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1 Device Characterization and Measurement

To characterize our two-dimensional electron gas (2DEG), we fabricate and measure a van der

Pauw device on the same HgTe wafer QC0261, using the same metal deposition method described

in the main text except replacing the aluminum contacts with gold. By measuring the longitudinal

and Hall resistances, we obtain a 2DEG mobility of around 400,000 cm2/Vs at a density of 1.0 ×

1011 cm−2. The longitudinal and Hall resistances are shown respectively in Figure S1a and b.

We fabricate high-quality aluminum/HgTe interface using in-situ ion milling procedure de-

scribed in our previous works1, 2. Here we provide a back-of-envelope estimate for the transparency

of our Josephson junctions using transport data. For an 800 nm-wide, 4 micron-long junction we

made using the same fabrication procedure and with the same thickness of aluminum and sticking

layer, the normal resistance RN = 200Ω. Using a formula for a Josephson junction with two equal

interfaces, the resistance is given by R = 1
M

h
e2

(
1 + 2 |r|

2

|t|2

)
, where M is the number of modes,

and t and r are the complex transmission and reflection amplitudes. At an estimated density of

1.7 × 1011 cm−2 inside the junction, the Fermi wavelength is about 60 nm, which means we have

133 transport modes in a 4-micron-long junction. This places us at an interface transparency |t|2

of about 98.5%. Realistically, the doping from the aluminum leads could modify the chemical

potential inside the junction, and hence the transparency is slightly lower than this number. For

example, if we assumed a density of 4.0 × 1011 cm−2, we would find a transparency of 78.4%.

Given the uncertainty in our density estimate, we expect our interface transparency to fall inside

this range of 78% to 100%.
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To investigate the spectrum at the end of the Josephson junction, we perform local tunneling

spectroscopy through a weakly coupled electrode, which overlaps the junction over an area of

approximately 100 nm by 100 nm near its edge. We use in-situ ion milling to etch most of the

CdHgTe barrier layer on top of the quantum well and stop when only a few nanometers of CdHgTe

remain. We then deposit 100 nm of gold with 10 nm of titanium as a sticking layer. Both metals,

especially the titanium, react chemically with CdHgTe to form alloys3. These semimetallic alloys

facilitate the tunneling of electrons between the local electrode and the quantum well, producing

low-temperature tunnel resistances ranging from 15 kΩ to 15 MΩ, depending on the thickness of

the barrier layer and the overlapping area of the electrode with the quantum well.

Since the features in the tunneling conductance we study here are induced by the supercon-

ductivity in the aluminum, we expect them to only develop well below the critical temperature of

the superconducting aluminum film, which can range from 1.2K to 1.6K 4. Figure S3 shows the

temperature dependence of the tunneling conductance curves during a cool-down process in our

dilution refrigerator, for the same device discussed in the main text. As we can see, the main peaks

in the conductance only start developing below 0.5 Kelvin. The separation of the two conductance

peaks is typically around 120 µeV and the width of each peak is on the order of 50 µeV in en-

ergy. Above this temperature, the tunneling conductance curve is mostly flat for this energy range.

Although this does not completely rule out all possible contributions from features related to the

tunnel probe that only develop at low temperatures, it does strongly suggest that these conductance

peaks originate from the aluminum-induced superconducting gap in the HgTe quantum well.
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During our measurements, the point in bias voltage about which the conductance curve is

approximately symmetric is constant for each cool-down of the device, and we identify this point

as the zero-bias point. It is worth pointing out that this true zero-bias point tends to be offset by

15-25 µeV from zero reading on our DC voltage supply, which we attribute to a constant voltage

offset that comes from the voltage source in our measurement circuitry which supplies the bias to

the tunnel probe. This is a very common experimental feature, where the applied zero voltage does

not translate to really zero voltage between the tunnel probe and the sample because electronic

components may exert finite bias due to various circuit artifacts. To eliminate this artifact and

thus avoid unnecessary confusion for the readers, we have shifted the x-axis in all of our tunneling

conductance plots, so that the true zero-bias point algins with the zero-bias reading in the plots.

Therefore, the presented plots are relative to the true voltage bias rather than the instrumental

reading that contains a systematic error.

2 Correction for Imperfect Sample-Magnet Alignment

Due to imperfect sample-magnet alignment, the in-plane field Bx will generate a small perpendic-

ular component Bz, which offsets the Bz field corresponding to zero-flux in the phase loop. To

correct for this effect and maintain our measurement in a range of phase difference near zero, we

scan over a range of Bz at each Bx field and identify a range with maximal oscillation amplitude

in the tunneling conductance.

Shown in Figure S2a is the conductance in the range of a few mT in Bz near zero, featuring
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periodic oscillations as the junction’s phase difference is modulated, which gradually dampens as

the Bz increases in both positive and negative directions. Based on this experimental observation,

we maintain our measurements in the vicinity of zero phase difference by scanning over a range in

Bz at each Bx field and selecting a region with maximal oscillations in the tunneling conductance

(Figure S2a and b). As the in-plane field Bx increases, this optimal range drifts towards higher Bz

values, following a linear dependence to first order (Figures S2c-f).

The phase smearing effect is yet another high-field effect that is not compensated by this

correction. Because of the microscopic roughness along the edge of the superconducting elec-

trodes during the sample fabrication, the high in-plane magnetic fields can generate non-uniformity

along the normal-superconducting interface, which in turn causes the phase difference along the x-

direction of the junction to disperse2. This creates a smearing effect on the observed spectroscopy’s

dependence on phase, reducing the signal-to-noise ratio of the tunneling conductance. Because this

effect worsens at high in-plane fields, it is necessary to adopt a junction geometry where the topo-

logical phase transition happens at low enough fields before the phase smearing effect masks the

experimental signal entirely. In our experiment, the 600nm junction places us in this situation and

enables us to see the emergence of the zero-bias peaks associated with the phase transition. Future

development to improve the lithography and film quality of the superconducting contacts could

help reduce such phase smearing effect and enhance the measurement resolution in both energy

and phase at high in-plane fields.
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3 The Electron-Hole Asymmetry with In-Plane Field

At zero in-plane field, we generally see a symmetric differential conductance between positive

and negative DC voltages, endorsing the particle-hole symmetry in the local spectrum of Andreev

bound states (see Main Text Figure 2a as an example). However, such symmetry in the LDOS is

not present at high in-plane magnetic fields. This is reflected by an asymmetry in the differen-

tial conductance about zero bias voltage1, which grows with the in-plane magnetic field applied.

