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I. SUPPLEMENTARY NOTES

1. Model for intralayer-interlayer exciton hybridization and moiré superlattice

minibands for excitons

Bright MoSe2 excitons are formed in an MoSe2/WS2 heterobilayer by τKMoSe2 valley

electrons and −τKMoSe2 holes of opposite spins, where τ = ±1 is the valley index. For

τ = 1, the intralayer exciton state is

|Xs(Q)〉 =
1√
S

∑
κ

ϕ̃(κ)c†M,s(KMoSe2 + me
MX

Q + κ)h†M,−s(−KMoSe2 + mh
MX

Q− κ) |Ω〉 , (1)

where c†M,s(KMoSe2 + k) [h†M,s(KMoSe2 + k)] creates an electron (hole) in the MoSe2 spin–s

conduction (valence) band, with wave vector k near KMoSe2 (s =↓ gives the A exciton, XA,

while s =↑ gives the B exciton, XB. The same is true for WS2), and ϕ̃(κ) is the Fourier

transform of the (ground-state) exciton relative-motion wavefunction. me and mh are the

electron and hole effective masses; MX = me+mh, and |Ω〉 is the heterobilayer ground state.

MoSe2 electrons tunnel into the WS2 conduction band through the “hopping term”[1],

t =
∑

s,τ ′=±1

∑
m,n

∑
k,k′

δ
(KMoSe2

+k)−(τ ′KWS2
+k′),G

WS2
n −GMoSe2

m
tcc(G

MoSe2
m + KMoSe2 + k)

×
[
e−iG

MoSe2
m ·r0c†W,s(τ

′KWS2 + k′)cM,s(KMoSe2 + k) + H.c.
]
,

where GMoSe2
m and GWS2

n are reciprocal lattice vectors of the corresponding crystals, and r0

represents the in-plane shift between metal atoms in the two layers, which together with the

twist angle θ parametrizes the heterobilayer stacking. The Kronecker delta encodes momen-

tum conservation . Due to symmetry under C3 rotations, the valley −KWS2 is equivalent to

K′WS2
(see main text Fig. 3a).

Intralayer MoSe2 excitons can hybridize with interlayer excitons (iXs) of same quantum

number s, (WS2 electron and an MoSe2 hole)

|Yτ ′

s (Q′)〉 =
1√
S

∑
κ

ψ̃(κ)c†W,s(τ
′KWS2 + m′e

MiX
Q′ + κ)h†M,−s(−KMoSe2 + mh

MY
Q′ − κ) |Ω〉 , (2)

where m′e is the WS2 electron effective mass and MiX = m′e +mh (see Extended Data Table

I).

The relative-motion momentum-space wavefunctions of both exciton species are given by

ϕ̃(κ) =

∫
d2ρ e−iκ·ρϕ(ρ), ψ̃(κ) =

∫
d2ρ e−iκ·ρψ(ρ),
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and we obtained the real–space wavefunctions

ϕ(ρ) ≈

√
2

πa2
X

e−ρ/aX , ψ(ρ) ≈

√
2

πa2
iX

e−ρ/aiX ,

by solving numerically the two–body problem with bilayer Keldysh–type interactions [2–6],

finding aX and aiX from the solutions. Then, we obtain the bright inter–intra exciton mixing

term

T =
∑
s,τ ′

∑
m,n

∑
Q,Q′

Tτ ′(G
MoSe2
m ,GWS2

n )δ
Q−Q′,∆Kτ ′+G

WS2
n −GMoSe2

m
Y τ ′

s
†(Q′)Xs(Q) + H.c.

Tτ ′(G,G′) ≈4tcc(KMoSe2 + G)e−iG·r0

aXaiX

(
aX + aiX

aXaiX

)[(
aX + aiX

aXaiX

)2

+
m2
h

M2
iX

(∆Kτ ′ + G′ −G)2

]−3/2

,

(3)

where ∆Kτ ′ = τ ′KWS2 −KMoSe2 ; ∆K ≡ ∆K+ and ∆K′ ≡ ∆K−; and Xs(Q), Y τ ′
s (Q′) are

exciton annihilation operators.

The coupling function tcc(q) decays rapidly with wave vector for |q| > |KMoSe2| [1, 7],

which allows us to set it as a constant tcc for |q| . |KMoSe2 |, and zero otherwise. This makes

Tτ ′(G,G′) finite only for G = 0 and the two other MoSe2 Bragg vectors shown in Extended

Data Fig. 3c. For closely aligned (θ ≈ 0◦) configurations, when G = GMoSe2
n , the hopping

term gives significant contributions only if τ ′ = 1 and G′ = GWS2
n , and is vanishingly small

otherwise. Thus, the allowed Bragg vector combinations give

∆K + G′ −G =


∆K , G′ = G = 0

C3∆K , G′ = GWS2
2 , G = GMoSe2

2

C2
3∆K , G′ = −GWS2

1 , G = −GMoSe2
1

.

