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1. Overview of uncategorized non-coding hotspots in top 50 
Six of the 35 non-coding hotspots, among the top 50, are not assigned to the mutational 

processes described in the main text (2 in the top 25 hotspots, Fig. 1a; 6 in the top 50 hotspots,  

Extended Data Fig. 1b). Below we describe these six hotspots in detail. 

 

Four of the six remaining non-coding hotspots were found on the X chromosome (X:116579329, 

X:7791111, X:83966025, and X:83967552). The mutations in these hotspots were mainly 

contributed by males (61–94% of mutations per hotspot), suggesting the possibility of 

uncharacterized noise. Two of these hotspots (X:83966025, and X:83967552) are located in a 

self-chain region, where two stretches of approximately 400 bp (1000 bp apart) match each 

other except for 6 positions. All six of these positions have mutation calls in either or both of the 

regions. All but one of the 85 mutations in these positions match the reference base from the 

opposite region. Another one of these hotspots is located in palindromic DNA (X:7791111). The 

DNA sequence around this position is composed of two mononucleotide repeats of pairing 

bases (ATTTTTAAAAAAAAAT), which fits our definition of palindromic structures (Methods). 

The sequence context around this hotspot do not match the sequence recognized by APOBEC 

enzymes1,2, and the hotspot had a low APOBEC signature probability (Fig. 1a; Extended Data 
Fig. 1b). It is therefore unlikely to be caused by the same mutational processes as the other 

palindromic hotspots in the top 50 hotspots, but rather likely represents noise associated with 

homopolymer runs (PCAWG variants paper). The last of these hotspots (X:116579329) has a 

median cancer allele fraction (CAF) of 0.21 (Methods), compared to a median CAF of 0.97 in 

the surrounding mutations in these patients. Generally, a CAF of one is expected on the X 

chromosome in males unless there are changes in ploidy in the region. The low CAF is thus 

consistent with a low frequency of mismatches caused by misaligned reads. 

 

A hotspot (3:164903710) contained mutations in multiple cancer types, with most mutations 

contributed by Liver-HCC (6/17). It is located about 1 kb downstream of SLITRK3, two base 

pairs from an annotated CTCF transcription factor binding site. CTCF sites and the base pairs 

immediately downstream are known to be highly mutated in several cancer types including 

Liver-HCC. This position is lowly conserved, suggesting that it would not have a functional 

impact3,4. 

 

The last non-coding hotspot (1:103599442) had a high proportion of mutations attributed to the 

SBS5 signature. It overlaps a repetitive LINE region, suggesting potential mapping issues. 



Moreover, the position is flanked by two other positions, two base pairs away in both directions, 

which also have mutations in the same samples and reads; however, these positions were 

called problematic in the Panel-of-Normals (PoN) filter, further suggesting mapping issues. 
 
2. P value distributions under the null hypothesis for discrete statistics 
When using continuous test statistics, the P value distribution under the null hypothesis is 

expected to follow a uniform distribution. However, when using discrete statistics (such as a 

function of the number of mutations in an element), with low counts, P values under the null can 

yield QQ plots with a point mass at P value = 1 (e.g., for elements with zero mutations), and the 

rest of the distribution below the diagonal, approaching it for small P values5,6. Thus, well-

calibrated methods are expected to show QQ plots with values below the diagonal, in line with 

the results shown in Extended Data Fig. 11. In other words, discrete test statistics lead to sub-

uniform distributions under the null (Pr[Pi ≤ t | H0] ≤ t). For exactly this reason, the Benjamini–

Hochberg method is still applicable to discrete data, although the resulting Q values will be 

conservative55,6. We note, however, that slightly conservative Q values are not undesirable in 

this study. 

  

These considerations still apply to the integrated P values, at least under usual conditions. As 

described in Methods S7, Fisher’s method uses the product of P values to calculate a statistic 

that follows a Chi-squared distribution (X2 ~ -2Σln(p)). Thus, when using conservative P values, 

the resulting X2 statistic will be lower than that under non-conservative P values, resulting in a 

conservative integrated P value distribution. Brown’s method is an extension of Fisher’s method 

and thus will likely yield conservative P values, although the data-driven estimation of the 

covariance matrix between methods introduces some uncertainty. Nevertheless, the 

performance analyses shown in Extended Data Fig. 3 reveal that the integrated approach 

performs well across datasets and tends to outperform individual methods, in terms of overall 

sensitivity and specificity. 

  



3. Calibration of systematic element filters 
The performance of the driver discovery methods depends on how well their null models 

capture the mutational processes at play. Some mutational processes are hard to capture 

accurately. This includes localised mutational processes that affect some regions more than 

others. When localised mutational processes, not included in the null models, affect a given 

region and contribute significantly to the observed mutations, the region may be called as a 

false positive by the driver discovery methods. Though regions affected by localised mutational 

processes may be true drivers, it is challenging to distinguish them from neutral regions with 

passenger mutations, which a priori are expected to dominate.  

 

To take a conservative approach, we identify and filter elements if a substantial amount of the 

mutations appear to be derived by localized mutational processes. This approach is applied to 

(i) activation-induced cytidine deaminase (AID)-derived mutations in lymphoma samples; (ii) UV-

derived mutations in melanoma; and (iii) APOBEC-derived mutations in all cohorts. 

 

For the lymphoma cohorts, we first apply a threshold for calling mutations as AID based on the 

distribution of AID signature probabilities for all lymphoma mutations (Supplementary Fig. 1a). 

We next investigate what fraction of elements would be filtered at a given threshold for the 

fraction of permitted AID mutations (Supplementary Fig. 1b). The chosen threshold is trade-off 

between maximizing the number of filtered elements overlapping a set of known AID off-target 

regions7 and minimizing the number of filtered coding elements in the Cancer Gene Census8 

(CGC).  

 

A similar approach was used for melanoma mutations (Supplementary Fig. 2) to provide a filter 

for localized UV mutations known to be enriched in sites escaping nucleotide excision repair9,10, 

and for mutations in all cohorts to provide a filter for mutations caused by APOBEC enzymes 

(Supplementary Fig. 3).  

 

Given that APOBEC editing appears to target DNA-level palindromic sequences in several 

cases1,11, we evaluated if SNVs in driver candidate RNA genes with palindromic sequences 

(RMRP, RPPH1, RNU5A-1, RNU6-573P, and mir-142) could be explained by APOBEC editing. 

Only 9.7% of SNVs had posterior APOBEC probability >0.5, suggesting that APOBEC editing 

contributed only a small fraction of their SNVs. 

 



 
Supplementary Figure 1: a, Top: distribution of AID signature probability for mutations in all 

tested elements divided into element types. The AID call threshold (0.5) used for mutations is 

indicated with a gray line. Middle: The relative distribution among element types. Bottom: AID 

signature probabilities for mutations in significant (Benjamini–Hochberg FDR Q < 0.1) elements 

(67% mutations above threshold), in significant known cancer elements from CGC (44% 

mutations above threshold), and in known AID off-target promoter elements (76% mutations 

above threshold). b, Top: Fraction of elements passing the AID filter at different thresholds of 

permitted AID called mutations. (fraction filtered: 57% significant elements; 27% significant 

known cancer elements; 100% AID off-target promoter elements). A gray line indicates the filter 

threshold (0.35). Bottom: Fraction of AID mutations in elements as defined in (a). 

 

 

 



 
 
Supplementary Figure 2: a, Top: Distribution of UV signature probabilities for mutations in all 

tested elements divided into element types. The UV call threshold (0.9) used for mutations is 

indicated with a gray line. Middle: The relative distribution among element types. Bottom: UV 

signature probabilities for mutations in significant (Benjamin–Hochberg FDR<0.1) elements 

(86% mutations above threshold), in significant known cancer elements (71% mutations above 

threshold), and in regions escaping repair of UV induced damage9 (87% mutations above 

threshold). b, Top: Fraction of elements passing the UV filter at different thresholds of permitted 

UV called mutations (fraction filtered: 96% significant elements; 57% significant known cancer 

elements; 97% UV damage escape overlapping elements). A gray line indicates the filter 

threshold (0.5). Bottom: Fraction of UV mutations in elements as defined in (a). UV damage 

escape elements are defined to contain one or more mutations in a UV damage escape region. 

 
 



 
Supplementary Figure 3: a, Top: Distribution of APOBEC signature probabilities for mutations 

in cohorts with an average APOBEC signature probability above 0.3 (Bladder, Uterus, Head, 

Cervix, and Breast cancers) in all tested elements divided into element types. The APOBEC call 

threshold (0.5) used for mutations is indicated with a gray line. Middle: The relative distribution 

among element types. Bottom: APOBEC signature probabilities for mutations in significant 

(Benjamini–Hochberg FDR<0.1) elements (38% mutations above threshold) and in significant 

known cancer elements (32% mutations above threshold). b, Top: Fraction of elements passing 

the APOBEC filter at different thresholds of permitted APOBEC called mutations (fraction 

filtered: 29% significant elements; 10% significant known cancer elements). A gray line indicates 

the filter threshold (0.5). Bottom: Fraction of APOBEC mutations in elements as defined in (a). 

  



 
4. Discussion of additional significant non-coding elements 
Promoters: 
WDR74 
The WDR74 promoter has already been suggested as a potential driver in several studies11–14. 

However, we found that mutations are concentrated inside a U2 RNA where the density of 

putative polymorphisms is abnormally high (Supplementary Fig. 4a below). This outstanding 

level of diversity could in principle be due to higher mutability in the germline. However, given 

the repetitive nature of the U2 element (there are hundreds of copies in the genome) and the 

extreme levels of putative diversity, it is more likely that this region is a source of mapping 

artifacts.  

 

 
Supplementary Figure 4. PCAWG germline and somatic mutations overlapping a U2 element 

in the promoter of WDR74. 

 

HES1 
HES1 promoter mutations were significant in Carcinoma and Pan-cancer, but showed no 

association with gene expression (Extended Data Fig. 4a). HES1 is a NOTCH signalling 

target15, and is focally amplified in gastric cancers (Extended Data Fig. 4b).  

