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Supplementary Methods1

1 Comparison of Google and SafeGraph mobility data2

To assess the reliability of the SafeGraph datasets, we measured the correlation between mobility3

trends according to SafeGraph versus Google.1 Google provides a high-level picture of mobility4

changes around the world for several categories of places, such as grocery stores or restaurants.5

We analyzed three of the categories defined by Google: Retail & recreation (e.g., restaurants,6

shopping centers, movie theaters), Grocery & pharmacy (e.g., grocery stores, farmers markets,7

pharmacies), and Residential (i.e. places of residence). We omitted Transit stations because they8

are not well-covered by SafeGraph POIs, Parks because SafeGraph informed us that parks are9

sometimes inaccurately classified in their data (e.g., other POIs are categorized as parks), and10

Workplaces because we do not model whether people are at work. To analyze the Retail & recre-11

ation and Grocery & pharmacy categories, we used POI visits in the SafeGraph Patterns datasets,12

identifying POIs in each category based on their 6-digit North American Industry Classification13

System (NAICS) codes (Table S2). For the Residential category, we used SafeGraph Social Dis-14

tancing Metrics, which provides daily counts of the number of people in each CBG who stayed at15

home for the entire day.16

For each US region and category, Google tracks how the number of visits to the category has17

changed over the last few months, compared to baseline levels of activity before SARS-CoV-2.18

To set this baseline, they compute the median number of visits to the category for each day of19

the week, over a 5-week span from January 3–February 6, 2020. For a given day of interest, they20

then compute the relative change in number of visits seen on this day compared to the baseline for21

the corresponding day of week. We replicated this procedure on SafeGraph data, and compared22

the results to Google’s trends for Washington DC and 14 states that appear in the metro areas23

that we model. For each region and category, we measured the Pearson correlation between the24

relative change in number of visits according to Google versus Safegraph, from March 1–May 2,25

2020. Across the 15 regions, we found that the median Pearson correlation was 0.96 for Retail &26

recreation, 0.79 for Grocery & pharmacy, and 0.88 for Residential. As an illustrative example,27

we visualize the results for New York state in Figure S1, and provide a full table of results for28

every state in Table S3. The high correlations demonstrate that the SafeGraph and Google mo-29

bility datasets agree well on the timing and directional changes of mobility over this time period,30

providing a validation of the reliability of SafeGraph data.31
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2 Sensitivity analyses and robustness checks32

2.1 Time-varying base transmission rate33

In our model, we assumed that λ(t)
ci , the base rate of infection in CBG ci, was equal to a constant34

base transmission rate βbase multiplied by the infectious fraction of ci at time t (Equation 11). We35

conducted a sensitivity analysis where we assumed, instead, a time-varying base transmission rate36

that incorporated an additional factor p̂(t)
ci , the estimated proportion of people at home in ci at time37

t. Under this modified model, λ(t)
ci became38

λ(t)
ci

= βbase · p̂(t)
ci︸ ︷︷ ︸

base transmission rate

·I
(t)
ci

Nci

. (1)

During the time period we simulate, there was a dramatic increase in the number of people staying39

at home. As a result, we guessed that there might be a corresponding increase in the frequency and40

duration of interactions within households. By scaling the base transmission rate with the propor-41

tion of people staying home, this sensitivity analysis explored the possibility that the transmission42

rate outside of POIs might have increased together with the number of people staying home.43

We estimated the daily proportion of people staying at home in each CBG by comput-44

ing completely home device count/device count from SafeGraph’s Social Distanc-45

ing Metrics. We ran the same procedure (Methods M4) to calibrate this modified model, and46

evaluated its ability to fit incident daily cases. We found that the modified model did not yield sig-47

nificant improvement over our original model; for example, taking the median over metro areas,48

the fitted modified model’s RMSE was only 2% smaller than that of the original model. When49

choosing parameter sets based on fit to the training set (March 1–April 14, 2020), the modified50

model’s out-of-sample RMSE was 8% smaller than that of the original model, but it only out-51

performed the original model on 6 out of 10 metro areas, so the improvement was inconsistent.52

