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SARS-CoV-1, 
SARS-CoV-2 

Higher incidence of 
infection in males1-10 
 

Adult males (45-79yrs) 
have higher mortality 
for SARS-CoV1 and 
25,6 9  
 
Females infected with 
SARS-CoV2are more 
likely to be diagnosed 
with Long Covid11,12  

Male mice are more susceptible 
to SARS-CoV infection13-15 
 
Male mice infected with SARS-
CoV have increased 
accumulation of inflammatory 
macrophages and neutrophils in 
the lung3,13 
 
Estrogen receptor signaling is 
protective after SARS-CoV- 
infection13,16 
 
The SARS-CoV-2 entry receptor 
ACE2 is biallelically expressed in 
females, and may contribute to 
sex bias through regulation of 
viral entry and its function in the 
renin-angiotensin-aldosterone 
pathways 4,17  
 
  

Influenza Virus 

Infant males and older 
adult males have 
increased incidence of 
infection18-23 
 
 

Males (pre-pubescent 
or elderly) have higher 
mortality than females 
19,23  
 
Females are more 
likely to be 
symptomatic after 
infection and have a 
wider range of 
symptoms compared 
to males24  
 
Females (ages 15-
49yrs) had higher 
mortality during the 
1957-1958 H2N2 
pandemic as well as 
after H5N1 infection25 
 
Females (ages 20-
49yrs) had higher 
morbidity rates 
compared to their 
male counterparts 
during the 2009 H1N1 
pandemic, whereas 
younger (<20yrs) and 
older (>80yrs) males 
had higher morbidity 

Male mice are more resistant to 
influenza viruses than female 
mice, with female mice exhibiting 
lower LD50 values for mouse 
adapted H1N1 and H3N2 viral 
strains25 
 
Sex differences in morbidity after 
infection with mouse-adapted 
influenza (H1N1, H3N2) are 
dose-dependent, where female 
mice have greater body mass 
loss, more hypothermia, and 
lower rates of survival than male 
mice at median doses29   
 
Female mice have a greater 
level of protective immunity 
following influenza 
vaccination30,31 
 
Lower levels of testosterone in 
male mice correlate with poorer 
protection from influenza A 
virus32-35   
 
Estriol was shown to protect 
female mice from severe disease 
after infection of influenza A virus 
and decreases influenza viral 
replication36 



rates than similarly 
aged females25  
 
Pregnancy is 
associated with worse 
outcomes from 
seasonal, outbreak, 
and pandemic 
influenza viral 
infections, and 
contributes to higher 
overall morbidity and 
mortality in 
females18,26-28 
 

Hepatitis A Virus Males are more likely to 
be hospitalized37 

Males have higher 
mortality37 

n/a 

Hepatitis C Virus 

Similar incidence rates 
between males and 
females38 

Males have greater 
disease severity 
(HCV-associated 
cirrhosis) 38 
 
Females are more 
likely to clear virus38 

n/a 

West Nile Virus 

One case study shows a 
higher percentage of 
affected males39 

Similar initial viremia in 
males and females39 
 
A meta-analyses 
revealed that females 
report a higher 
diversity of 
symptoms39 
 
Males have an altered 
cytokine response 
compared to females 
in the post-IgM phase, 
with elevated levels of 
CCL2, CCL11, IL-15, 
and CXCL1040 
 
Infected males have 
higher hospitalization 
rates and higher 
incidence of 
neuroinvasive disease 
and increased 
mortality39,40  
 
 

n/a 

Human 
Immunodeficiency 

Virus (HIV) 

Females have higher 
incidence41 
 
Females have higher 
levels of immune 
activation and interferon 

Females have lower 
viral loads in the early 
stages of infection, but 
comparable viral loads 
at the advanced stage 
42,43 

Male-to-female transmission 
appears more efficient than 
female-to-male transmission44 



signature gene 
expression42 

 
No sex difference with 
regards to disease 
progression or clinical 
outcomes42,43 

Human 
cytomegalovirus 

(HCMV) 

Females (post-puberty 
and pre-menopausal) 
have higher incidence of 
HCMV seroprevalence45 

One study reported 
that HCMV infection 
suppressed reactivity 
to TLR2 and TLR7/8 
stimulation in females 
but not males46 

n/a 

Herpes Simplex 
Virus (HSV) 

Females have higher 
prevalence of HSV-2 
(15.9% females) than 
males (8.2%)47,48 

No sex differences 
with symptoms47,48 

Female mice are more 
susceptible to infection49  
 
Female mice have higher HSV 
titers in brain tissue49  
 
Higher mortality in male mice50  
 
Ovariectomy of female mice or 
estrogen treatment of male mice 
eliminated sex differences after 
infection49 
 
Sex-biased survival differences 
depend on type I IFN signaling 
and DAP12 signaling49 

