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SUPPLEMENTAL INFORMATION

S.1. Data and software availability

An HDF5 file containing the lattice QCD correlation functions
generated for this work is made available with the publication of
this Letter. Additionally, bootstrap distributions from the correla-
tion function analysis are published in a comma-separated-values
(CSV) file along with the Jupyter notebook and chiral-continuum
extrapolation Python library used to perform the physical-point ex-
trapolation analysis. These files along with installation instructions
for the package may be found at https://github.com/callat-qcd/
project_gA31.

The software used for this work was built on top of the USQCD
Chroma software suite32 and the highly optimised QCD GPU
library QUDA33,34. We utilise the highly e�cient HDF5 I/O
Library35 with an interface to HDF5 in the USQCD QDP++
package, added with SciDAC 3 support (CalLat)36, as well as
the MILC software for solving for HISQ propagators and gener-
ating new ensembles. The HPC jobs were e�ciently managed
with a bash job manager, METAQ37, capable of intelligently back-
filling idle nodes in sets of nodes bundled into larger jobs sub-
mitted to HPC systems. METAQ was also developed with Sci-
DAC 3 support (CalLat) and is available at the git repository
https://github.com/evanberkowitz/metaq.

S.2. Correlation functions from the
Feynman-Hellman theorem

The significant advancement of our work can be attributed to
an unconventional computational method. This method was devel-
oped and implemented on one of the ensembles used in this work
(a15m310)11 and demonstrated on a larger subset in preliminary
calculations38,39. We briefly summarise the method here as it is
central to our final result.

The Feynman-Hellmann (FH) theorem relates matrix elements
to linear variations in the energy eigenvalue with respect to an ex-
ternal source, @En�@� = �n�H��n� , where the Hamiltonian of the
system is modified appropriately as H =H0+�H�. The Heisenberg
representation illuminates the fact that correlation functions must
be exponentially damped by the energy eigenvalue under time evo-
lution in Euclidean spacetime. Therefore, on the lattice the energy
can be determined from the e↵ective mass,

me↵(t) = ln� C(t)
C(t + 1)� , (S1)

where the spectral decomposition of the two-point correlation func-
tion is given by

C(t) = Nstates�
n=0 znz

†
ne
−Ent . (S2)

Applying the FH theorem to Eq. (S1) yields the correlation func-
tion we construct to obtain the results in this Letter, which we
denote the FH ratio:

@me↵
� (t)
@�

������������=0 = �
@�C�(t)
C(t) − @�C�(t + 1)

C(t + 1) ���=0 . (S3)

The path integral representation of C(t) and @�C(t) for this calcu-
lation may be derived by sourcing the nucleon and current opera-
tors into the generating functional, while applying the appropriate
derivatives with respect to each source.

There are other implementations of methods motivated by the
FH theorem40–42 which are similar, but our method is the most
economical implementation, at least for single nucleon properties.
Our method directly calculates the −@�C(t) correlation function11,
without the need to numerically implement the derivative or to
disentangle the di↵erent orders of the response of the correlation
function to the perturbation, as is required by other implementa-

tions.
While we are interested in the axial coupling of the ground state

nucleon, the nucleon operators couple to an infinite tower of states,
and therefore it is customary to filter out the ground state signal
by exponentially damping the excited state signals at large time
separations. By going to the Heisenberg representation, we derive
the complete spectral decomposition of − @�C�(t)��=0,

−@�C�(t) = Nstates�
n=0 �(t − 1)zngnnz

†
n + dn� e−Ent

+Nstates�
n≠m=0 zngnmz†

m
e−Ente

�nm
2 − e−Emte

�mn
2

e
�mn

2 − e�nm
2

, (S4)

allowing us to analyse correlation functions even at small time sep-
arations. Here, gnn for n = 0 is the ground state coupling of the

nucleon, znz
†
n is the non-relativistically normalised relative proba-

bility of finding the nucleon in the nth state and �nm = En −Em.
The linear enhancement of gnn is a direct manifestation of the FH
theorem, in which the first derivative of the spectrum (described by
the two-point correlation function) is taken, thereby generating a
linear moment. Additionally, excited state contributions in the lin-
early enhanced n > 0 terms are analogous to contamination present
in standard two-point correlation functions, which are generically
well under control. The remaining contamination from lattice ar-
tifacts, dn and the sum over n ≠m, are not linearly enhanced and
therefore are functionally distinct from the signal of interest and
can be cleanly removed. The artifacts, dn arise from contact terms
where the current insertion is at the same time as the nucleon cre-
ation or annihilation operators, and also from the time region where
the current is earlier or later than the nucleon creation or annihi-
lation operators respectively11. At t = 1 the contribution from all
terms aside from dn exactly vanish, allowing for a robust estimate
of the contributions to −@�C�(t) from these undesired artifacts.

Inserting Eqs. (S2) and (S4) in to Eq. (S3), it is straightforward
to show that in the long-time limit, we recover the ground-state
matrix element of interest

lim
t→∞

@me↵
� (t)
@�

������������=0 = g00 . (S5)

The di↵erence in Eq. (S3) leads to an additional suppression of the
excited states (and contact terms) beyond the standard exponen-
tial suppression by the mass gap. This allows us to make use of
numerical data very early in Euclidean time, before the stochastic
noise overwhelms the signal43,44, providing an e↵ective exponential
enhancement of the signal for a fixed number of stochastic samples
as compared to the standard methods. In Extended Data Fig. 1
and Supplemental Figs. 9–15, we demonstrate our ability to fit
early in Euclidean time on all ensembles used in this work.

One potential drawback of our Feynman-Hellmann strategy is
that it requires new calculations of Feynman-Hellmann quark prop-
agators for each matrix element or momentum injection of interest.
By contrast, the standard methods used in the literature provide
the flexibility to study arbitrary quark bi-linear matrix elements
between the proton and neutron, with arbitrary momentum injec-
tion by the current, without need for additional computational cost.
On the other hand, our Feynman-Hellmann method comes with an
additional flexibility not present in the standard methods: we can
compute the matrix elements of the same quark bi-linear currents in
various hadronic states, such as hyperons or multi-nucleon systems,
without needing to recompute the quark propagators coupling to
the current. Using the standard methods, the sink interpolating
operator is fixed, so computing a new sequential propagator is nec-
essary for each final state.

S.3. Lattice action

For this work, we have chosen a mixed action (MA) in which
the discretisations for the generation of the gauge configurations
and solution of the quark propagators di↵er.21 Details of tuning
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the action and its salient features are summarised here.

A. Action Details

To control the continuum limit, infinite volume and physical
pion mass extrapolation, a set of LQCD ensembles with mul-
tiple lattice spacings, multiple volumes and near physical pion
masses must be used. The only set of publicly-available gauge
configurations that satisfy these criteria are the Highly Improved
Staggered Quark (HISQ)45 action ensembles with dynamical light,
strange and charm quarks (Nf = 2 + 1 + 1) generated by the MILC
Collaboration30,46. They were generated with near-physical values
of the strange and charm quark masses and three values of the pion
mass, m⇡ ∼ {130,220,310} MeV. For this work, we utilise ensem-
bles with three di↵erent lattice spacings of a ∼ {0.15,0.12,0.09} fm.
Formally the HISQ action has leading discretisation errors start-
ing at O(↵Sa

2, a4), however improved link-smearing greatly sup-
presses taste-changing interactions leading to numerically smaller
discretisation errors. The gluons are simulated using the tadpole-
improved47, one-loop Symanzik gauge action48 with leading dis-
cretisation errors starting at O(↵2

Sa
2, a4).

We performed a dedicated volume study at a ∼ 0.12 fm m⇡ ∼
220 MeV with three volumes. To control the pion mass ex-
trapolation, we generated six new HISQ ensembles with m⇡ ∼{350,400} MeV on the same three lattice spacings (these ensem-
bles are available to any interested group upon request). Details of
the HISQ ensembles are presented in Extended Data Table II.

The valence quark propagators are solved with the Möbius
Domain Wall Fermion (MDWF) action49–51 after applying the
gradient-flow smoothing algorithm52,53 to the HISQ configura-
tions. The Möbius kernel with gradient-flow smoothing reduces the
residual chiral symmetry breaking such that mres < 0.1 ×mval.

l for
moderate values of L5 and thus the valence action has approximate
chiral symmetry54 as it satisfies the Ginsparg-Wilson relation55

with small corrections. The values of b5 and c5 were chosen (Ex-
tended Data Table II) such that the Möbius kernel is a rescaled
Shamir kernel56,57 of the domain-wall action58 (b5 − c5 = 1). The
calculation of these MDWF propagators required the significant
majority of computing cycles and were e�ciently solved using the
QUDA library33 with parallel MPI Support34. After absorbing
mres into the quark mass through the PCAC relation, the MDWF
action has discretisation errors beginning at O(a2,↵Sa

2)59.

