each curve. The data in
red are the data shown in the main. The left column shows data for samples with one superconducting transition, the right
column is for samples with two transitions.
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FIG. 2. Echo Analysis Shear Moduli. The relative change of shear elastic moduli as obtained from different echoes in a
single pulse-echo ultrasound experiment. The colors indicate the echoes used for each curve. The data in red are the data shown
in the main. The left column shows data for samples with one superconducting transition, the right column is for samples with
two transitions.
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FIG. 3. Frequency Dependence Compressional Moduli. The relative change of compressional elastic moduli at different
frequencies. The data in red are the data shown in the main. The left column shows data for samples with one superconducting
transition, the right column is for samples with two transitions.
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FIG. 4. Frequency Dependence Shear Moduli. The relative change of shear elastic moduli at different frequencies. The
data in red are the data shown in the main. The left column shows data for samples with one superconducting transition, the
right column is for samples with two transitions.
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NOISE ANALYSIS

Figure 5 shows the relative change of all elastic moduli also shown in the main. In order to estimate the noise of
our data, a second order polynomial has been fitted to the normal state data (highlighted by a red background in
Figure 5). In Figure 6 we show the same elastic moduli with that polynomial subtracted from the data. We then
estimate its noise as the RMS of the background-subtracted data above the transition, i.e. the same temperature
range which we used to fit said polynomial background (red shaded region). The resulting RMS values lie between
0.04 ppm and 0.41 ppm (on average less than 1.9× 10−7).
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FIG. 5. Background Subtraction. Temperature dependence of all elastic moduli shown in the main (black points). A second
order polynomial (red line) has been fitted to each modulus in the normal state above Tc (red shaded region). The left column
shows data for samples with one superconducting transition, the right column is for samples with two transitions.
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FIG. 6. Noise Estimate. Elastic moduli from Figure 5 with the normal state background (see Figure 5) subtracted. A RMS
is calculated for each modulus in the same temperature range that was used to fit the background in Figure 5 (red shaded
region). The purple/red shaded temperature regions are identical to those in Figure 5. The left column shows data for samples
with one superconducting transition, the right column is for samples with two transitions.
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LANDAU FREE ENERGY CALCULATIONS

Elastic moduli are the second derivative of the free energy with respect to strain, i.e. they are the strain susceptibil-
ity, in analogy with the heat capacity, which is the second derivative of the free energy with respect to temperature. If
strain couples linearly to the square of the order parameter η (just like temperature does in the term (T −Tc)η

2), the
respective elastic modulus will exhibit a discontinuity at the phase transition (just like the specific heat does). The
reason for these discontinuities is that immediately below Tc, the system has a new degree of freedom that can respond
when you apply strain (in the case of elastic moduli) or change temperature (in the case of heat capacity). This new
degree of freedom means that the response below Tc is entirely distinct from that above Tc: even though the order
parameter itself changes continuously, the system’s susceptibility to changes in the order parameter is discontinuous.

For a single-component order parameter, only compressional moduli can exhibit this discontinuity. For a two-
component order parameter, on the other hand, discontinuities in compressional moduli and certain shear moduli are
allowed. This is because for single-component order parameters, the only quantity that can respond to strain is the
magnitude of the order parameter. The bare “amplitude” of the order parameter breaks gauge symmetry and thus
cannot enter directly into the free energy or couple linearly to external parameters like strain. As the magnitude of
the order parameter is a scalar (simply a number), this means that it couples to scalar strains, i.e. compressional
moduli.

For a two component order parameter, there are two new gauge-invariant quantities that can couple to strain: the
relative phase between the components of the order parameter, and the overall “orientation” of the two components
in order-parameter space. These are new degrees of freedom that can be probed by shear strain, and thus are what
allow for discontinuities in the shear moduli at Tc.
Below, we elaborate on these concepts within the Landau theory of second-order phase transitions.

Elastic Free Energy

The elastic free energy of a solid is given by 1
2

∑
i,j εicijεj , with strain ε⃗ = {εxx, εyy, εzz, 2εyz, 2εxz, 2εxy} and

the elastic tensor c in Voigt notation. In an orthorhombic crystal environment (i.e. point group D2h), all individual
elements of the strain tensor transform as a particular irreducible representation of the point group D2h. In particular,
we can rewrite

ε⃗ = {εxx, εyy, εzz, 2εyz, 2εxz, 2εxy} = {εAg,1, εAg,2, εAg,3, εB3g, εB2g, εB1g}, (1)

where the subscript now refers to the irreducible representation. Consequently, the elastic free energy can be rewritten
as

fel =
1

2

(
cAg,1ε

2
Ag,1 + cAg,2ε

2
Ag,2 + cAg,3ε

2
Ag,3 + 2cAg,4εAg,1εAg,2 + 2cAg,5εAg,1εAg,3 + 2cAg,6εAg,2εAg,3 (2)

+cB3gε
2
B3g + cB2gε

2
B2g + cB2gε

2
B2g

)
.