Finally, Figure S6 visualizes the predictions of the fitted modified model compared to the original53

model; again, they are very similar to each other and have approximately equal fit to the reported54

cases. Thus, because the modified model did not significantly improve model fit, we opted to use55

a fixed base transmission rate to keep the model simple.56
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2.2 Modifying the parametric form for POI transmission rates57

In our model, the transmission rate at a POI pj at hour t,58

β(t)
pj

:= ψ · d2
pj
·
V

(t)
pj

apj
, (2)

depends on two key ingredients: d2
pj

, which reflects how much time visitors spend there, and59

V
(t)
pj /apj , which reflects the density (number of visitors per sq ft) of the POI in that hour. These60

assumptions are based on prior expectations that a visit is more dangerous for a susceptible indi-61

vidual if they spend more time there and/or if the place is more crowded. To assess empirically the62

role that each of these two terms play, we compared our transmission rate formula to two perturbed63

versions of it: one that removed the dwell time term, and another that removed the density term.64

For each of these formulas, we computed the risk of visiting a POI category as the average trans-65

mission rate of the category, with the rate of each POI weighted by the proportion of category visits66

that went to that POI. Then, we evaluated whether the relative risks predicted by each formula con-67

corded with the rankings of POI categories proposed by independent epidemiological experts.2, 3
68

In our evaluations, we included all of the categories that we analyzed (i.e., the 20 categories with69

the most visits in SafeGraph data; see Methods M5) that overlapped with categories described in70

the external rankings. To compare against Emanuel et al.2, we also converted their categorical71

groupings into numerical score, i.e., “Low” → 1, “Low/Medium” → 2, etc., up to “High” → 5.72

Sims et al.3 already provided numerical ratings so we did not have to perform a conversion.73

As shown in Figure S7, we find that the predicted relative risks match external sources best74

when we use our original parametric form that accounts for both dwell time and density: restau-75

rants, cafes, religious organizations, and gyms are among the most dangerous, while grocery stores76

and retail (e.g., clothing stores) are less dangerous. However, when we assume only dwell time77

matters and remove the density term, we see unrealistic changes in the ranking: e.g., restaurants78

drop close to grocery stores, despite both sets of experts deeming them far apart in terms of risk.79

When we assume only density matters and remove dwell time, we also see unrealistic changes:80

e.g., limited-service restaurants are predicted to be far riskier than full-service restaurants, and81

gyms and religious organizations are no longer predicted as risky, which contradicts both of our82

sources. These findings demonstrate that both factors — the dwell time and density — are impor-83

tant toward faithfully modeling transmission at POIs, since the predictions become less realistic84

when either factor is taken out.85
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2.3 Stochastic sampling of confirmed cases86

To predict confirmed case counts from the SEIR trajectories, our model assumes a fixed proportion87

of infected people are confirmed after a fixed confirmation delay (Methods M4.2). Since these88

proportions and delays are quite variable in reality, we conducted a sensitivity analysis where89

instead we tried stochastically sampling the number of confirmed cases and the confirmation delay.90

For each day d, we first computed N
(d)
Eci→Ici

, the number of people who became infectious on91

this day; we then sampled from Binom
(
N

(d)
Eci→Ici

, rc
)

to get the number of confirmed cases that92

would result from this group of infections. For each case that was to be confirmed, we drew its93

confirmation delay (i.e., delay from becoming infectious to being confirmed) from distributions94

fitted on empirical line-list data: either Gamma(1.85, 3.57)4 or Exp(6.1).595

We found that our model predictions barely changed when we sampled case trajectories96

stochastically using either delay distribution, as opposed to assuming a fixed confirmation rate and97

delay (Figure S8). However, an advantage of our fixed method is that it allows us to predict con-98

firmed cases up to δc (i.e., 7) days after the last day of simulation, whereas we cannot do the same99

when we sample confirmed cases and delays stochastically. This is because, if delays are stochas-100