B. Computational Details

The valence quarks are tuned so that the MDWF pion mass
matched the taste-5 HISQ pion mass within 2%, ensuring a uni-
tary theory in the continuum limit. Multiple sources per configu-
ration are used to increase our statistical samplings. On a given
configuration, for a series of evenly spaced time-locations, a seeded
random origin is chosen, (x0, y0, z0, t0) along with its antipode,(x0, y0, z0, t0) +L�2(1,1,1,0) (modulo the periodic spatial bound-
ary conditions). At each point, a smeared source is generated
to solve the MDWF quark propagators using the SHELL SOURCE
with the GAUGE INV GAUSSIAN routine in Chroma32. The correla-
tion functions are constructed with two choices of sink smearing, a
SHELL SINK with parameters matching the source and a POINT SINK.
The proton and neutron correlation functions are constructed us-
ing the local interpolating operator with the largest overlap on
the positive-parity nucleon states60,61. We double the statistics by
generating analogous correlation functions for the negative parity
nucleon. Under a time-reversal transformation the nucleon reverses
parity, allowing us to average the forward propagating nucleon cor-
relation functions with the backward propagating negative-parity
nucleon correlation functions. Once constructed, all the correlation
functions are shifted to t0 = 0 and averaged. We observe no correla-
tion between di↵erent sources, resulting in statistical uncertainties
inversely proportional to

√
Nsrc as first observed and studied in

detail in previous work62. All parameter choices for the valence
MDWF action are presented in Extended Data Table II.

We have demonstrated the gradient-flow time (tgf ) indepen-
dence of MN �F⇡ and FK�F⇡ for our action21. In particular, we
demonstrate, with a reduced data set, that the extrapolation of
FK�F⇡ to the physical point in the continuum is independent of
flow time and also consistent with the FLAG determination13. In
this work, we also study the flow-time dependence of gA. In Fig-
ure 1, we show ratios of the axial over the vector FH ratios for
the a15m310 and a09m310 ensembles with 196 configurations at a
single source. The point-sink (squares) and smeared-sink (circles)
FH ratios are plotted with tgf = {1.0,0.6,0.2} respectively from
left to right. In both ensembles, we observe minimal flow time de-
pendence in the ratio of correlators. Additionally the flow time is
fixed to tgf = 1.0 in lattice units on all gauge configurations, ensur-
ing that any quantity extrapolated to the continuum limit will be
flow-time independent. For tgf = 1.0, we find it su�cient to solve
the gradient flow di↵usion equation with 40 integration steps us-
ing the Runge-Kutta algorithm. Furthermore, we observe smaller
stochastic uncertainty at increasingly larger values of tgf due to
the gradient flow suppressing the ultraviolet noise. These conclu-
sions are consistent with the results observed in previous work21

for other hadronic quantities (e.g. Fig. 3 therein).
We also study possible autocorrelations in our data set by bin-

ning the FH ratio correlation functions for every ensemble used in
this work. Extended Data Figure 1 shows a representative example
of a binning study. We observe that the standard deviation of the
raw correlation function is stable under binning for bin sizes up
to four, demonstrating that no autocorrelations are present in the
data. The complete binning study is presented in the Supplemental
Figs. 22–24. We do not bin any of our data in this work.

S.4. Correlator analysis

The exact wavefunction for the ground state nucleon is unknown,
so lattice correlation functions are constructed with interpolating
operators for the initial and final states. Therefore, the correla-
tion function describes a superposition of the ground state nucleon
of interest and nucleon excited states. Disentangling the ground
state from the excited state contamination requires careful analy-
sis of the correlation functions, and has proved to be one of the
major challenges for past calculations of gA. As a result of the
unique construction of the lattice correlation function though our
Feynman-Hellmann strategy, we have access to measurements of
the correlation function at both longer and shorter separations be-
tween the initial and final states, allowing for a more complete
study of excited state contributions compared to previous works.
Additionally, nucleon observables su↵er from exponentially severe
decay in signal-to-noise, posing a serious challenge for high preci-
sion calculations. Compared to previous works, exponentially more
precise data (at early times) is leveraged in this analysis to combat
the severe decay in the signal.

A. Analysis Strategy

For each ensemble, we perform a simultaneous fit to six corre-
lation functions which include the nucleon two-point correlation
function, the vector and axial-vector FH ratios [Eq. (S3)], and for
each of these, two di↵erent correlation functions corresponding to
two di↵erent choices of sink smearing for the quark fields. This
greatly enhances the amount of correlated data when determining
a large subset of shared parameters (i.e. En and zn). Strategies for
estimating the unknown parameters were previously discussed11.
In the present work, we first perform a two-state Bayesian con-
strained fit to explore the parameter space in t, and then take
the central value of the resulting posterior distribution as the ini-
tial guess to a final two-state unconstrained fit using non-linear
�2 minimization. Preconditioning the unconstrained fit does not
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Supplemental Data Figure 1 � Gradient flow time dependence and Monte Carlo autocorrelation time study. a, b, The flow-time
dependence from tgf = {1.0,0.6,0.2} from left to right (dark to light). We observe flow time independence in the axial to vector correlation
function ratios, and smaller stochastic noise at larger flow times. c, d, The uncertainty of the mean under bootstrap resampling with successively
larger bin sizes of Nbins = {1,2,3,4} from left to right (dark to light). We observe the uncertainty of the mean to be unchanged under binning,
indicating that there are no autocorrelations present in our data. For all plots, the circle and square data points correspond to the smeared- and
point-sink correlation functions. Uncertainties are one s.e.m.

ensemble tCmin tCmax tAmin tAmax tVmin tVmax g̊A g̊V �2�dof [dof] P -value (ZA�ZV − 1) × 105
a15m400 6 11 3 11 5 11 1.213(06) 0.998(01) 1.3 [24] 0.14 4.20(17)

a15m350 4 12 2 12 4 12 1.195(13) 0.997(01) 1.3 [38] 0.11 3.00(19)

a15m310 4 14 4 10 4 15 1.216(11) 1.001(02) 1.1 [40] 0.32 1.77(24)

a15m220 3 11 4 9 4 9 1.275(13) 1.000(04) 1.5 [22] 0.07 3.7(1.3)

a15m130 2 10 2 6 2 7 1.262(53) 0.994(35) 1.6 [20] 0.05 1.87(52)

a12m400 5 10 5 11 7 11 1.237(10) 1.016(01) 1.5 [16] 0.07 4.22(13)

a12m350 7 14 5 11 5 14 1.255(14) 1.016(01) 0.93 [30] 0.57 2.75(10)

a12m310 5 12 4 12 6 12 1.239(13) 1.021(02) 1.5 [28] 0.06 1.86(13)

a12m220S 4 10 5 10 3 10 1.294(28) 1.018(03) 1.1 [22] 0.35 2.02(37)

a12m220 3 15 4 10 3 14 1.277(15) 1.015(02) 1.1 [44] 0.34 2.02(37)

a12m220L 4 12 4 12 5 10 1.277(21) 1.020(05) 1.4 [28] 0.09 2.02(37)

a12m130 2 13 3 13 2 12 1.318(29) 1.020(08) 1.1 [48] 0.24 0.45(77)

a09m400 8 18 6 15 7 15 1.238(08) 1.023(01) 0.98 [40] 0.50 5.10(10)

a09m350 7 16 8 16 7 14 1.258(15) 1.024(02) 1.3 [34] 0.09 3.40(14)

a09m310 9 16 3 12 7 17 1.266(11) 1.024(01) 1.0 [38] 0.40 2.09(16)

a09m220 9 15 3 14 6 12 1.280(09) 1.022(02) 1.3 [32] 0.09 1.86(17)

Supplemental Data Table I � Correlator fit region and results, and renormalisation coe�cients Fit regions for the two-point

correlation function t

C
min, t

C
max, the axial FH ratio t

A
min, t

A
max, and the vector FH ratio t

V
min, t

V
max are given in lattice units. The resulting central

value and standard deviation of the bare couplings are given in columns g̊A and g̊V along with the �

2�dof and P -value of these fits. The last
column gives the values of the ratio of renormalisation coe�cients ZA�ZV at µ ≈ 2.8GeV in the �µ scheme.
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change the final result, but serves as an e↵ective method to explore
large parameter spaces, and minimises the iteration count required
for convergence. In principle, preconditioning the unconstrained
fit from the posterior distribution obtained from Bayes’ theorem
provides a strategy for avoiding unphysical local minima in the �2

manifold. In hindsight however, the data is well-behaved with rel-
atively sharp minima. Bayesian constrained fits with up to eight
states were performed resulting in consistent results11.

