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Supplementary Methods and Results 
 

Results of analysis teams 

We performed exploratory analyses to test whether the teams’ confidence (“How confident are 

you about this result?”) and similarity (“How similar do you think your result is to the other 

analysis teams?”) ratings were related to their final reported results. First, we ran a mixed effects 

logistic regression with the binary reported result as the outcome variable and the confidence and 

similarity ratings as predictors (the hypothesis number was also added to the model as a factorial 

fixed effect). We found that higher similarity rating was associated with higher proportion of 

significant results (p < 0.001, delta pseudo-R² = 0.032, mean similarity rating: 7.40 for significant 

results and 6.29 for insignificant results). Confidence ratings were not significantly related to the 

proportion of significant results (p = 0.732, mean confidence rating: 7.59 for significant results 

and 6.93 for insignificant results). Second, we tested the Spearman correlation of the distance of 

the outcome (the proportion of teams that reported a significant result for each hypothesis) from 

0.5 (i.e., how consistent the results were across teams) and the mean confidence rating across 

hypotheses. This correlation was positive (r = 0.69, p = 0.039), indicating that for hypotheses 

where variability of the results across teams was smaller, the teams were more confident in their 

results. The Spearman correlation between the distance of the outcome from 0.5 and the mean 

estimated similarity to other teams was not significant (r = 0.40, p = 0.286). 

 

Variability of thresholded statistical maps 

We performed a coordinate-based meta-analysis using activation likelihood estimation (ALE)30,31 

across teams. This analysis, which imposes additional smoothing, was performed with the 

NIMARE software package [RRID:SCR_017398] using peak locations identified from 

thresholded maps for each team. Correction for multiple tests was applied using false discovery 

rate at the 5% threshold41. The ALE analysis demonstrated convergent patterns of activation for 

all hypotheses. However, while ALE has been shown to be robust to correlated inputs, in the case 

when some studies contribute multiple contrasts42, the present single-study same-data usage goes 

beyond existing research and the extent of any potential biases is unknown. Therefore, this analysis 

provides only a qualitative aggregation and cannot be regarded as a calibrated statistical result due 

to the single-study same-data usage. 
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Variability of unthresholded statistical maps 

Correlations between unthresholded maps were further assessed by modeling the median 

Spearman correlation of each team with the average pattern across teams as a function of analysis 

method using linear regression. Estimated spatial smoothness of the statistical images (averaged 

across hypotheses) was significantly associated with correlation with the mean pattern (p = 0.023, 

delta r² = 0.07), as was the use of movement modeling (p = 0.021, delta r² = 0.08).   

No teams were consistently anticorrelated with the mean pattern across all hypotheses, though 

three teams showed a correlation of r < 0.2 with the mean pattern across hypotheses, whereas 32 

teams showed correlations of r > 0.7 with the mean pattern. 

We further performed an image-based meta-analysis (IBMA) to quantify the evidence for each 

hypothesis across analysis teams, accounting for the lack of independence due to the use of a 

common dataset across teams (Extended Data Figure 3b). While there are different meta-analysis-

inspired approaches that could be taken (e.g. a random effects meta-analysis that penalizes for 

inter-team variation), we sought an approach that would preserve the typical characteristics of the 

teams’ maps. In particular, the meta-analytical statistical map is based on the mean of teams’ 

statistical maps, but is shifted and scaled by global factors so that the mean and variance are equal 

to the original image-wise means and variances averaged over teams. Under a complete null 

hypothesis of no signal anywhere for every team and every voxel, the resulting map can be 

expected to produce nominal standard normal z-scores, and in the presence of signal will reflect a 

consensus of the different results. 

The image-based meta-analysis method is as follows. Let N be the number of teams, μ be the 

(scalar) mean over space of each team’s map, averaged over teams, σ2 likewise the spatial variance 

averaged over teams, and let Q be the N⨉N correlation matrix, computed using all voxels in the 

statistical map. Then let Zik be the z-value for voxel i and team k, and Mi the mean of those N z-

values at voxel i. The variance of Mi is σ21⊤Q1/N2, where 1 is a N-vector of ones. We center and 

standardize Mi, and then rescale and shift to produce a meta-analytical Z-map with mean μ and 

variance σ2: 

Zi = (Mi − μ)/√(σ2 1⊤Q1/N2) ⨉ σ + μ. 