Figures S4 and S5 show the raw data with this asymmetry at various magnetic fields.

To visualize this asymmetry in the tunneling conductance and see how it develops with the

magnetic field, we can average the differential conductance over an entire period in the phase dif-

ference, at each in-plane field, as plotted in Figure S7. Furthermore, we can quantify it with the

slope of a linear fit to the averaged conductance curve. Shown in Figure S8, the slope representing

the asymmetry grows linearly with the magnitude of the in-plane field, and the sign of the asymme-

try does not depend on the direction of the field. This is also evident from Figure S6, which shows

a continuous evolution as the in-plane field is ramped across a broad range, as well as a broader

range in the bias voltage. The out-of-plane component of the Bx field is passively compensated

in linear proportion but not perfectly canceled. As a result of the minute remaining Bz field, the

zero-bias conductance shows oscillations in theBx field. We can see the same asymmetry develops

from positive to negative Bx fields, although its extent does vary from device to device.

1As mentioned in Supplementary Section 1, this true zero bias can be offset from 0 voltage reading by a constant

deviation ranging from 15 to 25 µeV , due to instrumental errors.

5



The exact mechanism for controlling this asymmetry is not well understood and hence re-

mains an interesting topic for further studies. Meanwhile, we can correct for this asymmetry,

post-measurement, by averaging the differential conductances at each positive energy with its neg-

ative counterpoint and assigning this same value for both points. We perform this symmetrization

procedure for each differential conductance trace at all phases and all fields, and the corrected

results are shown in Figures 2 and 3 of the main text.

4 Obtaining the Zero-Bias Curvature

To illustrate the continuous opening of the window containing the zero-energy peaks, we analyze

the symmetrized data and identify whether the differential conductance curve at each particular

Bz and Bx contains a zero-energy peak. To quantify this property, we extract the local curvature

of the differential conductance near zero-energy. For any differential conductance curve, we fit a

parabola to its central segment, and hence extract the curvature from the fitting parameters. This

is a good proxy for whether it contains a zero-energy peak as such peaks would make the center of

the otherwise convex part of the curve concave, resulting in a negative curvature.

We obtain the curvature of the zero-energy conductance peak using parabolic fits. As seen

in the fitting examples in Figure S9, the sign of the curvature correlates well with whether the

curve contains a peak (panels e and f) or dip (panels a and c) at zero energy, and the amplitude

roughly indicates its visibility. We can do this for each differential conductance curve at any

particular phase difference φ and any in-plane field, Bx. The parabolic fit works the worst when
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the differential conductance is flat in the central region, as shown in panels b and d. In such cases,

our method produces a rather small curvature, so the overall analysis is minimally affected. A

colour map of the extracted curvature as a function of both phase difference φ and the Zeeman

field Bx is shown in Figure 3i of the main text.

We would like to emphasize that the zero-bias curvature, which indicates the presence of

a zero-bias peak in the tunneling conductance and is central to our main result, does not change

during the symmetrizing process, as can be seen in the examples shown in Figure S10a-c. This

is because by symmetrizing the conductance as a continuous function of tunneling voltage, we

preserve all even terms in its polynomial expansion and eliminate all odd terms. This results in

no error in the fitting coefficient of the second-order term, which is the curvature we extract using

the parabolic fit. To provide an intuitive picture, a few examples of the parabolic fits on both raw

and symmetrized data are shown in Figure S10a-c. The curvature extracted from symmetrized data

is shown in Figure S10d, which shows the same result as extracted from the raw data, which we

choose to present in Figure 3i of the main text.

5 Two Additional Devices with Similar Behavior

To demonstrate reproducibility for the general trend of the zero-bias curvature, here we present

two other devices with different geometries but showing similar effects as the device shown in the

main text. Device Kappa has a junction that is 400nm wide and 4 µm long, with a tunnel resistance

around 12 MΩ. The raw and symmetrized conductance data of Device Kappa are shown in Figures
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S11 and S12 respectively. Device Zeta has a junction that is 800nm wide and 1 µm long, with a

tunnel resistance around 3 MΩ. The raw and symmetrized conductance data of device Zeta are

shown in Figures S13 and S14 respectively. Due to their low tunnel conductances, they give low

signal-to-noise ratios, making them less immune to the phase smearing effects at high in-plane

fields, as discussed in supplementary Section 2. Nevertheless, we see the same qualitative trend

of an enhanced zero-energy conductance extending over a growing range of φ as the in-plane field

increases.

We see again that the electron-hole asymmetry in the tunneling conductance is present in

these two devices, and the slopes of this asymmetry in these two devices are opposite to that of the

device discussed in the main text. Yet, just like in the case of the device shown in the main text,

the sign of this slope is independent of the sign of the field. This suggests the asymmetry may be

related to device-specific effects such as local potentials or disorders.

Moving towards narrower junctions brings potential benefits to the experiment. As we will

show in Supplementary Section 10, a long junction which is 400nm wide holds the promise of

showing zero-bias peaks both associated with the phase transition, in the field range we have mea-

sured, and from the Majorana bound states, at even higher fields. However, due to the phase

smearing effect, the modulation of our tunneling conductance diminishes much below the field

required to see the latter ZBP in this 400-nm-wide junction, and, therefore, we only observe the

former type of peak in conductance. This points out an immediate direction for fabrication devel-

opment to improve the lithographic definition and interfacial quality of the superconducting film
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with the quantum well, so that future experiments can go up to higher in-plane fields, and, there-

fore, down to narrower junctions. Such improvements will allow us to explore this topological

phase transition physics and the associated Majorana bound states with a more discrete spectrum,

without losing the experimental signal due to the undesired phase smearing effect.