 
IFI44L, HIST1H2AM, GALNTL5, ZSWIM6, SDCCAG8/CEP170, and POLR3E 
Tumors with mutations in the promoters of IFI44L, GALNTL5, ZSWIM6, POLR3E showed trends 

towards increased or decreased expression, although the small number of samples prevented 

us from drawing definitive conclusions (Extended Data Fig. 4a). HIST1H2AM lacks expression 

data as part of the histone family of genes, which are not polyadenylated and therefore not 



represented in the RNA-seq libraries, and SDCCAG8 is mutated in a cohort that lacks 

expression data. Both GALNTL5 and SDCCAG8 are located in an amplification peak in 

glioblastoma (http://portals.broadinstitute.org/tcga/gistic/browseGisticByGene). However, 

SDCCAG8 is proximal to AKT3, which is likely the true driver of this focal amplification. The 

other recurrently mutated genes were not present in significantly amplified or deleted focal 

peaks (Methods). Validation of these hits with additional data in further studies will be needed 

to evaluate whether they are genuine drivers. 

 

Enhancers: 
TP53TG1 
An enhancer near TP53TG1 –– an RNA gene suggested to be a p53-associated tumor 

suppressor epigenetically silenced in cancer16 –– reached significance in several cohorts. 

Mutations concentrated around a conserved region (Supplementary Fig. 5) and overlapped 

sites bound by NFIC and ZBTB7 transcription factors in HepG2 cells17. Ten of 16 mutations in 

this region were contributed by esophageal cancers: one di-nucleotide variant (DNV) and nine 

SNVs, of which five had a signature 17 contribution of >0.5 (the remaining four had 

contributions between 0.20 and 0.49), raising the possibility that these reflect a localized 

mutational process rather than a driver event18.  

 
 
 

 
Supplementary Figure 5: a, An enhancer associated with TP53TG1 contains mutations mostly 

attributed to the COSMIC17 mutational signature associated with esophageal cancer. b, Boxplot 

showing the contribution of signature 17 in Eso-AdenoCa for TP53TG1 mutated and non-

mutated samples. Boxes show the interquartile range and median. 

 



 
Non-coding RNAs:  
RMRP (additional information) 
RMRP is presented in the main text, and we here provide some further details and results of the 

mutational analysis. The non-coding RNA RMRP is significantly mutated in multiple cancer 

types, in both its gene body and promoter (Fig 1b; Extended Data Fig. 5c; Supplementary 
Table 5). The gene body mutations (7 SNVs in pan-cancer) show a significant bias towards high 

structural impact (rank-sum test, P = 0.011). Three of these are individually significant (each 

with P < 0.1, sample level permutation tests; Extended Data Fig. 5c). Of the four gene-body 

indels, three are located in or near protein-binding sites (P = 0.08), including a deletion that is 

predicted to affect the secondary structure. Given RMRP's role in replication of the 

mitochondrial genome19–22, we tested whether mutations in this locus were associated with 

altered mitochondrial genome copy number. Indeed, mutated samples showed a trend towards 

higher mitochondrial copy number (two-sided rank-sum test, P = 0.1).  

 

The high density of SNPs in the RMRP locus suggests that the RMRP locus may be either 

subject to an elevated germline mutation rate or to unidentified technical issues 

(Supplementary Fig. 6a). The consequence of somatic mutations should therefore be 

interpreted with caution. 

 
Fifteen ncRNAs hits not described in detail in the main text passed the systematic post-filter 

(RPPH1, G025135, CTD-2105E13.15, and G029190 lncRNAs; MIR663A, RNU12, RP5-

997D16.2, and RP11-440L14.1 lncRNA promoters; RNU5A-1, RNY1, RNY5, and RNU6-573P 

small RNAs; Ala.TGC [id.trna.192], Met.CAT [id.trna.419], and Gly.GCC [id.trna.336] tRNAs). 

The driver role of these were generally not supported by additional lines of evidence, lacked 

functional evidence, or appeared to be affected by technical artifacts. The candidates are 

described below, and individual Q values are in Supplementary Table 5. 

 

RPPH1 
RPPH1 forms the RNA component of the RNase P ribonucleoprotein, which matures precursor-

tRNAs by cleaving their 5’ end23. It is transcribed from a divergent promoter together with the 

protein-coding gene PARP2; however, no association with expression was observed for either 

gene. It was found significant in Adenocarcinoma, Carcinoma, Digestive tract tumors, and Pan-

cancer. The region has a high level of germline polymorphisms, i.e., the SNP density is 5.1 



times higher within the region compared to 5 kb flanking regions (inside/outside SNP density 

enrichment), which indicates mapping issues or a higher germline mutation rate 

(Supplementary Fig. 6b). 

 

G025135 
G025135 is a lncRNA element (from MiTranscriptome24) identified here as a significant driver 

candidate in Lymph-CLL. This ncRNA element was also found in Lymph-BNHL, Lymphomas 

and Hematopoietic system tumors, where it was filtered based on a high proportion of AID 

mutations. In Lymph-CLL, the number of AID mutations was just below our threshold. 

Furthermore, some individual patients have many mutations, further supporting that it may be a 

target of AID. 

 

MIR663A 
The promoter of MIR663A was recurrently mutated in Carcinoma. It is the primary transcript of 

MiR-663, which has tumorigenic functions in gastric cancer and nasopharyngeal carcinoma25. 

The mutations were not correlated with expression. Unexpectedly high SNP density in this 

element suggests the presence of mapping artefacts.  

 

RNY1 
RNY1 encodes Y1 that is a Y RNA. Y RNAs constitutes the RNA part of ribonucleoproteins and 

they are required for chromosomal DNA replication26. It was found significant in Digestive tract 

tumors. The expression of Y1 has previously been found elevated in several types of cancer, 

including colorectal cancer27. The inside/outside SNP density enrichment is 5.6, suggesting 

mapping issues or a high germline mutation rate. 

 

Other ncRNAs 
Five functionally uncharacterised ncRNAs were found significant in one, two, or three cohorts, 

but we could not find any further supporting driver evidence: (1) The lncRNA CTD-2105E13.15, 

which partially overlaps three exons of TMEM190, was found significant in Carcinoma and Pan-

cancer. (2) The G029190 lncRNA (from MiTranscriptome) had significance in Adenocarcinoma 

and Pan-cancer. (3) The promoter of RP5-997D16.2 was found significant in Prost-AdenoCa, 

and it has a hotspot with two mutations in this cohort. (4) The promoter of RP11-440L14.1 was 

significant in Ovary-AdenoCa, Carcinoma, and Pan-cancer. It has a hotspot position with four 

mutations overlapping two different deletions. Finally, (5) the small RNA RNU6-573P was 



detected in Panc-Endocrine with three mutations. However, it appears to be a nonfunctional 

pseudogene recently inserted in the human lineage. Not only the locus, but the wider region is 

subject to increased mutational burden, further supporting that mutational mechanisms or 

technical issues rather than selection underlies the mutational recurrence.  

 

In addition, six ncRNA hits overlap regions with high densities of germline mutations, which 

suggests mapping issues or high germline mutation rates. These include (1) the promoter of the 

lncRNA RNU12 (Lymph-BNHL, Lymphomas and Hematopoietic system tumors; inside/outside 

SNP density enrichment: 8.7; Supplementary Fig. 6c); (2) the small RNAs RNY5 

(Adenocarcinoma and Digestive tract tumors; inside/outside SNP density enrichment: 4.5) and 

(3) RNU5A-1 (Adenocarcinoma; inside/outside SNP density enrichment: 5.4); the tRNAs (4) 

Ala.TGC (Adenocarcinoma and Carcinoma; inside/outside SNP density enrichment: 3.7), (5) 

Met.CAT (Digestive tract tumors; inside/outside SNP density enrichment: 2.9), and (6) Gly.GCC 

(Female reproductive system tumors; inside/outside SNP density enrichment: 7.7). 

 

Finally, the promoter of the lncRNA RNU12 overlap the promoter of POLDIP3 without significant 

expression-correlation in any of the cohorts. 

 



 
Supplementary Figure 6: The non-coding RNA candidates (a) RMRP, (b) RPPH1, and (c) 

RNU12 all had high SNP densities. d, SNP density among element types. (Top) Stacked 

distribution of SNP densities for different element types. (Middle) Relative distribution among 

element types for given SNP density. (Bottom) Distribution of significant (Benjamini–Hochberg 



FDR<0.1) elements. Non-coding RNA candidates generally have high densities of SNPs, 

including the candidates shown in a-c, amongst the highest in genome, which raises concerns 

about the relevance or authenticity of the somatic mutations hitting these loci.  
  



5. Driver discovery in 2 kb genomic bins and mutational processes 
The paucity of non-coding driver mutations identified in our analyses could in principle be due to 

the list of functional elements used, which cover only a small fraction of the genome. We 

partially addressed this limitation in the unbiased analysis of hotspots, finding no convincing 

non-coding driver candidates other than the TERT promoter. Here we interrogate the rest of the 

genome in a similarly unbiased way. We divided the genome in 2-kb bins and looked for bins 

with an excess of mutations, while accounting for sequence composition and trinucleotide 

substitution rates (NBR method). To avoid the risk of mapping artifacts, we first excluded bins 

with potential mappability problems, considering a total of 1.2M bins covering 66% of the 

genome (Methods). This analysis was performed on all cohorts and meta-cohorts of more than 

100 samples, using a global FDR adjustment across all of them. Many bins were recurrently 

mutated in lymphoid tumors, likely due to AID-derived localized somatic hypermutations. 

Lymphoid tumors were therefore excluded from the analysis. The NBR method without 

covariates identified 67 significantly mutated bins across meta-cohorts and tumor types (178 

significant hits in total; Extended Data Fig. 5a; Supplementary Table 9). 22 bins (74 hits) 

overlap 17 known cancer drivers, including TP53 (28 hits), KRAS (6), APC (5) or ARID1A (5). Of 

the remaining significant bins, 29 (87 hits) overlap genes and regions affected by localized 

mutational processes. Mutations in one of these bins (4 hits) lie within a CTCF binding site; the 

rest of the bins overlap highly transcribed loci and are rich in indels, particularly of length 2–5 bp 

(Fig. 2e; Supplementary Table 9), hence likely being associated to the transcriptional 

mutational process described for ALB, MALAT1, NEAT1, and other genes.  

 

Interestingly, MIR122, a known tumor suppressor, overlapped significantly mutated bins in liver. 

