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1. Patient cohorts 
Generation of high-quality tumor set (Loris Mularoni) 

We selected a total of 2,583 samples to be included in the point mutation driver discovery 

analyses. This list contains all the samples that were not flagged as problematic by the PCAWG 

Technical Working Group. A single aliquot was assigned to each sample; in cases where 

multiple aliquots were present, we selected a single aliquot based on the following criteria, in 

order of importance:  

- we prioritized primary tumors over metastatic or recurrent tumors  

- we selected aliquots with an OxoG score higher than 40 

- we prioritized aliquots with the highest quality (as indicated by the Stars values) 

- we prioritized aliquots with RNA-seq data availability 

- we prioritized aliquots with the lowest contamination (as indicated by the ContEst values) 

- if a selection could not be made after applying the above filters, we selected an aliquot 

randomly 

 

Selection of tumor cohorts for analysis (Esther Rheinbay) 

Individual tumor type cohorts from the high-quality tumor set were selected for analysis if they 

met a minimum size. This size was determined based on the cumulative number of patients, 

such that no more than 2.5% of total patients were excluded. This led to a minimum cohort size 

criterion of 20 patients, and removed the Bone-Cart (9 donors), Bone-Epith (11), Bone-

Osteoblast (5), Breast-DCIS (3), Breast-LobularCa (13), Cervix-AdenoCa (2), Cervix-SCC (18), 

CNS-Oligo (18), Lymph-NOS (2), Myeloid-AML (13) and Myeloid-MDS (2) individual cohorts. 

Samples from these cohorts were still included in meta-cohort analysis (see below). 

 
Tumor meta-cohorts (Esther Rheinbay) 

Tumor meta-cohorts were assembled for identification of drivers and increase of discovery 

power across cell lineages and organ systems. The following meta cohorts were used in driver 

analyses: 

By cell type of origin: 
Epithelial: Carcinoma (comprised of tumor cohorts Bladder-TCC, Biliary-AdenoCa, 

Breast-AdenoCa, Breast-LobularCa, Cervix-AdenoCa, ColoRect-AdenoCa, Eso-

AdenoCa, Kidney-ChRCC, Kidney-RCC, Liver-HCC, Lung-AdenoCa, Ovary-AdenoCa, 

Panc-AdenoCa, Panc-Endocrine, Prost-AdenoCa, Stomach-AdenoCa, Thy-AdenoCa, 

Uterus-AdenoCa,Head-SCC, Cervix-SCC, Lung-SCC), Adenocarcinoma (Biliary-



AdenoCa, Breast-AdenoCa, Breast-LobularCa, Cervix-AdenoCa, ColoRect-AdenoCa, 

Eso-AdenoCa, Kidney-ChRCC, Kidney-RCC, Liver-HCC, Lung-AdenoCa, Ovary-

AdenoCa, Panc-AdenoCa, Prost-AdenoCa, Stomach-AdenoCa, Thy-AdenoCa, Uterus-

AdenoCa), squamous epithelium (Head-SCC, Cervix-SCC, Lung-SCC) 

Mesenchymal cells/sarcoma (Bone-Cart, Bone-Epith, Bone-Leiomyo, Bone-Osteosarc) 

Glioma (CNS-PiloAstro, CNS-Oligo, CNS-GBM) 

Hematopoietic system (Lymph-BNHL, Lymph-CLL, Lymph-NOS, Myeloid-AML, 

Myeloid-MDS, Myeloid-MPN) 

By organ system:  
Digestive tract (Liver-HCC, ColoRect-AdenoCa, Panc-AdenoCa, Eso-AdenoCa, 

Stomach-AdenoCa, Biliary-AdenoCa), kidney (Kidney-RCC, Kidney-ChRCC), lung 
(Lung-AdenoCa, Lung-SCC), lymphatic system (Lymph-BNHL, Lymph-CLL, Lymph-

NOS), myeloid (Myeloid-AML, Myeloid-MDS, Myeloid-MPN), breast (Breast-AdenoCa, 

Breast-LobularCa), female reproductive system (Breast-AdenoCa, Breast-LobularCa, 

Cervix-AdenoCa, Cervix-SCC, Ovary-AdenoCa, Uterus-AdenoCa), central nervous 
system (CNS-PiloAstro, CNS-Oligo, CNS-Medullo, CNS-GBM) 

Pan-cancer:  
Two “Pan-cancer” cohorts were created: “Pancan-no-skin-melanoma” containing all 

tumor types with the exception of Skin-Melanoma to remove issues caused by very high 

mutation rate tumors; and “Pancan-no-skin-melanoma-lymph” with the additional 

removal of lymphoid tumors (Lymph-BNHL, Lymph-CLL, Lymph-NOS) that have local 

somatic hypermutation caused by AID. 

 

 
2. Mutational hotspot analysis (Randi Istrup Juul) 

 
We selected the top 50 single-position hotspots based on the number of patients with an SNV 
mutation. The individual positions marked as problematic by the site-specific noise filter (see 
below) analysis were excluded. 
 

Each hotspot was defined by its genomic position and annotated by the number of patients with 

an SNV mutation in the given hotspot. We also annotated each hotspot with whether it fell into 

one of the genomic element types analyzed in the driver discovery. We further overlapped with 

loop-regions of palindromes, which are hypothesized to fold into DNA-level hairpins, and with 



location in immunoglobulin loci. When a hotspot overlapped a protein-coding gene, we extracted 

the corresponding amino acids changes from Oncotator1. 

 

We identified known driver hotspots, by overlap with the somatic driver positions compiled in the 

Cancer Genome Interpreter repository (https://www.cancergenomeinterpreter.org/mutations), 

which among others include mutations from ClinVar, DoCM, and the literature2. 

 

For each hotspot, we calculated the proportion of mutations in the defined cohorts and meta-

cohorts. Only cohorts with at least 20 patients, and at least 10 patients or 10% of patients with 

an SNV, were included in Fig. 1a (for the distribution in all cohorts and meta-cohorts, see 
Extended Data Fig. 1b). Lymph-BNHL and Lymph-CLL were shown together as Lymphoid 

malignancies. 

 

Based on mutational signature analysis of all the cancer samples, we extracted the posterior 

probability that each hotspot mutation from a given patient was generated by one of 60 

identified mutational signatures. In lymphoid malignancies, somatic hyper-mutations generated 

by AID come in clusters along the genome. Posterior probabilities for the ten signatures relevant 

for the lymphatic system cohorts were therefore derived from models that consider the 

correlation of AID mutations along the genome. For each hotspot, the collected posterior 

probabilities were averaged. 

 
3. Mutational signatures (Jaegil Kim) 

We performed a de novo global signature discovery to identify mutational signatures operating in 

PCAWG WGS cohort (n = 2,780). A total of 1,697 features or channels including 1,536 penta-

nucleotide sequence contexts for single-nucleotide base substitutions (SBS), 83 insertion/deletion 

features (ID), and 78 doublet nucleotide substitutions (DBS) features, were ingested by 

SignatureAnalyzer exploiting Bayesian non-negative matrix factorization algorithm (NMF)3,4,5 

(COMPOSITE signatures6). A two-step signature extraction approach was applied to minimize 

“signature bleeding” or bias of hyper- or ultra-mutated samples on the signature extraction. In step 

1, global signature extraction was performed for the low mutation burden samples (n = 2,624). 

These excluded hyper-mutated tumors with putative polymerase epsilon (POLE) defects or 

mismatch repair defects (microsatellite unstable tumors [MSI]), skin tumors (which had intense 

UV mutagenesis), and one tumor with temozolomide (TMZ) exposure. In step 2, additional 

signatures unique to hyper-mutated samples were extracted while allowing all signatures found 



in the low mutation burden-samples to explain some of the spectra of hyper-mutated samples. 

Only signatures discovered in the low-mutation rate sample set were attributed to mutations in 

those samples. In contrast, mutations from hyper-mutated samples could be attributed to 

signatures discovered in either the low- or hyper-mutated sample set. Our de novo signature 

discovery extracted 35 COMPOSITE signatures covering most COSMIC signatures 

(https://cancer.sanger.ac.uk/cosmic/signatures) for non-hypermutated samples, including three 

APOBEC-related signatures (BI_COMPOSITE_SBS 2, 13, 69) and a split of COSMIC 17 

(BI_COMPOSITE_SBS 17a and 17b). In addition, we extracted an additional 35 COMPOSITE 

signatures unique to hyper-mutated samples, including refinements of signatures. This included 

eight UV-related signatures (BI_COMPOSITE_SBS 7a, 7b, 7c, 38, 55, 65, 67, 75), five POLE-

related signatures (BI_COMPOSITE_SBS 10a, 61, 62, 63, 66), and six MSI-related signatures 

(BI_COMPOSITE_SBS 6, 14, 15, 21, 26, and 73)6. 

  

A similar strategy was used for determining signature attributions; we performed a separate 

attribution process for low- and hyper-mutated samples using the COMPOSITE signatures. 

Signature attribution in low-mutation burden samples was performed separately in each tumor 

type (i.e., Biliary-AdenoCA, Bladder-TCC, Bone-Osteosarc, etc.). Attribution was also separately 

performed in MSI (n = 39), POLE (n = 9), skin (n = 107), and a single TMZ-treated tumor. In each 

separate cohort, the signature activity (e.g., which signatures are active or not) was primarily 

inferred through the automatic relevance determination process applied to the activity matrix H 

only, while fixing the normalized signature matrix, W. The attribution in low-mutation burden 

samples was performed using only signatures found in step 1 of the signature extraction. Two 

additional rules were applied in SBS signature attribution to enforce biological plausibility and 

minimize a signature bleeding; (i) allow signature BI_COMPOSITE_SBS4 (smoking signature) 

only in lung and head and neck cases; (ii) allow signature BI_COMPOSITE_SBS11 (TMZ 

signature) in a single GBM sample. This was enforced by introducing a binary, signature by 

sample, indicator matrix Z (1 - allowed and 0 - not allowed), which was multiplied by the H matrix 

in every multiplication update of H.  

 
Local signatures analysis: We also performed a de novo local signature analysis in lymphoma 

samples (n = 197) to identify mutational signatures of the activation-induced cytosine deamination 

(AID). Since a majority of mutations from AID-related processes cluster near the IgH locus and 

several known off-target sites, we considered the clustering information of mutations as an 

additional feature in the signature discovery3. In brief, we first calculated, for each mutation, the 



nearest mutation distance (NMD) to all other mutations on the same chromosome in the same 

patient. We then stratified mutations into two groups of ‘clustered’ (NMD ≤ 1kb) and ‘non-

clustered’ mutations (NMD > 1kb). Next, the clustered and non-clustered mutation sets in each 

sample set were analyzed as a separate entity with the mutation count matrix of 1536-by-2N 

matrix, which enabled the discovery of mutational signatures unique to the clustered and non-

clustered mutations. This analysis yielded ten mutational signatures, including two specific to 

clustered mutations (W3, W10). The profile of the signature W3 was characterized by 

predominant C>T/G at RCY motifs (R = purine, and Y = pyrimidine), resembling the known 

canonical AID signature, while the signature W10 had mostly T>A/C/G at TW motif (or A>T/G/G 

at WA) corresponding to the known hotspots of the non-canonical AID related to the error-prone 

translesion DNA synthesis. In addition, the signature profile of W7 was most similar to the 

previously identified AID signature (COSMIC9) but most mutations of W7 were scattered along 

the genome and not clustered. Here, we calculated AID activity as the sum of attributions in the 

three signatures: W3, W7, and W10. 