We assess the quality of the candidate fits by first considering
only results with P -values greater than 0.05 in order to discrim-
inate against fits of poor quality (e.g. Extended Data Fig. 1e,f).
Next, we study the e↵ects of excited state contamination by vary-
ing the fit regions over di↵erent time separation, and demand that
the candidate fit lies in the region of stability (Extended Data
Fig. 1e,f). Finally we quantify the uncertainty of our determina-
tion of the matrix element by drawing 5000 bootstrap samples, and
accept candidates that are Gaussian distributed, as expected from
the distribution of the (path integral) mean as a consequence of the
central limit theorem (Extended Data Fig. 1e,f). The preferred fit
is one which satisfies all the above requirements while sampling the
largest fit region, such that we maximise the amount of information
extracted from these numerically intensive calculations. As a final
check, we overlay the preferred fit on top of the data and observe
agreement between model and data.

The list of fit regions and preferred results are given in Supple-
mental Table I. The complete correlator fit study plots are shown
in Supplemental Figs. 8–15, with the fit stability plots show in
Supplemental Figs. 16–21 and the bootstrap distributions of the
resulting values of ✏⇡ in Supplemental Figures 25–27. All stages of
the analysis are implemented using the Python library lsqfit63.

B. Discussion

Studying ground state stability as a function of tmin is the most
robust way to demonstrate understanding and control of excited
state contributions. Such a study is only possible with the data set
of the current work because the Feynman-Hellmann strategy makes
all possible source-sink separation times accessible. In contrast, all
previous calculations use conventional strategies to generate lattice
correlation functions, and thus do not generate enough source-sink
separation times to perform such a study.

The results of this study are shown in Extended Data Fig. 1e
and Figs. 16–18. Because excited states are always heavier than the
ground state, their contributions are more pronounced at smaller
source-sink separations. As a result, we observe that choosing
smaller values of tmin compared to the preferred fit (in solid black)
leads to results that are sometimes in tension, indicating that the
ground state signal is being contaminated by excited state artifacts
at these times. In contrast, the preferred fits are always consistent
with more conservative fits which only include data at larger val-
ues of tmin. To further demonstrate the quality of the ground state
determination, we numerically subtract (under bootstrap) the ex-
cited state contributions determined in the analysis from the raw
correlation functions and plot these processed results, along with
the asymptotic value of the ground state (Fig. 2, Extended Data
Figs. 1a,b,c and Supplemental Figs. 8–15).

Surveying these figures reveals the existence of correlated statis-
tical fluctuations at ∼1 fm separation times and is the manifestation
of the signal-to-noise problem su↵ered by nucleon observables. In
all previous work, the nucleon axial and vector correlation functions
(e.g. Extended Data Fig. 1b,c and similar Supplemental figures)
are constructed in this intermediate time separation region in order
to avoid contamination from excited state contributions, and may
be a↵ected by these uncontrolled statistical fluctuations. Further-
more, the limited number of source-sink separation times available
in previous calculations makes the a posteriori identification of
correlated fluctuations extremely di�cult.

In contrast, this work analyses data at much smaller separation
times, where the signal-to-noise has not yet degraded, in order to
extract the ground state signal. As a result, this analysis strategy

is robust against random statistical fluctuations. To provide more
evidence, Extended Data Fig. 1f and Supplemental Figs. 19–21
demonstrate stability of the extracted ground state nucleon cou-
plings under varying tmax, showing that the result is insensitive
to whether the fluctuations are included as part of the fitted data.
Additionally, utilizing data at smaller time separations results in an
exponentially more precise determination of the nucleon couplings
and is the key to obtaining the sub-percent uncertainty presented
in this work.

In summary, the Feynman-Hellmann strategy for constructing
lattice correlation functions enables leverage over the full source-
sink time dependence in the analysis. We observe stability of the
ground state nucleon couplings under varying fit regions, demon-
strating control over excited-state contamination. The asymp-
totic values of the ground state are in good agreement with the
excited-state subtracted lattice correlation functions. The final
bootstrapped results all yield nearly ideal Gaussian distributions.
With this preponderance of evidence, we resolve the two major
challenges identified from previous works, and demonstrate full
control over systematic uncertainties at unprecedented levels of
precision.

S.5. Renormalisation

Discretisation of the Dirac action leads to di↵erences between
the local current used in the calculation and the conserved current.
We correct for this di↵erence using the non-perturbative Rome-
Southampton renormalisation procedure64, with non-exceptional
kinematics65,66. Explicitly we compute

gA = ZA

ZV

g̊A

g̊V
, (S6)

where ZA and ZV are the renormalisation factors of the axial
and vector current, while g̊A and g̊V correspond to the bare (un-
renormalised) couplings. In Eq. (S6), we take advantage of the
fact that ZV g̊V = 1. Furthermore, because of the good chiral prop-
erty of our lattice discretisation, we expect ZA = ZV up to small
artifacts. We have computed these factors in RI-SMOM schemes
and with momentum sources, as proposed in67, resulting in high
statistical precision. We observe the ratio of the renormalisation
coe�cients ZA�ZV to be commensurate with unity at one part
in 10,000, indicating that the lattice action we use preserves chi-
ral symmetry to very good approximation, see Supplemental Data
Fig. 2. In this procedure, the renormalisation scale is given by

µ = �q2 (q2 ≥ 0) and q is the vertex momentum transfer. This
result, together with the improved stochastic uncertainty gained
from simultaneously fitting the vector FH ratio, further reduces
the final uncertainty of our result.

Since the quark bi-linear matrix elements used to determine the
renormalisation coe�cients are not gauge invariant, we perform
these calculations in Landau gauge. Landau gauge fixing however,
is incomplete and the resulting coe�cients will be evaluated at one
of many Gribov regions68. We sample the distribution of renormal-
isation coe�cients over di↵erent Gribov regions by repeating the
calculation after performing random global gauge transformations
to the gauge fields. We observe that the systematic uncertainty
from this e↵ect is subdominant to the statistical uncertainty of the
renormalisation coe�cients (Supplemental Data Fig. 2). We per-
formed a dedicated flow-time study of ZA�ZV on a subset of the
ensembles and find this ratio is also flow-time independent.

S.6. Parameterization of the chiral, continuum and
infinite volume extrapolations

The results of these calculations (Extended Data Table I) must
be extrapolated to the physical point. gA is a dimensionless quan-
tity and therefore the entire extrapolation can be performed by
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Supplemental Data Figure 2 � Renormalisation coe�cients
versus cut-o↵ scale, and Gribov region study. a,
Renormalisation coe�cients from RI-SMOM for the
a ∼ {0.15,0.12,0.09} fm m⇡ ∼ 310 MeV ensembles as a function of the
renormalisation scale µ for intermediate �µ and �q schemes in the
Landau gauge. The axial coupling is itself a physical observable, and
therefore its value is independent of scale. The scale dependence
observed for µ ≤ 2.5 GeV comes from the infrared (IR) contamination
of a light meson, and in principle at high scales (UV) the coe�cient
receives large O(ap) corrections. The intermediate region free of IR
and UV contaminations is coined the Rome-Southampton window. b,
The statistical uncertainty of the renormalisation coe�cient for the
a15m310 ensemble evaluated at µ = 2.86 GeV in the �µ scheme is
shown by the light red histogram. The Landau gauge admits remnant
gauge degrees of freedom resulting in the Gribov distribution shown
in dark red. Random global gauge transformations are applied to the
gauge fields, and the RI-SMOM perscription is repeated to obtain the
Gribov distribution. We observe that the systematic uncertainty
coming from Landau gauge fixing to be smaller than the statistical
uncertainty. Uncertainties are one s.e.m.

using ratios of physical quantities that form dimensionless vari-
ables without the need for performing a scale setting. On each
ensemble, we determine the three quantities

✏2a = 1

4⇡

a2

w2
0

, m⇡L, ✏⇡ = m⇡

4⇡F⇡
, (S7)

which are used to parameterise the continuum, infinite volume and
physical pion mass extrapolations. w0 is a gradient-flow scale that
can be precisely and accurately determined69 and F⇡ is the pion
decay constant (with F⇡ ∼ 92 MeV normalization). EFT methods
can be used to parameterise the dependence upon these variables.