However, the scattered distribution of mutations along several consecutive bins and the 

enrichment of indels (especially of length 2–5 bp) suggests that this locus is also affected by the 

transcriptional mutational process described in the manuscript (Supplementary Fig. 7a; Fig. 
2e) –– indeed, MIR122 is one of the most highly transcribed genes in liver28,29. To explore the 

potential functional implications of these mutations, we investigated if MIR122 mutations are 

associated with altered expression. Since only two mutated samples had miRNA expression 

profiling, we did this by associating mutations with different expression of MIR122 target genes 

by integrating expression across genes with MIR122 target sites in their 3'UTRs4. Mutations 

were associated with a weak non-significant decrease in target gene expression. This provided 

no convincing evidence that mutations may be associated with decreased MIR122 expression 

(Supplementary Fig. 7b). No single mutation hit the miR-122, and the indel hotspot occurs in a 



region with four direct AAG repeats (Supplementary Fig. 7a). Overall, it is thus plausible that 

most mutations in MIR122 are passenger mutations resulting from the mechanism of 

transcription-associated mutagenesis described for MALAT1, NEAT1, and ALB, among others.  

 

Within the remaining 16 bins (17 hits) that were not associated to known drivers or mutational 

processes, some appear to be caused by mapping artefacts. For instance, the bin 

chrX:83966001-83968000 contains a duplication-inversion (chrX:83966018-83966396 and 

chrX:83967485-83967863) with somatic mutations hitting divergent sites between the two 

duplicated regions. Other unreliable cases include a bin overlapping an olfactory receptor in a 

region with very high germline SNP density, and four bins with mutations in LINE elements and 

poor mappability according to 1,000 Genomes masks (Supplementary Table 9). For the rest of 

the significant bins (10), we found no obvious potential association to cancer, as most were far 

from genes in regions with no apparent regulatory functions, while others were borderline 

significant. 

  

One limitation of this binned approach is that the signal of mutational recurrence may become 

diluted in the relatively long bins. We conducted a complementary analysis focusing on non-

coding ultraconserved regions, of which only 36% overlapped our defined functional elements. 

Here, regions are less numerous (n = 4,351) and much smaller (mean length 325 bp), avoiding 

the dilution of the signal and increasing the statistical power, though the fraction of the genome 

covered is largely restricted (1.4 Mb; 0.05%). None of the ultraconserved regions tested were 

significant (Extended Data Fig. 5e). Overall, these results suggest that drivers are rare in the 

fraction of the genome not represented in our definition of functional elements. 

 

 

 
Supplementary Figure 7: a, Scattered distribution of mutations in the MIR122 locus in Liver-

HCC across four different 2-kb bins. b, Lack of enriched expression of genes containing miR-



122 target motifs in their 3’UTRs between tumors mutated (n = 7) in MIR122 and the 

corresponding wild type (n = 93). For each sample, we evaluated if target genes show higher 

expression than non-target genes given the overall gene expression in the cohort. Lower 

expression of target genes leads to a negative value indicative of a correspondingly higher 

activity of MIR12230. Box plots indicate inter quartile range with median lines. P values 

evaluated with two-sided Wilcoxon rank sum test. 

 

  



6. Quantifying the performance of the pan-cancer breakpoint significance model 
 
Background and Motivation 

 

For tumors with very low burdens of somatic alterations, the probability that a single gene would 

be recurrently altered simply by chance is low. Barring confounding by technical artifacts, in very 

simple cancer genomes, it is relatively straightforward to conclude that recurrent alterations reflect 

evidence of positive selection by the tumor. However, most tumors acquire a vast number of 

alterations throughout their evolution, and distinguishing “driver” alterations (those that are 

positively selected for in cancer evolution) from “passenger” alterations (those that are under 

neutral or negative selection) is more challenging. This is likely more challenging for SVs than 

point mutations, for reasons given below. 

 

Building a background model: positive selection, negative selection, and mechanism 

 

The ideal background model would account for every biological process (mechanism) that 

generates alterations, thereby perfectly recreating the expected distribution under neutral 

selection and allowing for accurate identification of the effects of positive selection. Currently, 

such strong a priori predictions of the background distribution are not sufficient to develop 

background models owing to our still limited understanding of each possible mechanism by which 

cells sustain somatic alterations as well as the vast heterogeneity in tumor tissue of origin, 

germline background, and environmental exposures.  

 

To overcome our limited ability to predict alteration distributions from first principles, background 

models are typically estimated from the observed alteration distribution. The most naive 

background model would simply assume as the background distribution the observed distribution. 

In this scenario, no sites of positive selection would be identified because the difference between 

the observed and expected at each gene would be zero by definition. Instead, since the 

distribution of alterations is a combination of the mechanisms by which alterations form and 

selective pressures, a more useful background model would capture the genome-wide patterns 

found in the observed data, but without overfitting and washing out signal from true positive 

selection. To do this, background models are parameterized by known mechanisms of alteration 

formation (e.g., a tendency for errors to accrue in regions of late replication timing), while the 

effect sizes of each alteration are estimated from the observed data. This method carries the 



assumption that the vast majority of alterations are passenger alterations (i.e., determined solely 

by mechanistic explanations rather than selection), rather than drivers. This appears to largely be 

the case, as the average number of driver alterations per tumor is estimated to be fewer than 

ten31 while the number of total alterations per tumor can be in the tens of thousands32. However, 

such assumptions break down for very low mutation tumors like leukemias and pediatric 

malignancies, in which case the background model can be assumed from other tumor types. It 

should be noted that the assumption that passenger alterations are truly under neutral selection 

is being questioned33. 

 

Somatic alterations that disrupt essential cellular functions, expose a cancer cell to immune 

surveillance, or in any other way decrease the fitness of a cell, are said to be under negative 

selection. Negative selection is particularly challenging to estimate, as it is marked by the absence 

of alterations. In principle, with enough biological knowledge about cellular function, one could 

predict a priori whether an alteration affecting a given gene will decrease cellular fitness. In 

practice, as with modeling the effects of mechanism, understanding the effects of negative 

selection requires an interplay between known biological processes (e.g., essential genes) and 

tracking backward from the observed data. Distinguishing the effects of mechanism from negative 

selection is difficult, as there is no known bound on the number of genes / loci that could be under 

negative selection. Recent studies evaluating SNVs indicate minimal negative selection in regions 

with two or more copies34. However, SVs were not evaluated in these studies. Without explicit 

accounting for negative selection, the effect sizes in the background model obtained from 

modeling the observed data will be a combination of mechanism and negative selection. 

 

Detection of somatic alterations relies on a technical pipeline that includes sample collection; 

library preparation and sequence or microarray generation; read mapping to the reference 

genome; and finally variant calling and filtering. As such, the observed distribution of alterations 

is not only shaped by mechanism and selection, but by the technical biases inherent to any 

detection pipeline. In practice, such technical biases tend to surface quickly, as regions that have 

a high number of false positive variant calls will tend to deviate significantly from the background 

model and come to early attention. However, more subtle technical variations (e.g., from batch 

effects35) are still possible and must be accounted for whenever identified. 

 

Considering the above effects, when compared with the density predicted by the background 

distribution, the density of an alteration could be observed to be at a higher rate than predicted 



for four reasons: (i) there are unaccounted for mechanistic reasons for a higher alteration density 

at a certain locus; (ii) there is a relative lack of negative selection at a site compared with similar 

loci elsewhere in the genome; (iii) there is a systematic technical artifact; or (iv) the alteration 

confers a growth or survival advantage to a cell and it is under positive selection. One approach 

to testing the robustness of significant “hits” is to determine how high the true background rate 

would have to be for the locus to become insignificant. For example, most RSJs detected in our 

analysis would remain significant even if the background rate were twice as high as we have 

estimated (Extended Data Fig. 9a) 

 

Driver alterations have been systematically distinguished from passenger alteration using pan-

cancer data for both somatic SNVs/indels32,36–38 and for SCNAs39,40. However, to our knowledge, 

this has never been done for rearrangements. We decided to use a similar overall approach, but 

with new methods that account for the specific challenges of rearrangements. In our approach, 

we first build a model to account for as much of the variation in the breakpoint distribution as 

possible, similar to approaches that have used replication timing and gene expression to account 

for variance in the somatic SNV distribution32. Our approach uses an expanded set of covariates 

that have more relevance for breakpoints (e.g., fragility, repetitive elements). We further build a 

model that accounts for the two-dimensional connections that are unique to rearrangement data, 

and utilize this to discover recurrent fusions. 

 

Accounting for stochastic variation 

 

In any finite dataset, the fraction of samples exhibiting a rearrangement (“rearrangement rate”) at 

any single locus will differ from the actual prevalence of rearrangements at that locus, due to 

random chance. We estimate the level of stochastic variation in our dataset by comparing 

rearrangement rates determined from half the samples (chosen at random) to rearrangement 

rates determined from the other half, to generate a correlation coefficient (R); R2 roughly 

corresponds to the fraction of the variation in rearrangement rates that can be attributed to random 

chance, and therefore cannot be predicted. We then calculate the fraction of the “predictable” 

variation that can be attributed to known mechanistic and selective sources of variation, and to 

unknown sources. 

 

Given the size of the genome, and the relatively small number of rearrangements in our dataset, 

it is uncommon for a single base to be involved in a rearrangement twice. Therefore, when 



comparing rearrangement rates between datasets at a given “locus”, we aggregated all 

rearrangements in a “bin” encompassing that locus. Specifically, we divided the genome into a 

set of bins, and compared rates of rearrangements within each bin between datasets. We also 

determined the expected rates of rearrangement at the bin level from our mechanistic models, 

and considered loci under selection to involve the entirety of the bin encompassing them. 

 

This bin size can determine the amount of variation one attributes to stochastic, mechanistic, and 

selective forces. Larger bins will aggregate larger numbers of rearrangements, and therefore 

appear to exhibit less stochastic variation. In contrast, larger bins will also average over more 

widely varying sources of mechanistic and selective variation, reducing the apparent variation 

attributed to each of these sources. Therefore, the specific R2 values we report need to be 

considered in light of the bin size, or resolution of the analysis.  