Here, we have rewritten the elastic tensor according to

c =


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 =


cAg,1 cAg,4 cAg,5 0 0 0
cAg,4 cAg,2 cAg,6 0 0 0
cAg,5 cAg,6 cAg,3 0 0 0
0 0 0 cB3g 0 0
0 0 0 0 cB2g 0
0 0 0 0 0 cB1g

 . (3)

Order Parameter Free Energy and Coupling to Strain:
One-Component Order Parameter

A single-component superconducting order parameter (OP) can be parametrized as ηeiγ , with an amplitude η and
phase γ, both real. However, since the free energy needs to obey global gauge symmetry, the OP can only appear in
even powers and the phase factor eiγ becomes unobservable. Only one degree of freedom remains, the amplitude (or
superfluid density) η. The phase factor is thus dropped in the following discussion. In this case, the OP free energy
expansion to fourth order reads

fOP =
a

2
η2 +

b

4
η4, (4)
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One-Component OP B2u + iB3u

η0 =
√

−a
b

(θ0, γ0) = (π/4,±π/2)

η0 = ±
√

−2a1
b1+b3−b4

δcAg,i − g2i
2b

(η)
a1(−2a2(b1+b3−b4)g

a
i gsi +a1(−(b1+b3−b4)(g

a
i )2+4b2g

a
i gsi −(b1−b3+b4)(g

s
i )

2))

a2
1(b

2
1−4b22−(b3−b4)2)+4a1a2b2(b1+b3−b4)−a2

2(b1+b3−b4)2
(η, θ)

δcB1g 0 − g24
2b4

(γ)

δcB2g 0 0
δcB3g 0 0

TABLE I. Discontinuities in elastic moduli for different OP configurations. Magnitudes of discontinuities in elastic
moduli at Tc for one and two-component OPs, along with the particular degree of freedom that causes the discontinuity (given
in parentheses after the expression for the discontinuity). For a one-component OP, only compressional moduli cAg,i show a
discontinuity, caused by fluctuations in the order parameter amplitude η. For a B2u + iB3u two-component OP, compressional
moduli and the cB1g elastic modulus are allowed to show a discontinuity. The discontinuity in the compressional moduli is due
to fluctuations in the absolute amplitdue η of the OP, as well as fluctuations in the relative amplitude θ between individual
components. The discontinuity in cB1g, however, is caused by fluctuations of the relative phase γ between different order
parameter components.

where a = a0 (T − Tc). a0 > 0, and b are phenomenological constants, Tc is the critical temperature.

Since the OP has to appear in even powers in the free energy, the lowest possible coupling to strain is quadratic in
OP and linear in strain. Furthermore, since the OP transforms as a one-dimensional irreducible representation of D2h,
its bilinear will always transform as the Ag irreducible representation, irrespective of the particular representation.
Thus, quadratic in OP and linear in strain coupling terms are only allowed for Ag strains, and to lowest order, the
terms in the free energy coupling the OP to strain are

fcoupling =
1

2
(g1εAg,1 + g2εAg,2 + g3εAg,3) η

2. (5)

Following the formalism outlined in [1], coupling of strain to the OP leads to a discontinuity of the respective elastic
moduli at Tc according to

δcmn = −ZmZn

Y

∣∣∣∣
η→η0,εm→0

, (6)

where Zm =
∂2fcoupling

∂η∂εm
, Y = ∂2fOP

∂η2 , and η0 =
√

−a
b is the equilibrium value for the OP defined by ∂fOP /∂η = 0.

From Equation 6 it is straightforward to see that coupling terms in the free energy which are quadratic or higher
order in strain will not lead to a discontinuity of the respective elastic modulus at Tc, which justifies the truncation
of Equation 5 after terms linear in strain. Consequently, in the case of a one-component OP, no shear modulus (i.e.
cB1g, cB2g, or cB3g) is allowed to show a discontinuity at Tc (note that a discontinuity in its derivative is allowed [2]).
This is a general statement purely based on the dimensionality of the order parameter and irrespective of its particular
irreducible representation. Combining Equation 5 and Equation 6, all Ag elastic moduli exhibit a discontinuity at the
critical temperature. The magnitudes of these discontinuities based on the free energy in Equation 4 and Equation 5
are summarized in Table I.