 
 
4. Definition of genomic elements (Morten Muhlig Nielsen; Nasa Sinnott-Armstrong) 

Elements pertaining to protein-coding genes (protein-coding promoters, 5’UTR, protein-coding 
sequence, protein-coding splice sites, and 3’UTR) were defined based on GENCODE 
annotations (v.19)7: 
 

Coding elements (CDS): The set of coding bases collapsed across all coding transcripts with a 

given GENCODE gene ID.  

 

Protein-coding splice site elements (pc_SS): Intronic regions extending six bases from donor 

splice sites and 20 bases from acceptor splice sites were collected for all coding transcripts. 



Bases were collapsed across all coding transcripts with a given GENCODE gene ID. The global 

set of CDS bases were subtracted.  

 

5’UTR elements (5UTR): The set of 5’UTR bases collapsed across all coding transcripts with a 

given GENCODE gene ID. The global set of CDS and pc_SS bases were subtracted.  

 

3’UTR elements (3UTR): The set of 3’UTR bases collapsed across all coding transcripts with a 

given GENCODE gene ID. The global set of CDS, pc_SS and 5UTR bases were subtracted.  

 

Protein-coding promoter elements (promCore): Regions extending 200 bases in both 

directions from all protein-coding transcripts’ transcription start sites (5’ ends). Bases were 

collapsed across all coding transcripts with a given GENCODE gene ID. The global set of CDS 

and pc_SS bases were subtracted.  

 

lncRNA elements: lncRNA transcripts were defined based on annotations from GENCODE 

(v.19) and MiTranscriptome (v.2)8 not overlapping GENCODE. Transcripts were included if 

fulfilling criteria 1-5 and 6 or 7 below: 

1) No sense overlap to protein-coding gene regions 

2) More than 5kb away from protein-coding genes on sense strand 

3) Longer than 200 bases 

4) Not annotated as the following biotypes: immunoglobulin, T-cell receptor, Mt_rRNA, 

Mt_tRNA, miRNA, misc_RNA, rRNA, scRNA, snRNA, snoRNA, ribozyme, sRNA or 

scaRNA. 

5) Not overlapping genomic regions aligning back to the human genome (self-chained 

regions). 

6) More than 20% of bases overlap conserved elements (except if annotated as 

pseudogene) 

7) Expressed in more than 10% of PCAWG samples with RNAseq data 

 

Genes corresponding to the selected transcripts were supplemented with a set of known 

functional lncRNA genes from the literature in addition to GENCODE annotated non-coding 

snoRNA and miRNA host genes. The elements were made by collapsing bases across 

transcripts with given gene ID. The global set of CDS, pc_SS, 5UTR, 3UTR, promCore and 

lncRNA_SS bases were subtracted. 



 

lncRNA splice site elements (lncRNA_SS): Intronic regions extending six bases from donor 

splice sites and 20 bases from acceptor splice sites were collected for all lncRNA transcripts. 

Bases were collapsed across all lncRNA transcripts with a given gene ID. The global set of 

CDS, pc_SS, 5UTR, 3UTR and promCore bases were subtracted. 

 

lncRNA promoter elements: Regions extending 200 bases in both directions from all lncRNA 

transcripts’ transcription start sites (5’ ends). Bases were collapsed across all lncRNA 

transcripts with a given gene ID. The global set of CDS, pc_SS, 5UTR, 3UTR, promCore and 

lncRNA_SS bases were subtracted. 

 

Short RNA elements: Short RNA transcripts were defined based on annotations from 

databases Rfam (v.11)9, tRNAscanSE (v.2.0)10 and snoRNAdb (v.3)11 in addition to GENCODE 

transcripts with biotype annotations mt_rRNA, mt_tRNA, misc_RNA, rRNA and snoRNA. Bases 

were collapsed across all smallRNA transcripts with a given gene ID. The global set of CDS, 

pc_SS, 5UTR, 3UTR and promCore bases were subtracted. 

 

microRNA elements: Precursor and mature miRNAs were defined based on mirBase (v.20)12 

and a set of potential novel miRNAs13  

 

Enhancer elements: Contiguous 15-state ChromHMM called enhancers correlated between 

H3K4me1 and RNA-seq across 57 human tissues were downloaded from Roadmap 

Epigenomics Consortium extended data14. Associated links, defined by co-occurring activity in a 

given cell type, were merged across cell types at FDR = 0.1. HoneyBadger215 p10 calls for all 

DNase I sites were filtered to peaks with signal strength 0.8 or greater and intersected with 

enhancer elements. The union of all DNase I peaks which overlapped with a given element, with 

all CDS regions filtered out, were used as the input to driver detection. 

 
 
 
  



5. Candidate driver identification methods 
A summary of approaches used by each method is listed in Supplementary Table 2. 

 

ActiveDriverWGS (Juri Reimand)  

Driver analysis with ActiveDriverWGS16 was performed after discarding hypermutated samples 

(>90,000 mutations) from the PCAWG cancer cohort. To avoid leakage of signals from known 

cancer drivers, we removed missense mutations in analyses of non-coding regions. 

ActiveDriverWGS is a local mutation enrichment method for genome-wide discovery of cancer 

driver mutations with increased mutation burden of single nucleotide variants (SNVs) and indels. 

ActiveDriverWGS performs a model-based test whether a given genomic element is significantly 

more mutated than adjacent background genomic sequence (+/- 10kb and introns). Statistical 

significance of mutations is computed with a Poisson-linked generalised linear regression model. 

The null model treats all SNVs with trinucleotide context as cofactor, while indels are modelled 

with a separate cofactor for all nucleotides. Mutation counts per nucleotide are presented as the 

response variable. The alternative model tests whether the element has different mutation burden 

than the background sequence. The null and alternative models are compared with chi-square 

tests and confidence intervals of expected mutations were derived from the null model using 

resampling. If the confidence intervals indicated significant excess of mutation in the background 

and depletion in the element of interest, we inverted corresponding small P values (P = 1-Pp if P 

< 0.5). Elements with no mutations were automatically assigned P = 1.  Elements with no 

mutations were automatically assigned P = 1. ActiveDriverWGS is available in CRAN at 

https://cran.r-project.org/web/packages/ActiveDriverWGS/index.html 

 

 

CompositeDriver0.2 (Eric Minwei Liu, Ekta Khurana) 

We have developed CompositeDriver (https://github.com/khuranalab/CompositeDriver) – a 

computational method that combines signals of mutation recurrence and the functional impact 

score derived from FunSeq2 scheme17 to identify coding and non-coding elements under positive 

selection18. CompositeDriver assigns a score to each region of interest (i.e., CDS, promoter, UTR, 

enhancer, or ncRNA) through summation of positional mutation recurrence multiplied by the 

functional impact score for all mutations within the region. A null CompositeDriver score 

distribution is built to calculate the P values for a region of interest. Mutations in the same element 

type but outside the region of interest are defined as background mutations. To build the null 

distribution, the same numbers of mutated positions are repeatedly drawn (default is 105 times) 



from background mutations with similar replication timing and similar mutation context19. By 

drawing random mutations from the same element type, CompositeDriver incorporates DNase I 

hypersensitive sites and histone modification marks as covariates into the null model20. Finally, 

the Benjamini–Hochberg method is used for multiple hypothesis correction21. 

 
dNdScv (Inigo Martincorena) 

dNdScv (https://github.com/im3sanger/dndscv) is a maximum-likelihood algorithm designed to 

test for positive or negative selection in cancer genomes or other sparse resequencing studies. 

dNdScv models somatic mutations in a given gene as a Poisson process, accounting for 

sequence composition and mutational signatures using 192 trinucleotide substitution rates. 

Mutation rates are also known to vary across genes, often co-varying with functional features of 

the human genome, such as replication time and chromatin state. This information is exploited by 

dNdScv to refine the estimates of the background mutation rate of each gene, using a negative 

binomial regression. This regression removes known sources of variation of the mutation rates 

and models the remaining unexplained variation of the mutation rate across genes as being 

Gamma distributed, which protects the method against overconfidence in the estimated 

background mutation rate for a gene. Overall, the local mutation rate for a gene is estimated 

accounting for mutational signatures in the samples analysed, the sequence composition of a 

gene in a trinucleotide context, 20 epigenomic covariates and the local number of synonymous 

mutations in the gene. Inferences on selection are carried out separately for missense 

substitutions, truncating substitutions (nonsense and essential splice site mutations) and indels, 

and then combined into a global P value per gene. dNdScv has been described in much greater 

detail elsewhere22. 

 
DriverPower (Shimin Shuai) 

DriverPower is a combined burden and functional impact test for coding and non-coding cancer 

driver elements. In the DriverPower framework, randomized non-coding genome elements are 

used as training set. In total 1,373 reference features covering nucleotide compositions, 

conservation, replication timing, expression levels, epigenomic marks, and compartments are 

collected for downstream modelling. For the modelling, a feature selection step by randomized 

Lasso is performed at first. Then, the expected background mutation rate is estimated with 

selected highly important features by binomial generalized linear model. The predicted mutation 

rate is further calibrated with functional impact scores measured by CADD and Eigen scores. 

Finally, a P value is generated for each test element by binomial test with the alternative 



hypothesis that the observed mutation rate is higher than the adjusted mutation rate. DriverPower 

is available at https://github.com/smshuai/DriverPower23.  

 

 
ExInAtor (Andres Lanzos; Rory Johnson) 

ExInAtor (https://github.com/alanzos/ExInAtor) was specifically created for predicting cancer driver 

lncRNAs, but is agnostic to gene type and can also be used for protein-coding genes. The exons 

of each gene are identified and collapsed across transcript isoforms. For each gene, the 

trinucleotide content of the exonic region is calculated. The remaining intronic regions, along with 

10 kb of sequence upstream and downstream, are defined as the background region. From this 

background, a new background region is created by randomly sampling the maximum number of 

nucleotides, such that the trinucleotide content exactly matches that of the exonic region. Next, 

the number of mutations in the exonic and sampled background regions are compared by 

hypergeometric test. Genes with elevated exonic mutational density are considered candidate 

driver genes. ExInAtor was used with a randomisation seed of 256. Otherwise, ExInAtor was run 

exactly as described in Lanzós et al.24. 