 

We performed three analyses to determine the quality and robustness of the pan-cancer 

breakpoint significance model. First, we used the Akaike Information Criteria (AIC) to evaluate the 

quality of the model and to avoid over-fitting. Second, using an R2 coefficient, (the squared 

Pearson correlation coefficient) between the predicted breakpoint counts per bin and the 

observed breakpoint counts as a metric for the goodness-of-fit, we estimated the relative effects 

of breakpoint formation mechanism, positive selection, stochasticity, and statistical power to 

explain the distribution of breakpoints in our cohort. Third, we compared the breakpoint model 

with a somatic SNV model. In addition, we accounted for additional sources of non-stochastic 

variation that were not accounted for in our model by using a Gamma-Poisson function to estimate 

the distribution of rearrangement breakpoints per bin. This fits the observed data better than a 

simple Poisson distribution (Supplementary Fig. 8a). 

 

Evaluating model performance with AIC 

 

To determine the covariates to use in the optimal pan-cancer model, we used forward selection 

to create a set of nested models reflecting different combinations of 28 genomic covariates. We 

generated a one-covariate model by searching all 28 covariates for the one covariate that 

minimized AIC. We then searched for a second covariate out of the remaining 27, which 

minimized the AIC to add to the one covariate model. We repeated this process until we had all 

28 covariates in the model. We standardize the AIC by subtracting the minimized AIC at each 

model size by the minimum AIC over all model sizes. Each model is then ranked by this value 



(AIC - minimum AIC), which we define as delta_i, where i denotes the model size. Supplementary 
Fig. 8b shows the AIC for the best model at all possible model sizes. According to and Burnham 

& Anderson41, a delta_i of less than seven indicates a covariate that may be adding significant 

information. We therefore used this cutoff, resulting in the selection of seven covariates: Hyper-

Fragility, Fragility, Gene Density, SINE, Mappability, Expression, and Weak Repressed 

Polycomb. Finally, we provide a quantile–quantile (QQ) plot comparing the observed P value 

distribution to the expected distribution (Supplementary Fig. 8c-d). The strengths of these 

covariates differed slightly, but reproducibly, between cancer types, as can be observed by 

clustering together two independent breast cancer datasets (Supplementary Fig. 8e). 

 

Estimating the effect size of positive selection, mechanism, and stochasticity in the pan-cancer 

breakpoint model 

 

As described above, the distribution of breakpoints in the cancer genome is influenced by the 

physical mechanisms by which they are formed; by the effects of positive and negative selection; 

and by inherent stochasticity. We calculated a goodness-of-fit metric (Pearson R2) and estimated 

how much of it could be attributed to positive selection and inherent breakpoint stochasticity in 

addition to fragile sites and novel breakpoints.  

 

We next evaluated the source of the missing explanatory power between a perfect model and our 

pan-cancer model. A model that perfectly predicts the distribution of breakpoints would have an 

R2 of 1.0. However, we expect that inherent randomness in the physical process of breakpoint 

production (e.g., random thermodynamic fluctuation in DNA conformation) implies an inherent 

upper limit to the predictive power of a model in a finite dataset. Further, because the statistical 

power to distinguish stochasticity from true effects is dependent on the size of the dataset, the 

size of the dataset itself contributes to an upper bound on the goodness-of-fit for even a perfectly 

specified model. The breakpoint distribution itself is a reflection of the combined effects of 

selection, mechanism and stochasticity.  

 

To estimate the effect of stochasticity versus mechanism and selection, we randomly divided the 

sample set into two halves and calculated the fraction of breakpoints in each genomic bin 

separately for each half. We then calculated the R2 between these measurements, hereafter 

termed “self-correlation”. Self-correlation provides an estimate for the stochasticity in the data 



because the effects of selection and mechanism should be the same across two random halves 

of the data and contribute to a higher R2. Conversely, stochasticity should generate variations 

between random halves of the data, leading to lower R2. Using this procedure and a bin size of 

50 Kbp, we obtained an R2 of 0.510 (+/- 0.02, S.D. of random samplings).  

 

This is similar to the expected level of stochasticity in a dataset of our size. We used our 

mechanistic model that predicts breakpoint density from genomic features to simulate breakpoints 

perfectly consistent with the model. In a simulated dataset with 584,506 breakpoints, as in our 

actual dataset, we obtained an R2 of 0.56 when comparing the simulated breakpoint counts to the 

known model. 

 

To obtain an estimate of the effect of positive selection, we took the bins with significantly 

recurrent breakpoints (FDR < 0.1) as predicted by the pan-cancer GP model and re-ran the model 

using them as a covariate. Because the significant bins could either be from positive selection or 

unaccounted-for mechanisms, we used only the significant bins that were within 500 Kbp of a 

known cancer gene as defined by the Cancer Gene Census8. This provided 31 bins 

(Supplementary Table 17). Adding these as covariates to the pan-cancer model, we obtained 

an R2 of 0.30 (increased from 0.22). Thus, we find that a substantial fraction of the remaining 

explanatory power of our model is due to positive selection. We also obtained estimates of the 

effect of fragile sites and novel RSBs using a similar method. We found that adding RSBs (known 

and novel) increased the R2 to 0.36. 

 
Comparison between the GP breakpoint model and GP SNV model 

 

We next sought to compare the performance of the breakpoint model with a similar model for 

SNVs. To build a GP model for SNVs, we used replication timing, gene expression, GC%, 

heterochromatin, and mappability as covariates, which have been shown to account for a majority 

of the non-selection variance in somatic SNV distribution32. (Note that this model, designed to 

mirror the SV background model, is different from the models used in this manuscript for SNV 

driver discovery.) We used 44.6 million somatic SNVs called by the PCAWG consortium on the 

same genomes used for the breakpoint analysis. This produced an R2 of 0.669. To estimate the 

limit of what could be explained given a perfect model operating on this dataset, we calculated 

the self-correlation to be 0.964. When operating on a downsampled dataset of 580,00 SNVs (to 

match the number of breakpoints), the R2 for the full model becomes 0.460, with a self-correlation 



of 0.509. We conclude that we are better able to account for the distribution of SNVs than SVs. 

Note that for both SNVs and SVs, our analyses are restricted to the mappable genome. It is 

possible that SVs are more biased towards unmappable regions because they are composed of 

repetitive sequences that are likely to recombine. 

 

Variability among tumor-types of genomic features predicting breakpoint density 

 

Although we could predict much of the variability in breakpoint density using these genomic 

features, breakpoint densities in sarcomas, cervical cancer, and prostate cancer were 

substantially less predictable than in other tumors, particularly adenocarcinomas. This suggests 

their breakpoints are generated by mechanisms that are governed either by stochasticity or 

genomic features that we have not yet considered. These tumor types tend to undergo singular 

catastrophic rearrangements: prostate tumors through chains of deletions in chromoplexy42, and 

sarcomas through high rates of chromothripsis43,44. 

 

To quantify the extent to which different tumor types have shared mechanisms of breakpoint 

formation, we clustered the tumor types by their correlations with genomic features (using the 

hclust R package; Supplementary Fig. 8c). Tumors from similar tissues and cell types tended to 

cluster together (e.g., esophageal and stomach adenocarcinomas). Breast tumors from PCAWG 

closely clustered with an independent cohort of breast tumors from Nik-Zainal et al11, supporting 

the robustness of our approach across different patients and rearrangement analysis pipelines. 

Interestingly, ovarian and glioblastoma tumors were closely clustered, as were lung and 

pancreatic adenocarcinomas, suggesting similar rearrangement mechanisms despite different 

cell types and tumor microenvironments. 

 





Supplementary Figure 8: a, Histogram of breakpoint counts per 50 Kbp bin (with only one 

sample-breakpoint per donor per bin). The distribution more closely follows a Gamma-Poisson 

(orange) than a Poisson (blue). b, Standardized Akaike Information Criteria (AIC) of the best 

model for each number of covariates. The best model was chosen to have seven covariates based 

on cutoffs cited in Burnham & Anderson41. c, Quantile–quantile (QQ) plot for the 61,920 bins in 

the 1D model. The overdispersion (alpha) parameter is 6.4 for the Gamma-Poisson regression. 

The slope of the QQ plot (lambda) is slightly above 1. Most bins are not undergoing positive 

selection, while the remaining bins that are positively selected lie to the left of the y = x line. These 

fit parameters indicate a good model fit. d, QQ plot for the 3x107 tiles in the 2D model. e, Clustering 

of tumor-types by the genomic feature effect sizes from the 1D Gamma-Poisson model. 
  



7. Distinguishing fragile sites from positive selection in regions of recurrent breakpoints 
Among SCNAs, a major difficulty has been distinguishing recurrent alterations that are primarily 

driven by genome fragility from those resulting from positive selection, which has particularly 

hampered the detection of deleted tumor suppressor genes45. Further, common fragile sites are 

defined by aphidicolin break experiments, and are non-specific and poorly predictive of somatic 

rearrangements. For instance, 17% of the non-centromeric genome is covered by a fragile site, 

including known cancer genes like BCL2 (FRA18B). Late-replicating regions have been proposed 

as fragile sites, and SCNA breakpoints have been found to be enriched in late-replicating 

regions46. However, SCNA breakpoints are imprecise, and rearrangements encompass a 

potentially larger set of breakpoints than SCNAs. Whether replication timing alone can robustly 

distinguish fragile sites in regions of recurrent rearrangements is unknown.  

 

We enquired whether the precise breakpoint locations of the rearrangements that generate 

frequently rearranged regions might make the distinction between fragility and positive selection 

clearer. Among the 53 RSBs, 8 overlapped common fragile sites from aphidicolin break 

experiments. Among these, two were clearly driven by selection rather than fragility (BCL2 and 

MIR21), and one was part of a large and non-specific fragile site (20 Mbp). The remaining five 

RSBs had markedly late-replication timing (mean: -0.76). We further noted that 13 of the 15 most 

frequently rearranged genes in the genome had a replication timing later than -0.5; notably, 

although many of these were adjacent to known common fragile sites, only 3 overlapped with 

one. Twelve RSBs also had replication times later than -0.5, including nine that have not been 

identified by aphidicolin break-induction experiments47. Although eight of these 12 RSBs had 

previously been described as recurrently deleted, none involve known oncogenes or tumor 

suppressor genes. Conversely, 26 of the other 41 RSBs involve known oncogenes or tumor 

suppressor genes. We therefore considered all of these late-replicating RSBs to reflect DNA 

fragility rather than positive selection. 
 