6 Numerical Calculation of the Tunneling Conductance

Our theoretical description of the system is based on the model used in Reference 5 for a two-

dimensional semiconductor with Rashba spin-orbit interaction defined on a rectangular region.

The region has length L and is divided into three segments: a normal region of width W between

two superconducting regions of width WSC (see rectangle with black contour in Figure S15). The

Bogoliubov-de Gennes Hamiltonian can be written in the Nambu basis (ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑) as H =∫

d2rψ†(r)H(r)ψ(r) with

H(r) =
[ p2

2m
− µ(y) +

mα2

2

]
τz + EZ(y)σx + α(pxσy − pyσx)τz + ∆(y)τ+ + ∆(y)τ−, (1)

where m is the effective mass, α the strength of the Rashba spin-orbit interaction and the σ (τ ) are

Pauli matrices in spin (particle-hole) space.

The Zeeman energy EZ(y) = g(y)µBB/2, chemical potential µ and pairing strength ∆ are

all affected by the proximity coupling between the semiconductor and the superconductor and
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therefore assume different values in the junction and in the leads. We write

∆(y) =∆[e−iφ/2Θ(−y) + eiφ/2Θ(y −W )], (2)

g(y) =gNΘ(y)Θ(W − y) + gSC [1−Θ(y)Θ(W − y)], (3)

µ(y) =µNΘ(y)Θ(W − y) + µSC [1−Θ(y)Θ(W − y)], (4)

where φ is the phase difference across the junction. Because of the experimental finding that the

coherence peaks remain at the same energy for the entire magnetic field range, we henceforth

assume the Zeeman energy to be completely suppressed in the superconducting part setting gSC =

0 and denote EZ = gNµBB/2.

For the numerical calculations it is convenient to consider the same model on a square lattice.

The corresponding tight-binding Hamiltonian can be written in terms of the Nambu spinors ci,j =

(ci,j,↑, ci,j,↓, c
†
i,j,↓,−c

†
i,j,↑)

T as

H =−
L−1∑
i=1

W+WSC∑
j=−WSC+1

[c†i,j(t+ iαTBσy)τzci+1,j + h.c.]

−
L∑
i=1

W+WSC−1∑
j=−WSC+1

[c†i,j(t− iαTBσx)τzci,j+1 + h.c.]

+
L∑
i=1

W+WSC∑
j=−WSC+1

[
c†i,j

(
4t+

α2
TB

t
− µ(j) + EZ(j)σx

)
τzci,j + (∆(j)ci,jτxci,j + h.c.)

]
(5)

In the limit t→∞, the tight-binding model maps onto the continuum model in Eq. (1) with

the replacements ci,j → aψ(r), αTB → α/2a and t→ 1/2ma2, where a is the lattice constant.

For the numerical calculations presented in the main text, we use the following parameters in

the continuum model of Eq. (1): α = 34 meVnm, ∆ = 64µeV, µN = 12.5 meV, µSC = 50 meV,
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gn = 10, and m = 0.033me, where me is the electron mass.

The tight-binding parameters are chosen accordingly as t = 32 meV, αTB = 0.089t, and

a = 6 nm.

The phase diagram and subgap spectrum shown in Figure 1 of the main text is evaluated

using the continuum model with L = ∞ and WSC = ∞. In this case the momentum along the x

direction is conserved and can be replaced by a number kx. The subgap spectrum can then be found

by evaluating the scattering matrix S(E) for states inside the junction and solving the equation

det{1− S[E(kx)]} = 0 (6)

(see Reference 5 for the numerical procedure). The phase boundaries correspond to zero-energy

crossings at kx = 0.

An evaluation of the conductance through the system requires the addition of external leads.

To model the experimental setup, we attach a normal lead near the upper edge of the normal region

and two superconducting leads contacting the lower edges of the superconducting segments as

shown in Figure S15. We choose system dimensions L = 150, W = 100, and WSC = 200

corresponding to a junction area of 900 nm× 600 nm.

The normal lead is added as a second layer, which extends infinitely in the x→ −∞ direction

and is connected to the junction by vertical tunnel couplings in the area i1 ≤ i ≤ i2 and j1 ≤ j ≤
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j2. The additional contribution to the Hamiltonian reads

HL =

i2∑
i=−∞

j2∑
j=j1

(4t− µL)d†i,jτzdi,j

−
(
t

i2−1∑
i=−∞

j2∑
j=j1

d†i,jτzdi,j+1 + t

i2∑
i=−∞

j2∑
j=j1

d†i−1,jτzdi,j + tL

i2∑
i=i1

j2∑
j=j1

d†i,jτzcij + h.c.
)

(7)

In our simulations, we choose µL = 4t, tL = 0.2t. The contact area is defined by i1 = 1,

i2 = 6, j1 = 43, j2 = 58, which corresponds to an area of ∼ 40 nm× 100 nm.

The superconducting leads simply continue the two superconducting segments in the x→∞

direction

HSC,L =−
∞∑

i=L+1

( 0∑
j=−WSC+1

+

W+WSC∑
j=W+1

)[(
4t+

α2
TB

t
− µSC

)
c†i,jτzci,j + (∆(j)ci,jτxci,j + h.c.)

]

−
∞∑
i=L

( 0∑
j=−WSC+1

+

W+WSC∑
j=W+1

)
[c†i,j(t+ iαTBσy)τzci+1,j + h.c.]