tic, predicting the number of confirmed cases on, for example, the 5th day after the simulation101

ends depends on the number of newly infectious individuals every day before and including that102

day, but since the simulation ended days before, the model would not have sufficient information103

to make the prediction. On the other hand, the fixed method simply translates and scales the newly104

infectious curve, so we can predict the number of confirmed cases 5 days after the simulation105

ends, since it only depends on the number of newly infectious individuals 2 days before the end of106

simulation. Due to this advantage, we opted to use the fixed method.107

2.4 Model calibration metrics108

For each metro area, our model fitting procedure selects all parameter sets that achieve an RMSE109

within 20% of the best-fit parameter set’s RMSE (Methods M4.3). As a final sensitivity analysis,110

we tested three alternative model fitting procedures that used different metrics to decide when to111

accept or reject a parameter set. For each procedure, we evaluated the correlation between its rank-112

ing of parameter sets and our original ranking. We recomputed our downstream analyses using the113

fitted models outputted by each procedure and verified that our key results on superspreader POIs114

(Figure S10), the effects of reopening (Figure S11), and predicted group disparities (Figure S12)115

all remained similar.116
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Poisson likelihood model. Our model calibration procedure, which uses RMSE to assess fit,117

implicitly assumes that error in the number of observed cases is drawn from a normal (Gaussian)118

distribution. As a sensitivity analysis, we tested a Poisson error model instead, using negative log-119

likelihood as a measure of fit, and using the same 20% threshold. We note that the homoscedastic120

Gaussian model will likely prioritize fitting parts of the case trajectory that have higher case counts,121

whereas a Poisson model will comparatively prioritize fitting parts of the case trajectory with lower122

case counts. We found that ranking models via Poisson likelihood was consistent with ranking123

models using RMSE (both computed on daily incident cases, as described above): the median124

Spearman correlation over metro areas between models ranked by Poisson likelihood vs. RMSE125

was 0.97.126

Model acceptance threshold. As described above, we set the acceptance threshold for model127

calibration (i.e., the threshold for rejection sampling in the Approximate Bayesian Computation128

framework) to 20% of the RMSE of the best-fit model. We selected this threshold because beyond129

that point, model fit qualitatively deteriorated based on inspection of the case trajectories. As a130

sensitivity analysis, we selected a different threshold (10%), while still using RMSE as the error131

metric. We do not report correlations here, since the reduced threshold simply corresponded to132

selecting a subset of the originally chosen parameters.133

Fitting to deaths. In addition to the number of confirmed cases, the NYT data also contains the134

daily reported number of deaths due to COVID-19 by county. As an additional test, we calibrated135

our models to fit this death data instead of case data. To estimate the number of deaths Ndeaths,136

we use a similar process as for the number of cases Ncases, except that we replace rc with rd =137

0.66%, the estimated infection fatality rate for COVID-19,6 and δc with δd = 432 hours (18 days),138

the number of days between becoming infectious and dying6 (Extended Data Table 2 provides139

references for all parameters). This gives140

N
(d)
deaths = rd ·

m∑
i=1

24d−δd∑
τ=24(d−1)+1−δd

N
(τ)
Eci→Ici

. (3)

Because we assume that deaths occur δd = 18 days after individuals become infectious, we com-141

pared with NYT death data starting on March 19, 2020 (18 days after our simulation begins).142

Figure S9 shows that the calibrated models can also fit the trends in the death counts well. Rank-143

ing models using RMSE on deaths was consistent with ranking models using RMSE on cases, with144

a median Spearman correlation over metro areas of 0.99, and as with the above sensitivity analy-145
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ses (changing the likelihood model and the acceptance threshold), we found that our key results146

remained similar.147

2.5 Parameter identifiability148

We assess the identifiability of the fitted model parameters ψ, βbase, and p0 as follows. First, we149

verify that the model-fitting procedure is able to recover the true parameters when fit on simulated150

data for which the true parameters are known. For each metro area, we simulate daily case counts151