 
LARVA (Jing Zhang; Lucas Lochovsky, http://larva.gersteinlab.org/) 

LARVA25, or Large-scale Analysis of Recurrent Variants in noncoding Annotations, is a 

computational method that detects significantly elevated somatic mutation burdens in genomic 

elements — both coding and non-coding — to identify putative cancer-driving elements. Given a 

cancer cohort variant call set, and a list of genomic elements, LARVA models the expected 

background somatic mutation rate by fitting a beta-binomial distribution to the elements' variant 

counts. This model properly accounts for the high mutation rate variability seen throughout the 

genome, which improves over some previous models' assumption of a constant mutation rate. 

LARVA's model also incorporates the influence of mutation rate covariates, such as DNA 

replication timing. LARVA's output lists each genomic element from the input, along with a P value 

based on the deviation of the element's observed variant count from the expected variant count 

under LARVA's model. 

 
MutSig (Julian Hess, Esther Rheinbay) 

The MutSig suite26 classifies whether genomics features, both coding and non-coding, are highly 

mutated relative to a predicted background mutation rate (BMR), which varies on a macroscopic-

level across patients (patient-specific mutation rates can span orders of magnitude across pan-



cancer cohorts) and genes (known covariates such as replication timing are strongly correlated 

with mutation rate) as well as on a microscopic level across sequence contexts (since mutational 

signatures are heterogeneous across a cohort and highly context-dependent). MutSig accounts 

for all three of these to compute the joint BMR distribution across genes/patients/contexts, and 

then convolves across the latter two dimensions to estimate the expected distribution of total 

background burden for a given gene across a whole cohort. Genes are then scored by how their 

total non-background burden exceeds this null distribution. Furthermore, MutSig includes in the 

BMR calculation the number of bases in each feature that are sufficiently covered for mutation 

calling. This prevents underestimation of the BMR when a feature is only partially covered. 

Because this property sensitized MutSig to the randomizations performed without accounting for 

coverage, we removed from the analysis shown in Extended Data Fig. 11 those CDS for which 

coverage was below 90% of the region.  

 

MutSig estimates a gene’s BMR by its synonymous mutation rate for coding genes, and by its 

mutation rate at non-conserved positions for non-coding genes. If the number of background 

mutations in a given gene is insufficient to provide a confident estimate of its BMR, MutSig will 

incorporate the background counts from other genes with similar covariate profiles into its 

estimator. 

 

MutSig (MutSig2CV) was originally designed for coding regions only26. Modifications to this 

version of the algorithm to run on non-coding regions were made for this study’s analyses of non-

coding regions, as well as the sensitivity and benchmarking analysis in Extended Data Fig. 3. 

This version does not include significance evaluation based on functional impact or positional 

clustering, and is available from https://github.com/broadinstitute/getzlab-PCAWG-MutSig2CV_NC. 

The protein-coding MutSig2CV package, which includes tests for enrichment functional 

impact/clustering, was run on observed and simulated data for CDS. 

 

NBR (Inigo Martincorena) 

NBR (https://github.com/im3sanger/dndscv) is a method that tests for evidence of higher mutation 

density than expected by chance in a given region of the genome, while accounting for 

trinucleotide mutational signatures, sequence composition, and the local density of mutations 

around each element. This method has been described in detail in a previous publication27, where 

it was used to identify candidate driver noncoding elements across 560 breast cancer whole-

genomes. 



  

Based on some of the features of dNdScv, NBR involves two main steps. First, all mutations 

across all elements tested are used to obtain maximum-likelihood estimates for the 192 rate 

parameters (rj) describing each of the possible trinucleotide substitutions in a strand-specific 

manner. rj = nj/Lj, where nj is the total number of mutations observed across samples of a given 

trinucleotide class (j), and Lj is the number of available sites for each trinucleotide. These rates 

are used to estimate the total number of mutations across samples expected under neutrality in 

each element considering the mutational signatures active in the cohort and the sequence of the 

elements (Eh = Sj rjLj,h). This estimate assumes no variation of the mutation rate across elements 

in the genome. Second, a negative binomial regression is used to refine this estimate of the 

background mutation rate of an element, using covariates and Eh as an offset. In this study, the 

local density of somatic mutations (normalized by sequence composition) was used as a 

covariate, using a window around the element of a variable size across cohorts to ensure sufficient 

numbers of mutations in each window around each element and excluding coding sequences and 

previously identified candidate noncoding driver regions. Replication time and average gene 

expression level for 100 kb genomic bins were also used as covariates. The negative binomial 

regression models mutation counts as Poisson-distributed within an element with mutation rates 

varying across elements according to a Gamma distribution. As in dNdScv, this provides a refined 

estimate of the background mutation rate for each element (Eh*) as well as a data-driven measure 

of uncertainty around this estimate (q, the overdispersion parameter of the negative binomial 

regression). P values for each element are calculated using a cumulative negative binomial 

distribution with the mean (Eh*) and dispersion (q) parameters estimated by the negative binomial 

regression. 

  

To protect against neutral indel hotspots or indel artifacts, unique indel sites rather than total 

indels per element were used. To protect against misannotation of a mutation clusters as sets of 

independent events, a maximum of two mutations per region and per sample were considered in 

the analysis. 
 
ncdDetect (Malene Juul) 

ncdDetect28 (http://moma.ki.au.dk/ncddetect/, https://github.com/MaleneJuul/ncdDetectTools) is 

a driver detection method tailored for the non-coding part of the genome. It uses a burden-

based approach, in which the frequency of mutations is considered to reveal signs of recurrent 

positive selection across cancer genomes. For each candidate region, the observed mutation 



frequency is compared to a sample- and position-specific background mutation rate. A scoring 

scheme is applied to further account for functional impact in the significance evaluation of a 

candidate cancer driver element. In the present application, the scoring scheme is defined as 

log-likelihoods, i.e., minus the natural logarithm of the sample- and position-specific probabilities 

of mutation. 

  

The position- and sample-specific probabilities of mutation used by ncdDetect are obtained by a 

statistical null model, inferred from somatic mutation calls of a collection of cancer samples29 

(https://github.com/MultinomialMutations). The model includes a set of genomic annotations, 

known to correlate with the mutation rate in cancer. These are replication timing, trinucleotides 

(the nucleotide under consideration and its left and right flanking bases), genomic segment (a 

variable segmenting the genome into regulatory element types), and a position-specific 

measure of the local mutation rate (a weighted average of the mutation rate, calculated across 

samples in a 40 kb window flanking each specific position plus/minus 10 kb). 

 

ncDriver (Henrik Hornshøj) 

The ncDriver method30 (http://moma.ki.au.dk/ncDriver/) provides separate evaluations of the 

significance for two mutation properties, the level of conservation, and the level of cancer type 

specificity. In the ncDriverConservation test, the conservation levels of mutated positions were 

evaluated locally for being surprisingly high, given the distribution of conservation within the 

element. The P value of the mean mutation phyloP conservation score for an element was 

obtained by Monte Carlo simulation of 100,000 mean phyloP scores based on the 

observedsame number of mutations. Each mutated element was also evaluated globally by 

looking up the rank of the element mean phyloP conservation score among all elements 

annotated as the same type. This provided P values for both local and global mutation 

conservation level, which were combined into a single conservation P value using Fisher’s 

method31. In the ncDriverCancerType test, the distribution of observed mutation counts of an 

element across the cancer types were evaluated for being surprising compared to expected 

counts estimated from a background null model (as described for the ncdDetect method) that 

accounts for cancer type specific mutation signatures and other covariates. A goodness-of-fit 

test with Monte Carlo simulation was used to determine whether the distribution of observed 

mutation counts across cancer types within the element is surprising given the expected 

mutation counts based on cancer types, mutation contexts, and element type. For indels, the 

expected mutation counts were estimated solely from the mutation rates calculated from the 



mutation context, cancer type, and element type. P values from SNV and indel runs were 

combined using Fisher’s method31.  

 
OncodriveFML (Loris Mularoni) 

OncodriveFML32 (https://bitbucket.org/bbglab/oncodrivefml/src/master/) is a method designed to 

estimate the accumulated functional impact bias of tumor somatic mutations in genomic regions 

of interest, both coding and non-coding, based on a local simulation of the mutational process 

affecting it. The rationale behind OncodriveFML is that the observation of somatic mutations on 

a genomic element across tumors, whose average impact score is significantly greater than 

expected for said element constitutes a signal that these mutations have undergone positive 

selection during tumorigenesis. This, in turn, is considered as a direct indication that this 

element drives tumorigenesis.  

 

OncodriveFML first computes the average functional impact score of the observed mutations in 

the element of interest. The functional impact scores of mutations have been calculated using 

both CADD33 (coding and non-coding regions) and VEST334 (only coding regions). Then, the 

method randomly samples the same number of observed mutations following the probability of 

mutation of different tri-nucleotides, computed from the mutations observed in each cohort. The 

randomization step is repeated many times (1,000,000 in these analyses), and each time an 

average functional impact score is calculated. Finally, OncodriveFML derives an empirical P 

value for each element by comparing the average functional impact score observed in the 

element to its local expected average functional impact score resulting from the random 

sampling. The empirical P values are then corrected for false discovery rate, and genomic 

elements that remain significant after the correction are considered candidate drivers. 

 
regDriver (Husen M. Umer) 

regDriver (https://github.com/husensofteng/regDriver) assesses the significance of mutations 

affecting transcription factor motifs using tissue-specific functional annotations35. For each tumor 

cohort, functional annotations from the cell lines most similar to the respective tumor type are 

gathered. A functionality score is computed for each mutation based on its overlapping 

functional annotations. regDriver collects highly scored mutations in each of the defined 

elements and assesses the elements’ significance by comparing its accumulative score to a 

background score distribution obtained from the simulated sets. Therefore, only candidate 

regulatory mutations are considered in evaluating mutation enrichment per element.  



 

 

6. Simulated data sets 
Broad simulations (Yosef Maruvka, Gad Getz) 

Due to their differing context characteristics, we simulated SNVs and indels with different 

approaches. For SNVs, we divided the genome into 50 kb regions. For each region, we counted 

the number of mutations across all the PCAWG patients and divided this number by the total 

number of mutations. Every mutation was randomly assigned into a new region based on the 

region's rate. The position inside the region was chosen to maintain the trinucleotide context of 

each mutation (the 5’ and 3’ nearest neighbors and the mutated position itself) and the alternate 

allele. In addition, for every base, we counted how many times it was covered sufficiently in 401 

tumor–normal WGS pairs, in order to enable calling of a mutation36. The fraction of patients with 

enough coverage at a given site was used as the position’s probability for being mutated inside 

the new current region.  

 

For indels, a new, randomized position was chosen in a region of 50 kb bases around the indel. 

The position of the new indel was chosen to match the indel 5’ and 3’ neighboring reference 

bases. For insertions, the inserted motif was the same as the original insertion; for deletions, 

however, only the length of the indels was kept, but not the exact sequence. 