−
∞∑
i=L

( −1∑
j=−WSC+1

+

W+WSC−1∑
j=W+1

)
[c†i,j(t− iαTBσx)τzci,j+1 + h.c.]. (8)

We use the KWANT library to calculate the scattering matrix of the system with respect to

the external leads. The conductance between the normal lead at a finite bias voltage eV and the

two grounded superconductors can then be evaluated according to the formula

G(eV ) =
e2

h
[N −Ree(eV ) +Reh(eV )], (9)

where N is the number of channels in the lead and Ree,eh(ε) are the normal and Andreev reflection

probability in the normal lead at energy ε. To account for the limited energy resolution in the
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experiment, we convolute the conductance as a function of energy with a Gaussian with standard

deviation 24µeV. Moreover, we include a broadening of the conductance as a function of phase

difference by convolution with a Gaussian with standard deviation 0.4π. This accounts for an

inhomogeneous phase difference across the junction in the experiment, caused by the flux threaded

through the junction area and a spatially varying random phase due to the combination of the

parallel field and the interface roughness of the superconducting leads2.

7 Majorana Wavefunction

To elucidate possible Majorana signatures in the conductance, we calculate the local density of

states (LDOS) associated with the lowest energy state in the junction. A bona-fide Majorana state

only exists in a semi-infinite system. To consider this situation, we set L → ∞ in the setup in

Figure S15, such that both superconducting leads and the normal region are semi-infinite. We can

then calculate the LDOS at zero energy as a function of position using KWANT.

The resulting spectra weight of the Majorana state is shown in Figure S16(a). While the state

is indeed localized at the edge, its decay is nonexponential. This is consistent with the fact that

the coherence length is very long for the parameters assumed in the previous section. The typical

scale for the induced gap is 1/mW 2 ' 6µeV which agrees with our numerical calculations of the

energy spectrum. This gap translates into a coherence length of ∼ 45µm.

We can also calculate the LDOS in finite-length junctions using the setup in Figure S15. In

this case, the Majorana states at the two ends hybridize and form a finite energy excitation. In
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Figure S16(b) and (c), we show the LDOS corresponding to the lowest energy state for L = 6µm

and L = 900 nm. In Figure S16(b), the edge localization remains visible. In contrast, the 900 nm

junction in Figure S16(c) is too short to allow for any distinction between edge and bulk and the

lowest-energy state is homogeneously distributed along the entire length of the junction.

These results suggest that, even though the system is in the topological phase, signatures of

Majorana states cannot be distinguished from bulk signatures in devices with current dimensions.

8 Origin of the Zero-Bias Conductance Peak

The normal probe in the experiment is in the tunneling regime and the conductance is therefore

expected to reflect the local density of states in the junctions. The long Majorana localization

length discussed above implies a weak contribution of Majoranas to the conductance, which is

washed out due to the energy broadening. Instead, the subgap conductance will be dominated by

the band of Andreev states that extend along the entire length of the junction.

In this section, we derive an analytical formula for the Andreev spectrum in a certain limiting

case, which can be compared with the numerical results for the full Hamiltonian (1) shown in

Figure 1e of the main text. We then use this estimate to calculate the density of states.

To gain analytical insight, we assume that edge effects are small and simply consider the bulk

density of states in an infinitely long junction, in which the momentum component kx is conserved.

We first focus on the case of perfect Andreev reflection and later include normal reflection. As
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previously, we determine the bound state energies E as a function of kx from the scattering matrix

equation (6) within the continuum model Eq. (1). It is expedient to introduce the polar angles

θi defined by cos θi = kx/kF,i, where i = 1, 2 denotes the two Fermi surfaces and kF,1/2 =

√
2mµ±mα.

We can further simplify Eq. (6) in the case that Andreev reflection does not mix the two

Fermi surfaces. This is strictly true only at kx = 0, where the spins on the two Fermi surfaces

are antiparallel, while at nonzero kx, a right moving electron can be Andreev reflected into a

superposition of left moving holes from both Fermi surface sheets due to a nonzero overlap of spin

states5.

In the limitEZ ,∆� αkF , however, the two spins along a particular momentum direction are

antiparallel because of the Rashba-induced spin-momentum locking. In this case, the two Fermi

surfaces at a fixed kx have approximately opposite spins as long as the corresponding polar angles

have similar magnitude θ1(kx) ' θ2(kx) ≡ θ(kx).

Under these conditions, Eq. (6) yields5

arccos
[E(kx)

∆

]
=
π

2

E(kx)

ET (kx)
− π

2

sin θEZ
ET (kx)

± φ

2
+ nπ, n ∈ Z, (10)

where ET (kx) = (π/2) sin θvF/W is the Thouless energy. The angular dependence of ET (kx)

reflects the longer distance between the superconducting leads for wavepackets with oblique in-

cidence. The factor sin θEZ accounts for the fact that spins rotate along the Fermi surface. Con-

sidering the limit ET (kx) � ∆ as is appropriate in our parameter regime for states near kx = 0
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[ET (kx = 0) = 630µeV], we find

E = ∆ cos
(WEZ

vF
± φ

2
+ nπ

)
(11)

which is independent of kx. Hence the bands are expected to be relatively flat. As kx approaches

the Fermi momentum, ET (kx) decreases and the energy becomes momentum dependent. This is

behavior is consistent with the spectrum in Figure 1e of the main text. We caution, however, that

Eq. (10) requires θ1 ' θ2 and therefore ceases to be valid as kx approaches the Fermi momenta.

The flatness of the dispersion should result in a strong peak in the LDOS at the corresponding

energy, while the spectral weight at other energies is smaller. This implies that topological phase

transitions, where the energy in Eq. (11) vanishes, are signaled by a conductance peak at zero

bias. Importantly this is a feature of the bulk density of states and does not take into account the

contribution of the Majorana states.

The spectrum changes when normal reflection is taken into account. We specifically con-

sider normal reflection from the superconducting leads that conserves the momentum along the x

direction, e.g., caused by a potential step at the N-S interface. In this case, we have to modify

Eq. (10) by replacing

φ→ φ̃ = arccos[r2 cos(2 sin θkFW + 2ϕN) + (1− r2) cosφ], (12)

where r is the normal reflection amplitude and ϕN is a phase shift associated with the normal

reflection that depends on microscopic details. Details of the derivation can be found in Reference 5

(the prefactor sin θ was missing in the reference). Since for our choice of parameters we have
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kFW � 1, the first term in the square brackets above oscillates rapidly as a function of kx. This

results in oscillation of the Andreev energy as a function of kx with an amplitude that scales with

the reflection probability.