Therefore, to a good approximation,

T =
∑
s

∑
D

∑
Q,Q′

δQ−Q′,D∆K TD Y
+
s
†(Q′)Xs(Q) + H.c.,

TD =eiK·r0
4tcce

−iDK·r0

aXaiX

(
aX + aiX

aXaiX

)[(
aX + aiX

aXaiX

)2

+
m2
h

M2
iX

∆K2

]−3/2

,

where we define D ∈ {E, C3, C
2
3}, with Cn

3 a rotation by 2nπ
3

and E the identity.

For θ ≈ 60◦ one must choose τ ′ = −1 and for each Bragg vector G = GMoSe2
n take

G′ = −C3G
WS2
n , resulting in

T̃ =
∑
s

∑
D

∑
Q,Q′

δQ−Q′,D∆K′ T̃D Y
−
s
†(Q′)Xs(Q) + H.c.
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From the above analysis, we get for τ = 1 the exciton Hamiltonians

H =
∑
s

∑
Q

[
EX,s(Q)X†s(Q)Xs(Q) + E+

iX,s(Q)Y +
s
†(Q)Y +

s (Q)
]

+ T ; θ < 30◦, (4a)

H =
∑
s

∑
Q

[
EX,s(Q)X†s(Q)Xs(Q) + E−iX,s(Q)Y −s

†(Q)Y −s (Q)
]

+ T̃ ; θ > 30◦, (4b)

where

EX,s(Q) = E0
X + s(∆v

SO + ∆c
SO) +

~2Q2

2MX

,

Eτ ′iX,s(Q) = E0
iX + s(∆v

SO + τ ′∆c
SO
′) +

~2Q2

2MiX

,

with ∆c
SO and ∆v

SO the spin-orbit couplings of the MoSe2 conduction and valence bands, and

∆c
SO
′ the WS2 conduction band spin-orbit coupling. Thus, for Q = 0, the A- and B-exciton

energies can be written as (see Extended Data Table I) EXA
= E0

X − (∆v
SO + ∆c

SO) and

EXB
= E0

X + (∆v
SO + ∆c

SO). Analogous terms exist for the τ = −1 valley, given by a time

reversal transformation.

The moiré superlattice periodicity, introduced in Eqs. (4a) and (4b) through the terms

T and T̃ , requires that we fold the X and iX bands onto the moiré Brillouin zone,

|Xs(Q)〉m,n ≡ |Xs(Q +mb1 + nb2)〉 ,

|Yτ ′

s (Q′)〉m,n ≡ |Y τ ′

s (Q′ +mb1 + nb2)〉,

where Q is limited to the first moiré Brillouin zone (mBZ, Extended Data Fig. 3e). The

intra- and interlayer exciton states |Xs(Q)〉m,n and |Yτ ′
s (Q′)〉m′,n′ hybridize when Q = Q′

and

(m′ −m)b1 + (n′ − n)b2 = bj ; j = ±1,±2,±3,

producing hXs states

|hXτ ′

s (Q)〉i,j ≡
∞∑

m,n=0

[
Am,ni,j (s,Q)|Xs(Q)〉m,n +Bm,n

i,j (s, τ ′,Q)|Yτ ′

s (Q)〉m,n
]
, Q ∈ mBZ,

with corresponding energies Eτ ′
s;i,j(Q).

To evaluate the optical spectra of hX states, we use the light-matter interaction Hamil-

tonian

HLM =
eγ

~c
∑
s

∑
η=±1

∑
ξ,ξz

∑
k

√
4π~c
V ξ

c†M,s(ηKMoSe2 + k− ξ)h†M,s(−ηKMoSe2 − k)a†η(ξ, ξz) + H.c.
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Here, a†η(ξ, ξz) creates a photon of in-plane momentum ξ and out-of-plane momentum ξz,

and polarization η = ±1, corresponding to counter-clockwise and clockwise, respectively. We

obtain the recombination and absorption rates from Fermi’s golden rule (Q+mb1+nb2 = ξ):

Γτ
′

PL;m,n;s(Q) =
4π

~
∑
ξ,ξz

|〈η; ξ, ξz|HLM|hXτ ′

s (Q)〉m,n|2nB(Eτ ′,T
s;m,n)δ

(
Eτ ′

s;m,n(Q)− ~c
√
|ξ|2 + ξ2

z

)
,

ΓηA(ξ, ξz) =
2π

~
∑
s

∑
m,n

∑
Q

|m,n〈hXτ ′

s (Q)|HLM|η; ξ, ξz〉|2δ
(
Eτ ′

s;m,n(Q)− ~c
√
|ξ|2 + ξ2

z

)
,

For PL, we take into account temperature effects through the Bose-Einstein distribution

nB(E, T ) =
1

e(E−Egnd)/kBT + 1
,

where Egnd is the energy of the lowest exciton state. The calculated twist-angle dependence

of the activation energy E↓;0,0(0) − Egnd for hX1 in MoSe2/WS2, as well as PL spectra at

several temperatures, are shown in Extended Data Fig. 8.