A. �PT through N3LO

For a static quantity such as gA, Heavy Baryon �PT (HB�PT)18

can be used to parameterise the pion mass dependence. The con-
vergence issues of SU(3) HB�PT70–74 require two-flavor HB�PT75

to be used for a controlled extrapolation. The complete pion mass
dependence of gA is known through O(m3

⇡)75–77, which is next-to-
next-to-leading order (NNLO) in the chiral expansion. In terms of
✏⇡ , the pion mass dependence is given by

gA = g0 + c2✏2⇡ − ✏2⇡(g0 + 2g30) ln(✏2⇡) + g0c3✏3⇡ , (S8)

where g0, c2 and c3 are low-energy constants (LECs) that must
be determined in the analysis. In this expression, we have set the
�PT renormalisation scale to µ = 4⇡F⇡ . The corrections to using
a fixed renormalisation scale enter at O(✏4⇡) which can be seen by
expanding F⇡�F in the above expression, where F = limm⇡→0 F⇡ .

The complete next-to-next-to-next-to-leading order (N3LO) cal-
culation of gA has not been determined, however, the ln2(✏⇡)
corrections have been determined with a renormalisation group
analysis78. Even though the complete calculation has not been
performed, the full parameterisation of these corrections is given
by

�
(4)
� gA = ✏4⇡�c4 + �̃4 ln(✏2⇡)

+ �2
3
g0 + 37

12
g30 + 4g50� ln2(✏2⇡)� . (S9)

The extrapolation formula was provided formula in terms of m⇡�F
and so the di↵erence in the coe�cient of the ln2(✏2⇡) term given
here and previously78 is attributed to using F⇡ rather than F in
the expression. The LEC �̃4 di↵ers from �4

78. Our data set is
not su�cient to use the full N3LO expression as it contains a total
of 5 unknown LECs, and we have results at 5 di↵erent values of
m⇡ . We do, however, include partial corrections from N3LO, like
the c4 counter term (i.e. NNLO+ct), to check the stability of the
analysis, and the Bayesian Framework allows us to use the full
expression.

B. Including explicit delta degrees of freedom

The ✏⇡ dependence described above stems from the chiral La-
grangian with only pions and nucleons as explicit degrees of free-
dom. There are many publications in the literature advocating
for the explicit inclusion of the delta resonances in the theory in
order to accurately describe properties of the nucleon. While the
delta states are strong resonances, in the large-Nc limit79,80, the
splitting between them and the nucleons vanishes. Further, the
deltas are strongly coupled to the nucleons and the mass gap be-
tween them (� ≡M� −MN ) is comparable to the pion mass, such
that contributions from the delta states to nucleon quantities can
be poorly captured without explicitly including them as dynami-
cal states in the EFT81,82. In lattice QCD calculations of nucleon
quantities, the pion masses are still generally heavier than in na-
ture and for m⇡ � 290 MeV, the deltas become stable, asymptotic
states. Finally, it has been observed that including explicit deltas
in the EFT leads to a milder pion mass dependence for gA

83.
This observation follows straightforwardly from the large-Nc

formalism84–91. Combining the large-Nc expansion with the chiral
expansion leads to an improved perturbative expansion for many
quantities, including the baryon spectrum92, which has been ob-
served numerically with lattice QCD calculations73,74. It has been
shown that there are cancellations between nucleon and delta vir-
tual corrections for gA as well, which lead to the milder pion mass
dependence93.

In the present work, an extrapolation including the deltas ex-
plicitly is a phenomenological extrapolation as there are three new
quantities that are required to perform the chiral extrapolation,
which we have not determined in our calculation, and therefore,
some knowledge from experiment must be used to constrain them.
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One must know the delta-nucleon mass splitting, �, as well as two
additional axial couplings, the � → � coupling and the � → N⇡
transition coupling which we denote g̊�� and g̊N�, respectively
(the mathrings denote the chiral limit value of these couplings,
just as g0 is the chiral limit value of gA). These quantities are par-
ticularly challenging to compute due to the resonant nature of the
delta (for su�ciently light pion masses), and require calculations
of not only the external states, but also the ⇡N scattering phase
shifts94–96. The first lattice QCD calculation of such 1→ 2 transi-
tions has only recently been performed for mesons97–100. For our
mixed-action calculation, this problem is further exacerbated by
the non-unitary nature of the theory as these non-unitary e↵ects
can go on-shell in the ⇡N scattering system, thus precluding the
use of the known formalism101.

The continuum, infinite volume extrapolation function including
deltas in the SU(2) chiral expansion was first determined at NLO,
and is given by83

gA = g0 + c�2 ✏2⇡ + 32⇡

27
g0g

2
N�

✏3⇡
✏�

− ✏2⇡ ln(✏2⇡) �g0 + 2g30 + 2

9
g0g

2
N� + 50

81
g��g2N��

−R� ✏2⇡
✏2�
� g2N� �✏2⇡ 32

27
g0 + ✏2� �7627g0 +

100

81
g���

− ✏2� ln�4✏2�
✏2⇡
��76

27
g0g

2
N� + 100

81
g�g2N�� , (S10)

where we have defined

✏� ≡ �

4⇡F⇡
, (S11)

and the new non-analytic function is given by

R (z) ≡ �������
√
1 − z ln � 1−√1−z

1+√1−z � + ln(4�z), z ≤ 1
2
√
z − 1arctan z + ln(4�z), z > 1 . (S12)

In order to use this extrapolation formula, we take the value of
� � 293 MeV from the experimental splitting of the nucleons and
deltas. As the pion mass is increased above the physical value,
this splitting is known to reduce70, but we do not account for this
change in the extrapolation. At this order in the expansion, it is
su�cient to pick a single value, with the di↵erence appearing at
higher orders in the expansion. In order to constrain the two new
axial couplings, we set the central values to those predicted from
the large-Nc expansion88,89

g̊N� = −6
5
g0 , g̊�� = −9

5
g0 . (S13)

Our numerical results are insu�cient to constrain these couplings,
so to study the sensitivity to them, we include them in the analysis
under the Bayesian Framework with prior widths varying between
5% and 40%.

The sign di↵erence between these two axial couplings and g0 is
what leads to the milder pion mass dependence as this sign dif-
ference results in axial coe�cients of the non-analytic terms in
Eq. (S10) being ∼ 2 times smaller. Another interesting feature
of the delta-full extrapolation is the presence of m3

⇡ dependence
with a fixed coe�cient. This does not appear until NNLO in the
delta-less expansion, and with an unknown LEC.

C. Taylor expansion

In addition to these two �PT-derived extrapolation functions, a
simple Taylor expansion can also be considered. In particular, for
a quantity with mild pion mass dependence, such as gA, the Tay-
lor expansion should provide an adequate description of the quark
mass dependence14. The most natural parameter for performing
the Taylor expansion is a reference light quark mass. Since the
squared pion mass scales approximately as the quark mass, a cor-
responding Taylor expansion can be performed about ✏2⇡ . This is

equivalent to dropping the non-analytic contributions to Eq. (S8).
One can also consider a Taylor expansion in the parameter ✏⇡ .

This is not a natural expansion parameter as it scales approxi-
mately as the the square root of the input quark masses. However,
it has been observed that the nucleon mass displays a remarkably
linear dependence upon the pion mass, such that phenomenologi-
cal estimate of the nucleon mass in lattice calculations is given by
mN � 800 +m⇡ MeV70,102,103. This observation motivates us to
consider this Taylor expansion as an alternative model for describ-
ing the pion mass dependence. As with the Taylor expansion in
✏2⇡ , we observe that the choice of the reference point to perform
the expansion has insignificant impact on extrapolated value of gA
when the NNLO (✏2⇡ in this case) expansion is considered.