Indeed, these oscillations also occur in the numerical spectra shown in Figure 1f of the main

text.

Since normal reflection broadens the band of Andreev states, the density of states calculated

from Eqs. (11) and (12) exhibits significant contributions over a range of energy values. This can

be seen in Figure S17, which shows the density of states for various values of the in-plane magnetic

field calculated using Eqs. (11) and (12).

There are two van Hove singularities at the band edges because all maxima and minima of

E(kx) in Eq. (11) occur at the same energies.

The band center and the approximate band width in Figure S17a is consistent with the nu-

merical spectra shown in Figure 1e of the main text. Moreover, for B = 0 T and 1.6 T the energy

minima and maxima of the spectra are roughly aligned for not too large momenta in agreement

with our analytical findings. The spectrum at B = 1 T, in contrast, has aligned minima but not

maxima.

By varying either φ or EZ , one can tune the band center across zero energy. Once the band

crosses zero energy the positive and negative energy band overlap which leads to an enhanced
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density of states at zero energy. For weak normal reflection, the band widths are small and the

density of states shown in Figure S17a is enhanced near zero energy only in a narrow window

around the phase transition. This behavior is consistent with the spectra shown in Figure 1e of the

main text.

If the normal reflection is higher, the band width increases as shown in Figure S17b. In this

case, the density of states is enhanced near zero energy in a larger range of magnetic fields. While

the density of states does not typically have a maximum at zero, an additional energy broadening

applied to the data may result in a zero-bias peak. If the broadening is sufficiently large, the peak

can persist between B = 0.8 T and B = 1.2 T for the parameters of Figure S17b. Such a behavior

is quantitatively consistent with the numerical data for the conductance in Figure 4g of the main

text, which shows a peak at zero bias over an extended region in parameter space.

We conclude that a zero-bias peak in the conductance signals the zero-energy crossing of a

band of Andreev states, which corresponds to a topological phase transition. The width of the band

is determined by the normal reflection probability from the superconducting leads. In the presence

of a nonzero band width and an additional broadening of the data in energy, a zero-bias peak can

occur over an extended range of magnetic field strengths and phase differences in agreement with

the experimental observations as well as the numerical results presented in the main text.
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9 Finite-Difference Scheme and Exact Diagonalization

To show that the peak in the dI/dV characteristics at the topological transition is a universal

property for wide junctions, while for narrower junctions a competition between Andreev and

Majorana bound states occurs, we perform a second type of calculations. Complementary to the

previous section, we employ a finite-difference scheme to obtain the eigenspectrum and eigenstates

of the finite Josephson junction shown in Figure S18. These eigenstates and eigenenergies are then

used to compute the local density of states (LDOS) at the edge of the normal region. For this

purpose, we use the Hamiltonian (Eq. 1-4) and invoke hard-wall boundary conditions in x- and y-

directions to describe a Josephson junction of finite length L in x-direction and finite width Wtot =

W + 2WSC in y-direction. Here, W is the width of the normal region and WSC denotes the finite

widths of the superconducting regions (see Figure S18). We discretize the Hamiltonian (Eq. 1-4)

using dψ(x)/dx→ [ψ(xi+a)−ψ(xi−a)]/2a, d2ψ(x)/dx2 → [ψ(xi+a)−2ψ(xi)+ψ(xi−a)]/a2,

and analogous expressions for the derivatives with respect to y, where a and xi = ai (with i ∈ Z)

denote the discrete step size and lattice sites, respectively. This procedure yields Eq. 5. If Eq. 5 is

written in the form

H =
L∑

i,i′=1

W+WSC∑
j,j′=−WSC+1

Hi,j;i′,j′ c
†
i,jci′,j′ , (13)

the eigenenergies E(n) and eigenstates c(n)
i,j of the system are found by diagonalizing the eigenvalue

equation
L∑
i′=1

W+WSC∑
j′=−WSC+1

Hi,j;i′,j′ c
(n)
i′,j′ = E(n)c

(n)
i,j , (14)

where n denotes the n-th eigenstate.
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These eigenenergies and eigenstates are then used to compute the LDOS at the upper edge

of the normal region as a function of energy E,

LDOS(E) =
lx∑
i=1

W/2+ly/2∑
j=W/2−ly/2

∑
n

∣∣∣c(n)
i,j

∣∣∣ δΓ(E − E(n)). (15)

Here, δΓ(E − E(n)) is modeled by a Gaussian with broadening Γ. The area of summation

is chosen to resemble the area covered by the tunneling probe with lengths lx and ly in x- and

y-directions, respectively (see Figure S18). In the lowest-order approximation, the dI/dV char-

acteristic is proportional to the LDOS. Hence, to compare with the experiment and the KWANT

simulations, we first compute the LDOS for a given probe area and position and then look at the

curvature ∂2LDOS/∂E2 around E = 0.

10 Comparison of the Local Density of States for Josephson Junctions with Different Widths

In general, a zero-energy peak in the edge LDOS can originate from Majorana end states and/or

low-energy bulk Andreev bound states. As discussed in the main text, the most pronounced zero-

energy peaks for a 600nm wide junction are expected to actually arise from the bulk Andreev bound

states that describe the topological phase boundaries. Here, we study and compare the coexistence

of zero-energy peaks in the edge LDOS due to Majorana end states and bulk Andreev states for

samples of width W = 600 nm and W = 400 nm.

