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Supplementary Discussion

Derivation of antiproton spin-precession frequency shift

In order to derive the leading-order shift of the antiproton spin-precession frequency due to
the interaction in Eq. (1) in the main text, we have to evaluate the geometric factor σ̂p̄ · p̂a,
where the hats denote unit vectors. To this end, we need to express both unit vectors in the

celestial equatorial coordinate system with the basis
{
X̂, Ŷ , Ẑ

}
, which is a non-rotating

coordinate system, where Ẑ coincides with Earth’s rotation axis [1].

The direction of the spin’s quantisation axis σ̂p̄ is defined in the rotating laboratory
frame basis {x̂, ŷ, ẑ}. We choose ẑ to coincide with the vertical vector pointing upwards
at the location of the experiment, x̂ pointing southwards, and ŷ pointing eastwards. The
magnetic field of the BASE apparatus is oriented horizontally and rotated counter-clockwise
by γ ≈ 120◦ from the x̂-axis [2].

The transformation between the laboratory and celestial equatorial frames is given by:x̂ŷ
ẑ

 =

cos (χ) cos (Ωsidt) cos (χ) sin (Ωsidt) − sin (χ)
− sin (Ωsidt) cos (Ωsidt) 0

sin (χ) cos (Ωsidt) sin (χ) sin (Ωsidt) cos (χ)

X̂Ŷ
Ẑ

 , (4)

where χ ≈ 44◦ is the local colatitude of the experiment, and the “zero time” is set by
the requirement that the X axis of the celestial equatorial coordinate system has zero right
ascension. The direction of the quantisation axis in celestial equatorial coordinates is given
by:

σ̂p̄ = cos (γ) x̂+ sin (γ) ŷ

=

cos (γ) cos (χ) cos (Ωsidt)− sin (γ) sin (Ωsidt)
cos (γ) cos (χ) sin (Ωsidt) + sin (γ) cos (Ωsidt)

− cos (γ) sin (χ)

 . (5)

To determine the direction of the axion-field momentum vector p̂a in celestial equatorial
coordinates, we note that in galactic coordinates the Solar System (as it orbits the Galactic
centre) moves towards the direction defined by 90◦ longitude and 0◦ latitude. Since galactic
dark matter is believed to have a Maxwell-Boltzmann-type distribution of velocities with a
local average velocity much smaller than the Solar System’s velocity, the direction of the
axion-field momentum vector in galactic coordinates is hence towards the direction defined
by 270◦ longitude and 0◦ latitude. Transforming from the galactic coordinate system to
the celestial equatorial coordinate system [3], we find that the direction of the axion-field
momentum vector is given by:

p̂a =

cos (δ) cos (η)
cos (δ) sin (η)

sin (δ)

 , (6)
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where δ ≈ −48◦ and η ≈ 138◦ are the declination and right ascension, respectively, of the
axion-field momentum relative to the Solar System. Using Eqs. (5) and (6), we can now
compute the geometric factor σ̂p̄ · p̂a:

σ̂p̄ · p̂a = A cos (Ωsidt+ α) +B , (7)

with α ≈ −25◦, A ≈ 0.63 and B ≈ −0.26, and hence obtain Eq. (2) in the main text.
Further, we can express Eq. (2) in terms of these three parameters and ω1,2,3:

δωp̄L(t)fa
Cp̄maa0 |va|

≈ B sin(ω1t) +
A

2
sin(ω2t+ α)− sign(Ωsid − ωa)

A

2
sin(ω3t+ α). (8)

Consequently, the mode at ω1 carries about 70 % of the power relative to those of the side-
band modes ω2,3.

Limits on the Standard Model Extension Coefficients

We set limits on the coefficients of the non-minimal SME by expressing the Larmor frequency
shift δωpL(t) = δωpa(t) in terms of the non-minimal SME coefficients using the Eqs. (46) and
(64) in Ref. [4]. Considering the orientation of the magnetic field B, we obtain:

~δωp
a(t) = −2b̃∗3p + 2b̃∗33F,pB =

2b̃∗Xp [− cos (γ) cos (χ) cos (Ωsidt) + sin (γ) sin (Ωsidt)] +

2b̃∗Yp [− cos (γ) cos (χ) sin (Ωsidt) − sin (γ) cos (Ωsidt)] +

2b̃
∗(XZ)
F,p B

[
− cos2 (γ) sin (2χ) cos (Ωsidt) + sin (2γ) sin (χ) sin (Ωsidt)

