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Table S1 | Comparison of material properties of some commercially relevant synthetic fossil-
based and bio-based polymers  

 
Degradable polymers describe those that contain readily hydrolysable aliphatic ester bonds in their 
backbone structure, and PVA whose degradation follows a diketone pathway. Durable polymers are 
those with a backbone that is typically more resistant to enzymatic and non-enzymatic hydrolysis, such 
as aromatic esters, amides and C–C bonds. Note that non-zero degradation may occur in any polymer. 
The listed material properties are taken from various references where available and, therefore, must 
be considered indications of typical values in common applications, but may vary depending on 
molecular weight, formulation with additives and processing. Some classes of copolymers, such as 
polyurethanes and polyanhydrides, as well as composite blends, have been excluded for space and 
complexity reasons. bioPET, bioPE and bioPBS are the drop-in bio-variants of PET, PE and PBS, 
respectively, and can be assumed to have the same materials properties as those of their fossil-derived 
analogues. aUnits for gas permeation are ml/m2/day/atm for gases and g/m2/day for water vapour. 
HDPE, high-density polyethylene; LDPE, low-density polyethylene; P3HB, poly(3-hydroxybutyrate); 
P4HB, poly(4-hydroxybutyrate); PBAT, polybutylene adipate-co-terephthalate; PBS, polybutylene 
succinate; PCL, polycaprolactone; PEF, polyethylene furanoate; PET, polyethylene terephthalate; PGA, 
polyglycolic acid; PLA, polylactic acid; PP, polypropylene; PS, polystyrene; PVA, polyvinyl alcohol; 
PVC, polyvinylchloride; Tg, glass transition temperature; Tm, melting temperature.  

 

Polymer Tm  
(°C) 

Tg  
(°C) 

Tensile strength  
(MPa) 

Young’s modulus 
(GPa) 

Elongation 
(%) 

Fossil-based and durable 
HDPE1,2 130 >–70 45 >1 640  
LDPE1,2 110 –100 20 0.25 500 
PP2,3 <175 –10  35 <17  >200 
PS4,2 240 100 42 3.6  5 
PET1,5 245 75 58 3.1 >300 
PVC4,6 100 <115 58 2.8 5 
Fossil-based and degradable 
PBAT1 120  –33 23  0.08  470 
PBS1,7,8 115 –32 33 0.6  >170 
PVA9 230 80 46  1.8  NA 
PCL1,10,11 60 –60 23  0.4  600 
Bio-based and durable 
PEF12,5,13  220 85 76 1.9 >100 
bioPET same as PET 
bioPE same as PE 
Bio-based and degradable 
bioPBS same as PBS 
PLA1,2 160 50 65 3.8  4 
PGA2,6 225 40 >80  8.4 30 
P3HB14,3,15 175 2.5 25 2.8 5 
P4HB16,2,17 60 –51 >50 0.07 1,000 



 
Table S2 | Large-volume producers of bioplastics 

NA, not available. P3HB, poly(3-hydroxybutyrate); P4HB, poly(4-hydroxybutyrate); PBAT, 
polybutylene adipate-co-terephthalate; PBS, polybutylene succinate; PE, polyethylene; PEF, 
polyethylene furanoate; PET, polyethylene terephthalate; PHA, polyhydroxyalkanoates; PHBH, 
poly(3-hydroxybutyrate-co-3-hydroxyhexanoate); PHBV, poly(3-hydroxybutyrate-co-3-
hydroxyvalerate); PLA, polylactic acid; PP, polypropylene.  

 

 

Polymer 
 

Company 
 

Location 
 

Capacity  
(tonnes 
per year) 

Year of 
operation 

Comments and 
planned capacities 
(tonnes per year) 
 

PLA1,6,18 NatureWorks 
(PTT and Cargill)  

USA  150,000 2002 >75,000 in Thailand by 
2024 

PLA1,6,19 Corbion and Total  Thailand 75,000 2019 >100,000 in France by 
2024 

PLA20 BBCA Group China 40,000 2020 700,000  by 2023  
PBS21 PTT MCC Biochem Thailand 

and Japan 
20,000 2017 Uses 50% bio-based 

succinic acid and 50% 
petro-based butanediol 

PBS21,22 BASF and Corbion Spain 10,000 2014  
PBS23 Hexing Chemical China 10,000 2009  
PHA14 Tianjin GreenBio 

Materials 
China 10,000 NA  

PHA24 Danimer Scientific USA 9,000 2019 30,000 by 2022, 
113,000 by 2024 

PHAs24 RWDC Industries  Singapore 
and USA 

5,000 2015 25,000 per year by 2023  

P3HB-4HB25 CheilJedang  South Korea 
and USA 

5,000 2021 Relaunch of Metabolix 
technology 

PHAs24 Bio-On Italy 1,000 NA Bankrupt 
PHBV21,14 Tianan China 2,000 NA Solvent-free process 
PBAT1,26 BASF  Germany 74,000 1990 Fossil-based polymer 
PBAT26,27 Jinhui Zhaolong High China 20,000 NA  
bioPE21,28 Braskem “I’m Green” Brazil 200,000 2010 260,000 by 2023 
bioPP29 Neste and Borealis Belgium  NA NA  
bioPET30 Virent and Coca-Cola USA NA  2014  
bio-para-xylene  
for bioPET31 

Gevo USA NA NA  

bioPET26,2 Coca-Cola USA NA NA Made from bio-based 
ethylene glycol and 
fossil-derived 
terephthalic acid  

PEF21,32 Avantium Netherlands NA NA 5,000 t of FDCA per 
year by 2023  

PEF33 Corbion Netherlands NA NA Fermentation process 
for FDCA 

PEF32,34 SULZER Switzerland NA NA Ring-Opening 
Polymerization  

Bio-Nylon-6,635 Genomatica USA NA NA Bio-Caprolactam 
Starch-based 
polymers26 

Novamont  Italy 150,000 NA 85% Starch, the rest 
fossil-derived 

Cellulose36 VTT Finland NA NA Films 
Cellulose37 Stora Enso Finland NA NA Foams  
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