D. Dependence upon m⇡L

The finite-volume corrections can be incorporated into the EFT
through an infrared modification of the pion propagators19. In the
asymptotically large volume limit, these corrections vanish at least
as fast as e−m⇡L. The leading volume corrections to gA can be
parameterised as104

�L ≡ gA(L) − gA(∞)
= 8

3
✏2⇡ �g30F1(m⇡L) + g0F3(m⇡L)� (S14)

where

F1(x) = �
n≠0 �K0(x�n�) − K1(x�n�)

x�n� � ,
F3(x) = −3

2
�
n≠0

K1(x�n�)
x�n� . (S15)

K⌫(z) are modified Bessel functions of the second kind and g0 is
the leading order (LO) contribution to gA in the chiral expansion.
In the large m⇡L limit,

�L = 8g30✏2⇡√2⇡
e−m⇡L√
m⇡L

+O�e−√2m⇡L,
1

(m⇡L)3�2 � . (S16)

In order to asses the uncertainty arising from the FV correc-
tions, we can also model higher order contributions. The NNLO
contribution to gA also arises from single loop diagrams (rather
than two loops). It is therefore reasonable to model the finite vol-
ume corrections from these terms as similar to those arising from
the NLO contributions, particularly the graph that gives rise to
the F1 correction. Therefore, we add an additional FV correction
with the following form,

�L3
≡ f3✏3⇡F1(m⇡L) (S17)

where f3 is an unknown LEC.
We do not currently have any prior knowledge for what the

value of f3 is. Therefore, the prior central value for f3 is set to
zero, while the width is determined by an empirical Bayes study
shown in Supplemental Data Fig. 3. For the six models that enter
the final result, we vary the prior width from 0.5 to 40 and for each
model, choose the value with the largest Bayes factor. The priors
for f3 are listed in Supplemental Data Table II. When compared to
the coe�cient of the leading finite volume discretisation correction
8g0�3, the width of f3 is approximately 3 to 5 times wider when
determined by the empirical Bayes analysis, and provides a con-
servative estimate for the finite volume uncertainty. The complete
finite volume correction considered is defined to be

�′L ≡ �L + �L3
. (S18)

There has been some discussion in the literature that gA may
be particularly susceptible to finite-volume corrections such that
the leading �PT prediction for the volume dependence is grossly
insu�cient to explain the observed volume dependence105–108. In
Supplemental Data Fig. 4, we plot the resulting NLO �PT predic-
tion of the volume dependence (determined in a NNLO fit to all 16
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Supplemental Data Figure 3 � Empirical Bayes analysis for f3 prior width. The prior width of the dimensionless LEC f3 is plotted with
the resulting Bayes factors for the six models that enter in the final result. The red star marks the maximum Bayes factor and sets the prior
width for f3 in the final analysis.

ensembles) as well as the estimated NNLO corrections, Eq. (S18),
alongside the three a12m220 ensembles, which are in perfect ac-
cord.

E. Dependence upon ✏a

The discretisation corrections can be incorporated into mixed-

action EFT (MAEFT)109,110 which is known for our MDWF on
HISQ action111–118 through next-to-leading order (NLO) in the
chiral and continuum expansion. Unfortunately, the MAEFT in-
troduces new unknown coe�cients that are not well constrained
by our results. However, we observe our results are well de-
scribed by a simple Taylor expansion in the discretisation scale,
with no discernible pion-mass-dependent discretisation e↵ects. We
are therefore able to supplement the continuum HB�PT formula
with corrections that parameterise the possible discretisation ef-
fects to NNLO in the Symanzik exapansion20119,

�a = a2✏2a + b4✏2a✏2⇡ + a4✏4a , (S19)

where the first term is an NLO correction and the second and
third term arise at NNLO in a power counting where ✏2⇡ ∼ ✏2a. The
coe�cients are unknown constants which must be determined in
the extrapolation analysis.

We also consider discretisation corrections of the form

�′a = a1√4⇡✏a + s2↵s✏
2
a , (S20)

where a1 = O(mres) and s2 = O(1). The first term could arise from
residual chiral symmetry breaking corrections arising from our use
of local axial and vector currents and the second term originates
from generic one-loop radiative gluon corrections at finite lattice
spacing.

S.7. Extrapolation analysis

In the following sections, we discuss how the physical-point ex-
trapolation is performed in order to obtain Eq. (1), the concluding
result of this work, followed by a discussion on all sources of uncer-
tainty, and end by studying the sensitivity of our final result under
changes to di↵erent inputs of the analysis.

A. Model averaging

The extrapolation analysis uses the various Ansätze described
in Sec. S.6. While �PT provides our best hope for a model-
independent extrapolation in the pion mass, it is not known a

priori whether the chiral expansion converges for a given quan-
tity near the physical pion mass. For this reason, we include all
models equally in our model average. Convergence of the chiral
expansion will be discussed in Sec. S.8.

Our main result comes from the Bayesian model averaging120

of a set of six di↵erent models. This procedure accounts for model
selection uncertainty, and avoids over-confident inferences resulting
from trusting any single model. The six extrapolation models used
are:

NNLO �PT ∶ Eq. (S8) + �a + �′L (S21a)

NNLO+ct �PT ∶ Eq. (S8) + c4✏4⇡ + �a + �′L (S21b)

NLO Taylor ✏2⇡ ∶ c0 + c2✏2⇡ + �a + �′L (S21c)

NNLO Taylor ✏2⇡ ∶ c0 + c2✏2⇡ + c4✏4⇡ + �a + �′L (S21d)

NLO Taylor ✏⇡ ∶ c0 + c1✏⇡ + �a + �′L (S21e)

NNLO Taylor ✏⇡ ∶ c0 + c1✏⇡ + c2✏2⇡ + �a + �′L (S21f)

In Table II, we list all the priors used in the analysis of each of the
extrapolations.

Under the Bayesian framework, the model averaged posterior
distribution of gA is determined by marginalising over the set of
models {Mk},

P (gA�D) =�
k

P (gA�Mk,D)P (Mk �D), (S22)

where P (Mk �D) is the posterior distribution of model k given data
D and is related to the likelihood of the model P (D�Mk) through
Bayes’ Theorem,

P (Mk �D) = P (D�Mk)P (Mk)∑l P (D�Ml)P (Ml) . (S23)

In particular, the likelihood that the data is produced under model
k is given by the marginalising over all (continuous) parameters ✓k

P (D�Mk) = � P (D�✓k,Mk)P (✓k �Mk)d✓k (S24)

and as a result P (D�Mk) is now explicitly a number and not a
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Supplemental Data Figure 4 � Finite volume dependence We
plot the predicted NLO finite volume corrections (top) for the
m⇡ ∼ 220 MeV ensembles at a ∼ 0.12 fm, with coe�cients determined
from an NNLO �PT analysis of all 16 ensembles, along with the
numerical results on the a12m220S, a12m220 and a12m220L
ensembles. In the bottom figure, we plot the same result except using
the analysis with the estimated NNLO FV correction as well.
Uncertainties are one s.e.m.

distribution. The act of marginalising over all parameters naturally
penalises over-parameterised models. In our average, we choose
agnostic priors P (Mk) for all models listed in Eq. (S21a–S21f).
Consequently, the posterior mean E[gA] and variance Var[gA] for
the model weighted average follows

E[gA] =�
k

E[gA�Mk]P (Mk �D), (S25)

Var[gA] =�
k

Var[gA�Mk]P (Mk �D)
+ ��

k

E2[gA�Mk]P (Mk �D)� −E2[gA�D], (S26)

where Var(gA) is a direct consequence of the law of total variance.
The first line of Eq. (S26) yields the expected value of the process

variance which we refer to as the model averaged variance while
the second line gives the variance of the hypothetical means which
we refer to as the model uncertainty. The weighted average is
performed with lsqfit63.

The resulting physical point extrapolations are provided in Sup-
plemental Data Tab. III and plotted in Extended Data Fig. 5, and
the model average extrapolation is presented in Extended Data
Fig. 4. The convergence of each model, the model average contin-
uum, and infinite volume extrapolations are presented in Extended
Data Figs. 6, 3, and 2 respectively.

We present our final physical point extrapolation as a function
of pion mass in Fig. 3a. A comparison with other LQCD results2–9

is presented in Fig. 3b

main parameters

Model g̃0 c̃0 c̃2 c̃3 c̃4 ã2 ã4 b̃4

�PT 1(50) – 0(50) 0(50) 0(1) 0(50) 0(1) 0(1)

Taylor ✏2⇡ 1.2(1.0) 1(50) 0(50) – 0(1) 0(50) 0(1) 0(1)

Taylor ✏⇡ 1.2(1.0) 1(50) 0(50) – 0(1) 0(50) 0(1) 0(1)

alternate parameters

Model g̃N� g̃�� �̃4 ã1 s̃2 f̃3

�PT −1.44(35) −2.16(52) 0(50) 0(10−3) 0(1) 0(23)

Taylor ✏2⇡ – – – 0(10−3) 0(1) 0(18)

Taylor ✏⇡ – – – 0(10−3) 0(1) 0(12.5)

Supplemental Data Table II � Priors used in extrapolation
analysis. The priors used in the extrapolation analysis for all
unknown constants. For the lower order coe�cients, we use
unconstraining priors. For the NNLO coe�cients, we use O(1) priors.
For the Taylor fits, the coe�cient g0 is used to parameterize the
leading finite volume corrections. The impact of varying the prior
widths is discussed in Sec. S.7C and show in Extended Data Fig. 5.
The choice of priors for the alternate parameters are discussed in
Secs. S.7B and S.8B.