Order Parameter Free Energy and Coupling to Strain:
Two-Component Order Parameter

Next we discuss discontinuities in the elastic moduli with a two-component OP η = {ηx, ηy}. In the D2h point
group, all irreducible representations are one dimensional. A two-component order parameter therefore has to consist
of two one-component order parameters, meaning ηx and ηy can belong to different irreducible representations and
are not related by symmetry. The example of ηx and ηy transforming as the B2u and B3u irreducible representations,
respectively, as suggested for the superconducting OP in UTe2 by authors in Hayes et al. [3] and Wei et al. [4], will be

used in the discussion below. For this particular OP, three independent bilinear combinations can be formed: |ηx|2,



11

|ηy|2, and
(
ηxη

∗
y + η∗xηy

)
transforming as Ag, Ag, and B1g representations respectively. The Landau free energy reads

fOP =
a1
2

(
|ηx|2 + |ηy|2

)
+

a2
2

(
|ηx|2 − |ηy|2

)
(7)

+
b1
4

(
|ηx|4 + |ηy|4

)
+

b2
4

(
|ηx|4 − |ηy|4

)
+

b3
2
|ηx|2 |ηy|2 +

b4
4

((
ηxη

∗
y

)2
+ (η∗xηy)

2
)
,

where a1,2 = a
(0)
1,2 (T − Tc), a1,2 > 0, and bi are phenomenological constants. Based on these considerations, the free

energy coupling the OP to linear powers of strain can be written as

fcoupling =
1

2
(gs1εAg,1 + gs2εAg,2 + gs3εAg,3)

(
|ηx|2 + |ηy|2

)
+

1

2
(ga1εAg,1 + ga2εAg,2 + ga3εAg,3)]

(
|ηx|2 − |ηy|2

)
(8)

+
g4
2
εB1g

(
ηxη

∗
y + η∗xηy

)
.

Coupling of B1g strain to the second power of the OP as in the free energy above is only possible for the particular
example of a {B2u, B3u} OP. However, linear coupling of shear strain (i.e. B1g, B2g, or B3g strain in D2h) to a bilinear
of the OP is in general only possible for a two-component OP.

In order to calculate the discontinuities of elastic moduli in the presence of a two-component OP, Ghosh et al. [1]
generalized the expression in Equation 6 to

δcmn = −ZT
mY −1Zn

∣∣∣
η→η0,εm→0

, (9)

where Zm =
∂2fcoupling

∂η∂εm
and Y = ∂2fOP

∂η2 . Parametrizing the OP as η = η
{
cos θ, eiγ sin θ

}
, the derivative ∂/∂η

becomes ∂/∂ {η, θ, γ}. Assuming a chiral order parameter (θ0, γ0) = (π/4,±π/2), the equilibrium amplitude η0,

defined by ∂fOP /∂η|η0,θ0,γ0
= 0, is then given by η0 = ±

√
−2a1

b1+b3−b4
. This assumption is motivated by the observation

of time-reversal symmetry breaking (TRSB) [3, 4] in the superconducting state of UTe2. For this order parameter
configuration, one finds

Y =

a1 +
3η2

0

2 (b1 + b3 − b4) −2η0
(
a2 + b2η

2
0

)
0

−2η0
(
a2 + b2η

2
0

)
(b1 − b3 + b4) η

4
0 0

0 0
b4η

4
0

2

 , (10)

ZAg,i =

 gsi η0
−gai η

2
0

0

 , ZB1g =

 0
0

− g4η
2
0

2

 , ZB2(3)g =

0
0
0

 , (11)

where i = 1, 2, 3. From Equation 10 and Equation 11 in can be seen that for a chiral {B2u, B3u} order parameter
in a D2h point group, all compressional moduli (i.e. the elastic moduli corresponding to Ag strains) show a step
discontinuity at Tc due to coupling of the corresponding strain to the absolute amplitude of the OP (the superfluid
density), as well as the relative amplitude of the different components (this is in contrast to a multi-component OP
where the different components are related by symmetry, for which compressional strains only couple to the absolute
amplitude of the OP [1]). Among all the shear moduli, only cB1g shows a step discontinuity at Tc, due to the coupling
of B1g shear strain to the relative phase between the different components of the OP.