Voxelwise correction for false discovery rate (5% level) was performed using the two-stage linear 

step-up procedure43. 
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The random-effects variance across unthresholded statistical maps of the different teams was  

estimated using an analog to the tau-squared statistic commonly used to assess heterogeneity in 

meta-analysis. We used the following estimator to account for the interstudy correlation and 

provide an unbiased estimate of the between-team variance, 

𝜏$%= Yi’RYi / tr(RQ), 

where Yi is the vector of T statistics across teams at a given voxel i, Q is the correlation matrix 

across teams (pooling over all voxels), and R is the centering matrix (R = I - 11⊤/N); this is just 

the usual sample variance except N−1 is replaced by tr(RQ). 

In the case where all results are identical, this statistic should take a value approaching zero. 

Median tau across teams was well above one (range across hypotheses: 1.13-1.85), and 

visualization of voxelwise tau maps (Extended Data Figure 3a) showed much higher variability in 

activated regions, with some voxels showing values greater than 5. As a point of comparison, the 

sampling variability of T-scores over different datasets always has a standard deviation of at least 

1.0, and thus it is notable that inter-team variability on the same dataset is often substantially larger.  

 
 

Prediction markets 

A limitation of the prediction markets part of the study is that the number of observations for each 

set of prediction markets is low, as it equals the number of hypotheses (n = 9) tested by the teams 

with the fMRI dataset. This meant that we had nine prediction market observations for “team 

members” and nine prediction market observations for “non-team members”. These were 

aggregated market observations about predictions of the fraction of teams reporting significant 

results for each hypothesis (bounded between 0 and 1). The low number of observations implied 

that the statistical power to find statistically significant effects was limited, and the test results 

should therefore be interpreted cautiously. 

Traders self-ranked expertise. On average, participants’ self-reported expertise in neuroimaging 

(Likert scale from 1 to 10) was 6.54 (s.d. = 1.93) for the “team members” prediction market and 

5.98 (s.d. = 2.39) for the “non-team members” prediction market, respectively (Welch two-sample 

t-test: t(173.19) = 1.77, p = 0.078). The mean self-reported expertise in decision sciences (Likert 

scale from 1 to 10) was significantly higher for the “non-team members” (mean = 5.13, s.d. = 2.36) 

compared to the “team members” (mean = 4.23, s.d. = 2.46) prediction market (Welch two-sample 
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t-test: t(184.97) = 2.56, p = 0.011). These tests comparing the value of the variables between the 

two samples were not pre-registered and are included for descriptive purposes.  

Exploratory analyses. Although not stated in the pre-analysis plan, we examined the correlation 

between participants’ final payoffs, as an indicator of market performance and prediction accuracy, 

with participants’ self-reported expertise in neuroimaging and decision sciences. The Spearman 

correlations between payoffs and self-rated expertise turn out to be low in magnitude and 

statistically insignificant for expertise in both neuroimaging (r = 0.06, p = 0.45, n = 148) and 

decision sciences (r = -0.07, p = 0.369, n = 148). This exploratory result also holds if we examine 

Spearman correlations for “team members” and “non-team members” separately (expertise in 

neuroimaging: “non-team members”, r = 0.19, p = 0.141, n = 65; “team-members”, r = -0.12, p = 

0.273, n = 83; expertise in decision sciences: “non-team members”, r = 0.04, p = 0.745, n = 65; 

“team-members”, r = 0.02, p = 0.829, n = 83). 