 

DKFZ simulations (Carl Hermann, Calvin Chan) 

This simulation utilizes the SNV calls to perform a localised randomisation. The original SNV 

entries which do not map to chromosome 1–22, X, or Y are first filtered and excluded from 

randomization. All SNVs located in the protein-coding regions (CDS) corresponding to the 

GENCODE19 definition are erased before performing randomisation. The trinucleotide centered 

at each SNV position is determined, and an identical trinucleotide is randomly sampled within 

the 50 kb window. In the case of insertion, instead of the mutated trinucleotide, the neighboring 

nucleotide of the insertion site is scanned within the randomisation window. For deletion and 

multi-nucleotides variants, the altered sequence is scanned within the randomization window 

with a ranked probability assigned for each position. The randomised sample is then selected 

from the top 100 matched positions with scaled probability. 

 
  



Sanger simulations (Inigo Martincorena) 

This simulation aimed to generate data sets of neutral somatic mutations that retain key sources 

of variation in mutation rates known to exist in cancer genomes, including mutational signatures, 

and variable mutation rates across the genome and also among individuals and cancer types. 

To do so while minimizing the number of assumptions in the simulation, we used a simple local 

randomization approach. First, all coding mutations as well as mutations in the TERT promoter, 

MALAT1, or NEAT1 were excluded. Second, each mutation in each patient was randomly 

moved to an identical trinucleotide within a 50 kb window, while retaining the patient ID. Third, 

mutations falling within 50 bp of their original position were filtered out. This simple 

randomization retains the variation of the mutation rate and mutational signatures across large 

regions of the genome, across individuals, and across cancer types. 

 

 
7. Statistical framework for the combination of results from multiple driver discovery 
methods (Grace Tiao, Ziao Lin, Gad Getz) 

The classical approach for combining P values obtained from independent tests of a given null 

hypothesis was described by R. A. Fisher in 1948. He noted that for a set of k P values, the sum 

X of the log-transformed P values, where 

  

X = -2 Σk
i=1 ln(pi) 

  

and pi is the P value for the ith test, follows a chi-square distribution with 2k degrees of 

freedom31. Thus, to obtain a single combined P value for a set of independent tests, the new 

test statistic X is computed from the P values obtained from the tests and scored against a chi-

square distribution with 2k degrees of freedom. Fisher’s test is asymptotically optimal among all 

methods of combining independent tests37; however, in cases where tests exhibit positive 

correlation among the ln(pi) values, the Fisher combined P value is generally too small (anti-

conservative). 

 

In this study, we combine P values from several driver detection methods, many of which share 

similar approaches and whose results are therefore not independent. To address this issue, we 

used an extension of the Fisher method developed by Morten Brown for cases in which there is 

dependence among a set of tests37. Using the same test statistic, renamed Ψ to indicate the 



difference in the independence assumption, Brown observed that if Ψ were assumed to have a 

scaled chi-square distribution – i.e., 

  

ψ ~ c X2
2f 

  

then 

  

f = E[ψ]2/var(ψ)  and c = var(ψ)/ 2E[ψ] 

  

  

Note that E[Ψ] = 2k irrespective of the independence requirement, and that 

  

var(ψ) = 4k + 2 Σi<j cov(-2 lnpi, -2 lnpj) 

  

Thus when the pi are independent, var(ψ) = 4k, which gives f = k and c = 1, and the test statistic 

follows the chi-square distribution with 2k degrees of freedom described by Fisher. However, 

when the independence condition is relaxed, var(ψ) ≠ 4k, and the test statistic generally follows 

a different, scaled, chi-square distribution whose scaling parameter c and degrees of freedom 2f 

are determined by the covariances of the pi’s. The covariances can be computed via numerical 

integration over the joint distributions of all pi and pj pairs, but this requires knowledge of the 

joint distribution; and even in cases where the joint distribution is known, the integration may not 

be computationally feasible for large and complex data sets38. 

 

In this study, following the example of Poole et al.38, we computed the empirical covariance of pi 

and pj, using the samples wi and wj , where wi is the set of all reported P values for method i, 

and used the empirical covariance to approximate the Brown scaled chi-square distribution. The 

advantage to this approach is that the empirical covariance estimation is non-parametric – it 

does not assume an underlying joint distribution of pi and pj – and is thus applicable to complex 

and interrelated biological data sets where data is noisy and not regularly Gaussian. Poole et al. 

showed that the empirical covariance estimation approach is accurate, robust, and efficient for 

such data sets. 

  
Implementing and evaluating the combination method on simulated and observed data 



To evaluate the efficacy of the empirical Brown’s method of dependent P value combination, we 

generated three sets of simulated mutation data (see above) and ran the driver detection 

algorithms on each of the simulated data sets. We checked that the P value results from the 

various driver detection algorithms followed the expected null (uniform) distribution (Extended 
Data Fig. 11a). Then, for each simulated data set, we calculated the empirical covariance for 

each pair of driver algorithm results. We then used these covariance values over simulated data 

sets to compute the combined Brown P values on observed data: for each gene in the observed 

PCAWG somatic mutation data set, we computed the Brown test statistic from the set of P 

values reported by the various driver detection algorithms. The Brown test statistic was then 

evaluated against the appropriate chi-square distribution, whose scale and degree parameters 

were approximated by the covariance values calculated on the simulated data (see above). 

 

We ran this procedure, as well as the Fisher method, for six representative cohorts (three of 

which are shown: ColoRect-AdenoCa, Lung-AdenoCa, Uterus-AdenoCa) and found that the 

Brown combined P values generally followed the null distribution as expected (Extended Data 
Fig. 11b). The Fisher combined P values were significantly inflated (Extended Data Fig. 11b), 

confirming that dependencies existed between the results reported by the various driver 

detection algorithms. 

 

To make this process more straightforward and reduce computation time, we explored whether 

computing the covariance values on observed data instead of simulated data would yield similar 

results. In each of the six representative cohorts, we calculated the empirical covariances on the 

observed data only and then computed the integrated Brown P values on the observed data 

using the observed covariances. Significant genes identified using only observed covariances 

remained mostly unchanged from the significant genes identified using the simulated 

covariances (Extended Data Fig. 11d), and examination of the differences in the covariance 

values between the simulated estimations and the observed estimations revealed only minor 

differences in values (Extended Data Fig. 11c). The significant drivers presented in this study 

were identified using this final approach – e.g., by computing integrated Brown P values using 

estimations of covariance on observed data only. 

 

Combination of P values from observed data was performed for our 42 individual tumor-type 

and meta cohorts and 13 target element types. Methods were selected for each given data set 

(see below), and raw P values smaller than 10-16 were trimmed to that value before proceeding 



with the combination. Methods with missing data for a given element (i.e., ones that failed to 

report a P value for a given element) were excluded from the calculation for that element, and 

therefore in some cases the integrated Brown P value was computed from P values reported by 

only a subset of all the driver detection algorithms contributing results for that data set. 

 
Selecting methods to include in the combination of observed P values 
In some cases, individual driver detection algorithms reported P values for a given data set that 

deviated strongly from the expected uniform null distribution. These were methods for which the 

quantile–quantile (QQ) plots demonstrated considerable inflation. We removed results that 

reported an unusual number of significant hits by calculating, for each set of results, the number 

of significant elements found by each individual method using the Benjamini–Hochberg FDR21 

with Q < 0.1 as the significance threshold. Any single method that reported four times the 

median number of significant elements identified by individual methods was discarded from the 

combination. In a separate analysis, we found that removing methods that yielded fewer hits 

than the median (i.e., methods with deflated QQ plots) did not affect the number of significant 

genes identified through the combination of the reported P values (Extended Data Fig. 11d); 

hence, we did not remove such methods. 

 

8. Post-filtering of candidates (Esther Rheinbay, Morten Muhlig Nielsen, Lars Feuerbach, 

Henrik Tobias Madsen) 

Post-filtering of significant hits was performed to remove those with accumulation of mutations 

caused by sequencing problems or mutational processes. In particular, we applied the following: 

(i) at least three mutations are present in the element, (ii) mutations are present in at least three 

patients of the tested cohort, (iii) less than 50% of mutations are located in palindromic DNA 

sequence27, (iv) more than 50% of mutations are located in mappable genomic regions (CRG 

alignability, DAC blacklisted regions, and DUKE uniqueness39); and (v) manual review of 

sequence evidence for novel drivers. For lymphoid tumors, which contain regions of somatic 

hypermutation caused by AID enzyme activity, we (vi) further required less than 35% of 

mutations contributed by this process (signatures W3, W7, and W10, Supplementary Fig. 1); 

and for Skin-melanoma, we (vii) excluded elements with more than 50% of mutations belonging 

to the UV signature (BI_COMPOSITE_SBS signatures 7a_S, 7b_S, 7c_S, 38_S, 55_S, 65_S, 

67_S and 75_S, and BI_DBS signatures 1_S, 13_S, 14_S and 15_S, Supplementary Fig. 
2)6,40–42. For all tumor cohorts, we (viii) excluded elements with more than 50% of mutations 

attributed to APOBEC mutation signatures (BI_COMPOSITE_SBS signatures 2_P , 13_P and 



69_P, Supplementary Fig. 3)6. For each of the signature dependent filters, we “rescued” 

elements found significant at the FDR < 0.1 level and passed all filters in at least one other 

cohort.  

 

DNA palindromes 
We define a palindrome as a sequence of DNA followed by its complementary reverse with a 

sequence of variable length in between. It is hypothesized that these palindromes can 

temporarily form DNA hairpins43. While in the hairpin state, the loop region is single-stranded 

and open to attack by APOBEC enzymes. Based on observations in breast cancer whole 

genome sequences27, we decided to consider palindromes with a minimal repeat length of 6 bp 

and an intervening sequence (loop) length of 4–8 bp. We call these regions genome-wide using 

the algorithm described in Ye et al.44, but using our own implementation 

(https://github.com/TobiasMadsen/detectIR). In total, we find 7.3 M palindrome regions covering 

a total of 135.2 Mb, of which 33.6 Mb are loop sequence. 

 
Computing the false discovery rate 
We controlled the false discovery rate (FDR) within each of the sets of tested genomic elements 

by concatenating all integrated Brown P values from across all tumor-type cohorts and applying 

the Benjamini–Hochberg procedure21 to the integrated Brown P values. A Q value threshold of 

0.1 was chosen to designate cohort-element combinations as significant hits. In addition, we 

defined cohort-element combinations in the range 0.1 ≤ Q < 0.25 as “near significance.” We 

next applied several additional, mutation-based filtering criteria to each significant or near-

significant candidate and assigned P values of 1 to candidates that failed these filtering criteria. 

Final Benjamini–Hochberg FDR values were then re-calculated on the adjusted sets of 

integrated Brown P values to arrive at a list of hits, ie. candidate driver cohort-element 

combinations. 