While the details of the above calculation depend on the exact OP parameter configuration, the main statement is
general: a multi-component OP is required for a discontinuity in any shear modulus.
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HEAT CAPACITY MEASUREMENTS

Heat capacity measurements (Figure 7) were performed in a 3He cryostat using the quasi-adiabatic method: a fixed
power was applied to the calorimeter to raise it approximately 1% over the bath temperature. The power was then
turned off to allow the calorimeter to relax back to the bath temperature. The heat capacity was extracted from
these heating and cooling data by fitting them to exponentially-saturating curves. The sample was affixed to the
calorimeter with Apiezon N grease. The background heat capacity of the grease and the calorimeter were measured
separately and subtracted from the data in Figure 7.

EHRENFEST ANALYSIS

The discontinuity observed in the compressional moduli δcii at Tc is directly related to the jump in the heat capacity
divided by temperature, ∆C/T , via Ehrenfest relations. For a single component order parameter they read

δcii = −∆C

T

(
dTc

dεii

)2

. (12)

The derivative of critical temperature with respect to compressional strain dTc/dεii can therefore be calculated by
extracting the discontinuities of the corresponding elastic modulus and the heat capacity at Tc. The heat capacity was
measured in sample S3 (see Figure 7) and the size of its discontinuity at Tc is determined to be (196±18) mJ/(molK2).
The magnitudes of the discontinuities in ∆c/c for all compressional moduli are extracted according to Figure 8 and
the values are given in Table II. Using these values, as well as the elastic moduli of UTe2 [5], the absolute values of
dTc/dεii (ii = xx, yy, zz) are calculated (see Table II).

1.50 1.55 1.60 1.65
T ( K )

150

200

250

300

350

C/
T 

( m
J/

m
ol

 K
2  

) S3

FIG. 7. Heat Capacity. Heat capacity divided by temperature as a function of temperature measured on sample S3. The
jump at Tc is (196 ± 18) mJ/(molK2), determined according to linear fits below and above the transition (red lines). The
uncertainty is estimated from the finite temperature range close to Tc in which the data deviates significantly from these fits.
This range is indicated by the blue shaded region.

The derivatives of the critical temperature with respect to stress can be calculated from the derivatives with respect
to strain via dTc/dσxx

dTc/dσyy

dTc/dσzz

 =

c11 c12 c13
c12 c22 c23
c13 c23 c33

−1 dTc/dεxx
dTc/dεyy
dTc/dεzz

 . (13)

The resulting values are given in Table II, along with values measured in uniaxial stress experiments [6]. The elastic
tensor used for this calculation is again taken from Theuss et al. [5]. Note that the analysis in Equation 13 requires
knowledge about the signs of dTc/dεii, whereas the Ehrenfest relations in Equation 12 only yield their absolute values.
For a correct analysis from our data, signs according to Girod et al. [6] were assumed.
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FIG. 8. Step Discontinuities in Compressional Moduli. Relative changes in compressional moduli across Tc (black
points). The magnitude of the step discontinuity in compressional moduli is defined as the difference between polynomial fits
to the data above and below Tc (red lines). The uncertainty is estimated from the finite temperature range close to Tc in which
the data deviates significantly from these fits (indicated in blue). Extracted values are given in Table II. The elastic moduli
shown are c11 (panel a) and c33 (panel c) for samples with one transition and c22 (panel b) and c33 (panel d) for samples with
two transitions. The inset of panel b shows the relative change in c22 close to Tc.

Elastic Modulus Step in ∆c
c

dTc
dεii

(
K

%strain

)
dTc
dσii

(
K

GPa

)
dTc
dσii

(
K

GPa

)
from [6]

c11 (1Tc) −(2.2± 0.2)× 10−5 −0.23± 0.02 −0.50± 0.03 -0.87
c22 (2Tc) −(0.13± 0.07)× 10−5 −0.07± 0.02 −0.09± 0.02 —
c33 (1Tc) −(4.4± 0.3)× 10−5 0.34± 0.02 0.60± 0.03 0.56
c33 (2Tc) −(4.7± 0.2)× 10−5 0.35± 0.02 0.62± 0.03 0.56