Coxsackievirus 

n/a n/a Male mice have increased 
mortality49,51 
 
Males develop more severe 
cardiac inflammation due to TH1 
– skewed responses51 
Females are more resistant to 
infection and exhibit 
predominantly TH2-type 
responses51 

Ebola Virus  Males have higher 
mortality52 

n/a 

Measles Virus 

At ages 45-64, females 
have a higher 
incidence53, whereas at 
ages age 0-45, males 
have a higher incidence 
of infection54 

Females (ages 0-49) 
have higher mortality, 
particularly post-
puberty and pre-
menopause53.  

n/a 

Respiratory 
Syncytial Virus 

(RSV) 

Males have higher 
incidence55,56, but a 
metanalysis of acute 
respiratory infections in 
Africa did not identify sex 
as a factor in RSV 
prevalence57 

Males have higher 
rates of 
hospitalizations55 

Male neonatal mice have higher 
viral gene expression after RSV 
infection, and delayed viral 
resolution58 
 
After early-life RSV infection, 
male mice exposed to allergens 
have severe allergic 
exacerbation (female mice are 
protected). The TSLP pathway 



(which impacts IFNb production) 
alters male immune environment 
after neonatal infection58 
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Heliobactor pylori 
 

Males have greater H. 
Pylori sero-
prevalence59,60 
 
After adjusting for age, 
males have 33% greater 
odds of infection. The 
prevalence of infection is 
5% higher for males59  
 

 
Males have more 
severe inflammation, 
atrophy, and intestinal 
metaplasia61 

Male mice are more susceptible 
to H.pylori infection 
 
Males have higher colonization 
levels for babA virualence factor 
of H. pylori62 
 
Male mice treated with estradiol 
produce less IFNg and IL-1-b, 
and increased IL-10 and TH2 
associated IgG1 levels62 
 
Estrogen is protective against 
gastric lesions; ovarectomy 
increases severity of gastritis 
and gastric cancer62 

Pseudomonas 
aeruginosa 

Young females are more 
likely to be infected than 
young males63  
 

Female patients with 
cystic fibrosis have 
worse disease 
prognosis upon 
infection compared to 
male patients with 
cystic fibrosis64  
 

Female mice are more 
susceptible to infection65 
 
Female mice mount strong 
inflammatory response in lungs65 
 
Estradiol upregulates expression 
of secretory leucoprotease which 
inhibits TLR-dependent IL-8 
release in bronchial epithelial 
cells during P.aeruginosa 
infection65  

Salmonella 

Higher incidence rates of 
salmonellosis in males up 
to age 15 66 
 
Females have higher 
incidence rates (ages 15–
64) 66 
 

 n/a 

Chlamydia 
trachomatis; 
Chlamydia 

pneumoniae 

Males have greater 
prevalence (C. 
pneumoniae)67 
 
Females have higher 
prevalence (C. 
trachomatis)68 
 
 
 

Males have higher 
levels of C. 
pneumoniae69 
 
Females have higher 
infection rates 
because they are 
more likely to be 
screened 
(C.trachomatis)70 
 
Estrogen levels 
correlate with 
chlamydial load69 
 

n/a 



Chlamydia-induced 
arthritis more common 
in men71 

Brucella spp. 

Males have higher 
incidence72 
 
No sex bias with regards 
to prevalence72  

Males more likely to 
develop Brucellosis73 

n/a 

Borrelia burgdorferi 
(Lyme disease) 

Males have higher 
incidence (USA 1992-
1998)74 
 
Females >45 have 
greater incidence 
(Sweden 1992-1993)75,76  
 
Females are more likely 
to be re-infected after 5 
years. 75,76 

Males have more 
hospitalizations and 
likelihood for 
disseminated 
disease77  
 
Lyme neuroborreliosis 
is more common in 
female patients78 
 
Females have 
increased production 
of IFNg, IL-4, IL6, IL-
10, TNF75  
 

Male mice exhibit more evidence 
of infection across tissues and 
higher spirochete loads 
compared to female mice79 
 
 
 

Mycobacterium 
tuberculosis 

Males have higher 
incidence (male/female 
ratio is 1.7)80  

Males exhibit higher 
mortality rates 
(global)81  
 
Pregnancy increases 
risk of disease 
complications82 
 
Females usually have 
less symptoms69 

Male mice have accelerated 
disease progression, increased 
morbidity and mortality83 
 
Males have higher M. 
tuberculosis loads83 
 
Testosterone treatment 
increases susceptibility to 
infection83  

Mycoplasma 
pulmonis 

  Male mice are more susceptible 
than female mice, and they 
develop more severe disease in 
lung parenchyma. Removal of 
reproductive organs in males 
reduced disease severity84 

Coxiella burnettii 

Males have higher 
incidence85  

Males are more likely 
to become 
sympotomatic with Q 
fever (symptoms 
include fever, 
granulomatous 
hepatitis, myocarditis, 
pericarditis, 
pneumonia)69,85 
 
Pregnancy increases 
risk for persistent 
infections, and 
impaired immunity 
negatively impacts 
pregnancy69 

Male mice have higher bacterial 
loads69  
 
Estrogen treatment of 
ovariectomized mice reduces 
bacterial loads and granulomas86 
 
C. burnetti infection results in 
sex-specific gene expression 
profiles: males upregulate IL-10 
and IFNg production; females 
exhibit altered expression of 
circadian rhythm genes.87  



Campylobacter 
spp. 