Fit �2�dof L(D�Mk) P (Mk �D) P (gA�Mk)
NNLO �PT 0.727 22.734 0.033 1.273(19)

NNLO+ct �PT 0.726 22.729 0.033 1.273(19)

NLO Taylor ✏2⇡ 0.792 24.887 0.287 1.266(09)

NNLO Taylor ✏2⇡ 0.787 24.897 0.284 1.267(10)

NLO Taylor ✏⇡ 0.700 24.855 0.191 1.276(10)

NNLO Taylor ✏⇡ 0.674 24.848 0.172 1.280(14)

average 1.271(11)(06)

Supplemental Data Table III � Model selection analysis. We
explore model uncertainties by choosing six di↵erent models and
studying the variation in the extrapolation to the physical point.
With the inclusion of priors, the augmented �

2�dof listed assumes
there to be 16 degrees of freedom (equal to the number of data
points) for all six models. L(D�Mk) lists the log-likelihood
distribution log P (D�Mk). The Taylor expansion fits are strongly
favored over the �PT fits as measured by the posterior of the model.
In lsqfit, L(D�Mk) is called the log Gaussian Bayes Factor
(logGBF). The final result is given with two uncertainties: the first is
the averaged variance (line one of Eq. (S26)) and the second is the
model uncertainty (line two of Eq. (S26)).

B. Uncertainty analysis

The final uncertainty budget receives contributions from statisti-
cal uncertainty, extrapolation to the chiral, continuum and infinite
volume limits, the model selection uncertainty, and isospin symme-
try breaking.

Statistical uncertainty

Statistical uncertainty incorporates the correlated uncertainties
of g̊A, g̊V , m⇡ , and F⇡ , as well as the uncorrelated uncertainty of
m⇡ and F⇡ obtained from the PDG12, which is used to evaluate
the chiral-continuum extrapolation at the physical point.

Chiral and continuum extrapolation uncertainty

The chiral extrapolation uncertainty is determined from the un-
certainty on the resulting LECs that control the ✏⇡ dependence and
do not vanish in the continuum limit. Uncertainty from the contin-
uum extrapolation includes statistical uncertainty from ✏a and the
resulting uncertainty on all LECs associated with corrections that
vanish in the continuum limit. Additional generic one-loop and
chirally-suppressed tree-level discretisation errors are investigated
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in Fig. 5, labeled as ‘+O(↵sa2) disc.’ and ‘+O(a) disc.’ respec-
tively, yielding insignificant changes to the result and are therefore
omitted from the final extrapolation.

Infinite volume extrapolation uncertainty

We include the finite volume correction given by Eq. (S18).
Specifically, the leading volume correction to gA derived from
�PT104 is used and higher-order finite volume corrections are esti-
mated by Eq. (S17) with an unkown LEC f3. The FV uncertainty
is derived through the uncertainties on the LECs that determine
the infinite volume dependence. In Extended Data Fig. 2a, we dis-
play the model averaged FV correction along with the raw a12m220
ensembles on the three volumes used. In panel b, we add to the
model average extrapolation, black horizontal ticks to denote the
central value of the renormalized values of gA from Extended Data
Table I. In all but two ensembles, the FV shift is significantly less
than one sigma, with one data point shifting about one sigma and
the other closer to two sigma. As a cross check of our FV un-
certainty, we compare two additional analyses: one without FV
corrections and one including only NLO corrections, which are dis-
played in Extended Data Fig. 5 as “omit FV” and “NLO FV”
respectively. These both result in a relative di↵erence with our
final analysis consistent with our estimated FV uncertainty.

Isospin breaking uncertainty

Finally, isospin breaking estimates both strong and electromag-
netic isospin breaking added in quadrature. Experimental re-
sults of gA include radiative corrections up to one-loop121,122,
therefore, we estimate the two-loop radiative corrections to be(↵EM�⇡)2 ∼ 0.0005%. Strong isospin breaking corrections can en-
ter at O(md −mu) with the leading correction to the axial current
in the chiral Lagrangian appearing at NLO91,123,124

�NLOjµ5,a = b�1(4⇡F )2 N̄{⌧⇠a ,��}SµN , (S27)

where Sµ is the spin operator, the spurion fields are

⌧⇠a = 1

2
�⇠⌧a⇠† + ⇠†⌧a⇠� , (S28)

�� = 1

2
�⇠2B�⌧3⇠ + ⇠†2B�⌧3⇠

†� , (S29)

with ⇠2 = ⌃ = exp{√2i��F}, 2� = md − mu and B is the chi-
ral condensate (scaled by F 2) related to the pion mass by the
Gell-Mann–Oakes–Renner relation125. However, this contribu-
tion vanishes for the n → p transition used to determine gA as{⌧+, ⌧3} = 0. In order to contribute to gA, there needs to be
two insertions of isospin breaking corrections, such that the anti-
commutator of ⌧+ and the isospin breaking contributions are non-
vanishing. In QCD, the only isospin breaking parameter is the
quark mass operator and so pure strong isospin breaking cor-

rections enter as O� (md−mu)2(md+mu)2 ✏4⇡� ∼ 0.002%. There can also be

mixed QED + QCD isospin breaking corrections which will scale

as O �↵EM
md−mu
md+mu

✏2⇡� ∼ 0.004%.

Finally, QED corrections modify the values of mnature
⇡ and

Fnature
⇡ . The ⇡0 mass provides a good estimate of the pion mass

in the isospin limit13 and the QED corrections to F−⇡ are given by

F⇡− = FLQCD
⇡− �1 + �R⇡−

2
� , (S30)

where the correction has been estimated to be126

�R⇡− = 0.0169(15) , (S31)

in good agreement with the �PT estimate127,128. We can make a
conservative estimate of the uncertainty from these corrections by

splitting the di↵erence of our extrapolated answers by using

✏⇡− = m⇡−
4⇡F⇡−

, (S32)

✏⇡0 = m⇡0(1 + �R⇡−�2)
4⇡F⇡−

, (S33)

resulting in an uncertainty estimate of

�gA(✏⇡0) − gA(✏⇡−)
2

� = 0.00038(14) , (S34)

which is a 0.03% uncertainty.

Model uncertainty

The model selection uncertainty is determined as described in
Sec. S.7A.

Final uncertainty

The final model averaged uncertainty breakdown, including the
uncertainty arising from the di↵erent extrapolation functions, is
presented in the main text, Eq. (1). Broken down to the di↵erent
contributions of statistical (s), chiral (�), continuum (a), infinite
volume (v), isospin breaking (I) and model (M), we have

gA = 1.2711(103)s(39)�(15)a(19)v(04)I(55)M .

The total uncertainty arises from adding these uncertainties in
quadrature. More precise values at the physical pion mass will
have the largest impact in simultaneously reducing the extrapola-
tion and model-selection uncertainty. This demonstrates a straight-
forward path towards a sub-percent precision, which may be able
to o↵er insight to the upward trending values of the measurements
of gA, including the most recent determination129.

C. Sensitivity analysis

Robustness of the final result is tested under changes in the
initial prior distributions, and data. Specifically, subsets of data
are explored to quantify sensitivity for di↵erent regions of pion
mass and lattice spacing.

Prior sensitivity

Our final result, displayed as the black square in Extended
Data Fig. 5, is robust and extrapolated with unconstraining pri-
ors. In this figure, the set of results labeled ‘2× LO width’ and
‘2× all widths’ explores doubling the prior widths for the leading-
order and all LECs respectively. We observe indiscernible change to
the final result when doubling only the widths on the priors for the
leading-order LECs, demonstrating these priors to be unconstrain-
ing. Doubling the prior widths of all LECs leads to insignificant
changes in the final result, demonstrating that none of the priors
are biasing the fit.