  



8. Comparison of known SCNAs and fusions with recurrent breakpoints and 
rearrangements 

We compared the recurrent breakpoints (RSBs) and recurrent juxtapositions (RSJ) detected in 

our 1D and 2D models with databases of known SCNAs and fusions. We defined known SCNAs 

as those that overlap with peak regions of recurrent focal amplifications or deletions in GISTIC 

pan-cancer analyses of 10,844 TCGA samples, as indicated in the TCGA copy number portal 

(www.broadinstitute.org/tcga). In total, 19 of 53 RSBs are novel, including 1 deletion, 3 

amplifications, 4 fragile sites, and 11 neutral rearrangements. These results are available in 

Supplementary Table 14.  

 

For recurrent juxtapositions, we used the COSMIC48 fusions list (v87; cancer.sanger.ac.uk) to 

annotate known fusions. We only considered fusions that appear in more than one sample in 

COSMIC. To supplement the COSMIC list, we also searched for papers describing the RSJs in 

PubMed. For each RSJ, we queried both affected genes along with the terms “cancer” and 

“fusion”. Among the 90 RSJs, we found 77 to be novel. These results are available in 

Supplementary Table 15. 

 

To further evaluate the applicability of our statistical methods and power calculations to the 

detection of RSJs, we evaluated how well our model performed at detecting known fusions from 

the curated COSMIC fusion list. From 167 COSMIC fusions represented in > 1 non-review article 

and > 1 sample, we identified 23 COSMIC fusions with at least one rearrangement bridging the 

two genes to within 100 Kbp of each gene (note that the majority of COSMIC fusions are reported 

in rare tumors not included in PCAWG). Of these 23 fusions, 10 were detected as an RSJ, and 7 

were present in a single sample and thus could not be detected as recurrent. Of the remaining 

fusions, 5 had spans < 100 Kbp and fell below our power to detect. On further inspection, of the 

39 samples that harbored these 5 fusions, only two (FGFR3–TACC3 rearrangements in bladder 

cancer, neither supported by fusion transcripts) were consistent with the previously reported 

tumor type. Rather, the observed counts are consistent with the expected number of background 

rearrangements between neighboring genes separated by < 50 Kbp. The only bonafide oncogenic 

fusion our statistical methods missed was an in-frame ERC1–RET fusion in two thyroid 

adenocarcinoma samples (4% prevalence in thyroid adenocarcinoma, 0.1% overall prevalence). 

However, our models accurately detected four other bonafide rearrangements with tumor-type 

specific prevalences < 5% in our cohort (QKI–NTRK2, TMPRSS2–ETV1, RNF130–BRAF, 



MYH11–CBFB), indicating that our overall false-negative rate is consistent with our power 

calculations for very low prevalence rearrangements. Thus, we find that accounting for statistical 

power to detect recurrent rearrangements avoids the pitfall of attributing selection to low-

frequency rearrangements that could be more parsimoniously explained by background noise. 

 

In the comparisons between the ten most significant SRJs and the ten most significant SNVs and 

SCNAs, we used SNV and SCNA lists from www.tumorportal.org and 

www.broadinstitute.org/tcga, respectively. 

 

 

  



9. Amplification structure of the BRD4/NOTCH3 locus in the context of recurrent BRD4 
deletion 
The broad amplifications involving the BRD4 and NOTCH3 locus, in cases with a focal BRD4 

deletion, were typically tens of Mbps in length, sometimes involving the entire chromosome 

(Extended Data Fig. 8f). The BRD4/NOTCH3 locus is in a significant amplification peak (GISTIC 

analysis) in breast and ovarian cancers. The only other recurrent amplification on chromosome 

19 in breast and ovarian cancers is CCNE1 (chr19: 30.3 Mbp). Indeed, many of these 

amplifications involved both loci, and more samples would be required to determine the exact 

amplification target. Regardless, the finding that these focal deletions tend to occur concomitantly 

with amplifications implies that amplification of the NOTCH3/BRD4 region changes the selective 

landscape to favor BRD4 intron 1 deletions.  

 

  



10. Effect of element length on power calculations 
The number of patients that need to be sequenced to achieve a certain power to discover a 

recurrently mutated driver with specific mutation abundance in the cohort also depends on the 

length of the analyzed elements. Prior power calculations have focused on fixed mean element 

lengths for either coding49 or promoter regions49,50. We here add power calculations for different 

driver abundances and different element lengths of the range representative of coding and non-

coding functional regions (Supplementary Fig. 9). 
 

 

 
 

Supplementary Figure 9: Changes in discovery power depending on element length for 

different abundances. 

 
We further note that element length 𝐿 and background mutation frequency 𝑓 are 

mathematically related in the power calculation, such that the number of patients required for a 

new length 𝐿#can be obtained from a power plot using element length 𝐿$(for example, from 

Lawrence et al, 2014). This can be obtained through the following relationship between the two 

background mutation frequencies f1 and f2 as follows: 

 

𝑓# = 1 − (1 − 𝑓$)*+/*-  

 

The number of patients required for length 𝐿#given a fixed driver abundance in the population 

can then be read off the plot at the x-axis position 𝑓#, representing an adjustment of the 

background mutation rate to achieve the same power as with element length 𝐿$and background 

mutation frequency 𝑓$. 

 



For example for 𝐿$ = 	500	𝑏𝑝, 𝑓$ = 	5	 ∗ 	1056 mut/bp and new element length 𝐿# = 5000	𝑏𝑝, 𝑓# =

1 − (1 − 𝑓$)*+/*- 	= 	1 − (1 − 5 ∗ 1056)(788/7888) = 5 ∗ 1059 = 	0.5 ∗ 1056mut/bp.  

 

In Supplementary Fig. 10, we can see that the number of patients required for 90% power to 

detect an element with 5% frequency in a patient cohort is equivalent for elements of length 500 

bp (red line) and background mutation frequency 5	 ∗ 	1056mut/bp and elements of length 5000 

bp (blue line) and background mutation frequency 0.5 ∗ 1056mut/bp, as calculated above. 

 



 
Supplementary Figure 10: Background mutation frequency and element length are 

mathematically related in the power equation. For a power calculation with fixed driver 

abundance in the population, one can calculate the position on the power graph for length 𝐿$for 

a new length 𝐿#.  
  



11. Impact of covariates on the estimation of driver mutations in functional regions of 
cancer genes 
As described in Methods, we estimated the abundance of driver mutations in coding and 

regulatory regions (promoter and UTRs) of 603 known cancer genes using the NBR background 

model fitted on putative passenger genes. 

 

Promoters and 5’UTR regions are particularly sensitive to GC-sequencing biases, resulting in 

overall lower detection sensitivities. To alleviate these biases, we selected a set of samples with 

good d.s. by requiring each sample to have sensitivity > 90% in the two main TERT promoter 

hotspots. After this selection, despite some outliers, average sensitivity was much higher. We 

compared detection sensitivity in putative passenger genes and the 603 cancer genes to search 

for potential systematic biases that may compromise the analysis. Although there are some 

differences between passengers and drivers, these are small, and overall detection sensitivity 

values are high (Extended Data Fig. 10e). 

 

Different covariates were included to improve the fit of the model. The local mutation rate, 

calculated on neutral regions within +/-100 kb around each element, was included to account for 

regional variation of mutation rates. A second type of covariate was included in the model to 

account for associations between gene expression levels and mutation rates. Starting with a 

matrix of mean FPKM expression values for each gene and tumor type, we log-transformed and 

scaled the expression matrix using pseudocounts and applied Principal Component Analysis to 

reduce the dimensionality. We selected the first 8 components as covariates, which together 

explained 95.5% of the variance. In addition, we added two additional covariates to account for 

non-linearity between expression and mutation rate in the tails of the expression spectrum. To 

accomplish this, we created two binary variables, one marking the 500 genes with highest 

maximum expression values across tumor types, the other marking 1,229 genes whose 

expression did not exceed FPKM values of 0.1 in any tumor type. Finally, since tumors are rich 

in amplifications and deletions and these events may result in seemingly increased or 

decreased mutation rates, we included a copy-number covariate, calculated as the average 

copy number of each gene across all PCAWG samples. 

 

Supplementary Table 8 shows the impact of using different covariates on the 603 genes 

selected for this analysis. Reassuringly, this shows that the estimates are broadly consistent 

across models with different covariates, with variations typically within the confidence intervals 



of alternative models. This confirms that the overall conclusions are largely unaffected by the 

use of different models. Supplementary Fig. 11 shows the results of this analysis, including the 

observed-to-expected ratios, the percentage of mutations predicted to be drivers, and the 

estimated numbers of driver mutations.  

 

To evaluate the performance of the NBR model, we compared the number of driver 

substitutions predicted by NBR in the CDS regions of the 603 cancer genes to the number 

predicted by dN/dS (calculated by dNdScv). dN/dS offers an independent estimate of the 

number of driver substitutions in a group of genes using the local density of synonymous 

mutations to estimate the neutral expectation51, instead of predicting the background mutation 

rate by extrapolation from putative passenger genes using a regression model. Reassuringly, in 

these 603 genes, NBR predicts 1,118 (CI95%: 991–1,248) driver substitutions, and dN/dS 

predicts 1,176 (CI95%: 914–1,460). 

 

 



 
Supplementary Figure 11: Estimation of the excess substitutions (left) and indels (right) in 

regulatory and protein-coding regions of 603 known cancer genes. a, Ratios of observed vs. 

expected number of mutations; b, the percentage of mutations predicted to be drivers; c, and 

the total number of predicted drivers in all cancers and in each patient. a-c, Black bars are 

Binomial 95% confidence intervals; only samples with high detection sensitivity from the 

Pancancer cohort excluding Skin-Melanoma and lymphoid malignancies included (n = 936). 

  



12. Relative paucity of regulatory non-coding drivers at cancer genes 
Collectively, mutations occurring in the promoter region of the 757 cancer genes (603 CGC 

genes combined with 157 genes recurrently mutated in exome studies; Methods) did not have 

a significantly different association with expression than synonymous mutations 

(Supplementary Fig. 12a). Similarly, promoter and UTR mutations in cancer genes are not 

significantly enriched in LOH with respect to mutations in putative passenger genes (Methods; 

Supplementary Fig. 12b). This is consistent with the prediction that only a very small fraction of 

the mutations observed in the promoters and UTRs of known cancer genes are genuine driver 

events. 