TABLE II. Ehrenfest Analysis. Derivatives of the critical temperature with respect to strain dTc/dε are calculated based
on the magnitudes of the discontinuities in ∆c/c extracted according to Figure 8. Values of the absolute elastic moduli and
respective uncertainties are taken from Theuss et al. [5] and the size of the specific heat jump (or more precisely ∆C/T ) is
taken to be 196 ± 18 mJ/(molK2) from Figure 7. Knowledge of the signs of dTc/dε is required for the correct calculation of
dTc/dσ. Since 12 only yields their absolute value, the signs are chosen according to uniaxial stress experiments [6]. The last
column shows a comparison to values from said uniaxial stress experiments in Girod et al. [6].
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FIG. 9. DFT Fermi Surface and Band Structure. (a) Fermi surface of UTe2 calculated with U = 2 eV. Fermi surfaces
are colored according to their orbital Te1 p, Te2 p, U d, and U f content, from left to right, respectively. Color scales are
rescaled between each plot, but respective minimum and maximum values are given to the bottom left of each panel. (b) Band
structure calculated with the same parameters as in (a). Orange circles are sized according to the orbital weight of Te1 p, Te2
p, U d, and U f (from left to right) on each individual band. (c) UTe2 Brillouin zone.

UTE2 FERMI SURFACE AND SUPERCONDUCTING GAP

Density Functional Theory

Density-functional theory calculations are used to examine the orbital character of the electronic states in the
vicinity of the chemical potential. The self-consistent field calculation is performed in the same way as in Theuss
et al. [5], by additionally considering the Hubbard U for the uranium 5f electrons. The full-potential linearized
augmented plane wave method [7] calculations employed the generalized gradient approximation [8] for the exchange
correlation, wave function and potential energy cutffs of 16 and 200 Ry, respectively, and muffin-tin sphere radii of
1.35 Å. Spin-orbit coupling was fully taken into account in the assumed nonmagnetic state. We set U = 2 eV to obtain
a quasi 2D Fermi surface [9, 10], which qualitatively accounts for the recent experiments. Along the high-symmetry
lines in the Brillouin zone (Λ, Σ, and ∆ lines, see Figure 9c) and on a dense 50×50×50 k-point mesh, the (Kramers
degenerate) band energy and wave functions are generated, and the orbital components of each doublet are calculated
within the atom-centered spheres of radius 1.35 Å. In Figure 9, the orbital components are shown on the Fermi surface
(panel a—the visualization of the Fermi surface is done with FermiSurfer [11]) and along the band dispersion (panel
b).

Tight Binding Model

Figure 9 motivates a tight binding model constructed from two quasi-one-dimensional chain Fermi surfaces: one
chain from the Te(2) 5p orbitals, and one from the U 6d orbitals. This model faithfully captures the shape of the Fermi
surface measured by quantum oscillations (see [12]). This Fermi surface is quite similar to that calculated for ThTe2,
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FIG. 10. Tight Binding Model. (a-c) Tight binding model with parameters to match DFT results. (a) Unhybridized bands
formed by uranium 6d (yellow) and tellurium (2) 5p (gray) electrons. Bands crossing the Fermi level are hybridized in (b) and
the resulting Fermi surface is shown in (c). Colors represent a projection on original U/Te(2) bands. (d) Fermi surface from
tight binding model with parameters to match quantum oscillation results [12].

which has no f electrons—while the f electrons in UTe2 hybridize strongly with both bands, the predominant effect
is to enhance the cyclotron masses and shift the chemical potential, without strongly modifying the Fermi surface
shape.

There are two uranium atoms that form a dimer in the center of the conventional unit cell shown in Figure 5a of
the main text. The dominant tight binding parameters will be the chemical potential µU, the intra-dimer overlap ∆U,
the hopping tU along the uranium chain in the a direction, the hopping t′U to other uranium in the dimer along the
chain direction, the hoppings tch,U and t′ch,U between chains in the a− b plane, and the hopping tz,U between chains
along the c axis. The two bands from the two uranium sites then come from diagonalizing the following matrix:

EU =
[

µU − 2tU cos kxa − 2tch,U cos kyb −∆U − 2t′U cos kxa − 2t′ch,U cos kyb − 4tz,Ue−ikzc/2 cos kx
a
2

cos ky
b
2

−∆U − 2t′U cos kxa − 2t′ch,U cos kyb − 4tz,Ueikzc/2 cos kx
a
2

cos ky
b
2

µU − 2tU cos kxa − 2tch,U cos kyb

]
.