To explore whether and how market prices (i.e., market’s predictions) aggregate traders’ private 

information over time, we calculated the absolute error of the market price from the fundamental 

value on an hourly basis (average price of all transactions within an hour), resulting in a time series 

of 240 observations (10 days x 24 hours; see Extended Data Figure 5a). We ran two panel 

regressions with 18 cross-sections (i.e., nine hypotheses run for both sets of markets) and 240 time 

observations each. In the model (1), we regressed the absolute error on a binary prediction market 

indicator (team vs. non-team member) and control for linear time effect. The statistically 

significant coefficient for the team membership dummy (𝛽 = −0.22, p < 0.001) indicated that, on 

average, predictions in the “team members” prediction market were closer to the fundamental 

value than aggregate market’s predictions in the “non-team members” prediction market. The 

positive coefficient for the time trend (𝛽 = 4.41 x 10-4, p < 0.001) in the model suggested that 

information aggregation got worse over time, i.e. that prices in both prediction markets tended to 

drift away from the fundamental value as time progressed. Adding the interaction term of the time 

trend and the prediction market indicator variable in model (2) revealed that prediction errors over 

time increased at a significantly higher rate in the “team members” prediction market compared to 

the “non-team members” prediction market. Despite the lower prediction errors in the “team 

members” prediction market, this suggests that information aggregation over time was more 

effective in the “non-team members” prediction market. The results are presented in Extended 

Data Figure 5b.  
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Concerning individual traders and how their opinions were incorporated in the market’s 

predictions, we carried out two analyses for the “team members” prediction market only. First, 

Spearman correlations between the results their team has reported (a binary outcome) and their 

individual final holdings in the asset for each of the nine hypotheses range from 0.23 to 0.74 (all 

correlations are statistically significant, except for Hypothesis #7: ⍴s = 0.23, p = 0.104; for details, 

see Extended Data Table 5b). In a second analysis, we calculated the percentage of trades in the 

“team members” prediction markets which are consistent with the results their team reported (i.e., 

whether they buy when their team reported a significant result in the hypothesized direction, but 

the market prices reflect “no significant result” and vice versa) for each of the nine hypotheses. 

The fractions of consistent trades ranged from 0.68 to 0.89. One-sample Wilcoxon signed-rank 

tests for a share of 0.5 revealed that the share of consistent trades was significantly higher than 

50% (z-values range from 2.78 to 6.81; p < 0.004 for all tests; see Extended Data Table 5b for 

details). However, it turns out that inconsistent trades are disproportionately larger (in terms of 

volume) than consistent trades, explaining the systematic overvaluation of fundamental values. 

In order to test whether overoptimism of traders in the team prediction market was the result of 

over-representation of teams reporting significant results, we computed the fraction of active 

traders that reported a significant result for each hypothesis. Overall, active traders in the teams 

prediction market were representative with respect to the overall results. The absolute differences 

in the fraction of significant results for active traders compared to all teams are small and vary 

from 0.021 to 0.088. For all hypotheses, the fraction of significant results for active traders lies 

within the 95% confidence intervals associated with the fraction of significant results reported by 

all teams, indicating that the active traders’ information in the market are representative for the 

overall results. Moreover, for all hypotheses but one (Hypothesis #5), the fraction of significant 

results was lower for the active traders compared to all teams. Therefore, overoptimism of the 

traders in the teams prediction market could not be attributed to a biased outcome for these 

researchers.  

Supplementary Discussion 

 

The goal and scope of NARPS 

The main goal of NARPS was to ecologically test the degree of analytical variability in fMRI and 

the effects of this variability on analytical results. Therefore, we tried to mimic as much as possible 
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the analytical variability that occurs “in the wild”. To this aim, we collected a real sample of a 

value-based decision-making fMRI task, with some complexity that would yield variance in 

reported significant results, similar to what is happening in standard fMRI studies in practice. 

Importantly, the study was not meant to determine the ultimate validity of the teams’ results, which 

is not possible in this case due to the lack of ground truth for the hypothesized effects. The second 

goal of NARPS was to assess the accuracy of predictions made by researchers in the field regarding 

the fraction of teams reporting significant results for each hypothesis. To this aim, we employed 

the novel approach of prediction markets, where participants trade on the outcomes of scientific 

analyses2–5. 

 

Analytical variability and its related factors 

Seventy analysis teams independently analyzed the same fMRI dataset to test the same nine ex-

ante hypotheses which were based on the relevant scientific literature (Extended Data Table 1). 