]
+

2b̃
∗(Y Z)
F,p B

[
− cos2 (γ) sin (2χ) sin (Ωsidt) − sin (2γ) sin (χ) cos (Ωsidt)

]
+

2b̃
∗(XY )
F,p B

[
(cos2 (γ) cos2 (χ) − sin2 (γ)) sin (2Ωsidt) + sin (2γ) cos (χ) cos (2Ωsidt)

]
+

(b̃
∗(XX)
F,p − b̃

∗(Y Y )
F,p )B

[
(cos2 (γ) cos2 (χ) − sin2 (γ)) cos (2Ωsidt) − sin (2γ) cos (χ) sin (2Ωsidt)

]
, (9)

where we have set all combinations of SME coefficients producing a constant frequency shift
to zero. We use the single-mode amplitude limit at either Ωsid or 2Ωsid to set obtain the
limits quoted in the main text on the respective coefficients.

Signal Detection

In this part, we provide details on the zero-hypothesis tests, where we search for a statistically
significant oscillation of the Larmor frequency at the three frequencies ω1 = ωa, ω2,3 =
|ωa ± Ωsid| in the experimental data. Therefore, we use the test statistic [5]:

q(ω) = −2 lnλ(ω), (10)

to investigate if our sequence of spin-flip experiments is more likely produced by a time-
dependent Larmor frequency given by:

ωL(t) = ωL(1 + b cos [ωt+ φ]). (11)
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The likelihood ratio is given by λ(ω) = ln [L0] − ln [Lb(ω)], where L0 and Lb(ω) denote
the maximum likelihood of H0 and Hb(ω), respectively. The likelihood is maximized in
the manifold of the lineshape parameters for both hypotheses H0 and Hb(ω), and two ad-
ditional parameters for Hb(ω), namely the amplitude b(ω) and phase φ(ω) introduced above.

The likelihood function for the zero-hypothesis test and the parameter exclusion are
given by:

L =
1

2k

∏
k

[1− Pk(SF)− PSF,k + 2Pk(SF)PSF,k] , (12)

where k runs over all data points. Pk(SF) is the probability that the spin-flip drive caused
a spin transition given the axial frequency shifts measured in the analysis trap preced-
ing and following spin-flip drive k. Details on evaluating Pk(SF) are given in Refs. [6, 7].
PSF,k = PSF(Γk, b(ω), φ(ω),a) is the spin-flip probability of spin-flip drive k obtained from
the lineshape function described in Ref. [6]. Here, we replace the Larmor frequency with
Eq. (11) to add the time-dependence for the analysis. Γk = νrf,k/ 〈νc,k,i〉i=1,...,6 is the fre-
quency ratio of the spin-flip drive frequency νrf,k divided by the mean of the six correspond-
ing cyclotron frequency measurements νc,k,i. a is a vector of nuisance parameters related to
the lineshape of the spin-flip resonance, namely the time-averaged antiproton g-factor, the
Rabi frequency of the spin-flip drive, and the magnitude of magnetic-field fluctuations [6].
Systematic corrections to Γk need to be considered to extract µp and are described in detail
in Ref. [6]; however, they are not relevant to constrain the time-dependent effects of interest
in this study.

Detection thresholds for a local hypothesis test at the frequency ν are defined by the
probability to find data which are less compatible than the observed value qobs for the
experimental data, which are represented by the local p-values pL(ω). To this end, it is
necessary to know the test-statistic distribution for the zero-hypothesis data. According to
Wilk’s theorem [8], we expect that it is a χ2

f=2 distribution with f = 2 degrees of freedom
for zero-hypothesis data evaluated at uncorrelated frequencies |ν1− ν2| � 1/Tmeas. We test
this assumption by using zero-hypothesis Monte-Carlo datasets to estimate the cumulative
density function (CDF) of the test-statistic distribution. The Monte-Carlo datasets are
generated using the exact lineshape function described in Ref. [6]. For the evaluation, we
approximate the lineshape function for computational efficiency by a Gaussian function
PSF(Γ, Cp, φ,a) = A/(

√
2πσ) exp

[
−(Γ− gp/2)2/(2σ2)