For absorption, we find [8]

IsA(~ω) =
8ωδω

~πc2

e2

~c
∑
m,n

∣∣∣∣∣∑
i,j

γAi,jm,n(s, 0)

aX

∣∣∣∣∣
2

β/π

(~ω − Eτ ′
s;m,n(0))2 + β2

,

where we use β = 5 meV and ~δω = 1 meV to evaluate the spectrum shown in Fig. 3e.

2. Harmonic potential approximation to exciton moiré effects in MoSe2/WS2 het-

erostructures

The moiré superlattice effects on the band structure [9, 10] and exciton energies [7] of

bilayer systems, produced by incommensurability and misalignment of the two lattices, are

often described in terms of a minimal harmonic potential [11–13]. In this section we derive

the tunnelling contribution to this potential for intralayer excitons in TMD heterobilayers,

using MoSe2/WS2 as a case study. We show that a harmonic potential fails to describe

the moiré superlattice effects in the close alignment (anti-alignment) regime in the case of

near-resonant exciton bands.

For θ < 30◦, interlayer tunnelling T allows MoSe2 intralayer excitons to explore the

reciprocal lattice of the WS2 layer through virtual tunneling of their electrons onto the WS2

conduction band, and then back onto the MoSe2 conduction band. These virtual processes
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introduce momentum-dependent corrections to the intralayer exciton energies, which in real

space correspond to a potential.

Focusing on the case of θ < 30◦, we perform a canonical transformation H̃ = eiSHe−iS

on the intralayer-interlayer exciton Hamiltonian H = H0 + T presented in main text Eq.

(4a), with the condition [14]

T = −i [S,H0] , (8)

which removes from H̃ all terms that are first order in T . A similar procedure is followed

for the Hamiltonian of main text Eq. (4b), for θ > 30◦. The condition Eq. (8) is achieved

by the generator

iS =
∑
s

∑
D

∑
Q,Q′

δQ,Q′+D∆K

[
TD

E+
iX,s(Q

′)− EX,s(Q)
Y +
s
†(Q′)Xs(Q)− H.c.

]
(9)

Evaluating H̃ up to second order in T we obtain

H̃ ≈
∑
s

∑
Q

[
ẼX,s(Q)X†s(Q)Xs(Q) + ẼiX,s(Q)Y +

s
†(Q)Y +

s (Q)
]

+
1

2

∑
s

∑
D6=D′

∑
Q

[
T ∗DTD′

E+
iX,s(Q)− E+

X,s(Q +D∆K)
Y +
s
†(Q + [D −D′]∆K)Y +

s (Q) + H.c.

]

− 1

2

∑
s

∑
D6=D′

∑
Q

[
T ∗DTD′

E+
iX,s(Q−D∆K)− E+

X,s(Q)
X†s(Q + [D −D′]∆K)Xs(Q) + H.c.

]
,

(10)

with the renormalized energies

Ẽτ
X,s(Q) = EτX,s(Q)− 1

2

∑
D

|TD|2

EτY,s(Q−D∆Kτ )− EτX,s(Q)
, (11a)

Ẽττ ′

iX,s(Q) = EτY,s(Q) +
1

2

∑
D

|TD|2

EτY,s(Q)− EτX,s(Q +D∆Kτ )
. (11b)

The remaining two terms represent scattering by moiré vectors b = (D−D′)∆Kτ , as shown

in Extended Data Fig. 3e. For exciton momenta near the center of the moiré Brillouin zone

we have Q� ∆K, and we may approximate

T ∗DTD′

E+
iX,s(Q)− E+

X,s(Q +D∆K)
≈ T ∗DTD′

[(E0
iX −∆′SO)− (E0

X −∆SO)]− ~2∆K2

2MX

, (12a)