 

 
9. Restricted hypothesis testing (RHT) (Ziao Lin, Esther Rheinbay, Federico Abascal, Iñigo 

Martincorena) 

Localized amplification or deletion peaks were identified as copy number variant regions less 

than 1 Mb in size from GISTIC output files del_genes.conf_95.txt or amp_genes.conf_95.txt 



(also see Section 15). 11,705 Gene-associated elements (promoter, UTRs, CDS, associated 

enhancers) located in these regions were used for RHT with the Benjamini–Hochberg FDR 

procedure21 by target type. Significant (Q < 0.1) and nearly-significant hits (0.1 ≤ Q < 0.25) for 

each target type were later concatenated (Supplementary Table 11). The indels impacting the 

5’UTR of TP53 were detected as a positive selection signal T with NBR doing RHT on the 

regulatory regions of 603 cancer genes. 

 
 
10. Sensitivity and precision analysis of driver predictions (Ziao Lin, Iñigo Martincorena, 

Esther Rheinbay) 

To evaluate the sensitivity and precision of different methods, and particularly of our approach 

for P value combination, we compared their relative performance in detecting known protein-

coding cancer genes (603 genes from the manually curated Cancer Gene Census v80 

database45). As the true set of cancer drivers to be discovered in any cohort is unknown, we 

defined the truth set as the union of significant CGC genes successfully identified by any single 

or combination of methods. For the negative set, we used all genes not in the truth set, which 

almost certainly contains yet-undiscovered cancer genes. Then, for each combination of 

methods, we intersected the predicted significant genes with the truth set (negative and positive, 

respectively) to calculate the F1 score 

 

𝐹" = 	2	 ∗ 	(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 ∗ 	𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) 

 

for each combination of methods. We ranked how individual methods performed based on their 

F1  score in all protein-coding cohort runs, after removing cohorts with fewer than 5 true 

positives. In addition, we only included runs with stable F1 scores and 95% confidence intervals 

<0.5 (see below), leaving 33 eligible cohorts. We used the unpaired Two-Sample Wilcoxon rank 

sum test to compare the F1 scores between the different number of methods in combinations for 

the four largest cohorts because of their highest statistical power to discover drivers 

(Adenocarcinoma, Carcinoma, Digestive tract tumors and Pancan-no-skin-melanoma-lymph). 

Confidence intervals (95%) on F1 scores were empirically estimated using 1,000 simulations of 

precision and recall values drawn from beta distributions. Methods were ranked based on 

cohorts with at least five genes in the positive truth set (see above), and F1 scores with 

confidence interval size < 0.5.  



 

 
 11. Genome-wide driver discovery (Federico Abascal, Iñigo Martincorena) 
To ensure that no highly recurrent genomic regions outside the defined functional elements 

were missed by our focused analysis, we searched for an excess of mutations in two additional 

element types: 1) non-overlapping 2-kb bins spanning the entire genome; and 2) 4,351 

ultraconserved regions46, of which only 36% overlapped with our functional element regions. We 

used the NBR negative binomial regression model described above, but without local mutation 

rate covariates because of problems arising in bins close to unmappable regions (e.g., peri-

centromeres). To remove bins containing poor mappability regions, we calculated for each bin 

the number of bases matching the 1000 Genomes Project strict mask 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/accessible_genome_ma

sks/) and/or simple repeats47. Only bins with less than 50% bases overlapping these tracks 

were kept for analysis. In total, we analyzed 1.2M bins covering ~66% of the genome. The set 

of ultraconserved regions (n = 4,351) covers a much smaller fraction of the genome (1.4 Mb, 

0.05% of the total genome), but the shorter length of each region (mean of 325 bp) increases 

sensitivity to detect mutation recurrence. Genomic bin and UCNE analyses were done for all 

cohorts and meta-cohorts with a minimum of 100 samples, and excluding lymphoid tumors 

because of highly prevalent AID off-target activity. P values across all cohorts were globally 

corrected for multiple-hypothesis testing using the Benjamini–Hochberg FDR method. 
 
 
12. Gene expression analyses (Samir B. Amin, Morten M. Nielsen, Andre Kahles, Nuno 

Fonseca, Lehmann Kjong, members of the PCAWG Transcriptome Working Group, and Jakob 

Skou Pedersen) 
 

To extend the RNA-seq–based expression profiling of GENCODE annotations provided by the 

PCAWG Transcriptome Working Group48, we profiled an extended set of gene annotations, 

including a comprehensive set of non-coding RNAs (described above and at 

https://dcc.icgc.org/releases/PCAWG/drivers/expression).  

 

The profiling used a docker-based workflow for 1,180 RNA-seq donor libraries, matched to 

WGS data across 27 different cancer types48. In brief, raw sequence reads from donor libraries 

were uniformly evaluated for QC using FastQC tool, and subsequent alignment was performed 



on QC-passed libraries using two methods: STAR (v2.4.0i)49 and TopHat2 (v2.0.12)50. Resulting 

QC-passed bam files were independently used to quantify extended RNA-seq annotations at 

the gene-level counts using htseq-count method with following parameters: -m 

intersection-nonempty --stranded=no --idattr gene_id. This step resulted in two 

sets of gene-level counts files per donor library which were independently normalized using 

FPKM normalization and upper quartile normalization (FPKM-UQ). The final expression values 

were provided as a gene-centric table (rows as genes, columns as samples) with each value 

representing an average of the TopHat2 and STAR-based alignments FPKM values. Gene-

centric tables based on both, GENCODE and extended RNA-seq annotations are available at 

https://dcc.icgc.org/releases/PCAWG/drivers/expression). Docker-based workflow for 

quantifying extended RNA-seq annotations is at https://github.com/dyndna/pcawg14_htseq.  

 

 
13. Normalization for copy number variation (Henrik Tobias Madsen, Morten Muhlig Nielsen, 

Jakob Skou Pedersen) 

To account for the effects of somatic copy number alterations (CNAs) on expression, we used 

two different approaches to create two additional versions of the expression profiles. First, we 

used a conservative approach wherein we remove all samples not having the regular bi-allelic 

copy number for the gene in question. Second, we used a less conservative approach, wherein 

we first built a regression model of expression data based on copy number (CN) data and then 

tested for an effect of somatic mutations on the residual (i.e., the expression that is not 

explained by copy number). 

 

Generally, the higher the copy number of a particular gene, the higher its expression. The 

relationship between copy number and gene expression is not strictly linear, as various 

feedback mechanisms in the cell try to compensate for the mostly deleterious effects of CNAs. 

This is known as dosage compensation and has been studied extensively in the context of 

mammalian sex chromosomes, but also in evolution of yeast and in diseases caused by 

aneuploidy51–54. We therefore fit a linear regression model between the logarithm of expression 

and the logarithm of CN. This effectively amounts to a power-regression model. 

 

A number of factors makes it difficult to learn the regression parameters for each gene and 

cancer type in isolation: (i) for some cancer types, we have only a limited number of samples; 

(ii) for some genes, there is not much variation in CN; and (iii) the variation in expression 



between samples is generally high. We overcome these problems by employing a mixed model 

strategy that allows sharing of information between genes, effectively regularizing the parameter 

estimates for gene/cancer-type combinations that carry little information on their own. 

 

Let 𝐹𝑃𝐾𝑀8,:,; and 𝐶𝑁𝐴8,:,; denote the expression and CNA measurement respectively for gene 

𝑔in cancer type 𝑐 and sample 𝑖 respectively. We then define: 

𝑙𝑜𝑔𝐹𝑃𝐾𝑀8,:,; = 𝛼8,: + (𝛽 + 𝛾8 + 𝜆8,:)𝑙𝑜𝑔𝐶𝑁𝐴8,:,; + 𝜖8,:,; 

where  and  are fixed effects, whereas  and  are random effects, with  

and . Finally the residual is . 

Using this model we infer a global CNA to expression regression, , but allow some regularized 

gene-specific and gene/cancer type-specific variation:  and .  

Thus, we exploit the similarity across genes and similarity within genes across cancer types. 

 

Since the variance increases with the absolute value of the explanatory variable associated with 

a random slope, this kind of mixed model display heteroskedasticity. Furthermore, the model is 

not invariant under scaling of the explanatory variable, in this case CNA. We centralise 

log(CNA) such that normal diploid regions have the least variance. 

 

 
14. Mutation-to-expression association (Morten Muhlig Nielsen, Henrik Tobias Madsen, 

Jakob Skou Pedersen) 

The fraction of patients with accompanying RNA-seq data varies between cohorts, and thus the 

power to detect if mutations are associated with expression also varies. Overall, 1,190 patients 

(46%) have mRNA expression measurements. We report raw P values for mutation to 

expression association throughout the manuscript since some of the tests have significant 

sample overlap for meta-cohorts. The false discovery rate was controlled with the Benjamini–

Hochberg procedure21 and Q values together withRNA-seq sample counts for each of the tests 

presented in the manuscript can be found in Supplementary Table 10. Expression association 

P values, fold difference values, and RNA-seq sample counts for all candidates with expression 

associated to mutations are presented in Supplementary Tables 4 and 5. 
 

Mutation-to-expression association was evaluated using non-parametric rank-sum based 

statistics on z-score normalized expression values. The use of z-scores equalizes the 



expression means and variances for each cancer type and allows comparisons across cancer 

types. In particular, comparisons of expression between groups of mutated and non-mutated 

(wild-type) samples were evaluated using a two-sided Wilcoxon rank sum test both when 

samples came from a single cancer type or from multiple cancer types, such as the pan-cancer 

cohort or meta-cohorts. No assumptions on the distributions of expression z-scores were made 

given the use of the non-parametric statistics. Tied expression values were broken by adding a 

small random rank robust value.  

 

Mutation-to-expression associations  were evaluated both on the original, raw expression values 

as well as the two copy-number normalized expression sets mentioned above. For the TERT 

promoter, only samples powered to reliably detect mutation status were used. Fold difference 

values were calculated per mutation as the log2 ratio of the expression of the mutated tumor to 

the median of all wild-type tumors of the same cancer type. Reported fold difference (FD) values 

for an element with multiple mutations represent the median fold difference of all mutations in 

that element. 

 

15. Copy number analyses (Esther Rheinbay) 
We surveyed significant focal copy number alterations for candidate driver genes as orthogonal 

evidence for their “driverness”. Significant copy number alterations were obtained from the 

TCGA Copy Number Portal (http://portals.broadinstitute.org/tcga/home), analysis “2015-06-01-

stddata-2015_04_02 regular peel-off”, a database of recurrent copy number alterations 

calculated by the GISTIC2 algorithm55 across > 10,000 samples and 33 tumor types from 

TCGA. GISTIC2 results were included for candidate drivers if a gene was significant (residual Q 

< 0.1) and was located within a peak with ≤ 10 genes. Visualization was performed with the 

Integrative Genomics Viewer (IGV)56.  