]
, where gp, A and σ represent the

antiproton g-factor, an effective amplitude and an effective linewidth, respectively. As a
result of these simulations, it has been found that this produces a systematic shift of a few
ppb in the evaluation of µp, but it preserves the information on time-dependent fluctuations
in the data and allows to perform the zero-hypothesis tests for the search of the axion-
antiproton interaction. We evaluated 187 datasets at 320 frequencies with 300 nHz spacing,
which resulted in the test-statistic histogram shown in Supplementary Figure 1, where it
is compared to the CDF of the χ2

f=2 distribution. The Monte-Carlo data deviates by 4
standard deviations for q < 1, but less than 2 standard deviations for q > 3, which is the
important region for determining the P -values. The reduced χ2 of our fit is 1.8, and we
rely on the χ2

f=2 distribution being a valid approximation of the test-statistic distribution.
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Consequently, we determine local p-values pL(ν) according to:

pL(ν) = 1− CDF
[
χ2
f=2

]
(qobs(ν)), (13)

with CDF
[
χ2
f=2

]
(q) being the CDF of the χ2

f=2-distribution evaluated at q.

To conclude on the zero-hypothesis test in the entire frequency range, our analysis has
to be considered as a multiple hypothesis test. Therefore, we need to refine the detection
thresholds considering the number of evaluated tests, the so-called look-elsewhere effect [9].
To this end, we evaluate the global p-value pG:

pG = 1− (1− plocal)
N , (14)

where plocal is the smallest value of pL(ω) in our test and N is the number of statistically
independent tests. In our evaluation, we choose a frequency spacing of ∆ν = 60 nHz ≈
1/(2Tmeas) in our evaluation to avoid missing signals, but consequently the test-statistic
values of two neighbouring frequencies with ∆ν < 1/Tmeas are not statistically independent.
We determine the correlation factor for the evaluation with 60 nHz spacing by using zero-
hypothesis Monte-Carlo datasets. The correlation factor as a function of the frequency
difference ∆ν is shown in Supplementary Figure 2. From this, we extract a correlation factor
η = 0.56 and obtain N = ηN0 = 97931. With our lowest local p-value of plocal = 3× 10−6,
we obtain pG = 0.254 as a result.

An alternative approach to determine pG is to evaluate the same number of test fre-
quencies on several zero-hypothesis datasets, and estimate the distribution of plocal. pG
is obtained by taking the fraction of datasets producing a smaller value of plocal than the
experiment. In our case, this procedure is computationally too expensive due to the large
number of test frequencies. Instead, we generate N χ2

f=2-distributed random numbers and
determine the distribution of plocal using this approximation. This results in the global de-
tection thresholds in terms of the test statistic q as shown in Supplementary Table 1. These
limits are shown as global detection thresholds in Fig. 2 in the main text. This cross-check
procedure results in the same value for pG as quoted above.

We note that our detection analysis tests for individual single-mode oscillations and not
explicitly for the model in Eq. (2) in the main text. We verify below in Monte-Carlo simula-
tions that this approach nevertheless efficiently detects the oscillations described by Eq. (2)
in at least one of the three underlying frequencies. Therefore, based on the non-detection of
any oscillation at all, we also conclude that we can reject the alternative hypotheses based
on Eq. (2) with ωa in the tested frequency range with pG ≥ 0.254.

Exclusion limits

We reject the alternative hypothesis Hb(ν) against the zero hypothesis H0 with 95 % confi-
dence level on the amplitude b using the CLs statistic: CLs(q, b) = [1− β(q, b)] / [1− α(q)]
[10]. Here, α(q) and β(q, b) denote the CDF of the test-statistic distribution for background
signals and signals with amplitude b, respectively.
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For the single-mode detection, we note that αSM = CDF
[
χ2
f=2

]
, and determine βSM(q, bSM)

by analysing Monte-Carlo datasets where we introduce the time-dependence of the Larmor
frequency using Eq. (11) for the Larmor frequency in the lineshape function. The time and
measurement structure of the Monte-Carlo datasets are identical to the experimental data,
but the magnetic-field fluctuations on top of the test-frequency ratios Γ are randomised, and
the Pk(SF) values for the spin-transition detection, see Eq. (12), are obtained by randomly
redistributing the observed Pk(SF) values of the measurement sequence to the Monte-Carlo
data points.