Exploratory analyses of the relation between reported hypothesis outcomes and a subset of specific 

measurable analytical choices and image features identified several primary sources of analytical 

variability across teams. First, teams differed in the way they modelled the hypotheses (i.e. the 

regressors and contrasts they included in the model). Second, there were multiple different 

software packages used. Third, teams differed in the preprocessing steps applied as well as the 

parameters and techniques used at each preprocessing step. Fourth, teams differed in the threshold 

used to identify significant effects at each voxel in the brain and the method used to correct for 

multiple comparisons. Finally, teams differed in how the anatomical regions of interest (ROIs) 

were defined to determine whether there was a significant effect in each a priori ROI. 

Reported analysis outcomes demonstrated substantial variability in results across analysis teams 

(Figure 1 and Extended Data Table 2). We further found that while the agreement between 

thresholded statistical maps was largely limited to which voxels were not activated (which 

comprised the large majority of voxels), correlations between the unthresholded statistical maps 

across teams were moderate. We performed exploratory analyses to assess the impact of specific 

factors on the variability of results. These analyses pointed out specific factors that significantly 

contributed to the variability. Higher estimated smoothness of the unthresholded statistical map, 

analyzing the data with FSL, and using parametric correction methods were all related to more 

significant results, though the latter two effects were not consistently supported by nonparametric 
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bootstrap analyses. While the analysis software and correction method used are analytical choices 

directly made by each team, the estimated smoothness is a feature of the map and is affected by 

multiple earlier analytical choices. For example, exploratory analysis showed that modeling head 

movement was related to reduced estimated smoothness. These results imply that variability in 

results could potentially be reduced, for instance by converging to a specific correction method or 

analysis software. However, we do not believe that there is an optimal software or correction 

method across studies and hypotheses, as each one is optimal for different purposes (cf. 44). 

 

Limitations 

It is important to note that our analyses are limited by the number of teams and factors. Although 

we aimed to test the variability that is present in practice, and the cooperation of the neuroimaging 

community was overwhelming, our analyses have limited statistical power due to the skewed 

distributions of hypothesis outcomes (e.g. the low number of teams that reported insignificant 

results for hypotheses 7-9), and for many analytical choices there were too many different choices 

across teams to allow statistical modeling. For example, we did not find significant differences in 

results between analysis teams that chose to use the preprocessed (with fMRIPrep) shared dataset 

versus the teams that chose to use the raw dataset and preprocess the data by themselves. However, 

preprocessing includes many analytical procedures, and the effect of each specific procedure on 

the variability of final results was not directly tested here due to lack of power resulting from the 

multiple available options for each step. We would also note that our use of hierarchical models 

(which pool across hypotheses with varying levels of agreement) helps increase sensitivity overall. 

We propose that only computational simulations could have sufficient power to estimate the 

theoretical contribution of each analytical choice. 

There are several important analytical choices that could not be directly tested here. For example, 

as each hypothesis was related to a specific brain region, each team was required to choose an 

operative definition of the specific hypothesized region (i.e., in order to decide whether a 

significant activation was found within this region or not). Given the exact same thresholded 

statistical map, different teams could potentially reach different conclusions45. Moreover, one of 

the three regions of interest in the current study was the ventromedial prefrontal cortex (vmPFC), 

for which there is no specific agreed-upon anatomical definition. This may have further 

contributed to variability across teams. However, we could not include this analytical choice in the 



 

9 

tested model, as there were too many distinct methods used by the teams (e.g., different atlases, 

Neurosynth33, visual examination, etc.) resulting in the lack of power for testing this effect. 

Another important step we could not directly measure here was the general linear model 

specification. For example, modelling response time (or not) could potentially affect the results; 

the majority of teams (44) did not do so, but there were several different methods used by the 

teams that did, which were different enough that they could not be collapsed into a single class for 

modeling. We did find several model specification errors that resulted in statistical maps that were 

anticorrelated with the majority of teams. While some of these errors might be related to the 

relative complexity of the particular task used here, other errors, such as those involving the 

inclusion of multiple correlated parameters in the model, likely generalize to all tasks. 