Males have higher 
incidence69 

 Male mice are more susceptible 
to infection and colonization88 
 
Males have higher shedding 
rates 88 

Clostridiodes 
difficile 

Females have higher 
incidence89 
 
Females have increased 
risk of recurrent 
infection61 

Increased disease 
severity in pregnant 
and peripartum 
females89 

Progesterone and estrogen 
intermediates can inhibit spore 
germination in mice61 

Listeria 
monocytogenes 

Females have higher 
incidence rates of 
invasive listeriosis90 
 
Pregnant females have 
higher incidence69 
 
Among older individuals, 
males have 2-4 higher 
incidence rates90  

Pregnant females and 
older males have 
greater incidences of 
invasive disease90 
 
Older males have 
increased fatality 
rates90 

Female mice are more 
susceptible to infection and 
exhibit greater lethality91 
 
Female mice have higher 
bacterial load; Infected females 
have increased IL-10, which 
inhibits Th1 differentiation and 
Th1-derived cytokines91 
 
Estrogen treatment reduced IL-
12, IFNg and TNF, increased IL-
4 and IL-10, and reduced 
monocytes and lymphocyte 
accumulation at infection92 

Legionella 
pneumophila 

Males have higher 
incidence, with 
male:female ratios of 1.7 
to 5 in U.S, Europe, 
Australia, Japan69  

Males are more likely 
to develop 
legionellosis and to 
have a poor 
prognosis69 

n/a 

Leptospira spp. Males have higher 
incidence69 

 n/a 

Francisella 
tularensis 

Males have higher 
incidence65 

 No sex difference with regards to 
susceptibility. However, 
vaccinated female mice are 
more resistant to infection, with 
lower bacterial burdens, less 
tissue inflammation, and less 
proinflammatory cytokine 
production, and have more F. 
tularensis-specific antibodies in 
serum and lung85 

Escherichia coli 
Females have higher 
incidence69 

 No sex difference with 
enterohemorrhagic E.coli 
disease in mice69  

Treponema 
pallidum (syphilis) 

Males have higher 
incidence93,94 

 n/a 

Neisseria 
gonorrhea 

Males have higher 
incidence69 
 
Infected males may also 
have increased 
expression of gonococcal 

Most females lack 
symptoms69 
 
Complications in 
males include 
epididymitis, infertility, 

Estrogen treated mice have 
increased susceptibility to 
gonococcal infection98 
 
 



antimicrobial resistance 
genes95 

prostatitis, seminal 
vesiculitis96 
 
Elevated progesterone 
promotes gonococcal 
infection (human 
cervical epithelial 
cells)97  

Streptococcus 
pneumoniae 

Males have higher 
incidence for all types of 
pneumonia69  
 
Males (pre-puberty) have 
higher incidence 

Males have greater 
hospitalization rates 
and increased 
mortality69 
 
Males are more 
frequently diagnosed 
with Legionellosis 
(1.7:5 male to female 
ratio)99 

Male mice are more susceptible 
& have more severe disease100 
 
Males exhibit increased levels of 
pro-inflammatory cytokines (IL-6, 
IL-17A, IFNg)100 
 
Estrogen is protective and 
regulates macrophage activity 
(for pneumococcal 
pneumonia)101  

Yersinia 
enterocolitica 

Males have higher 
incidence for 
Yersiniosis102 

Males have higher 
levels of IgG4 
antibodies for Yersinia 
outer membrane 
proteins, which is 
associated with an 
anti-inflammatory 
response that is 
resistant to treatment61 

n/a 

Sepsis: 
Staphylococcus, 
Escherichia coli, 

Pseduomonas, etc  

Males have higher rates 
of sepsis and septic 
shock65 
 
Males are more likely to 
develop sepsis after 
trauma or surgery65 

Conflicting results 
regarding a sex bias 
for mortality103  

Male mice develop greater 
inflammatory responses, 
producing more pro-
inflammatory cytokines69 
 
Males have more severe sepsis-
induced cardiac dysfunction85 
 
Estrogen is protective, and 
female mice produced protective 
antibodies in response to 
estrogen; estrogen-driven 
antibodies were maternally 
transferrable to offspring104 
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Pork tapeworm 
(Taenia solium) 