We determine the test-statistic distribution on a grid of 12 amplitudes bSM and 17 test
frequencies ν including Ωsid/(2π) and 2Ωsid/(2π) to explicitly test the frequencies rele-
vant for the limits on the non-minimal SME coefficients. Supplementary Figure 3 shows
βSM(q = 5.99, bSM), which corresponds to αSM ≈ 95 %, evaluated over the tested frequency
range with about 500 datasets per point. For frequencies ν > 1/Tmeas (corresponding to
Log10(ν/Hz) ≈ -7), the power of the test is constant at ≈ 95 % for amplitudes of 7 ppb.
Oscillations with lower amplitudes cannot be well distinguished from zero-hypothesis data,
since the magnetic-field fluctuations of σB/B0 =3.9(1) ppb observed in cyclotron frequency
measurements compete with the detection of interest. The single-mode detection efficiency
decreases rapidly for frequencies ν < 1/Tmeas, where we sample only a fraction of an oscilla-
tion. In this frequency range, the change of the Larmor frequency during the measurement
decreases for lower frequencies, so that large amplitudes cannot be excluded (further details
are discussed below). Based on βSM(q, bSM) resulting from these Monte-Carlo studies, we
determine the 95 % C.L. limits on single-mode oscillations shown in Fig. 3(a) in the main
text.

To obtain limits on the axion-antiproton coupling coefficient, we need to determine the
test-statistic distribution βi(q, ba) from Monte-Carlo simulations, where we use Eq. (2) for
the time-dependence in the data generation, the index i corresponds to the three detection
modes with the frequencies ωi, and ba = Cpmaa0|va|/(faωL) expresses the amplitude of the
axion field, a0, in units of a relative Larmor frequency shift. The distributions βi(q, ba) are
different from βSM(q, bSM), since the detection using a single-mode model needs to cope in
this case with the two other modes which effectively act like additional noise sources. Sup-
plementary Figure 4 shows the result of evaluating βi(q = 5.99, ba) for about 700 datasets
for each point on a grid of 8 amplitudes and 19 frequencies. The presence of the sideband
modes ω2,3 = |ωa ± Ωsid| perturbs the detection of the main oscillation mode ω1 = ωa,
resulting in a test power only slightly above 50 % even for large amplitudes. However, the
sideband modes are both efficiently detected with more than 90 % power for Aba/2 & 8 ppb.
The only exception is a narrow window of about 260 nHz around ωa ≈ Ωsid (not resolved
in Supplementary Figure 4), where the lower sideband ω3 cannot be well detected since its
frequency is below 130 nHz. However, in this case the power of the test for the other two
frequencies ω1 and ω2 increases since the lower sideband produces approximately a constant
shift of ωL.

For each axion mass ma, we set the most conservative limit on the axion coupling by
using the highest test-statistic value of the three test frequencies ωi(ma). The power of this
test is shown in Supplementary Figure 4(d) for q = 5.99. The test-statistic distribution
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of the background α(q) in this case is given by the distribution of the maximum of three
χ2
f=2-distributed random numbers corresponding to the three different oscillation modes.

This test provides efficient constraints even for ωa < 2π/Tmeas, where we cannot efficiently
detect ω1 or single-mode oscillations, but are sensitive to axion coupling through detection
at the sideband frequencies ω2,3 ≈ Ωsid. We have explicitly verified the detection down to
ωa/(2π) = 5 nHz in these Monte-Carlo simulations (see also the discussion below).

The limits on the axion-induced oscillation amplitude ba(ωi) and the coupling parameter
are related by:

fa
Cp

>
C
√

2ρDM~c|va|
ωLba(ωi)

≈ 2 GeV

ba(ωi)/ppb
, (15)

where C is either A/2 or |B|, depending on whether we use the test-statistic value of ω2,3

or ω1, respectively. The 95 % C.L. amplitude limits for the combined test are shown in
Fig. 3(b). Other notations for the axion-nucleon coupling also appear in the literature. The
conversion factor to another common notation gaNN [11] is given by gaNN = CNmN/fa,
while the conversion factor to a less frequently used notation associated with the same sym-
bol gaNN [12] is given by gaNN = CN/(2fa), where CN/fa is the axion-nucleon interaction
parameter.

Low-frequency limits discussion

The amplitude limits for the single-mode detection or the main frequency detection ω1 ≈ ωa
decreases for low frequencies ωa < 2π/Tmeas, since the measurement time is shorter than the
oscillation period. If we consider an axion field with a fixed amplitude a0, the maximum dif-
ference of the Larmor frequency shift induced during the measurement decreases if ωa −→ 0.
Depending on the starting phase, the peak-to-peak difference of the amplitude B is in the
range Ba0/2(ϕ/2)2 < B < Ba0ϕ, where ϕ = ωaTmeas is the phase evolution during the
measurement. Consequently, if we require B > Bthres for the detection, a0 needs to increase
at least as quickly as ∝ 1/ωa relative to the high-frequency case as ωa → 0 to produce a
detectable signal. Consequently, the amplitude limits from the ω1 detection become less
stringent for ωa −→ 0. This effect is present in earlier frequency-domain studies of recent
axion experiments [13].