 

 
16. Power calculations (Esther Rheinbay, Federico Abascal) 

Estimation of total number of TERT promoter hotspot mutations. Detection sensitivity (d.s.) 

for all patients was calculated for the two most recurrent TERT promoter hotspot sites 

(chr5:1295228, chr5:1295250; hg19) using total read depth at these positions, sample purity, 

and average ploidy57,58. Detection sensitivity distributions (swarmplot/violinplot) were visualized 



with the Python Seaborn package. Allele counts for these positions were generated by MuTect 

v1.1.4, using options --force_output and --force_alleles. For each cohort, the number and 

percentage of powered (≥ 90%) patients was obtained. The number of total expected mutations 

was then inferred as number of observed (called) mutations divided by the fraction of patients 

powered. The number of “missed” mutations is the difference between the total expected and 

observed mutations. Percentages of these numbers were calculated relative to the size of 

individual patient cohorts. Confidence intervals (95%) on the total percentage of patients with a 

TERT hotspot mutation were calculated using the beta distribution. Poisson confidence intervals 

were calculated for the number of missed mutations in the PCAWG cohort. Note that the 

inference of TERT mutations assumes exactly one mutation per patient. Estimates for the 

FOXA1 promoter hotspot mutation (chr14:38064406; hg19) were conducted using the same 

procedure. 

 

Calculation of the minimum powered mutation frequency in a population. Power to 

discover driver elements mutated at a certain frequency in the population were conducted as 

described before26,59, but solving for the lowest frequency for a driver element in the patient 

population that is powered (≥ 90%) for discovery. The calculation of this lowest frequency takes 

into account (i) the average background mutation frequencies for each cohort/element 

combination, (ii) the median length and average detection sensitivity for each element type, 

patient cohort size, and (iii) a global desired false positive rate of 10%. The effect of element 

length is discussed in Supplementary Note 10. 

 
 
17. Associations between mutation and signatures of selection: loss of heterozygosity 
and cancer allelic fractions (Federico Abascal, Iñigo Martincorena) 

For protein-coding sequences, mutation recurrence can be analysed in the context of the 

functional impact of mutations (e.g., missense, truncating) to better distinguish the signal of 



selection. In contrast, estimating the functional impact of mutations in non-coding elements of 

the genome is a difficult, yet unsolved problem. To overcome this limitation and be able to 

compare selection signatures for both coding and non-coding elements under a similar 

framework, we developed two measures of selection which are agnostic to the functional impact 

of mutations. 

 

Association between mutation and loss of heterozygosity 

When a tumor carries a driver mutation in one allele of a given gene, it may be the case that a 

second hit on the other allele confers a growth advantage and is positively selected. When one 

of the events involves the loss of one of the alleles, the process is referred to as loss of 

heterozygosity (LOH). This kind of biallelic losses are typical of, but not exclusive to, tumor 

suppressor genes (TSGs).  

 

For each gene, we build a 2x2 contingency table indicating the number of cases in which the 

gene was mutated or not and the number of cases in which the gene was subject to LOH or not. 

We applied a Fisher’s Exact test of proportions to identify which genes showed an excess of 

LOH associated to mutation. P values were corrected with the Benjamini-Hochberg FDR 

method to account for multiple hypotheses testing. This analysis was applied to each cohort 

separately and proved very successful in identifying TSG as well as some oncogenes (OGs). 

 

Association between mutation and cancer allelic fractions 
Driver mutations that provide an advantage for tumor cells are expected to show higher allelic 

fractions based on different interacting processes, including: early selection; amplification of the 

locus carrying the driver mutation; and loss of the non-mutated locus (LOH). Comparing cancer 

allelic fractions (CAF) can be informative to detect signatures of selection, both for TSGs and 

OGs. 

 

CAFs are defined here as the proportion of reads coming from the tumor and carrying the 

mutation. To transform observed fractions (VAFs) into CAFs, tumor purity and local ploidy need 

to be taken into account according to the following formula: 

 

CAF = VAF * (Lp * Pt + 2 * (1 - Pt)) / (Lp * Pt)  

 



Where Lp corresponds to the local ploidy for the mutated locus, and Pt denotes the tumor purity. 

Ploidy and tumor purity predictions were obtained from Gerstung et al57. 

 

To determine whether CAFs for a given gene or element were higher than expected we 

compared them to the CAFs observed in flanking regions. To define flanking regions, we took 2 

kb at each side of the gene/element, excluding any eventually overlapping coding exons, but 

included introns (if present). The two sets of CAFs associated to each gene/element, i.e., those 

CAFs lying within the gene/element and those flanking it, were compared with a t-test to detect 

significant deviations. P values were corrected with the FDR method. This approach was able to 

identify most known TSGs and OGs. 

 

 

18. Estimation of the number of driver mutations in non-coding regions of known cancer 
genes (Federico Abascal, Iñigo Martincorena) 
We conducted a series of analyses on regions combined across genes to determine whether 

the paucity of driver mutations found in non-coding regions was related to lack of statistical 

power in single-gene analyses. For protein-coding sequences, the number of driver mutations 

was estimated using dN/dS ratios as described in (Ref 22). For non-coding, regulatory regions of 

protein-coding genes (promoter and UTRs), we relied on a modified version of the NBR 

negative binomial regression model described above to quantify the overall excess of driver 

mutations. We applied a second approach to determine whether there was an enrichment of 

LOH associated to mutations in the different types of non-coding regions associated to protein-

coding genes. 

 

Observed vs. expected numbers of mutations based on the NBR mutation model 
NBR was used to estimate the background mutation rate expected across cancer genes, using 

a conservative list of 19,082 putative passenger genes as background. The resulting model is 

used to predict the numbers of passenger SNVs and indels expected by chance per element 

type per gene, and to aggregate sums across genes. For this analysis we used the curated list 

of 603 cancer genes from the Cancer Gene Census45 (CGC v80; Supplementary Table 7). To 

be as accurate as possible, we used a diverse set of covariates in the NBR model, including: 

local mutation rate (estimated on putative neutral regions +/- 100 kb around each gene), gene 

expression covariates (first 8 principal components of the matrix of average gene expression 

values in each tumor type, as well as two binary variables marking the 500 genes with highest 



expression values in any tumor and 1,229 genes with a maximum FPKM lower than 0.1 across 

tumor types), and averaged copy-number calls for each gene across all samples (see 

Supplementary Note 12 for more details). To reduce systematic biases, we removed samples 

with detection sensitivity (d.s.) problems associated to GC sequencing biases. Our d.s. 

estimates at the two main TERT hotspots revealed large variability in the d.s. between cases 

(Extended Data Fig. 10d). We thus required samples to have d.s. > 90% in both TERT 

hotspots, resulting in a set of 1,112 samples. We also removed hypermutators (>50,000 

mutations/genome), and restricted the analysis to the Pancan-no-skin-melanoma cohort. The 

final set contained 936 samples and showed much better d.s. within promoter regions without 

significant differences in d.s. across element types (Extended Data Fig. 10e; Supplementary 
Note 12). 

 

For each element type, the sum of observed mutations across the 603 cancer genes was 

compared to the sum of the expected rates to estimate the excess of mutations in regulatory 

and coding regions of cancer genes. An excess of observed mutations provides an estimate of 

the number of driver events22. Note that 5’UTRs and promoter definitions are partially 

overlapping, and so estimates of the numbers of driver mutations in these elements are not 

independent. Confidence intervals were calculated using the binomial approach for the ratio of 

two Poisson observations (poisson.test function in R), which are the number of mutations in the 

list of known cancer genes and in the list of passenger genes. It is important to know that these 

confidence intervals do not capture uncertainty in the assumptions of background model and 

should be interpreted with caution. For this reason, we systematically evaluated the impact of a 

diverse array of covariates on our estimates (Supplementary Note 11). We also note that this 

test can underestimate the number of non-coding drivers since some driver mutations can be 

present in the list of putative passenger genes, although this effect is expected to be 

quantitatively small if the density of driver mutations in regulatory regions of known cancer 

genes is higher than in those of putative passenger genes. 

 

Mutation-LOH association for aggregates of genes 

For this analysis, we combined data across known cancer genes, including 603 genes in the 

CGC and 154 additional significantly mutated genes found by exome studies22,26. To estimate 

whether there was an excess of LOH associated to mutation in regulatory and coding regions of 

cancer genes, we calculated the fold change in LOH for the aggregate of cancer genes and 

normalized it dividing by the fold change observed in passenger genes. Confidence intervals 



were estimated using parametric bootstrapping (100,000 pseudoreplicates) for both cancer and 

passenger genes. 

 
19. Mutational process and indel enrichment (Federico Abascal, Iñigo Martincorena) 

For every protein-coding and long-noncoding gene in the genome, we record the proportion of 

indels of length 2–5 bp out of the total number of indels and compared this proportion with the 

background proportion using a binomial test. The background proportion was calculated using 

all protein-coding and lncRNAs genes. For every gene, we also calculated the indel rate and 

compared it to the background indel rate using a binomial test. Both sets of P values were 

independently corrected with the FDR method. The analysis was done for each tumor type 

separately. Genes with a Q value < 0.1 both for enrichment in 2–5 bp indels and for higher indel 

rates were further analyzed as candidates to be under the process of localized indel 

hypermutation described in this study. The levels of expression of these genes were analyzed 

across all tumor types. The hits SPRN, CCDC152 and RP11-1151B14.3 (all in Liver-HCC) were 

not highly expressed. Rather, the signal of indel enrichment appeared to come from their highly 

expressed neighbouring genes CYP2E1, SEPP1, and MIR122, respectively. 

 
 
20. Structural variation analysis (Morten Muhlig Nielsen, Lars Feuerbach) 

Structural variant data was provided by the PCAWG Structural Variation Working Group60. The 

data provide P values for the observed breakpoint counts in 50kb bins along the genome. 

Candidate elements were overlapped with the bins, and Fisher’s method was used to calculate 

a single P value for each element. The set of element P values were corrected with the FDR 

method. 

 
 
21. RNA structural analysis (Radhakrishnan Sabarinathan, Ciyue Shen, Chris Sander, Jakob 

Skou Pedersen) 

In order to test if the observed mutations (SNVs) in the RMRP gene are biased towards high 

RNA secondary structure impact, we performed a permutation test by following the steps used 

in oncodriveFML32 together with the predicted structural impact scores from RNAsnp61. At first, 

the RNAsnp was run with the options -m 1 -w 300 and other default parameters to obtain the 

minimum correlation coefficient (r_min) score for each possible mutations in the RMRP gene. 

The r_min scores were then transformed, 1-((r_min+1)/2), to range between 0 and 1, where 1 



indicates high structural impact score. Further, we followed the steps of oncodriveFML (see 

above) with 1,000,000 randomizations and using per sample mutational signatures (i.e., the 

probability of observing a mutation in a particular trinucleotide context in a given sample) to 

compute the P value at the cohort and sample level. 