Neurocysticercosis 

Females have higher 
incidence in some 
countries (Nigeria, 
Tanzania, Guatemala)105 
 
Females have more 
transitional cysts in brain 
(Ecuador)106 
 
No sex difference with 
regards to incidence in 
Vietnam105 
 

Female patients have 
greater number of 
transitional cysts106 

Estrogen increases and 
androgens decreases parasite 
loads in mice, either acting 
directly on the worm’s 
reproduction or by altering host’s 
immune response to favor TH2 or 
TH1 pathways, respectively 
(Taenia crassiceps)107 



A. Lumbricoides Females have higher 
incidence108 

 n/a 

Schistosoma 
masoni 

Males have higher 
prevalence of infection109 
  

 Female and castrated male mice 
have greater morbidity after 
Schistosoma infection110 
 
Female mice have higher worm 
loads110 
 
Testosterone is protective for 
Schistosoma mansoni infections; 
female mice treated with 
testosterone had reduced worm 
burdens (if treated before 
infection)110 
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Plasmodium 
falciparum 
(malaria) 

 Male patients have 
greater disease 
severity111 

n/a 

Cryptosporidium 
Males have higher 
incidence112 

Male patients have 
greater incidence of 
hospitalizations113 

n/a 

Entamoeba 
histolytica 

(amoebiasis) 

Asymtopmatic infection 
rates are the same 
across sexes114 
 

Invasive amebiasis 
predominantly affects 
males; males have 
higher rates of 
invasive disease114 
 
 
Males have higher 
incidence of hepatic 
amebiasis115 

Testosterone treatment induces 
proinflammatory responses in 
mouse (& human) classical 
monocytes, with increased 
production of CXCL1 and TNF115 
 

Leishmania 

Males have higher 
incidence even when 
accounting for 
exposure116 
 
Adult males have higher 
incidence of cutaneous 
leishmaniasis117  
 
Childhood cutaneous 
leishmaniasis does not 
exhibit a sex bias118 
 
Males have higher 
incidence and greater risk 
ratio of visceral 
leishmaniasis119 
 
No sex bias for childhood 
cutaneous 
leishmaniasis120 

Male patients exhibit 
higher rates of 
treatment failure and 
adverse effects116 

Male mice have higher parasite 
burdens following infection 
(L.infantum)121 
 
Male mice express higher levels 
of IL-10 and TNF after infection 
and exhibit greater disease 
severity121 
 
Male mice (BALB/c congenic 
strains) are more susceptible to 
subcutanteous L.major, and 
exhibit more severe 
disease116,122 
 
Female mice heal small lesions 
following L. Mexicana infection, 
yet male mice exhibit persistent 
lesions, dependent on IL-4 
levels123 
 



Male hamsters have increased 
disease severity and parasite 
burden with L. viannia infection. 
Testosterone-treated female 
animals had larger lesions than 
untreated females. Disease 
severity correlated with 
increased expression of IL-4, IL-
10, and TGFb124 
 
X-linked Cxcr3 is biallelically 
expressed in T cells of female 
mice and contributes to 
increased cytokine production125 

 Toxoplasma gondii 

 Sex differences with 
regards to infection-
induced behavioral 
changes and 
personality shifts126 

Female mice are more 
susceptible to infection and have 
higher cyst burdens127 
 
Female mice exhibit higher 
mortality after acute infection127 
 
Male mice produce higher levels 
of TNF after day 10 of infection; 
mortality of female mice did not 
correlate with lower TNF levels. 
Male mice produce higher levels 
of IFNg and IL-10 early during 
infection127 
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Aspergillus 
fumigatus 

Males have higher 
incidence (invasive 
pulmonary 
aspergillosis)128 
  
Male bias with regards to 
prevalence, incidence and 
severity129 
 
Males more susceptible to 
infection129 

 Female mice have higher 
antibody titers and levels of 
neutrophils, eosinophils and 
lymphocytes after infection130 
 

Cryptococcus 
neoformans 

Males have higher 
incidence, with 3:1 male 
to female rations for HIV 
negative populations and 
8:2 among HIV positive 
populations 131  
 
 

Males with 
cryptococcosis have 
more severe 
symptoms and worse 
outcomes131  

Female mice express more 
cytokines in the plasma and 
have increased expression of 
TNF and IFNg in spleen132 
 
Increased lethality for young 
male mice132 
 
Survival and fungal loads are 
similar between male and female 
mice132 

Paracoccidioides 
brasiliensis 

Males have greater 
incidence (10:1 male to 
female ratio in Latin 
America)133 

Male patients have 
faster disease 
progression134 

Male mice are more 
susceptible135 
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