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Supplementary Methods 

Region-of-interest (ROI) annotations. In addition to the case-level cancer labels described in 
Methods, we used region-of-interest (ROI) annotations from three sources for algorithm 
development. First, the UK dataset included 8,277 ROIs on 7,672 images from 3,871 women 
annotated by OPTIMAM with rectangular ROIs indicating the location of subsequent biopsies. 
Secondly, using our own web-based platform, we collected additional ROI annotations from 
patients with subsequent cancer diagnoses on the UK and US datasets. For each image, a 
US-board-certified mammographer was asked to draw a rectangular ROI around the area(s) 
they suspected to contain the primary tumor based on available metadata. Through this 
process, we collected 2,156 ROIs on 2,145 images from 892 women from the UK data and 
3,549 ROIs on 1,917 images from 694 women from the US data. Finally, we supplemented the 
training with 2,073 ROI annotations on 1,939 images from 1,076 women from the publicly 
available CBIS-DDSM dataset1. 
 
Overview of the AI system. The AI system presented here consists of an ensemble of three 
deep learning models, each operating on a different level of analysis. Each model produces a 
cancer risk score between 0 and 1 for the entire mammography case. The final prediction of the 
system was the mean of the predictions from the three independent models. Schematics of the 
model architectures are shown in Supplementary Figure 3. 
 
All models were trained with data augmentation applied to each image. Random 
transformations included elastic deformation, shearing, rescaling, translation, and flipping. 
Predictions from each model are the average of those resulting from 3 stochastic training runs. 
All models were implemented in the Tensorflow library. When possible, neural network 
parameters were initialized with values derived from ImageNet pretraining. Model training took 
place on dedicated machine learning hardware: Google Tensor Processing Units. 
 
Lesion model. The lesion model is a two-stage architecture focusing on individual lesions 
suggestive of cancer. In the first stage, a detector identifies suspicious regions in all four 
images. Next, each region is fed to a classifier to produce a lesion-level score. Lesion-level 
cancer risk scores are then accumulated to produce a case-level score. 
 
Suspicious regions were identified using a RetinaNet2 object detection mode applied to 
individual images. The same model was used for all four mammography views. The model was 
trained to identify breast tissue representing biopsy-confirmed cancer using the ROI annotations 
described above. Inputs to the model were full screening images, first center-cropped to 
4096x4096 then downsampled to 2048x2048. 
 
For each image, the object detection model produced a collection of rectangular bounding 
boxes with associated confidence scores. Regions of size 512x512 were extracted from the 10 
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locations with the highest scores among all four mammogram images. These regions, along 
with a reference region drawn from the contralateral breast were resampled to 409x409 and fed 
to a MobileNetV23 shared feature extractor. Locating the reference patch required a coarse 
registration of the two images in order to identify the corresponding region. An encoding of the 
image view, laterality and detection coordinates, as well as the patient's age, were concatenated 
with the image features for binary classification. The classifier shared parameters across 
regions. 
 
Each of the 5 patches were augmented independently. Each patch was 409x409 in size, and 
was augmented with random horizontal and vertical flips, random elastic deformation, crop and 
shears applied. 
 
The malignancy predictions for each crop are computed independently and then combined into 
a case-level score using the noisy-OR operation. This operation models the likelihood that a 
case has a malignancy as the complement of the probability that all individual lesions are not 
malignant, assuming independence among the lesions. This enables us to train lesion-level 
malignancy scores using case-level labels. 
 
The second-stage model was trained with inputs generated by a fixed detection model, with 
supervision from case-level cancer labels. Although 10 crops were used for inference, at 
training time 5 crops were randomly sampled with probability proportional to their detection 
scores. A focal loss function was optimized with stochastic gradient descent with momentum 
using mini-batches of size 4. The learning rate was modulated from its initial value using cosine 
decay. Mini-batches were constructed to contain positive and negative examples in equal 
proportion. The UK and US datasets were pooled for initial training, and dataset-specific models 
were subsequently fine-tuned for each dataset. (However, for the generalisability experiment, 
only UK data was used in training.) The parameters that achieved maximum validation AUC 
were selected for test set inference. When running on the test set, examples were randomly 
perturbed using the same augmentations as during training; the final predictions were the 
average of 500 runs. 
 
Breast model. Images were resized to the same pixel width and height, random elastic 
deformation, crop, shearing and rotations applied and the right breast images flipped 
horizontally. The breast model applies a ResNet-v2-504 (‘Image Feature Extractor’) with shared 
weights to each image (resized to 4096 x 3328) in the study. The spatial feature vectors 
resulting from the Image Feature Extractor are concatenated per-breast (RMLO with RCC, 
LMLO with LCC). 
 