The fact that correlated unthresholded statistical maps resulted in substantially different binary 

results across analysis teams suggested that a main source of the variability comes from the final 

stages of analysis: thresholding, correcting for multiple comparisons and anatomical ROI 

specifications. Although the general correction method used (parametric versus nonparametric) 

was found to be related to the final results, exploratory analysis applying a fixed threshold, 

correction method and anatomical ROI specification did not yield qualitatively more similar binary 

results compared to the reported ones (Extended Data Figure 4). Nonetheless, correlated statistical 

maps should not necessarily produce similar binary results when applying the same threshold, 

since the correlation coefficient is not sensitive to overall scaling and thus correlated values could 

differ substantially in magnitude. Use of consistent thresholding and meta-analytical approaches 

provide another view on the heterogeneity of results (Extended Data Figure 4b). Hypotheses 2, 4, 

5 & 6 all had at least 50% of teams showing activation on some consistent thresholding approach 

as well as significant voxels in the image-based meta-analysis (IBMA). 

It should also be noted that our results are conditional on the specific task we chose to use here, 

the mixed gambles task. This task is relatively complex, with multiple parametric modulators that 

could be (and were) modeled in a number of different ways. While this is a relatively representative 

task in the field of value-based decision-making, a simpler task may have resulted in lower 

variance across pipelines (e.g., if there was less flexibility in the specification of the statistical 

model and region definitions, and less possibility of model misspecification).  

 

Prediction markets 
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We used prediction markets to test the degree to which researchers from the field can predict the 

results. Prediction markets are assumed to aggregate private information distributed among traders, 

and can generate and disseminate a consensus among market participants. While traders in the 

“team members” prediction market had the data and knew their own results, traders from the “non-

team members” reported significantly higher expertise in decision-sciences and are therefore 

assumed to be more familiar with the relevant literature. Nonetheless, we found that both groups 

of traders strongly overestimated the fraction of significant results. These results indicate that 

researchers in the field are over-optimistic with regard to the reproducibility of results across 

analysis teams. Nonetheless, team members predicted the relative plausibility of the hypotheses 

very well. Surprisingly, neither self-rated expertise in neuroimaging nor self-rated expertise in 

decision-sciences were related to better performance in the prediction markets (i.e., to better 

predictions of the results; see Supplementary Methods and Results). 

 

Implications regarding previous findings with the mixed gambles task 

There is a spectrum of concerns regarding the quality of research, ranging from replicability (the 

ability to reproduce a result in a new sample) to computational reproducibility (the ability to 

reproduce a result given data and analysis plans)46. Concerns over replicability across many areas 

of science have led to a number of projects in recent years that attempted to assess the replicability 

of empirical findings across labs3,34,47,48. While such an undertaking would certainly be useful in 

the context of fMRI, the expense of fMRI data collection makes a large-scale replication attempt 

across many studies very unlikely. The present study does not broadly assess the replicability of 

neuroimaging research, but it does provide valuable insights, given that the design of the present 

study overlaps (in the equal indifference group) with the previous study of Tom et al.10. Out of the 

four primary claims made in the initial paper (reflecting significant outcomes on Hypotheses #1, 

#3 and #5, and a null outcome on Hypothesis #7), two were supported by a majority of teams in 

the present study. Moreover, as results largely differed for the equal indifference group (for which 

the design was similar to Tom et al.10) and the equal range group (for which the design was similar 

to De Martino et al.11 and Canessa et al.12), mainly for the negative loss effect in the vmPFC 

(Hypothesis #5 vs. Hypothesis #6), inconsistent findings across these studies may be the result of 

the different designs they used. However, as the present study did not aim to directly test 
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replicability of fMRI findings, but rather the variability across analysis pipelines with the same 

dataset, the implications are limited and should be interpreted with caution. 

 

General implications and proposed solutions 

In this study, we assessed the degree to which results are reproducible across multiple analysts 

given a single dataset and pre-defined hypotheses. Our findings raise substantial concerns and 

indicate an urgent need for better understanding and controlling the effects of analytical choices 

on reported results. Furthermore, our findings indicate that the further one gets from raw data the 

more divergent the results are. One implication of these findings is that meta-analyses should be 

more effective when using less processed data (i.e. unthresholded statistical maps versus 

thresholded statistical maps or activation coordinates)cf. 49. 