For the calculations with a W = 600 nm wide normal region, we have used α=16 meVnm,
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∆=65 µeV, µN = 12.5 meV, µSC = 25 meV, gN = 10, gSC = 0, and m = 0.038me. The size of

the superconducting regions is 900nm×700nm and the size of the normal region 900nm×600 nm

in x- and y-directions, with a probe size of 100nm×100nm. The discretization step is chosen as

a = 10 nm. The lengths and widths as well as their corresponding numbers of steps are described

by the same quantities, i.e. L = 90, Wtot = 200, WSC = 70, W = 60, lx = 10, and ly = 10. To

compute the LDOS via Eq. (15), a Gaussian broadening of Γ = 0.25∆ for δΓ(E − E(n)) has been

used.

Figure S19 shows ∂2LDOS/∂E2 at E = 0 for the above parameters as a function of the

magnetic field Bx and the external phase difference φ between the two superconductors. Similar to

the experiment and our KWANT simulations, we find that a zero-energy peak (∂2LDOS/∂E2 < 0)

in the LDOS starts to appear at fields around Bx = 0.4− 0.5 T and becomes the most pronounced

around Bx = 1.2 T. As Bx increases further and (φ,Bx) moves away from the boundaries of the

topological phase, the zero-bias peak disappears.

We note that we have chosen somewhat different parameters for the superconducting regions

here compared to the KWANT simulations: The finite width WSC of the superconducting regions

is reduced to 700 nm (compared to 1200 nm), thereby increasing the amount of normal reflection

due to the finite size of the superconductors. This effect is somewhat compensated for by reducing

the mismatch between the chemical potentials µN and µSC (12.5:25 compared to 12.5:50 in the

KWANT calculations), which is a second source for normal reflection at the S/N interfaces.

Likewise, the strength of Rashba SOC in the entire device is reduced by a factor of around 2
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to α = 16 meVnm to demonstrate the robust occurrence of a zero-energy peak in the LDOS/a zero-

bias peak in the dI/dV -characteristic for a wide range of Rashba SOC strengths. This robustness

with Rashba spin-orbit strength α of the topological phase boundaries and of zero-energy peaks at

(segments of) these boundaries can also be explained within a scattering matrix approach.

The nature of the Majorana bound state is illustrated in Figure S20, which shows the proba-

bility amplitude |Ψ(x, y)|2 of the lowest-energy state at Bx = 1.2 T and a phase difference φ = π.

Due to the finite length L of the setup and the resulting hybridization of the two separate Majorana

end states, this state is not situated at zero-energy. As argued above in Supplementary Section 7,

due to the small induced topological gap of the order of 6 µeV protecting the Majorana end states,

these states are expected to decay only slowly away from the upper and lower edges of the normal

region. This feature is exhibited in Figure S20, where the lowest energy state is spread over the

entire normal region and only slightly localized at the boundaries of the normal region (see also

Figure S16).

The large localization length of the Majorana end states in the sample with a 600-nm-wide

normal region implies that the zero-energy peaks in the edge LDOS arise almost entirely from the

bulk Andreev bound states at the topological phase boundaries. Indeed, comparing ∂2LDOS/∂E2

around E = 0 computed at the edge with that computed in the center of the normal region yields

qualitatively similar results.

To obtain more localized Majorana bound states, the topological gap, of the order of ~2/(mW 2),

should be increased. Hence, a potential route is decreasing the width W and going to narrower de-
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vices. In fact, a sample with a W = 400 nm wide normal region is also available, Device Kappa

in Supplementary Section 5. Figure S21 shows ∂2LDOS/∂E2 obtained for a junction of width

W = 400 nm. In Figure S21, the parameters are α=160 meVnm, ∆=130 µeV, µN = 10 meV,

µSC = 20 meV, gN = 10, gSC = 0, and m = 0.038me. Here, the size of the superconducting

regions is 1000nm×800nm in x- and y-directions, that of the normal region 1000nm×400 nm, and

that of the probe 100nm×100nm. Using again a discretization step of a = 10 nm, the correspond-

ing numbers of steps are L = 100, Wtot = 200, WSC = 80, W = 40, lx = 10, and ly = 10 (again

these symbols denote widths/lenghts as well as the number of steps). The LDOS is computed with

a Gaussian broadening of Γ = 0.2∆ in Eq. (15).

Similarly to Figure S19, the curvature of the LDOS at the edge of the normal region is

shown in Figure S21(a). For these parameters, the topological phase arises only for fields above

Bx = 1 T, as illustrated by the dashed lines denoting the boundaries of the topological phase.

These boundaries have been obtained numerically for an infinitely long system (L → ∞), which

has otherwise the same parameters as Figure S21(a). Whereas for the edge LDOS, no zero-energy

peak is found outside the topological region (∂2LDOS/∂E2 > 0; red areas in Figure S21), a

zero-energy peak of the edge LDOS appears for a wide range of phase differences φ inside the

topological region (∂2LDOS/∂E2 < 0; blue areas in Figure S21). This is in contrast to the bulk

LDOS measured in the center of the normal region (yellow area in Figure S18): As shown in Figure

S21(b), no zero-energy peak develops for the bulk LDOS, apart from a small region in phase space

slightly below Bx = 3 T and from φ ≈ 0 to φ ≈ 0.4π.
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These regions with ∂2LDOS/∂E2 < 0 in the bulk LDOS arise from Andreev bound states

at the phase boundary, providing again a fingerprint of the topological transition. We note that

due to the much stronger Rashba SOC chosen here compared to Figure S19, the radii of the two

Rashba-split Fermi circles differ considerably. Thus, the Andreev bound states arising mainly from

the larger of the two Fermi circles carry significantly more weight in the LDOS than those arising

from the smaller Fermi circle. As a consequence, pronounced zero-energy peaks in the bulk LDOS

occur primarily at those phase boundaries that correspond to Andreev bound states formed from

the larger Fermi circle.

Moreover, Figure S21(b) shows that the phase boundaries are usually traced by regions of

nearly zero curvature (white regions), indicative of a flat LDOS at these boundaries. This is con-

sistent with the high normal reflection that is implied by the squeezed topological regime in Figure

S21. Indeed, large normal reflection increases the band widths of the Andreev bound states and

thus the range of energies over which a flat LDOS can be expected (see Sec. 8). For the energy

broadening Γ = 0.2∆ in Figure S21, the LDOS aroundE = 0 remains flat at the phase boundaries.