After concatenation, an additional neural network is applied to predict breast-level cancer score. 
This consists of 4 residual blocks with bottleneck layers with a spatial downscaling of 4, then 4 
residual blocks with downscaling of 2, and then a final 4 residual blocks with downscaling 2. 
Finally 1x1 convolutions, followed by average pooling was applied to reach a per breast 
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probability score. The weights between breast feature extractors were shared. A case level 
score was generated by taking the max of the per-breast classifications. 
 
The model was trained end-to-end using model parallelism for 120,000 steps using the Adam 
optimizer. The learning rate was initially 1e-4 and divided by 2 every 1,875 steps.  
 
Case model. For the case model, each image was first cropped to 4096x4096 and then resized 
to 2048x2048, and was augmented with random horizontal and vertical flips, random elastic 
deformation, crop and shears applied. The two images corresponding to each breast were also 
randomly swapped with regards to their position in the model. 
 
This case-level model applies a ResNet-v1-505 feature extractor with shared weights to each 
image. Feature vectors from each of the four images in the case were concatenated and then 
fed through a hidden layer of size 512 before binary classification. The UK and US datasets 
were pooled for training. However, for the generalisability experiment, only UK data was used. 
Unlike the lesion model, no distinct fine-tuning phases took place, but checkpoints that achieved 
maximum validation AUC were chosen for each dataset from a single training run. The 
parameters of the ResNet model were initialized from the backbone of the object detection 
model used to generate input for the Lesion Model. A focal loss function was optimized with 
stochastic gradient descent with momentum using mini-batches of size 2. The learning rate was 
modulated from its initial value using cosine decay. Mini-batches were constructed to contain 
positive and negative examples in equal proportion. When running on the test set, examples 
were randomly perturbed using the same augmentations as during training; the final predictions 
were the average of 500 runs. 
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Supplementary Figures 

 
Supplementary Figure 1 | STARD diagram describing the inclusion/exclusion criteria for the UK 
dataset. 
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Supplementary Figure 2 | STARD diagram describing the inclusion/exclusion criteria for the US 
dataset.  
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Supplementary Figure 3 | Deep learning architectures. a, The lesion model starts by applying a 
detector to identify suspicious regions in all 4 mammogram views. The top-scoring regions are extracted 
and sent through a shared feature extractor along with a corresponding contralateral region. The image 
features are concatenated and sent through a shared classifier. The classifier outputs across 10 regions 
are finally aggregated using a noisy-OR operation to produce the case-level score. For illustration 
purposes, we depict 5 regions here, but 10 are used for the final inference. b, The breast model applies a 
shared feature extractor for each breast independently to generate four image features. The two features 
for each breast are concatenated and sent to a shared classifier. The outputs of the classifier for both 
breasts are aggregated using the max operation to produce the case-level score. c, The case model 
applies a shared feature extractor across all 4 image views. Flattened features are concatenated and then 
sent to a classifier to produce the case-level score. 
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Supplementary Figure 4 | Example reader localizations. a, One biopsy-confirmed malignant lesion 
including faint spiculation, highlighted in red, on a right MLO view. b, Corresponding annotations provided 
by six radiologists in the reader study, shown in yellow. The lesion was correctly identified by all six 
readers, but with varying degrees of precision. Their bounding box annotations overlap with the ground 
truth box with intersection-over-union (IoU) scores of 0.626, 0.176, 0.331, 0.500, 0.767, and 0.496, 
respectively. We chose an IoU threshold of 0.1 to account for this variation (see Methods section, 
‘Localization analysis’). 
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Supplementary Figure 5 | Correspondence between the readers’ malignancy suspicion scores and 
their BI-RADS ratings. In the reader study, radiologists’ malignancy suspicion scores (0-100) strongly 
aligned with their BI-RADS ratings (a 6-point scale). Since BI-RADS is used in actual screening practice, 
we elected to focus our analysis on these ratings. 
 