 

Furthermore, the RNA secondary structure impact scores (r_min) of indels were computed by 

using a modified version of RNAsnp (since the current version of RNAsnp is limited to 

substitutions only). Briefly, we first computed the base pair probability matrices of wild-type and 

mutant sequences (by taking into account the insertion or deletion) and then adjusted the size of 

matrices to be equal (by introducing additional rows and columns with zeros in one of the 

matrices with respect to insertion or deletion). Further, by following the steps of RNAsnp, we 

computed the r_min score. The structure shown in Extended Data Fig. 5c is based on the 

conserved secondary structure annotation obtained from Rfam (RF00030)62. 

 

Tertiary structure contacts in RMRP were predicted using evolutionary couplings co-variation 

analysis (EC analysis63) of the multiple sequence alignment of 933 eukaryotic RMRP sequences 

from Rfam (RF00030). The EC analysis (software available at 

https://github.com/debbiemarkslab/plmc) was run with the options -le 20.0, -lh 0.01, -t 

0.2, -m 100 and the top 100 interactions were chosen as predicted contacts, either in 

secondary or tertiary structure, depending on local context. As no experimental 3D structure or 

cross-linking experiments of the mammalian RMRP are available, interaction sites were inferred 

by homology to the partially known yeast RMRP crystal structure. We (1) aligned the human 

RMRP sequence with the Saccharomyces cerevisiae RMRP sequence using the sequence 

family covariance model from Rfam and (2) mapped the locations of RNA-protein interactions 

within 4Å64 from the crystal structure and the experimentally determined RNA-protein 

crosslinking sites65, and RNA substrate crosslinking sites66 from the yeast sequence to the 

human RMRP sequence. For the crosslinking sites, a ±3 nucleotide window is reported as the 

interaction site. In order to test if the locations of the observed indels are biased towards tertiary 

structure, protein- or substrate-interaction sites, 1,000,000 randomizations of five indels were 

performed assuming uniform distribution of indels across the RMRP gene body, and an 

empirical P value was calculated. 

 

Two different overlapping deletion calls in the RMRP gene body were observed in the same 

thyroid cancer patient. After manual inspection of the tumor and normal bam files, it was found 



that these calls were based on the same mutational event, and only one was included in the 

above analysis.  
 
 
22. Cancer associated germline variant distance to non-coding driver candidates (Morten 

Muhlig Nielsen) 

We used a set of genome-wide significant cancer associated germline SNPs (n = 650) from the 

NHGRI-EBI GWAS catalog67 as collected by Sud et al.68. We evaluated the genomic distance 

from candidate non-coding drivers to the closest germline variant. All distances were above 50 

kb with the exception of the TERT promoter, which was 1 kb away from a coding variant 

(rs2736098) in the TERT gene.  

 

 
23. Assessing the significance of somatic rearrangement breakpoints (Jeremiah Wala, 

Marcin Imielinski, Ofer Shapira, Kiran Kumar, Rameen Beroukhim) 

 Modeling breakpoint counts with a Gamma-Poisson regression model 

 

2,693 samples from PCAWG were included in the structural variation analysis, of which 2,605 

had at least one structural variant. This includes 110 cases (mostly acute leukemias) that were 

deemed suboptimal for point mutation calling, but were suitable for breakpoint analysis. 

 

To model the background rate of somatic breakpoints, we first established a discrete coordinate 

system on which to evaluate genomic covariates and breakpoint counts. We binned the genome 

into 50 kb bins, with 1 kb of overlap between bins to reduce edge effects, which produced 61,920 

loci. Complex events with many tightly clustered breakpoints could dominate the breakpoint count 

at a single bin and cause an overestimation of the prevalence of breakpoints at those loci. To 

account for this, we only considered one breakpoint per sample per locus. After removing locus-

sample duplicates, 336,496 breakpoints (55% of all breakpoints) were counted within our model. 

The number of breakpoints per bin ranged between 0 and 119, with a median of 5.0 and mean of 

6.1. A large majority of bins (90.0%) of bins contained 20 or fewer breakpoints, and 2.6% 

contained zero breakpoints. The model was robust to varying the bin size. When we increased 

the bin size an order of magnitude to 500 kb, we found 25 significant loci, 21 of which overlapped 

with the significant loci from the 50 kb model (Supplementary Table 17). 



The detected rate of breakpoints across the genome is also confounded by the mapping quality 

within a locus. Rearrangements in regions that are difficult to align to (e.g. alpha-satellite 

repeats) were rejected by our variant callers, leading to a relative depletion of events in regions 

with low mappability. To control for this effect, we use the concept of “eligible territory” from 

Imielinski et al69, and normalized the breakpoint counts within each locus by the number of 

bases eligible for breakpoint detection. To establish an eligible territory, we used the “universal 

mask” described in Li 201470 and used in Imielinski et al69 

(https://data.broadinstitute.org/svaba/um75-hs37d5.covered.bed). Briefly, this mask filters 

regions of low mappability, low complexity, and sites of unusually high numbers of aberrant SNV 

calls from the 1,000 Genomes Project. 

 

The distribution of breakpoint frequencies per bin was widely over-dispersed for a Poisson 

regression model (Supplementary Fig. 8a). We used Cameron and Trivedi’s Overdispersion 

Test (AER::dispersiontest in R-3.4.3) to determine the dispersion parameter alpha (equivalently 

parametrized as 1/theta), which is zero in a true Poisson regression model. The resulting alpha 

of 0.31 (P < 2.2 x 10-16) suggests a Gamma-Poisson (GP) fit to the data (or equivalently, a 

negative binomial). We therefore elected to model the breakpoint frequencies using a GP 

regression model, where the log of the expected value of the breakpoint counts per bin could be 

modeled as a linear combination of genomic covariates within each bin and a hyperparameter 

allowing for extra variance of the breakpoint counts, adapted from the model for SNVs and indels 

from Imielinski et al69, and specified as: 

𝐵;~𝐺𝑃H𝑤;𝑒JKLKM , 𝜃O 

where wi is the eligible territory of locus i, Bi is the breakpoint count at locus i, xji is the matrix 

describing the values of covariate j at locus i, and (theta) is a single scalar representing the shape 

parameter of the distribution. The regression coefficients (beta) were then found by maximum 

likelihood estimation using MASS::glm.nb in R-3.4.3 which utilizes the NB2 parameterization of 

the GP function. The source code for the GP model is available at 

https://github.com/mskilab/fish.hook. See Supplementary Note 6 for further benchmarking of the 

GP model. 

  

Genomic covariates that predict breakpoint frequencies 

We hypothesized that local sequence features (e.g., density of repetitive elements), replication-

timing, chromatin state, epigenetic modifications, and other genomic features, could be predictive 

of breakpoints rates within our GP model. We therefore fit our GP model using both “interval” 



covariates that indicate genomic regions (e.g., SINE elements), and “numeric” tracks that indicate 

values (e.g., GC content) associated with genomic regions. The complete list of genomic 

covariates and their coefficients are listed in Supplementary Table 13. 

Assessing the significance of loci with high breakpoint rates 

We used the full GP model to estimate the background rates for each locus and to calculate the 

probability that ci or more events would be observed at locus i. The count data ci is restricted to 

a non-negative integer, and the probabilities will be a slight overestimate of the true value. To 

correct for this, we use the procedure employed in Imielinski et al69 to select a random 

probability from a uniform distribution between the probability of observing ci breakpoints and 

the probability of observing ci + 1 breakpoints. To correct for multiple hypothesis testing, we 

calculated the false discovery rate (FDR) using the Benjamini–Hochberg method21. The 

significant loci were defined as those with an FDR of < 10%. We created a final significant loci 

list by joining significant loci and their intervening regions if they were separated by fewer than 1 

Mbp. Analysis of the P values and quantile–quantile plot (Supp. Fig. 8c) shows a uniform 

distribution without apparent biases of P values. 

 

We next attempted to determine which breakpoints at each significantly recurrent locus were 

themselves likely driver rearrangements. We noted that the breakpoint counts at many loci were 

dominated by rearrangements from a small subset of tumor types, suggesting that the 

rearrangements in these tumor types were drivers. Some rearrangements from other tumor types, 

however, would often also be seen at background rates expected for these tumor types. We 

therefore calculated an enrichment P value (binomial test) that tumor type T was enriched at that 

locus: 

𝑝P = 1 −ST
𝑛
𝑖 U
𝑟P; (1 − 𝑟P)VW;

X

;YZ

 

where k is the number of breakpoints from tumor type T intersecting the locus, n is the total 

number of breakpoints intersecting the locus, and rT is the fraction of breakpoints from tumor 

type T within the entire PCAWG cohort. Using this enrichment score, we considered as driver 

rearrangements only rearrangements from the most enriched tumor-type and any tumor-type x 

with log(px/ptop) < 3. 

 

Comparison of recurrent breakpoint loci with significantly recurrent SCNAs and known fusions 

Commented [MOU1]: Note	that	I	changed	the	“n-1”	at	
the	exponent	at	the	end	to	“n-i”	which	I	believe	to	be	the	
correct	equation.	



We compared the significantly recurrent breakpoint loci with sites of significantly recurrent SCNAs 

obtained from GISTIC255 analyses and the COSMIC71 cancer database curated list of gene 

fusions in cancer (http://cancer.sanger.ac.uk/cosmic/fusion). Recurrent breakpoint loci that 

overlapped a GISTIC peak region (deletion or amplification) from either the pan-cancer 

(all_cancers) analysis or any tumor-type specific analysis were considered as representing a 

recurrent SCNA. Recurrent fusions were considered supported by the literature if the two loci 

involved in the recurrent fusion overlapped both genes from an entry in the COSMIC fusion 

database. 

 

 
24. Classification of rearrangement patterns at sites of recurrent breakpoints (Jeremiah 

Wala, Joachim Weischenfeldt, Rameen Beroukhim) 

To predict the functional effects of the recurrent breakpoint loci, we scored each locus based on 

its pattern of rearrangements and genomic covariates. For each rearrangement containing a 

significantly recurrent breakpoint, we calculated the rearrangement dispersion (RD) score, which 

we defined as the median absolute deviation (MAD) of the breakpoint-breakpoint distance (or 109 

for inter-chromosomal rearrangements) divided by the median breakpoint-breakpoint distance, 

considering rearrangements within enriched tumor-types at that locus (see above). For inter-

chromosomal rearrangements, we evaluated only rearrangements to the most frequent 

chromosome. Rearrangements at sites of known recurrent oncogenic fusions exhibited low RD-

scores (e.g. IGH-BCL2, RD-score: 0.01), while breakpoints at known fragile and driver SCNA 

sites exhibited a high RD-score. Hartigans’ dip-test (in R v3.3 - diptest::dip.test) supported a non-

unimodal distribution (P = 0.02) with a discriminant of 0.07. The RD score for all significant loci is 

listed in Supplementary Table 14. Recurrent breakpoints with RD < 0.07 were classified as 

supporting fusion-type driver events. For each recurrent breakpoint locus not classified as fragile-

type or fusion-type, we classified the locus as amplified, deleted, or neutral by whether it 

overlapped with a known GISTIC peak, or had a significantly higher mean tumor–normal read-

depth ratio within the region compared with the surrounding region. 