T ∗DTD′

E+
iX,s(Q−D∆K)− E+

X,s(Q)
≈ T ∗DTD′

[(E0
iX −∆′SO)− (E0

X −∆SO)] + ~2∆K2

2MiX

. (12b)
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Finally, an inverse Fourier transform gives the harmonic potential for bright intralayer exci-

tons at valley τ = 1

VX,s(r) =
3∑

n=1

T ∗
Cn−1

3

TCn−2
3

e−idn·r + T ∗
Cn−2

3

TCn−1
3

eidn·r

[(E0
iX −∆′SO)− (E0

X −∆SO)] + ~2∆K2

2MiX

, (13)

where C0
3 = E, and for convenience we have re-labeled the moiré Bragg vectors as follows:

d1 = b1, d2 = b3 and d3 = −b2. A similar analysis for θ > 30◦ leads to the potential

WX,s(r) =
3∑

n=1

T̃ ∗
Cn−1

3

T̃Cn−2
3

e−id̃n·r + T̃ ∗
Cn−2

3

T̃Cn−1
3

eid̃n·r

[(E0
iX + ∆′SO)− (E0

X −∆SO)] + ~2∆K′2

2MiX

. (14)

Using the values of Extended Data Table I, we find that WX,s(r) diverges at θ ≈ 58◦,

signaling the breakdown of perturbation theory due to a crossing between the intralayer

and interlayer exciton bands at the iX band edge, as shown in Extended Data Fig. 2b.

Furthermore, Extended Data Fig. 2c shows that, although VX,s(r) remains finite for all

θ < 30◦, the excitation energy in the virtual process becomes smaller than the mixing

energy for θ < 5◦, indicating that the perturbative approach is no longer valid.

Beyond these angles the intralayer-interlayer exciton mixing strength becomes the dom-

inant energy scale in the problem, such that perturbative methods in general, and a simple

description in terms of a potential in particular, cannot describe hX states or the moiré

superlattice effects. This is a direct consequence of the near-resonant conduction bands in

MoSe2/WS2 heterostructures.

3. Broadening of the photoluminescence line by random fields in the sample

The dependence on twist angle of the emission line broadening shown in Extended Data

Fig. 1b may be explained by the coupling of weak electric fields produced by random strain

throughout the sample, with the out-of-plane electric dipole of the mixed intralayer-interlayer
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exciton states. The field-dipole coupling can be estimated as

HE−D =− edEz
2

∑
s

∑
τ=±1

[∑
k

c†M,s(τKMoSe2 + k)cM,s(τKMoSe2 + k)

−
∑
k′

c†W,s(τKWS2 + k′)cW,s(τKWS2 + k′)

]

+
edEz

2

∑
s

∑
τ=±1

[∑
k

h†M,s(τKMoSe2 + k)hM,s(τKMoSe2 + k)

−
∑
k′

h†W,s(τKWS2 + k′)hW,s(τKWS2 + k′)

]
,

(15)

where cM,s(q) and cW,s(q) annihilate an electron of momentum q and spin projection s in

MoSe2 and WS2, respectively; e is the charge unit, d the interlayer distance, and we assume

that the out-of-plane electric field Ez is small. In first–order perturbation theory, this gives

a correction to the bright, optically–active (Q = 0) mixed exciton energy

δE = 0,0 〈hX↓(0) |HE−D| hX↓(0)〉0,0 = edEz

∣∣∣〈Yτ ′

↓ (0)|hX↓(0)〉0,0
∣∣∣2 , (16)

where τ ′ = 1 (τ ′ = −1) for θ < 30◦ (θ ≥ 30◦), |hX↓(0)〉0,0 is the lowest bright hybridized

exciton state, and 〈Yτ ′

↓ (0)|hX↓(0)〉0,0 is its interlayer exciton component (see Methods in

main text). Excitons in different parts of the sample will experience different values of Ez.

Assuming that the Ez values found throughout the sample follow a Gaussian distribution

ρ(Ez) =

√
1

2πσ2
e−(Ez−E0

z )2/2σ2

, (17)

of mean E0
z and variance σ2, the correction δE will also be normally distributed, with mean

value

〈δE〉ρ = edE0
z

∣∣∣〈Yτ ′

↓ (0)|hX↓(0)〉0,0
∣∣∣2 , (18)

and a full width at half maximum given by

FWHMδE = 2
√

2 log 2
√
〈δE2〉ρ − 〈δE〉2ρ = 2σ

√
2 log 2 ed

∣∣∣〈Yτ ′

↓ (0)|hX↓(0)〉0,0
∣∣∣2 . (19)

Allowing for an additive constant, representing the intrinsic broadening of the PL line, we

fitted Eq. (19) to the experimental data, and the result is presented in Extended Data

Fig. 1b of the main text. The fitting parameters give σed = 19.8 meV, or σ ≈ 0.03 V/nm,

assuming an approximate interlayer distance of 6 Å [15].
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