 
 

8 
 

 



 

Supplementary Tables 

 
a 

UK positives 
39 months 

First reader  UK negatives 
39 months 

First reader 

TP FN TN FP 

AI 
system 

TP 220 45* AI 
system 

TN 22,165 1,439 

FN 34* 108 FP 1,175 336 

 

UK positives 
39 months 

Consensus  UK negatives 
39 months 

Consensus  

TP FN TN FP 

AI 
system 

TP 248 40 AI 
system 

TN 22,683 713 

FN 31 95 FP 1,803 243 

 
b 

US positives 
27 months 

First reader  US negatives 
27 months 

First reader 

TP FN TN FP 

AI 
system 

TP 197 121* AI 
system 

TN 1,282 482 

FN 69* 166 FP 240 181 

 
Supplementary Table 1 | Confusion matrices for AI system and human readers. This analysis 
excludes technical recalls. Asterisk (*) denotes numbers featured in Extended Data Table 5. a, Counts for 
the US dataset. b, Counts for the UK dataset. First reader and consensus totals differ due to the 
exclusion of technical recalls.  
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ER status 
AI caught, 

reader missed 
Reader caught, 

AI missed 

Negative 7 3 

Positive 35 22 

Unknown 79 44 

PR status 
AI caught, 

reader missed 
Reader caught, 

AI missed 

Negative 11 6 

Positive 30 18 

Unknown 80 45 

HER2 status 
AI caught, 

reader missed 
Reader caught, 

AI missed 

Negative 31 18 

Borderline/equivocal 0 0 

Positive 2 0 

Unknown 88 51 

 
 
Supplementary Table 2 | Disagreement between the AI system and the interpreting clinician based 
on molecular markers. The table shows cases missed by the reader by not the AI system, and vice 
versa, broken down by estrogen receptor (ER), progesterone receptor (PR), and HER2 status. Molecular 
marker data, extracted from histopathology reports, were only available for the US dataset. Note that for a 
sizable number of cancers, receptor status was unknown.  
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Reader id No. cases No. 
cancers 

Sensitivity Specificity 

AI 
system 

First 
reader 

Δ 
95% CI  

AI 
system 

First 
reader 

Δ 
95% CI  

1 1,713 28 0.75 0.86 (-0.22, 0.01) 0.93 0.94 (-0.03, 0.00) 

2 1,622 24 0.75 0.54 (0.01, 0.41) 0.93 0.94 (-0.03, 0.01) 

3 1,542 21 0.71 0.71 (-0.13, 0.13) 0.94 0.95 (-0.03, 0.00) 

4 1,422 23 0.65 0.87 (-0.39, -0.05) 0.95 0.95 (-0.02, 0.01) 

5 1,277 12 0.83 0.75 (-0.07, 0.24) 0.94 0.94 (-0.02, 0.01) 

6 1,195 15 0.60 0.66 (-0.29, 0.16) 0.96 0.94 (-0.00, 0.03) 

7 1,155 18 0.72 0.66 (-0.19, 0.30) 0.94 0.93 (-0.02, 0.02) 

8 1,038 5 0.80 0.60 (-0.15, 0.55) 0.94 0.95 (-0.03, 0.01) 

9 1,037 12 0.83 0.75 (-0.20, 0.36) 0.95 0.91 (0.01, 0.06) 

10 952 10 0.60 0.60 (-0.28, 0.28) 0.94 0.96 (-0.05, -0.01) 

11 888 25 0.60 0.48 (-0.01, 0.25) 0.94 0.91 (0.01, 0.06) 

12 856 17 0.72 0.76 (-0.26, 0.14) 0.93 0.90 (0.01, 0.06) 

13 782 16 0.56 0.38 (-0.07, 0.45) 0.96 0.93 (0.01, 0.05) 

14 732 19 0.53 0.53 (-0.21, 0.21) 0.96 0.90 (0.03, 0.08) 

15 701 14 0.43 0.36 (-0.17, 0.31) 0.93 0.93 (-0.03, 0.02) 

16 630 12 0.42 0.33 (-0.07, 0.24) 0.92 0.94 (-0.05, 0.01) 

17 609 6 0.83 0.50 (-0.04, 0.71) 0.93 0.91 (-0.01, 0.05) 

18 545 8 1.00 1.0 (0.00, 0.00) 0.94 0.97 (-0.06, -0.01) 

19 540 9 0.78 0.89 (-0.32, 0.10) 0.93 0.90 (-0.01, 0.10) 

20 507 6 1.00 1.0 (0.00, 0.00) 0.94 0.95 (-0.04, 0.00) 

 
Supplementary Table 3 | Comparison with individual clinical readers in the UK dataset. 
We compared the sensitivity and specificity of the AI system to that of the 20 individual readers most 
represented in the dataset. Each row represents metrics based on the subset of cases interpreted by one 
reader. Since ground truth cancers occurred within 39 months of examination, the sensitivities appear 
lower than what is traditionally reported on a 12-month interval. A synopsis of reader experience levels is 
presented in Extended Data Table 7. 
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