 

 
Supplementary Figure 12: a, Expression associated with mutations in coding and promoter 

regions of cancer genes. Z-score expressions associated with nonsense mutations deviate 

significantly from silent mutations, likely through nonsense mediated decay, whereas 

expressions associated with promoter mutations do not differ from that of silent mutations. Only 

mutations in diploid positions were used. White bars indicate means. Two-sided Kolmogorov–

Smirnov (KS) test was used to evaluate P values. b, Excess of LOH associated to mutation in 

regulatory and coding regions of cancer genes. The y-axis shows the ratio of fold changes in 

cancer vs. passenger genes, with fold changes representing the excess or depletion of LOH 

associated with mutation. The analysis is performed across the full set of PCAWG samples (n = 

2,583) and the set of 757 cancer genes (Supplementary Table 7), using 19,107  genes as 



putative passengers or controls (Methods). Confidence intervals were estimated using 

parametric bootstrapping (100,000 pseudoreplicates) for both cancer and passenger genes 

(Methods). Details available in Supplementary Table 19. 
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Gonzalez7,8, Gavin Ha3, Kerstin Haase64, Marcin Imielinski299,300, Lara Jerman8,382, Yuan Ji383,384, 
Clemency Jolly64, Kortine Kleinheinz52,54, Juhee Lee385, Henry Lee-Six1, Ignaty Leshchiner3, 
Dimitri Livitz3, Geoff Macintyre294, Salem Malikic149,157, Florian Markowetz294,295, Iñigo 
Martincorena1, Thomas J Mitchell1,295,386, Quaid D Morris361,387, Ville Mustonen320,321,322, Layla 
Oesper388, Martin Peifer380, Myron Peto389, Benjamin J Raphael210, Daniel Rosebrock3, Yulia 
Rubanova158,361, S Cenk Sahinalp149,156,157, Adriana Salcedo9, Matthias Schlesner52,109, Steven E 
Schumacher3,217, Subhajit Sengupta390, Ruian Shi387, Seung Jun Shin264, Paul T Spellman#391, 
Oliver Spiro3, Lincoln D Stein9,10, Maxime Tarabichi1,64, Peter Van Loo#63,64, Shankar 
Vembu387,392, Ignacio Vázquez-García1,165,328,329, Wenyi Wang146, David C Wedge#1,357,358, David 
A Wheeler162,163, Jeffrey A Wintersinger191,361,393, Tsun-Po Yang380, Xiaotong Yao299,316, Kaixian 
Yu394, Ke Yuan294,372,375 and Hongtu Zhu395,396 



 

Exploratory: portals, visualization and software infrastructure 

Fatima Al-Shahrour360, Elisabet Barrera7, Wojciech Bazant7, Alvis Brazma7, Isidro Cortés-
Ciriano236,237,238, Brian Craft239, David Craft3,240, Vincent Ferretti45,68, Nuno A Fonseca7,69, Anja 
Füllgrabe7, Mary J Goldman239, David Haussler#239,397, Wolfgang Huber8, Maria Keays7, Alfonso 
Muñoz7, Brian D O'Connor45,50, Irene Papatheodorou7, Robert Petryszak7, Elena Piñeiro-
Yáñez360, Alfonso Valencia46,110, Miguel Vazquez#46,111, John N Weinstein398,399, Qian Xiang115, 
Junjun Zhang45 and Jingchun Zhu#239 

 

Exploratory: mitochondrial variants and HLA/immunogenicity 

Peter J Campbell1,2, Yiwen Chen146, Chad J Creighton241, Li Ding136,137,144, Akihiro Fujimoto48, 
Masashi Fujita48, Gad Getz3,4,5,6, Leng Han230, Takanori Hasegawa86, Shuto Hayashi86, Seiya 
Imoto85,86, Young Seok Ju1,182, Hyung-Lae Kim27, Youngwook Kim95,96, Youngil Koh307,308, 
Mitsuhiro Komura86, Jun Li146, Han Liang#400, Iñigo Martincorena1, Satoru Miyano86, Shinichi 
Mizuno401, Hidewaki Nakagawa#48, Keunchil Park206,207, Eigo Shimizu86, Yumeng Wang146,402, 
John N Weinstein398,399, Yanxun Xu403, Rui Yamaguchi86, Fan Yang387, Yang Yang230, Christopher J 
Yoon182, Sung-Soo Yoon308, Yuan Yuan146, Fan Zhang246 and Zemin Zhang246,271 

 

Exploratory: pathogens 

Malik Alawi404,405, Ivan Borozan9, Daniel S Brewer406,407, Colin S Cooper407,408,409, Nikita Desai45, 
Roland Eils#52,54,66,67, Vincent Ferretti45,68, Adam Grundhoff404,410, Murat Iskar411, Kortine 
Kleinheinz52,54, Peter Lichter#79,411, Hidewaki Nakagawa48, Akinyemi I Ojesina255,256,257, Chandra 
Sekhar Pedamallu3,6,172, Matthias Schlesner52,109, Xiaoping Su142 and Marc Zapatka411 

 

Tumor Specific Providers – Australia (Ovarian cancer) 

Kathryn Alsop412,413, Australian Ovarian Cancer Study Group188,311,414, David D L Bowtell#188,290, 
Timothy JC Bruxner186, Angelika N Christ186, Elizabeth L Christie188, Stephen M Cordner415, Prue 
A Cowin188, Ronny Drapkin416, Dariush Etemadmoghadam188,189, Sian Fereday417, Dale W 
Garsed188,189, Joshy George168, Sean M Grimmond366, Anne Hamilton188, Oliver Holmes311,312, 
Jillian A Hung418,419, Karin S Kassahn186,420, Stephen H Kazakoff311,312, Catherine J Kennedy421,422, 
Conrad R Leonard311,312, Linda Mileshkin188, David K Miller186,363,423, Gisela Mir Arnau188, Chris 
Mitchell188, Felicity Newell311,312, Katia Nones311,312, Ann-Marie Patch311,312, John V 
Pearson311,312, Michael C Quinn311,312, Mark Shackleton189,218, Darrin F Taylor186, Heather 
Thorne188, Nadia Traficante188, Ravikiran Vedururu188, Nick M Waddell312, Nicola Waddell311,312, 
Paul M Waring253, Scott Wood311,312, Qinying Xu311,312 and Anna deFazio424,425,426 



 

Tumor Specific Providers – Australia (Pancreatic cancer) 

Matthew J Anderson186, Davide Antonello427, Andrew P Barbour428,429, Claudio Bassi427, 
Samantha Bersani430, Andrew V Biankin#362,363,364,365, Timothy JC Bruxner186, Ivana 
Cataldo430,431, David K Chang363,365, Lorraine A Chantrill363,432, Yoke-Eng Chiew424, Angela 
Chou363,433, Angelika N Christ186, Sara Cingarlini37, Nicole Cloonan434, Vincenzo Corbo431,435,436, M 
V Davi436,Fraser R Duthie437,438, J Lynn Fink46,186, Anthony J Gill363,439, Janet S Graham365,440, Sean 
M Grimmond#366, Ivon Harliwong186, Oliver Holmes311,312, Nigel B Jamieson364,365,441, Amber L 
Johns363,423, Karin S Kassahn186,420, Stephen H Kazakoff311,312, James G Kench363,439,442, Luca 
Landoni427, Rita T Lawlor431, Conrad R Leonard311,312, Andrea Mafficini431, Neil D Merrett427,443, 
David K Miller186,363,423, Marco Miotto427, Elizabeth A Musgrove365, Adnan M Nagrial363, Felicity 
Newell311,312, Katia Nones311,312, Karin A Oien253,444, Marina Pajic363, Ann-Marie Patch311,312, John 
V Pearson311,312, Mark Pinese445, Michael C Quinn311,312, Alan J Robertson186, Ilse Rooman363, 
Borislav C Rusev431, Jaswinder S Samra427,439, Maria Scardoni430, Christopher J Scarlett363,446, 
Aldo Scarpa431, Elisabetta Sereni427, Katarzyna O Sikora431, Michele Simbolo435, Morgan L 
Taschuk45, Christopher W Toon363, Giampaolo Tortora37,38, Caterina Vicentini431, Nick M 
Waddell312, Nicola Waddell311,312, Scott Wood311,312, Jianmin Wu363, Qinying Xu311,312 and 
Nikolajs Zeps447 

 

Tumor Specific Providers – Australia (Skin cancer) 

Lauri A Aaltonen448, Andreas Behren449, Hazel Burke450, Jonathan Cebon449, Rebecca A Dagg451, 
Ricardo De Paoli-Iseppi452, Ken Dutton-Regester311, Matthew A Field453, Anna Fitzgerald454, Sean 
M Grimmond366, Nicholas K Hayward#311,450, Peter Hersey450, Oliver Holmes311,312, Valerie 
Jakrot450, Peter A Johansson311, Hojabr Kakavand452, Stephen H Kazakoff311,312, Richard F 
Kefford455, Loretta MS Lau456, Conrad R Leonard311,312, Georgina V Long457, Graham J 
Mann#458,459, Felicity Newell311,312, Katia Nones311,312, Ann-Marie Patch311,312, John V 
Pearson311,312, Hilda A Pickett456, Antonia L Pritchard311, Gulietta M Pupo460, Robyn PM Saw457, 
Sarah-Jane Schramm461, Richard A Scolyer#425,457,462,463, Mark Shackleton189,218, Catherine A 
Shang464, Ping Shang457, Andrew J Spillane457, Jonathan R Stretch457, Varsha Tembe461, John F 
Thompson457, Ricardo E Vilain462, Nick M Waddell312, Nicola Waddell311,312, James S Wilmott457, 
Scott Wood311,312, Qinying Xu311,312 and Jean Y Yang465 

 

Tumor Specific Providers – Canada (Pancreatic cancer) 