Pion mass sensitivity and posterior correlations

Next, we demonstrate that the heavy pion masses do not skew
the results by analysing subsets of our full data. We study the
variation of our final analysis if the two points close to the physical
pion mass are removed. The results of these extrapolation anal-
yses are presented in Extended Data Fig. 5. We observe that, as
expected, when some of the results are removed, the uncertainty
grows, but the resulting extrapolation is consistent with our main
result within the 1-� level. In Supplemental Table IV, we show
the impact of cutting these heavy pion mass points for each of the
models which enter our model average. We conclude there is no sta-
tistical justification for truncating the heavy pion mass points. The
impact of including or excluding these heavier pion mass points on
our final extrapolated uncertainty is already included through the
use of varying orders in the various model extrapolation functions.
We also observe that the growth in the uncertainty from the full
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Supplemental Data Figure 5 � Sensitivity to cutting lattice spacings. We plot the resulting model average analysis when either the
coarsest or finest ensembles are cut from those considered, with the full data set in the middle for comparison. Uncertainties are one s.e.m.

data set to the m⇡ � 310 MeV data set scales as one would expect
when going from 5 to 3 di↵erent pion masses.

Additionally, to assess the influence of the heavy pion mass re-
gion on our extrapolated result, we use the resulting analyses to
compute the correlation between between the extrapolated result
at the physical pion mass and at m⇡ = 400 MeV. For simplicity, we
compute the correlation in both cases in the continuum and infi-
nite volume limits. This correlation allows for the determination of
the conditional mean between these two points, which provides a
measure of how much the extrapolated answer at one point (phys-
ical pion mass) would shift, given a fluctuation at the other point
(heavy pion mass)

gA(✏(1)⇡ , ✏
(2)
⇡ ) = ĝA(✏(1)⇡ ) +C1,2 �1

gA(✏(2)⇡ ) − ĝA(✏(2)⇡ )
�2

, (S35)

where ĝA(✏⇡) is the expected value of gA at ✏⇡ given the analysis,

gA(✏(2)⇡ ) − ĝA(✏(2)⇡ ) is the hypothetical fluctuation at point 2, �i

are the continuum and infinite volume extrapolated uncertainties at
the two points and the coe�cient C1,2 is the correlation coe�cient

between gA at ✏
(1)
⇡ and at ✏

(2)
⇡ .

The uncertainty of the continuum and infinite volume extrap-
olated result at the heavy pion mass, �400 is approximately the
same as the uncertainty on the input data points at that pion
mass (∼ 0.009 compared to 0.006, 0.010 and 0.008 on the a15m400,
a12m400 and a09m400 ensembles respectively, see Extended Data
Table I). Therefore, if we consider a hypothetical 1-� fluctuation of
the data at m⇡ ∼ 400 MeV, the expected shift in our extrapolated
value of gA at the physical point is well approximated by

�gphys.A = Cphys.,400 �phys. . (S36)

The model-averaged correlation coe�cient, with weights given by
the model-selection analysis (Supplemental Data Table III), is
given by

Cmodel avg.
phys.,400 = 0.37 . (S37)

The shift in the extrapolated value of gA at the physical pion mass,
due to a hypothetical 1-� fluctuation at m⇡ � 400 MeV is given

by the weighted average of C
(i)
phys.,400�

(i)
phys. over the models, i,

resulting in

�gphys.A = 0.0030 × ĝA(✏phys.⇡ ) , (S38)

where ĝA(✏phys.⇡ ) is our final result, Eq. (1), or a 0.3% change.
We conclude that the physical-point extrapolation from the model-
averaged fit ansatz is relatively insensitive to fluctuations at larger
pion masses, leading further evidence for the robustness of our final
result.

Lattice spacing sensitivity

To further check the sensitivity of our results on the continuum
limit, we perform the full analysis discarding, one at a time, each of
the individual a ∼ 0.15 fm and a ∼ 0.09 fm ensembles. In Fig. 5, we
display the resulting model average extrapolations with these two
data cuts side-by-side with the extrapolation of the full data set.
The extrapolated final results are also shown in Extended Data

m⇡ range � 400 MeV � 350 MeV � 310 MeV

Fit weight, gA weight, gA weight, gA

NNLO �PT 0.033, 1.273(19) 0.044, 1.281(25) 0.076, 1.275(27)

NNLO+ct �PT 0.033, 1.273(19) 0.044, 1.280(25) 0.077, 1.275(27)

NLO Taylor ✏

2
⇡ 0.287, 1.266(09) 0.305, 1.278(12) 0.300, 1.282(15)

NNLO Taylor ✏

2
⇡ 0.284, 1.267(10) 0.306, 1.278(13) 0.300, 1.282(16)

NLO Taylor ✏⇡ 0.191, 1.276(10) 0.156, 1.288(14) 0.125, 1.290(17)

NNLO Taylor ✏⇡ 0.172, 1.280(14) 0.146, 1.288(16) 0.121, 1.290(18)

model average 1.271(11)(06) 1.281(15)(04) 1.283(18)(05)

Supplemental Data Table IV � E↵ect of cutting heavy pion
mass points. The weights are determined from the log Bayes Factors
as described in the text. The m⇡ � 400 MeV analysis is described in
the text and listed in Extended Data Fig. 5 as model avg. The
model average results here correspond to the same points in the figure.

Fig. 5. Similar to the pion mass cuts, removing results from one of
the discretisation scales leads to a larger, but consistent result.

S.8. �PT convergence and inclusion of the �s

For su�ciently light pion masses, �PT provides a model in-
dependent description of low-energy QCD. What is not known a

priori is the range of pion masses for which �PT is a converg-
ing, perturbative expansion about the chiral limit. As discussed in
Sec. S.6B, there is also theoretical evidence that the explicit inclu-
sion of the delta degrees of freedom in the chiral Lagrangian will
improve the convergence of gA. We explore these extrapolations in
more detail.

A. Convergence of the �PT expansion

We discuss the convergence of the �PT expansion without ex-
plicit delta degrees of freedom. The first fit that results in an
acceptable �2

aug�dof is the NNLO �PT fit. This fit has 3 LECs de-
termined from our 5 di↵erent pion mass points. The convergence
of the fit is displayed in Extended Data Fig. 6a. Each curve is
the sum of all contributions up to the order listed. One observes
large cancellations between the NLO and NNLO contributions al-
ready at pion masses lighter than nature (grey vertical line). The
strong curvature of the NLO curve is driven by competition be-
tween the counter term, c2 and the ln(✏2⇡) contribution. Because
of this competition, it is more di�cult to assess the convergence of
the theory.

We are not able to perform a meaningful fit with the full N3LO
formula as there are 5 unknown LECs, and we have only 5 pion
mass points. However, we can check the convergence by adding just
the local counter term contribution, c4✏4⇡ , the NNLO+ct �PT fit.
The convergence of this fit is depicted in Extended Data Fig. 6b.
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Order-by-order contribution

order n �(n)gA % of total LEC value

0 +1.236(34) 97.1(2.7) g0 1.236(34)

2 −0.026(30) − 2.0(2.4) c2 -23.0(3.5)

3 +0.062(14) + 4.9(1.1) c3 28.7(5.5)

4 +0.0000(2) + 0.0(0.0) c4 0.007(1.000)

Total 1.273(19)

LEC correlation matrix

LEC g0 c2 c3 c4

g0 1 -0.02010 -0.09365 0.03797

c2 -0.02010 1 0.97231 -0.99050

c3 -0.09365 0.97231 1 -0.99401

c4 0.03797 -0.99050 -0.99401 1

Supplemental Data Table V � NNLO+ct �PT analysis results,
We provide the order-by-order contribution to gA and the resulting
LEC correlation matrix from the NNLO+ct �PT analysis.

We see that the addition of this term has negligible impact on the
resulting extrapolated value of gA for all pion masses depicted.
The resulting order-by-order contributions of this analysis and the
resulting correlation matrix for the LECs are given in Supplemental
Data Table V.

Under the Bayesian Framework, we can perform the full N3LO
fit. In Supplemental Data Fig. 6, we show the resulting fit as well as
the convergence of the expansion. We first observe the uncertainty
of the extrapolation begins to grow significantly outside the region
of constraining data, which is a clear sign of overfitting. One also
observes that the convergence of the expansion changes markedly
from the NNLO+ct �PT extrapolation, where now, the NNLO re-
sult is also quickly dropping as a function of the pion mass for pion
masses near and above the physical pion mass. The full extrapo-
lation has a mild pion mass dependence, which also demonstrates
there is a large cancellation between di↵erent terms in the expan-
sion. This is not surprising given the large and positive coe�cient
of the ln2(✏⇡) contribution appearing at N3LO, Eq. (S9). These re-
sults suggest that the �PT expansion may be particularly poor for
gA. However, a strong conclusion can not be drawn without hav-
ing results at more pion mass points. In particular, having precise
results in the lighter pion mass region is desirable. The resulting
extrapolation is compared with our final result in Extended Data
Fig. 5.