The sideband signals at ω2,3 produce amplitude variation on the time scale of a sidereal
day, therefore, if the data sample is sufficiently long as in our case, the argument limiting the
detection on ω1 does not apply here. However, the sideband signal may also be suppressed
if ϕ � 1 and if the starting phase of the axion field, φ, has a value such that the envelope
function in Eq. (2) is sin(ωat) ≈ 0 during the measurement. In this case, the sidereal
modulation of the amplitude produces a smaller Larmor frequency shift for a fixed value of
a0. If we require that the minimum amplitude modulation for efficient detection is Bthres,
then we can detect the axion-coupling in the limit ωa −→ 0 only under the condition:

Bthres <
A

2
a0| sin(φ)|, (16)
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which results from Eq. (2) (see also the supplementary material of Ref. [14]). Since the
starting phase of the axion field is unknown, we marginalise the limit over all possible
starting phases. Further, if we also average | sin(φ)| over the phase evolution during the
measurement, we obtain:

Bthres <
A

2
a0

1

2π

1

ϕ

∫ 2π

0

dφ

∫ φ+ϕ

φ

dγ| sin(γ)|

≈ 0.636
A

2
a0,

(17)

which is independent of ωa and Tmeas. Consequently, the detection limit decreases in the
transition region φ ∼ 1, since the detection is not equally efficient for all starting phases.
The impact of this effect is shown in Supplementary Figure 4, where the power of the
sideband detection drops in the range of Aa0/2 ∼ 6 ppb from 0.95 to about 0.8 around
Log10 [ωa/(2π)] ∼ −8. The lower detection power is considered in the limit via the CLs
method and leads to a weaker limit for the axion-antiproton coupling in the transition
region, see Fig. 3(b). We predict that the detection limit for the sidebands should become
independent of ωa in the limit ωa → 0 for the detection of sideband signals, since the
probability of the starting phase being near a node is independent of ωa. Our present
Monte-Carlo studies, however, do not extend deeply into the low-frequency regime ϕ � 1,
and so our prediction for the low-frequency scaling of the sideband limits needs to be verified
in a more extensive analysis.

We also note that it is not possible to determine ωa in the low-frequency range in case of
a positive detection, since the two sideband signals are within one detection bandwidth of
≈ 130 nHz and hence cannot be distinguished. But for our method, it suffices to set limits
in the low-frequency range based on the non-detection of signals close to Ωsid.
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Supplementary Tables

Statistical significance q pG
1σG 24.9 0.32
2σG 29.1 0.046
3σG 34.8 2.7×10−3

4σG 42.3 6.3×10−5

5σG 50.9 5.7×10−7

Supplementary Table 1: Test-statistic values and global P -values for different
values of the statistical significance.
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Supplementary Figures
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Supplementary Figure 1: Monte-Carlo simulation of the test-statistic distribu-
tion. (a) Estimate of the P -value as a function of the test statistic q. We use zero-hypothesis
Monte-Carlo datasets to estimate the cumulative density function of the test-statistic dis-
tribution (CDF) and compare it to the CDF of the χ2

f=2 distribution. The reduced χ2 of
the residuals shown in (b) is 1.8. The error bars indicate 1 s.d. uncertainties.

11



50 100 150 200 250
0.0

0.1

0.2

0.3

0.4

0.5

Frequency spacing (nHz)

C
or
re
la
tio
n
C
oe
ffi
ci
en
t

Supplementary Figure 2: Test statistic correlation coefficients. Result of evaluating
the correlation coefficients of the test-statistic values q(ν) and q(ν + ∆ν) as a function of
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with frequency ν and amplitude bSM, if the zero hypothesis was rejected with 5 % error.
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Supplementary Figure 4: Power of the hypothesis test for the axion model. The
power for detecting the axion-antiproton coupling at a test-statistic value q = 5.99 (α = 5 %)
is shown as a function of ωa/(2π) and the axion amplitude ba. The four plots are evaluated
using different detection criteria: (a) q(ω1), (b) q(ω2), (c) q(ω3) , and (d) for the maximum
of these three values.
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