John Bartlett466,467, Prashant Bavi468, Ivan Borozan9, Dianne E Chadwick469, Michelle Chan-Seng-
Yue468, Sean Cleary468,470, Ashton A Connor471,472, Karolina Czajka473, Robert E Denroche468, 
Neesha C Dhani474, Jenna Eagles78, Vincent Ferretti45,68, Steven Gallinger468,471,472, Robert C 
Grant468,475, David Hedley474, Michael A Hollingsworth476, Thomas J Hudson#77,78, Gun Ho 
Jang468, Jeremy Johns78, Sangeetha Kalimuthu468, Sheng-Ben Liang477, Ilinca Lungu468,478, Xuemei 



Luo9, Faridah Mbabaali78, John D McPherson#78,468,479, Treasa A McPherson475, Jessica K 
Miller78, Malcolm J Moore474, Faiyaz Notta468,480, Danielle Pasternack78, Gloria M Petersen481, 
Michael H A Roehrl131,468,482,483,484, Michelle Sam78, Iris Selander475, Stefano Serra253, Sagedeh 
Shahabi477, Lincoln D Stein#9,10, Morgan L Taschuk45, Sarah P Thayer485, Lee E Timms78, Gavin W 
Wilson9,468, Julie M Wilson468 and Bradly G Wouters486 

 

Tumor Specific Providers – Canada (Prostate cancer) 

Timothy A Beck45,487, Vinayak Bhandari9, Paul C Boutros#9,131,140,141, Robert G 
Bristow#131,488,489,490,491, Colin C Collins149, Shadrielle MG Espiritu9, Neil E Fleshner492, Natalie S 
Fox9, Michael Fraser9, Syed Haider9, Lawrence E Heisler493, Vincent Huang9, Emilie Lalonde9, 
Julie Livingstone9, John D McPherson78,468,479, Alice Meng494, Veronica Y Sabelnykova9, Adriana 
Salcedo9, Yu-Jia Shiah9, Theodorus Van der Kwast495 and Takafumi N Yamaguchi9 

 

Tumor Specific Providers – China (Gastric cancer) 

Shuai Ding496, Daiming Fan497, Yong Hou39,249, Yi Huang151,152, Lin Li39, Siliang Li39,249, Dongbing 
Liu39,249, Xingmin Liu39,249, Youyong Lu#28,29,30, Yongzhan Nie497,498, Hong Su39,249, Jian Wang39, 
Kui Wu39,249, Xiao Xiao152, Rui Xing29,499, Huanming Yang#39, Shanlin Yang496, Yingyan Yu500, 
Xiuqing Zhang39, Yong Zhou39 and Shida Zhu39,249 

 

Tumor Specific Providers – EU: France (Renal cancer) 

Rosamonde E Banks501, Guillaume Bourque502,503, Alvis Brazma7, Paul Brennan504, Mark 
Lathrop#503, Louis Letourneau505, Yasser Riazalhosseini503, Ghislaine Scelo504, Jörg Tost#506, 
Naveen Vasudev507 and Juris Viksna508 

 

Tumor Specific Providers – EU: United Kingdom (Breast cancer) 

Sung-Min Ahn509, Ludmil B Alexandrov1,317, Samuel Aparicio510, Laurent Arnould511, MR Aure512, 
Shriram G Bhosle1, E Birney7, Ake Borg513, S Boyault514, AB Brinkman515, JE Brock516, A Broeks517, 
Adam P Butler1, AL Børresen-Dale512, C Caldas518,519, Peter J Campbell1,2, Suet-Feung Chin518,519, 
Helen Davies1,324,325, C Desmedt520, L Dirix521, S Dronov1, Anna Ehinger522, JE Eyfjord523, GG Van 
den Eynden524, A Fatima217, Jorge Reis-Filho525, JA Foekens526, PA Futreal527, Øystein 
Garred528,529, Moritz Gerstung7,8, Dilip D Giri525, D Glodzik1, Dorthe Grabau530, Holmfridur 
Hilmarsdottir523, GK Hooijer531, Jocelyne Jacquemier532, SJ Jang533, Jon G Jonasson523, Jos 
Jonkers534, HY Kim532, Tari A King535,536, Stian Knappskog1,537, G Kong532, S Krishnamurthy538, S 
Van Laere521, SR Lakhani539, Denis Larsimont540, HJ Lee533, JY Lee541, Ming Ta Michael Lee527, 
Yilong Li1, Ole Christian Lingjærde542, Gaetan MacGrogan543, Sancha Martin1,372, Iñigo 
Martincorena1, Andrew Menzies1, Sandro Morganella1, Ville Mustonen320,321,322, Serena Nik-



Zainal1,324,325,326, Sarah O'Meara1, I Pauporté18, Sarah Pinder544, X Pivot545, Elena Provenzano546, 
CA Purdie547, Keiran M Raine1, M Ramakrishna1, K Ramakrishnan1, AL Richardson217, M 
Ringnér513, Javier Bartolomé Rodriguez46, FG Rodríguez-González175, G Romieu548, Roberto 
Salgado253, Torill Sauer542, R Shepherd1, AM Sieuwerts177, PT Simpson539, M Smid549, C Sotiriou55, 
PN  SpanSpan550, Lucy Stebbings1, Ólafur Andri Stefánsson551, Alasdair Stenhouse552, 
Michael Rudolf Stratton#1, HG Stunnenberg249,553, Fred Sweep554, BK Tan555, Jon W Teague1, 
Gilles Thomas556, AM Thompson552, S Tommasi557, I Treilleux558,559, Andrew Tutt217, NT Ueno396, 
Peter Van Loo63,64, P Vermeulen521, Alain Viari431, A Vincent-Salomon553, David C Wedge1,357,358, 
Bernice Huimin Wong560, Lucy Yates1, X Zou1, CHM van Deurzen561, MJ van de Vijver253 and L 
van't Veer562,563 

 

Tumor Specific Providers – Germany (Malignant lymphoma) 

Ole Ammerpohl564,565, Sietse Aukema566,567, Anke K Bergmann568, Stephan H Bernhart276,277,280, 
Hans Binder276,277, Arndt Borkhardt569, Christoph Borst570, Benedikt Brors81,118,278, Birgit 
Burkhardt571, Alexander Claviez572, Roland Eils52,54,66,67, Maria Elisabeth Goebler573, Andrea 
Haake564, Siegfried Haas570, Martin Hansmann574, Jessica I Hoell569, Steve Hoffmann276,277,279,280, 
Michael Hummel575, Daniel Hübschmann54,66,82,83,84, Dennis Karsch576, Wolfram Klapper567, 
Kortine Kleinheinz52,54, Michael Kneba576, Jan O Korbel7,8, Helene Kretzmer277,280, Markus 
Kreuz577, Dieter Kube578, Ralf Küppers579, Chris Lawerenz67, Dido Lenze575, Peter Lichter79,411, 
Markus Loeffler577, Cristina López262,564, Luisa Mantovani-Löffler580, Peter Möller581, German 
Ott582, Bernhard Radlwimmer411, Julia Richter564,567, Marius Rohde583, Philip C Rosenstiel584, 
Andreas Rosenwald585, Markus B Schilhabel584, Matthias Schlesner52,109, Stefan Schreiber586, 
Reiner Siebert#261,262, Peter F Stadler276,277,280, Peter Staib587, Stephan Stilgenbauer588, 
Stephanie Sungalee8, Monika Szczepanowski567, Umut H Toprak54,589, Lorenz HP Trümper578, 
Rabea Wagener262,564 and Thorsten Zenz81 

 

Tumor Specific Providers – Germany (Pediatric Brain cancer) 

Ivo Buchhalter52,53,54, Juergen Eils66,67, Roland Eils52,54,66,67, Volker Hovestadt411, Barbara 
Hutter79,80,81, David TW Jones301,302, Natalie Jäger52, Christof von Kalle83, Marcel Kool97,301, Jan O 
Korbel7,8, Andrey Korshunov97, Pablo Landgraf590, 770, Chris Lawerenz67, Hans Lehrach591, Peter 
Lichter#79,411, Paul A Northcott592, Stefan M Pfister97,301,593, Bernhard Radlwimmer411, Guido 
Reifenberger590, Matthias Schlesner52,109, Hans-Jörg Warnatz591, Joachim Weischenfeldt8,112,113, 
Stephan Wolf594, Marie-Laure Yaspo591 and Marc Zapatka411 

 

Tumor Specific Providers – Germany (Prostate cancer) 

Yassen Assenov595, Benedikt Brors81,118,278, Juergen Eils66,67, Roland Eils52,54,66,67, Lars 
Feuerbach118, Clarissa Gerhauser284, Jan O Korbel7,8, Chris Lawerenz67, Hans Lehrach591, Sarah 
Minner596, Christoph Plass284, Guido Sauter#597, Thorsten Schlomm113,598, Nikos Sidiropoulos112, 



Ronald Simon597, Holger Sültmann#81,599, Hans-Jörg Warnatz591, Dieter Weichenhan284, Joachim 
Weischenfeldt8,112,113 and Marie-Laure Yaspo591 

 

Tumor Specific Providers – India (Oral cancer) 

Nidhan K Biswas600, Luca Landoni427, Arindam Maitra600, Partha P Majumder#600 and Rajiv 
Sarin#601 

 

Tumor Specific Providers – Italy (Pancreatic cancer) 

Davide Antonello427, Stefano Barbi435, Claudio Bassi427, Samantha Bersani430, Giada Bonizzato431, 
Cinzia Cantù431, Ivana Cataldo430,431, Sara Cingarlini37, Vincenzo Corbo431,435, 436, M V 
Davi436,Angelo P Dei Tos602, Matteo Fassan603, Sonia Grimaldi431, Luca Landoni427, Rita T 
Lawlor431, Claudio Luchini430, Andrea Mafficini431, Giuseppe Malleo427, Giovanni Marchegiani427, 
Michele Milella37, Marco Miotto427, Salvatore Paiella427, Antonio Pea427, Paolo Pederzoli427, 
Borislav C Rusev431, Andrea Ruzzenente427, Roberto Salvia427, Maria Scardoni430, Aldo 
Scarpa#431, Elisabetta Sereni427, Michele Simbolo435, Nicola Sperandio431, Giampaolo Tortora37,38 
and Caterina Vicentini431 

 

Tumor Specific Providers – Japan (Biliary tract cancer) 