B. Including the �s

We finally turn to an extrapolation including explicit � degrees
of freedom. As discussed in Sec. S.6B, it is expected the pion mass
dependence of gA predicted from �PT will be milder with the inclu-
sion of these states, due to cancellations between the nucleon and
delta virtual loops imposed by the large-Nc expansion. Including
the deltas at NLO introduces two new axial coupling LECs and the
extra mass splitting parameter, for a total of 4 LECs. An input
parameter to the analysis is ✏�, defined in Eq. (S11). Our results
do not directly constrain these two new axial couplings, and so
the resulting fits have larger uncertainties. We do not include the
analysis with explicit deltas in our set that are averaged as they
require phenomenological input, unlike all the fits which go in the
final analysis. Nevertheless, it is interesting to explore how the
delta degrees of freedom impact the analysis.

We begin by exploring how varying the prior width on the new
axial couplings impacts the analysis. We take the central values
in Eq. (S13) and vary the prior width of these couplings from 1%
to 40%. In Supplemental Data Fig. 7, we plot the resulting Bayes
factors normalised to the maximum Bayes factor which occurs with
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Supplemental Data Figure 6 � The N3LO �PT extrapolation.
We plot the N3LO extrapolation of our results and resulting
convergence of the expansion. Uncertainties are one s.e.m.
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Supplemental Data Figure 7 � Bayes factors versus prior
width. We plot Bayes factors of the resulting NLO �PT(�) fits
versus the prior width (in %) given to the two new axial couplings. An
Empirical Bayes analysis selects the 18% as the optimal prior width.

a 18% prior width on g̊N� and g̊��. It is interesting to note that
the prior width motivated by Empirical Bayes is comparable to the
nominal 1�Nc correction which would be ∼ 33%.

Next, we explore the convergence of the expansion when the
delta degrees of freedom are included. While we are taking � �
293 MeV, ✏� depends upon ✏a and ✏⇡ through the denominator
of F⇡ . We have not parameterised this dependence, precluding
our ability to plot the resulting fit, but we can observe the values
of the LECs that are determined with and without explicit delta
degrees of freedom to compare the size of the NLO contributions.
This study can only be performed for the NLO LEC c2, as we do
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Order with delta without delta

c2 �gNLO
A c2 �gNLO

A

NLO -4.8(1.8) 0.28(13) – –

NNLO 12.1(8.2) 0.75(40) -23.0(3.5) -0.026(30)

Supplemental Data Table VI � E↵ect of including delta
degrees of freedom. We list the resulting value of c2 and the NLO
contribution to gA at the physical point for two fits with and without
the delta degrees of freedom. The NLO �PT( ��) fit has a su�ciently

poor �

2
aug�dof we do not report the resulting LEC and �g

NLO
A values.

not have the extrapolation function with deltas beyond NLO. In
Supplemental Data Table VI, we list the resulting value of c2 and
the size of the NLO contribution for the analysis with and without
the delta. The NLO �PT( ��) results in a very poor fit, so we do not
report the values of c2 or �gNLO

A . The NLO �PT(�) does result in
a good fit with �2

aug�dof = 0.49. The resulting fit is displayed in the
bottom entry of Extended Data Fig. 5. Comparing the NNLO fits,
which means either NLO �PT(�) and NLO �PT( ��) plus NNLO
�PT( ��), we observe the value of c2(�) is approximately half as big
as c2( ��), indicating that the non-analytic terms are smaller when
the deltas are included. This suggests that the convergence will be
improved with the explicit inclusion of � degrees of freedom.

In order to fully constrain this fit and test the convergence of the
expansion with and without delta degrees of freedom, first, a cal-
culation including the N →� and �→� axial matrix elements is
needed, and second, the EFT including the deltas must be worked
out to at least one higher order in the expansion. This is a partic-
ularly interesting question to resolve as the �PT( ��) seems to be
poorly converging, if at all, as observed in the prior section.
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Supplemental Data Figure 8 � Correlator fit study I. Analogous to Extended Data Fig. 1a, b, c and d for the a15m400 and a15m350
ensembles. Unbiased bootstrap fit curves with 68% confidence intervals. Results from one simultaneous fit are represented in each column. The
resulting biased bootstrap histograms for g̊A �̊gV follow at the bottom. In the histograms, regions mark the 68% and 95% confidence interval.
Uncertainties are one s.e.m.



26

2 4 6 8 10 12 14 16
t/a

0.81

0.82

0.83

0.84

0.85

m
ef

f

a15m310

2 4 6 8 10 12
t/a

0.74

0.76

0.78

0.80

0.82

0.84

m
ef

f

a15m220

2 4 6 8 10 12
t/a

1.15

1.20

1.25

1.30

1.35

1.40

1.45

g̊ef
f

A

a15m310

2 4 6 8 10 12
t/a

1.0

1.1

1.2

1.3

1.4

1.5

g̊ef
f

A

a15m220

0 5 10 15
t/a

0.98

1.00

1.02

1.04

1.06

1.08

g̊ef
f

V

a15m310

2 4 6 8 10 12
t/a

0.95

1.00

1.05

1.10

g̊ef
f

V

a15m220

1.18 1.20 1.22 1.24 1.26 1.28
g̊A/g̊V

a15m310

1.22 1.24 1.26 1.28 1.30 1.32
g̊A/g̊V

a15m220

Supplemental Data Figure 9 � Correlator fit study II. Analogous to Extended Data Fig. 1a, b, c and d for the a15m130 and a12m400
ensembles. Uncertainties are one s.e.m.
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Supplemental Data Figure 11 � Correlator fit study IV. Analogous to Extended Data Fig. 1a, b, c and d for the a12m350 and a12m310
ensembles. Uncertainties are one s.e.m.
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Supplemental Data Figure 13 � Correlator fit study VI. Analogous to Extended Data Fig. 1a, b, c and d for the a12m220L and a12m130
ensembles. Uncertainties are one s.e.m.
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Supplemental Data Figure 14 � Correlator fit study VII. Analogous to Extended Data Fig. 1a, b, c and d for the a09m400 and a09m350
ensembles. Uncertainties are one s.e.m.
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Supplemental Data Figure 15 � Correlator fit study VIII. Analogous to Extended Data Fig. 1a, b, c and d for the a09m310 and a09m220
ensembles. Uncertainties are one s.e.m.
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Supplemental Data Figure 16 � Correlator fit t
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stability study I. Analogous to Extended Data Fig. 1e. Solid circles accompanied by
shaded bands are the preferred simultaneous fits. Varying fit regions for the two-point correlator (�), and axial (△), and vector (�) e↵ective
derivatives are presented. Corresponding P -values are presented, with the dashed red line at p = 0.05 discriminating statistical significance of the
fit results. Uncertainties are one s.e.m.
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Supplemental Data Figure 17 � Correlator fit t
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stability study II. Analogous to Extended Data Fig. 1e and Supplemental Fig. 16 for
the remaining ensembles. Uncertainties are one s.e.m.
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stability study III. Analogous to Extended Data Fig. 1e and Supplemental Fig. 16 for
the remaining ensembles. Uncertainties are one s.e.m.
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Supplemental Data Figure 19 � Correlator fit t
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stability study I. Analogous to Extended Data Fig. 1f. Solid symbols accompanied by
shaded bands are the preferred simultaneous fits. Varying fit regions for the two-point correlator (�), and axial (△), and vector (�) e↵ective
derivatives are presented. Corresponding P -values are presented, with the dashed red line at p = 0.05 discriminating statistical significance of the
fit results. Uncertainties are one s.e.m.
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Supplemental Data Figure 20 � Correlator fit t
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stability study II. Analogous to Extended Data Fig. 1f and Supplemental Fig. 19 for
the remaining ensembles. Uncertainties are one s.e.m.
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Supplemental Data Figure 21 � Correlator fit stability study III. Analogous to Extended Data Fig. 1f and Supplemental Fig. 19 for the
remaining ensembles. Uncertainties are one s.e.m.
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Supplemental Data Figure 22 � Autocorrelation study I. Analogous to Extended Data Fig. 1c and d. Uncertainties are one s.e.m.
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Supplemental Data Figure 23 � Autocorrelation study II. Analogous to Extended Data Fig. 1c and d. Uncertainties are one s.e.m.
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ensembles.
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