The above difference between the edge and bulk LDOS points to the zero-/low-energy states

being localized at the edge of the normal region. This is indeed corroborated by Figure S22, which,

as an example, shows the wave function of the lowest-energy state at Bx = 2.4 T and φ = 1.8π:

Here, the weight of the low-energy wavefunction at the edge of the normal region is significantly

higher than the weight in the center of the junction.

The above results imply that for junctions with normal regions of width W = 400 nm, it
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could be possible to observe signatures of Majorana bound states by comparing the edge and bulk

LDOS. Such signatures, however, are expected to occur for magnetic fields beyond the current

experimental regime. Still, going to narrower devices with improved fabrication technology offers

a promising route for finding fingerprints of Majorana bound states, difficult to isolate in Josephson

junctions with wide normal regions.
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a b  

Figure S1 Characterization of the HgTe quantum well. Shown here are the longitu-

dinal and Hall resistances of a van der Pauw device fabricated on wafer QC0261, as a

function of the perpendicular magnetic field, at a top gate voltage of 0 V, measured at a

temperature of 4 Kelvin.
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Figure S2 Compensation for the sample-magnet misalignment. a and b, The tun-

neling conductance near zero bias as a function of the out-of-plane magnetic field, Bz,

at zero in-plane field Bx = 0 T in a) and a finite in-plane field Bx = 0.45 T in b). c-f,

Colourplots of tunneling conductance near zero bias as a function of both the out-of-

plane magnetic field Bz and the in-plane field Bx. At incremental ranges of Bz, these

uncompensated plots show the linear offset of Bz growing with increasing Bx.
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Figure S3 Temperature dependence of the tunneling conductance. Shown here is

temperature dependence of the tunneling conductance of the same device as discussed

in the main text, plotted against the DC bias across the tunnel probe and the supercon-

ducting lead. Different curves represent data taken at different averaged temperatures

during its cool-down in our dilution refrigerator, from 0.5 Kelvin (blue curve) down to 31

millikelvins (teal curve) over a range of 0.5 mV of DC bias.

29



-100 0 100
Bias (  V)

-

0

2

3

-1.5

-1.4

-1.3

-1.2

-1.1

-1.0

-0.9

-0.8
B

z (m
T)

Bx = 0 T

0.07

0.075

0.08

0.085

0.09

0.095

0.1

-100 0 100
Bias (  V)

-

0

2

3

-58.8

-58.7

-58.6

-58.5

-58.4

-58.3

-58.2

-58.1

B
z (m

T)

Bx = -1.0 T

0.08

0.081

0.082

0.083

0.084

0.085

0.086

0.087

-100 0 100
Bias (  V)

-

0

2

3

-43.8

-43.7

-43.6

-43.5

-43.4

-43.3

-43.2

-43.1

B
z (m

T)

Bx = -0.75 T

0.08

0.082

0.084

0.086

0.088

-100 0 100
Bias (  V)

-

0

2

3

-31.0

-30.9

-30.8

-30.7

-30.6

-30.5

-30.4

-30.3

B
z (m

T)

Bx = -0.55 T

0.075

0.08

0.085

0.09

-100 0 100
Bias (  V)

-

0

2

3

-51.9

-51.8

-51.7

-51.6

-51.5

-51.4

-51.3

-51.2

B
z (m

T)

Bx = -0.9 T

0.08

0.081

0.082

0.083

0.084

0.085

0.086

0.087

-100 0 100
Bias (  V)

-

0

2

3

-45.8

-45.7

-45.6

-45.5

-45.4

-45.3

-45.2

-45.1

B
z (m

T)

Bx = -0.8 T

0.08

0.082

0.084

0.086

0.088

-100 0 100
Bias (  V)

-

0

2

3

-40.6

-40.5

-40.4

-40.3

-40.2

-40.1

-40.0

-39.9

B
z (m

T)

Bx = -0.7 T

0.08

0.082

0.084

0.086

0.088

-100 0 100
Bias (  V)

-

0

2

3

-34.0

-33.9

-33.8

-33.7

-33.6

-33.5

-33.4

-33.3

B
z (m

T)

Bx = -0.6 T

0.078

0.08

0.082

0.084

0.086

0.088

0.09

a

d 

b  c

h 

e f 

g

Figure S4 Unprocessed conductance data with in-plane magnetic fields, part 1.

The raw conductance data (in units of e2/h) at in-plane fields ranging from -1.0 T to 0

T, with an electron-hole asymmetry which grows as the magnitude of the in-plane field

increase from 0 to 1.0 T. All plots show tunneling conductance in units of e2/h as a function

of both bias voltage and the span over a range of 0.8 mT in Bz.
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Figure S5 Unprocessed conductance data with in-plane magnetic fields, part

2.The raw conductance data (in units of e2/h) with an electron-hole asymmetry which

grows as the in-plane field increases from 0.3 T to 1.2 T. All plots show tunneling

conductance in units of e2/h as a function of both bias voltage and the span over a range

of 0.8 mT in Bz.
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Figure S6 Differential conductance colourmap as Bx varies continuously. Shown

here is a continuous evolution of the tunneling conductance curve, over a wide range of

the in-plane field Bx from -1.6 T to 1.6 T. Because our compensation of the perpendicular

component of the in-plane magnetic field is not perfect, there is still a small flux which

causes oscillations in the phase φ at the same time as the field grows. Data shown here

is obtained from the same device as discussed in the main text.
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Figure S7 Development of the electron-hole asymmetry with the in-plane field.

Each panel above shows, in a blue, solid curve, the raw measurement of the tunneling

conductance, averaged over an entire period in the phase difference φ, at a given in-plane

field Bx, labeled above the panel. The red line in each panel shows the linear regression

of that tunneling conductance curve, from which the slope representing the asymmetry is

extracted.