  



25. Assessing the significance of somatic juxtapositions (Ofer Shapira, Jeremiah Wala, 

David Craft, Marcin Imielinski, Kiran Kumar, Joachim Weischenfeldt, Rameen Beroukhim) 
 
We used a linear combination of two models to predict the density of juxtapositions. The first 

hypothesizes that the background probability is 𝑝;[\; = 𝑞;𝑠;[ + 𝑞[𝑠[;, where qi is the marginal 

probability of a rearrangement initiated in locus i, and sij is the conditional probability that a break 

at i will connect to site j. Since we cannot distinguish between the start and end sites, we also add 

the reciprocal term, to yield a probability proportional to the local rate of retreatments connecting 

sites i and j. The marginal of the start site, qi, is determined from the empirical breakpoint density, 

Ri, by applying preconditioned conjugate gradient descent optimization to the following problem: 

𝑞; +S𝑞[𝑠[;
[

= 𝑟;				∀𝑖 

S𝑞;
;

= 1 

𝑞; ≥ 0					∀𝑖	 

 

The conditional probability matrix is determined from the empirical distribution of rearrangement 

spans distances between paired breakpoints. The second model hypothesizes that the 

background probability is 𝑝;[a\ = 𝑟;𝑟[𝑙;[, where ri and rj are the breakpoint densities and lij is a span 

factor connecting sites i and j found by solving the following constrained nonlinear optimization 

problem: 

 

𝑎𝑟𝑔𝑚𝑖𝑛cd 	eSf𝑓(𝑟;𝑟[𝑙;[) − 𝑙fh
;

i 

S𝑟[𝑙;[
[

= 1				∀𝑖 

The function f transforms the probability matrix to a span distribution function corresponding to 

the empirical distribution, l. Explicitly, the elements of lij take values corresponding to the distance 

between loci i and j and are given by l’, a vector that maps the distance |i-j| to a value in R. In this 

analysis, both l and l’ are discrete numerical vectors with 10 elements each. The function f than 

calculates the global span distribution by drawing rearrangements from the distribution 

𝑝;[ 	= 	𝑟;𝑟[𝑙;[ and binning their span. This value is generally different than l’. To construct the 

probability matrices of the break-invasion, 𝑝;[\;, and double-break join, 𝑝;[a\,models, we divided the 

genome into bins containing a target of 100 rearrangements per bin. To avoid cases in which a 



cluster of rearrangements is divided into two bins, we imposed a minimal distance between 

breakpoints of 2 kb; if a bin boundary falls between two breakpoints not meeting this condition, 

the bin is extended until the condition is met. The normalized distribution of number of breakpoint 

is the parameter ri used to construct the two models. After binning the genome, we constructed 

the rearrangement matrix, kij, by assigning each rearrangement in our dataset to a tile. Each 

sample was only allowed to contribute up to one rearrangement per tile. 

 

The overall background rate of events is therefore represented by 𝑝;[ = 	 𝛼X𝑝;[\; + (1 − 𝛼X)𝑝;[a\, 

where the linear combination is taken over a set of weighting parameters 𝛼X. We chose to use 

the distance between breakpoints (span) as a natural choice for the weighting parameters in this 

two-dimensional genomic representation. We divided the 2D space into short (≤1 Mbp), long (>1 

Mbp), and inter-chromosomal translocations, and obtained the values of 𝛼X by minimizing the 

Bayesian Inference Criteria (BIC). A list of recurrent rearrangements for the long subset was then 

generated by calculating a P value in each tile with a binomial test statistic against kij, followed by 

control of multiple hypotheses using the Benjamini–Hochberg FDR procedure at a threshold of 

0.1 and a minimum count of two rearrangements per tile.  

 

 

26. Annotation of potential functional effects of rearrangements (Jeremiah Wala, Ofer 

Shapira, Nikos Sidiropoulos, Joachim Weischenfeldt, Rameen Beroukhim) 

We annotated the potential functional effects of each rearrangement based on the locations and 

orientations of its breakpoints. Gene definitions for genome build hg19 were obtained from the 

UCSC Table Browser72. Rearrangements were evaluated for whether they could produce a 

possible in-frame sense fusion transcript. The CCDS database73 from hg19 was obtained from 

the UCSC Table Browser. With the CCDS intervals, breakpoints contained within a gene were 

annotated by which intron or exon they overlapped with, and the coding frame (1,2, or 3) of the 

first exon opposite the direction of the breakpoints. Candidate fusions were called as in-frame and 

sense if 1) the relative orientations of the breakpoints and directionality of the gene resulted in a 

potential sense fusion and 2) the two breakpoints were in the same coding frame. 

 

We used a classification scheme described in our companion paper60 to segregate 

rearrangements according to likely shared mechanisms of formation. We considered five major 



classes of rearrangements: isolated deletions, inversions, tandem duplications, interchromosomal 

translocations, and complex rearrangements. 

 

Breakpoint association with gene expression in cis 

To identify SRBs associated with nearby gene expression change, we applied CESAM which 

integrates rearrangement-derived breakpoints with RNA-seq data (FPKM-UQ) to identify 

expression changes associated with breakpoints in cis, as previously described74. In brief, 

normalized RNA-seq expression is regressed on a rearrangement breakpoint matrix, using tissue-

type, total number of rearrangements, and first principal components of the breakpoint matrix as 

covariates. Expression data was dosage-adjusted prior to the analysis by normalizing the 

expression level of each gene (FPKM-UQ) to the copy number level of the gene in each tumor 

sample. This was done to remove effects due to copy-number dosage effects, i.e., not attributable 

to cis-effects. Only breakpoint bins with at least three tumors having associated RNA-seq data 

were evaluated. To assess whether SRB-CESAM hits were associated with juxtaposition of 

normally distant enhancer elements, the distal breakpoint of a rearrangement (relative to the 

breakpoint closest to the SRB centroid) was intersected with tissue-matched enhancer regions15 

with a window of +/- 20 kb. Significance was assessed by random shuffling of breakpoint positions 

on the mappable genome (alpha < 0.1).  

 

The pan-cancer association between copy number-adjusted gene expression changes of CESAM 

hits with breakpoints was assessed by computing the average of copy number-adjusted gene 

expression fold-change for each histology type to alleviate cell-type specific biases in gene 

expression.  

 

Rearrangement types and effect on expression, enhancer-distance, and TSGs 

For each cluster of rearrangements, the genomic centroid position of the breakpoints was used 

to identify the most deregulated gene within a window of +/- 1 Mb of the centroid. Fold-change 

expression was calculated as the ratio between the median of gene expression for tumor samples 

with (SV+) versus without (SV-) a breakpoint at the cluster. A randomized background set was 

calculated for each cluster by random sampling (n = 1,000) a breakpoint from the complete set of 

rearrangement and computing fold-change as above with the same set of SV+ and SV- samples. 

This was done to remove sample-specific biases in gene expression levels. 

 



The distance to the nearest tissue-specific enhancer was computed as described above. Briefly, 

when available, we matched the tissue of origin from the tumor to the cell type from the enhancer 

track. Where no match was available, we compared the breakpoints with the complete enhancer 

set across cell types. 

 

Biallelic inactivation events 

To identify tumor suppressor two-hit events, we defined biallelic inactivation as a gene locus GA/B, 

where alleles A and B are genetically altered, leading to a genetic Gmut/mut state. The biallelic 

inactivation assessment includes three genetic inactivation event types consisting of somatic or 

germline deletions (“Loss”), somatic or germline SVs (“Break”), and somatic or germline SNVs 

(“Mutation”). Given a heterozygous GA/B locus, we required a loss of the A allele of the gene, 

leading to a hemizygous G-/B state, and genetic inactivation of the remaining B allele, specifically 

requiring the second event to overlap the loss on the A allele, leading to biallelic inactivation. We 

considered four classes of biallelic inactivations: i) Loss/Mutation, nonsynonymous driver 

mutations of the B allele; ii) Loss/Loss, two deletion events that overlap an exon and the copy-

number derived allele count is 0 both for A and B allele; iii) Loss/Break, SVs where one or both 

breakpoints are situated in an exon of the B allele; and iv) Mutation/Mutation, a nonsynonymous 

germline SNV and a nonsynonymous driver somatic SNV of the same gene. We infer the germline 

mutation to occur on the A allele and the somatic mutation on the B allele, with the assumption 

that two independent driver mutation events are highly unlikely to occur on the same allele 

(https://bitbucket.org/weischenfeldt/biallelic_inactivation). Only curated tumor-suppressor genes 

were assessed. Enrichment of biallelic inactivation for each rearrangement cluster type was 

assessed by comparing the frequencies to a permuted set (Fisher’s Exact test, n = 1,000), 

showing enrichment of biallelic inactivation at deletion-type (P < 0.005), neutral-type (P < 0.001) 

and fragile-type (P < 0.001), and depletion of amplification-type (P < 0.001) and fusion-type (P < 

0.001) rearrangement clusters. 

 

SV portal for visualisation of SV recurrence 

SVscape is an interactive R Shiny server build for browsing structural variant and breakpoint 

distribution along user defined genes or genomic loci. 1D breakpoint enrichment P values are 

estimated by Fisher’s Exact test, and asterisks denote significant 2D rearrangements involving 

the given locus. SVscape is available as a public instance at www.svscape.org and can be 

downloaded and deployed locally at www.bitbucket.org/weischenfeldt/svscape.git. 

 



27. Power calculations for rearrangements (Ofer Shapira, Kiran Kumar) 

To analyze the number of tumor–normal pairs needed to reach saturation in the detection of 

fusions, we employed a binomial power model26. We defined a null distribution, HNULL ~ Binomial 

(N, pNULL) where pNULL ~ 1 - (1 - p90)m, is the probability of a patient having at least one 

rearrangement, p90 is the 90th percentile value of pij from our background model probabilities, and 

m is the median number of rearrangements per sample. The two-dimensional genomic fusions 

map was divided into 100 x 100 Kbp tiles in this power analysis. 

 

We performed the analysis first as a function of the distance between breakpoints with median 

number of rearrangements per sample of the entire cohort (Extended Data Fig. 10a). The second 

analysis was performed as a function of the median number of rearrangements per sample, 

spanning values represented by the ICGC histologies with more than 15 samples (Fig. 4b). For 

each total number of tumour–normal pairs, N, the general procedure involved: 1) finding the 

minimal number of patients needed to reach significance level ---of P < 0.1/(# of tiles) based on 

Hnull; 2) using this value, calculating the minimal rate above background, r, that yields 90% power 

of the alternative distribution, Halt ~ Binomial(N, pnull + r); and 3) calculating contour lines of 

constant value rates above background. 
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