Importantly, the analysis teams who participated in the present study were not incentivized to find 

significant effects, which is thought to drive a number of questionable research practices (e.g., “p-

hacking”7). Furthermore, our results suggest that the teams were not consistently biased towards 

either affirmation or rejection of hypotheses: Several hypotheses were affirmed by roughly 5% of 

teams, while Hypothesis #5 was affirmed by 84% of teams. Thus, the variability in the present 

results more likely reflects actual variability in the standard analytical methods used by the 

participating research groups and their interaction with the data, as well as model specification 

differences and errors present for some teams. It should be noted that the analyses and results 

submitted by the teams were not individually peer reviewed, and we cannot know for certain 

whether and how the peer review process would have affected the results. In addition, in the present 

study all analysis teams used a univariate analysis (GLM) approach, although not explicitly 

instructed to do so (one team performed GLM at the first level within participant analysis, but 

partial least squares correlation at the group level analysis). While this type of analysis has been 

the most frequent one since the advent of fMRI, in recent years many studies have been using 

multivariate pattern analyses50, which are less standardized and are therefore prone to be affected 

by specific analytical choices. An open question is how the present results would generalize to 

those studies in which the researchers are motivated to detect a significant result (due to the 

prevailing bias for publication of significant results). Our results imply substantial researcher 

degrees of freedom resulting in ample scope for p-hacking, as a significant result for each 
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hypothesis could be reported based on at least four (based on the number of teams that reported a 

significant result for hypotheses 7-9) of the pipelines used in practice by analysis teams.  

We propose that complex datasets should be analyzed using multiple analysis pipelines, preferably 

by more than one research team, and the results compared to ensure concordance across validated 

pipelines. The current study and future ones could point at the main analytical choices that lead to 

variable results. “Multiverse analysis” thus can be focused on those analytical choices to save 

required computational resources and allow a wider use across research groups. Previous studies 

in other fields have suggested different versions of “multiverse” analysis19,20, but these have yet to 

be widely implemented. Meta-analysis methods can be used to draw conclusions based on multiple 

analysis pipelines and/or studies (when unthresholded statistical maps would be shared alongside 

neuroimaging publications). We believe this is a promising and important future direction, given 

the substantial influence of analytical choices on reported results. We also propose that the use of 

well-engineered and well-validated software tools instead of custom solutions, when appropriate, 

can help reduce the presence of errors and suboptimal analysis choices simply by the fact that these 

have been tested by multiple users and often employ more rigorous software engineering practices 

(but, importantly, should not be treated as a “black box”). 

It is important to note, however, that concordance among different analysis pipelines does not 

necessarily imply that the conclusion of those analyses is correct. In the present study we chose to 

collect and distribute real fMRI task data of a somewhat complex value-based decision-making 

task, rather than synthetic data with known effects, in order to achieve the crucial ecological aspect 

of this project (and also to allow the use of prediction markets). Moreover, using synthetic data 

could have potentially introduced bias towards finding a result, as analysis teams would likely 

infer that some activation must be present. Since we collected a real dataset, we do not have a 

“ground truth” regarding the effects (i.e., we do not know for certain whether each hypothesis is 

correct or not). Therefore, the present study provides crucial evidence and insights regarding the 

variability of results across analysis pipelines in practice and its related factors, but not regarding 

the validity of each analytical choice or which analytical choices are the best ones. Future studies 

can use simulated data or null data, where the ground truth is known, to validate analysis 

workflows (e.g.32,51). These studies could potentially identify optimal analysis pipelines, on which 

the “multiverse analysis” could rely. We do not, however, believe that there is a single (or even a 

few) best analysis pipeline across studies52,53. Novel analysis methods are important for scientific 
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discovery and progress, and different pipelines are optimal for different studies and scientific 

questions. Therefore, we suggest to focus on “multiverse analysis”, while aggregating evidence 

across studies by sharing unthresholded statistical maps, analysis code and design matrices, and 

applying meta-analysis approaches. The discussed challenges and potential solutions are relevant 

far beyond neuroimaging, to any scientific field where the data are complex and there are multiple 

acceptable analysis workflows. 
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