33



-1 -0.5 0 0.5 1 1.5
B

x
 (T)

-0.5

0

0.5

1

1.5

2

2.5

3
S

lo
pe

 (
e2 /(

h 
 

eV
))

10-5

Figure S8 Slope of the electron-hole asymmetry versus the in-plane magnetic

field. Each point in the above plot represents a slope extracted from the linear

regression shown in Figure S7, in units of e2/(h · µeV ). Overall, the asymmetric slope

increases linearly with the magnitude of the in-plane field, and it is independent of the

sign of the field.
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Figure S9 Extracting the curvature of zero-energy peaks using parabolic fits.

Shown above are a few examples of extracting the curvature of zero-energy peaks using

parabolic fits, at Bx =0.8 T, demonstrating the fitting procedure works nicely for a

well-defined peak (dip), producing a negative (positive) curvature. Yet, the parabolic fit

works not so well when the curve is flat in this region, in which case it yields a small

curvature, as desired.
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Figure S10 Extracted zero-energy curvatures from raw data versus symmetrized

data. a-c, Shown here are three examples of extracting the curvature of zero-energy

peaks using parabolic fits, from the raw conductance data on the left, and from the sym-

metrized conductance data on the right. They show the same results becasue the curva-

ture, which is the second order coefficient, is unchanged by the symmetrizing process. d,

The zero-bias curvature extracted from the symmetrized data, as a function of both the

in-plane magnetic field Bx and phase difference offset ∆φ, shown in units of e2/h · µeV−2,

which produces the same graph as extracted from the raw data.
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Figure S11 Differential conductance colourmaps of device Kappa at various Bx

values. Shown here is the raw data for a series of two-dimensional tunneling conductance

maps as a function of the bias voltage and the perpendicular field Bz, as the in-plane field

Bx increases from 0 T to 1.0 T. All plots are in units of e2/h and span over a range of 0.6

mT in Bz.
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Figure S12 Symmetrized differential conductance colourmaps of device Kappa at

various Bx values. Shown here is the symmetrized data for a series of two-dimensional

tunneling conductance maps as a function of the bias voltage and the perpendicular field

Bz, as the in-plane field Bx increases from 0 T to 1.0 T. All plots are in units of e2/h and

span over a range of 0.6 mT in Bz.
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Figure S13 Differential conductance colourmaps of device Zeta at various Bx

values. Shown here is the raw data for a series of two-dimensional tunneling

conductance maps, as the in-plane field Bx ranges from -0.9 T to 0.8T. All plots are in

units of e2/h and span over a range of 0.6 mT.
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Figure S14 Symmetrized differential conductance colourmaps of device Zeta at

various Bx values. Shown here is the symmetrized data for a series of two-dimensional

tunneling conductance maps, as the in-plane field Bx ranges from -0.9 T to 0.8T. All plots

are in units of e2/h and span over a range of 0.6 mT in Bz.
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Figure S15 Setup modeled in the numerical calculations. The system comprises a

rectangular region with a normal and two superconducting segments (black contour). To

calculate the conductance, we add a semi-infinite normal lead in the junction center near

the upper edge (orange) and two semi-infinite superconducting leads contacting the

superconducting segments at the bottom edge.
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Figure S16 Delocalization of the Majorana bound state. Normalized local density of

states of the lowest energy excitation, averaged over the width of the junction, as a

function of distance from the edge in the setup of Figure S15 with W = 600 nm and (a)

L =∞, (b) L = 6µm, and (c) L = 900 nm.
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Figure S17 Calculated density of states of the Andreev band. Density of states of

the Andreev band calculated from the approximate expression in Eqs. (11) and (12) for

various values of the magnetic field. The superconducting phase difference is chosen as

φ = π/2 and the normal reflection probability is a) r2 = 0.1 and b) r2 = 0.4. We assume

kFW � 1 so that the DOS is independent of ϕN . The other parameters are chosen as

above. This choice implies that the phase transition for φ = π/2 and r = 0 occurs at

B = 1 T where EZ = ET/2.
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Figure S18 Setup considered for the complementary finite-difference eigenstate

calculations. The system consists of a normal region of dimensions 900 nm ×600 nm

and two adjacent superconducting regions of dimensions 900 nm ×700 nm. A phase

difference of φ is applied between the two superconductors. The edge local density of

states (LDOS) is calculated for an area of dimensions 100 nm ×100 nm at the top edge of

the normal region (orange area). The LDOS in the bulk is computed from a 100 nm ×100

nm square in the center of the normal region (yellow area).
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Figure S19 Predicted zero-bias curvature for a 600-nm junction. Calculated

∂2LDOS/∂E2 (in a.u.) at E = 0 as a function of magnetic field Bx and the phase

difference φ between the superconducting regions for the setup illustrated in Figure S18.

The area over which the LDOS is computed corresponds to a probe size of 100 nm ×100

nm at the upper edge of the normal region (orange area in Figure S18).
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Figure S20 Wavefunction of the low-energy state for a 600-nm junction.

Probability amplitudes |Ψ(x, y)|2 of the low-energy state, calculated at Bx = 1.2 T and

φ = π.
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Figure S21 Predicted zero-bias curvature for a 400-nm junction. Calculated

∂2LDOS/∂E2 (in a.u.) at E = 0 for a Josephson junction of width W = 400 nm as a

function of magnetic field Bx and the phase difference φ between the superconducting

regions. Panel (a) shows the LDOS computed from a 100nm×100nm area at the upper

edge of the normal region (orange area in Figure S18). Panel (b) shows the LDOS

computed from a 100nm×100nm area in the center of the normal region (yellow area in

Figure S18). The dashed lines indicate the boundaries of the topological phase obtained

from an infinitely long junction L→∞.
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Figure S22 Wavefunction of the low-energy state for a 400-nm junction.Probability

amplitudes |Ψ(x, y)|2 of the low-energy state at Bx = 2.4 T and φ = 1.8π.
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