(14)
There are in principle 4 Te(2) sites per conventional unit cell, but by including only nearest-neighbor hopping in the

a− b plane, the problem is again reduced to diagonalizing a 2× 2 matrix. The dominant tight binding parameters are
then the chemical potential µTe, the intra-unit-cell overlap ∆Te between the two Te(2) atoms along the chain direction,
the hopping tTe along the Te(2) chain in the b direction, the hopping tch,Te between chains in the a direction, and the
hopping tz,Te between chains along the c axis. The tight binding matrix is:

ETe =
[

µTe − 2tch,Te cos kxa −∆Te − ttee
−ikyb − 2tz,Te cos kz

c
2

cos kx
a
2

cos ky
b
2

−∆Te − ttee
ikyb − 2tz,Te cos kz

c
2

cos kx
a
2

cos ky
b
2

µTe − 2tch,Te cos kxa

]
. (15)

The resultant bands are plotted in Figure 10a. The tight binding parameters were chosen to roughly match the
DFT result shown in Figure 9 and are given in Table III. The two bands crossing the Fermi energy can be hybridized
to form the electron and hole pocket. We use an isotropic in momentum hybridization δ and chose its value to roughly
match the DFT result. The resultant two bands that cross the Fermi energy are shown in Figure 10b, and the 3D
Fermi surface is shown in Figure 10c. The predominant difference between the FS calculated with U = 2 eV and the
FS reported by Eaton et al. [12] is that the latter was chosen with the opposite-sign dispersion along the c-axis. Tight
binding parameters chosen to roughly match the FS reported in Eaton et al. [12] are also given in Table III, with the
resultant FS shown in Figure 10d.
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∆U tU t′U tch,U t′ch,U tz,U µTe ∆Te tTe tch,Te tz,Te δ
DFT 0.40 0.15 0.08 0.01 0.00 -0.03 -1.80 -1.50 -1.50 0.00 -0.05 0.09
QO 0.05 0.10 0.08 0.01 0.00 0.04 -1.80 -1.50 -1.50 -0.03 -0.5 0.10

TABLE III. All parameters given in eV.

Superconducting Gap

When considering the symmetries of superconducting gaps, it is necessary to distinguish the cases of weak and
strong spin-orbit coupling: UTe2 likely falls in the latter category. However, since the orthorhombic point group of
UTe2 (D2h) is inversion symmetric, one can still label irreducible representations as even or odd. This classification
is used to distinguish spin singlet (even) or triplet (odd) superconductors. Since UTe2 is most likely a spin-triplet
superconductor, the possible irreducible representations of the order parameter are Au, B1u, B2u, and B3u. In the
strong spin-orbit limit, they correspond to the following d⃗-vectors [13]

d⃗Au = {αkx, βky, γkz} , (16)

d⃗B1u
= {αky, βkx, γkxkykz} , (17)

d⃗B2u
= {αkz, βkxkykz, γkx} , (18)

d⃗B3u = {αkxkykz, βkz, γky} , (19)

where α, β, and γ are real constants and the momentum dependence of the superconducting gap is given by

∆
(
k⃗
)
=

√
d⃗ · d⃗⋆ ±

∣∣∣d⃗× d⃗⋆
∣∣∣. (20)

Here, d⃗⋆ is the complex conjugate of d⃗. The Au order parameter is fully gapped, whereas the B1u, B2u, and B3u order
parameters have point nodes along the kz, ky, and kx directions respectively. A B1u gap is thus also fully gapped on
the Fermi surface of UTe2 found by quantum oscillations [12, 14] and only exhibits point nodes on a putative Fermi
pocket enclosing the Γ-point [15].

The gap structures shown in the main text are calculated at kz = 0 with α = β = γ. A slight anisotropy in these
parameters can change the exact shape of the momentum dependence of the different gap symmetries, but will not
change their nodal structure.
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Normal State Elastic Moduli
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FIG. 11. Normal State Elastic Moduli. Relative changes of the normal state elastic moduli of UTe2 from about 2 K to
280 K. Compressional moduli (c11, c22, c33) and shear moduli (c44, c55, c66) are shown in the left and right panels, respectively.
The elastic moduli were measured at the following frequencies: 829 MHz (c11), 1316 MHz (c22), 1392 MHz (c33), 1392 MHz
(c44), 1436 MHz (c55), 829 MHz (c66). Our measurements of c33, c44, and c55 agree with the data previously reported by Ushida
et al. [16].
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