Yasuhito Arai33, Natsuko Hama33, Nobuyoshi Hiraoka604, Fumie Hosoda33,605, Mamoru Kato369, 
Hiromi Nakamura33, Hidenori Ojima606, Takuji Okusaka607, Tatsuhiro Shibata#33,34, Yasushi 
Totoki33 and Tomoko Urushidate34 

 

Tumor Specific Providers – Japan (Gastric cancer) 

Hiroyuki Aburatani#272, Yasuhito Arai33, Masashi Fukayama608, Natsuko Hama33, Fumie 
Hosoda33,605, Shumpei Ishikawa609, Hitoshi Katai610, Mamoru Kato369, Hiroto Katoh611, Daisuke 
Komura609, Genta Nagae272,283, Hiromi Nakamura33, Hirofumi Rokutan612, Mihoko Saito-
Adachi33, Tatsuhiro Shibata#33,34, Akihiro Suzuki272,613, Hirokazu Taniguchi614, Kenji Tatsuno272, 
Yasushi Totoki33, Tetsuo Ushiku608, Shinichi Yachida33,615 and Shogo Yamamoto272 

 

Tumor Specific Providers – Japan (Liver cancer) 

Hiroyuki Aburatani272, Hiroshi Aikata616, Koji Arihiro616, Shun-ichi Ariizumi617, Keith A 
Boroevich47,48, Kazuaki Chayama616, Akihiro Fujimoto48, Masashi Fujita48, Mayuko Furuta48, 
Kunihito Gotoh618, Natsuko Hama33, Takanori Hasegawa86, Shinya Hayami619, Shuto Hayashi86, 
Satoshi Hirano620, Seiya Imoto85,86, Mamoru Kato369, Yoshiiku Kawakami616, Kazuhiro Maejima48, 



Satoru Miyano86, Genta Nagae272,283, Hidewaki Nakagawa#48, Hiromi Nakamura33, Toru 
Nakamura620, Kaoru Nakano48, Hideki Ohdan616, Aya Sasaki-Oku48, Tatsuhiro Shibata#33,34, 
Yuichi Shiraishi86, Hiroko Tanaka86, Yasushi Totoki33, Tatsuhiko Tsunoda47,220,221,222, Masaki 
Ueno619, Rui Yamaguchi86, Masakazu Yamamoto617 and Hiroki Yamaue619 

 

Tumor Specific Providers – Singapore (Biliary tract cancer) 

Su Pin Choo621, Ioana Cutcutache267,319, Narong Khuntikeo427,622, John R McPherson267,319, Choon 
Kiat Ong623, Chawalit Pairojkul253, Irinel Popescu624, Steven G Rozen#267,268,319, Patrick 
Tan#254,266,267,268 and Bin Tean Teh#266,267,268,269,270 

 

Tumor Specific Providers – South Korea (Blood cancer) 

Keun Soo Ahn625, Hyung-Lae Kim27, Youngil Koh307,308 and Sung-Soo Yoon#308 

 

Tumor Specific Providers – Spain (Chronic Lymphocytic Leukemia) 

Marta Aymerich626, Elias Campo#627,628, Josep Ll Gelpi46,70, Ivo G Gut133,134, Marta Gut133,134, 
Armando Lopez-Guillermo629, Carlos López-Otín630, Xose S Puente631, Romina Royo46 and David 
Torrents46,110 

 

Tumor Specific Providers – United Kingdom (Bone cancer) 

Fernanda Amary632, Daniel Baumhoer633, Sam Behjati1, Bodil Bjerkehagen634, Peter J 
Campbell#1,2, Adrienne M Flanagan#635, PA Futreal527, Ola Myklebost636, Nischalan Pillay637, 
Patrick Tarpey638, Roberto Tirabosco639 and Olga Zaikova640 

 

Tumor Specific Providers – United Kingdom (Chronic myeloid 
disorders) 

Jacqueline Boultwood641, David T Bowen1, Adam P Butler1, Peter J Campbell#1,2, Mario 
Cazzola642, Carlo Gambacorti-Passerini187, Anthony R Green295, Eva Hellstrom-Lindberg643, Luca 
Malcovati642, Sancha Martin1,372, Jyoti Nangalia644, Elli Papaemmanuil1 and Paresh Vyas311,645 

 

Tumor Specific Providers – United Kingdom (Esophageal cancer) 

Yeng Ang646, Hugh Barr647, Duncan Beardsmore648, Matthew Eldridge294, Rebecca C 
Fitzgerald#325, James Gossage649, Nicola Grehan325, George B Hanna650, Stephen J Hayes651,652, 



Ted R Hupp653, David Khoo654, Jesper Lagergren643,655, Laurence B Lovat251, Shona MacRae398, 
Maria O'Donovan325, J Robert O'Neill656, Simon L Parsons657, Shaun R Preston658, Sonia Puig659, 
Tom Roques660, Grant Sanders248, Sharmila Sothi661, Simon Tavaré294, Olga Tucker662, Richard 
Turkington663, Timothy J Underwood664 and Ian Welch665 

 

Tumor Specific Providers – United Kingdom (Prostate cancer) 

Nicholas vVan As666, Daniel M Berney667, Johann S De Bono408, G Steven Bova331, Daniel S 
Brewer406,407, Adam P Butler1, Declan Cahill666, Niedzica Camacho408, Colin S Cooper#407,408,409, 
Nening M Dennis666, Tim Dudderidge666,668, Sandra E Edwards408, Rosalind A Eeles#408,666, Cyril 
Fisher666, Christopher S Foster669,670, Mohammed Ghori1, Pelvender Gill645, Vincent J 
Gnanapragasam386,671, Gunes Gundem198, Freddie C Hamdy672, Steve Hawkins294, Steven 
Hazell666, William Howat386, William B Isaacs291, Katalin Karaszi645, Jonathan D Kay251, Vincent 
Khoo666, Zsofia Kote-Jarai408, Barbara Kremeyer1, Pardeep Kumar666, Adam Lambert645, Daniel A 
Leongamornlert1,408, Naomi Livni666, Yong-Jie Lu667,673, Hayley J Luxton251, Andy G Lynch294,295,310, 
Luke Marsden645, Charlie E Massie294, Lucy Matthews408, Erik Mayer666,674, Ultan McDermott1, 
Sue Merson408, Thomas J Mitchell1,295,386, David E Neal294,386, Anthony Ng675, David Nicol666, 
Christopher Ogden666, Edward W Rowe666, Nimish C Shah386, Jon W Teague1, Sarah Thomas666, 
Alan Thompson666, Peter Van Loo63,64, Clare Verrill645,676, Tapio Visakorpi331, Anne Y 
Warren386,677, David C Wedge1,357,358, Hayley C Whitaker251, Jorge Zamora1,286,287,288 and 
Hongwei Zhang673 

 

Tumor Specific Providers – United States (TCGA) 

Adam Abeshouse198, Nishant Agrawal71, Rehan Akbani325,678, Hikmat Al-Ahmadie198, Monique 
Albert467, Kenneth Aldape253,654,679, Adrian Ally680, Yeng Ang646, Elizabeth L Appelbaum137,251, 
Joshua Armenia681, Sylvia Asa657,682, J Todd Auman683, Matthew H Bailey136,137, Miruna 
Balasundaram680, Saianand Balu248, Jill Barnholtz-Sloan684,685, Hugh Barr647, John Bartlett466,467, 
Oliver F Bathe686,687, Stephen B Baylin6684,688, Duncan Beardsmore648, Christopher Benz689, 
Andrew Berchuck690, Benjamin P Berman273,274,275, Rameen Beroukhim3,6,172, Mario Berrios691, 
Darell Bigner294,692, Michael Birrer104, Tom Bodenheimer248, Lori Boice659, Moiz S Bootwalla693, 
Marcus Bosenberg694, Reanne Bowlby680, Jeffrey Boyd695, Russell R Broaddus679, Malcolm 
Brock696, Denise Brooks680, Susan Bullman3,172, Samantha J Caesar-Johnson40, Thomas E 
Carey697, Rebecca Carlsen680, Robert Cerfolio698, Vishal S Chandan699, Hsiao-Wei Chen646,681, 
Andrew D Cherniack3,3,49,172, Jeremy Chien700, Juok Cho3, Eric Chuah680, Carrie Cibulskis3, Kristian 
Cibulskis3, Leslie Cope701, Matthew G Cordes137,660, Kyle Covington163, Erin Curley702, Bogdan 
Czerniak654,679, Ludmila Danilova701, Ian J Davis703, Timothy Defreitas3, John A Demchok40, 
Noreen Dhalla680, Rajiv Dhir704, Li Ding136,137,144, HarshaVardhan Doddapaneni163, Adel El-
Naggar654,679, Ina Felau40, Martin L Ferguson705, Gaetano Finocchiaro706, Kwun M Fong707, Scott 
Frazer3, William Friedman708, Catrina C Fronick137,660, Lucinda A Fulton137, Robert S 
Fulton136,137,144, Stacey B Gabriel3, Jianjiong Gao681, Nils Gehlenborg3,709, Jeffrey E 
Gershenwald710,711, Gad Getz3,4,5,6, Ronald Ghossein525, Nasra H Giama712, Richard A Gibbs163, 



Carmen Gomez713, James Gossage649, Ramaswamy Govindan136, Nicola Grehan325, George B 
Hanna650, Stephen J Hayes651,652, Apurva M Hegde398,678, David I Heiman3, Zachary Heins198, 
Austin J Hepperla248, Katherine A Hoadley247,248, Andrea Holbrook714, Robert A Holt680, Alan P 
Hoyle248, Ralph H Hruban715, Jianhong Hu163, Mei Huang659, David Huntsman716, Ted R Hupp653, 
Jason Huse198, Carolyn M Hutter#21, Christine A Iacobuzio-Donahue525, Michael Ittmann717,718, 
Joy C Jayaseelan163, Stuart R Jefferys248, Corbin D Jones719, Steven JM Jones720, Hartmut Juhl721, 
Koo Jeong Kang722, Beth Karlan723, Katayoon Kasaian724, Electron Kebebew725,726, David Khoo654, 
Hark Kim31, Jaegil Kim3, Tari A King535,536, Viktoriya Korchina163, Ritika Kundra646,681, Jesper 
Lagergren643,655, Phillip H Lai714, Peter W Laird281, Eric Lander3, Michael S Lawrence3,47,104, 
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