using the best-fit parameters for that metro area (i.e., those with the minimum RMSE to daily case152

counts, as reported in Table S6). We then run our grid search fitting procedure on the simulated153

case counts. For all 10 metro areas, as Figure S13 illustrates, the parameters in our grid search that154

obtain the lowest RMSE on the simulated data are always the true parameters that were used to155

generate that data. In other words, for each metro area, we correctly estimate and recover the true156

parameters on the simulated data.157

As a further assessment of model identifiability, in Figure S14 we plot RMSE on true (not158

simulated) daily case counts (that is, the metric used to perform model calibration) as a function159

of model parameters βbase and ψ. (We take the minimum RMSE over values of p0 so the plots160

can be visualized in two dimensions.) As these plots illustrate, βbase and ψ are correlated, which161

is unsurprising because they scale the growth of infections at CBGs and POIs respectively. This162

correlation results in uncertainty in the parameter estimates in some metro areas. Throughout163

our analyses, we reflect this uncertainty by aggregating results from all parameter settings which164

achieve an RMSE within 20% of the best-fit model for each metro area.165

3 Estimating the mobility network from SafeGraph data166

As we discussed in Methods M2, the central technical challenge in constructing our mobility net-167

work is estimating the network weights W (t) = {w(t)
ij } from SafeGraph data, since this visit matrix168

is not directly available from the data. In this section, we describe our estimation process, which169

utilizes the iterative proportional fitting procedure7 (IPFP) to estimate a matrix for each metro area170

and each hour from March 1, 2020 to May 2, 2020.171

Quantities from SafeGraph data. To begin, we describe the quantities from SafeGraph data172

that we use to make this estimation.173

• The estimated visit matrix Ŵ (r) aggregated for the month r, where we use r instead of t to174

denote time periods longer than an hour. This is taken from the Patterns dataset, and is ag-175

gregated at a monthly level. To account for non-uniform sampling from different CBGs, we176
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weight the number of SafeGraph visitors from each CBG by the ratio of the CBG population177

and the number of SafeGraph devices with homes in that CBG.8178

• V̂ (t)
pj : The number of visitors recorded in POI pj at hour t. This is taken from the Weekly179

Patterns v1 dataset.180

• ĥ(t)
ci : The estimated fraction of people in CBG ci who left their home in day bt/24c. This is181

derived by taking 1 − (completely home device count/device count). These182

are daily (instead of hourly) metrics in the Social Distancing Metrics dataset.183

• δ̂pj : The median length of a visit to a POI pj . We estimate this by averaging over the weekly184

values in the median dwell field in the Patterns datasets in March and April 2020. δ̂pj is185

measured to minute-level resolution and expressed in units of hours, e.g., δ̂pj = 1.5 means a186

median visit time of 1.5 hours = 90 minutes.187

3.1 Data preprocessing and dwell time computation188

Hourly visits. The raw SafeGraph data records the number of visitors that newly arrive at each189

POI pj at each hour. However, V̂ (t)
pj above represents the number of visitors that are present at a190

POI in an hour t; these visitors may have arrived prior to t. The aggregate visit matrix Ŵ (r), as191

well as the visit matrix W (t) used in our model, are defined similarly. To compute these quantities192

from the raw data, we make two assumptions: first, that every visitor to pj stays for exactly δ̂pj193

hours, where δ̂pj is the median length of a visit to pj , and second, that a visitor who newly arrives194

in an hour t is equally likely to arrive at any time from [t, t + 1). With these assumptions, we can195

convert the number of visitor arrivals in each hour into the expected number of visitors present at196

each hour: for example, if δ̂pj = 1.5 hours, then we assume that a visitor who arrives sometime197

during an hour t will also be present in hour t + 1 and be present half the time, on expectation, in198

hour t+ 2. Note that under our definition, visits are still counted even if a visitor does not stay for199

the entire hour. For example, a visitor that arrives at 9:30am and leaves at 10:10am will be counted200

as two visits: one during the 9-10am hour and one during the 10-11am hour.201

The dwell time correction factor dpj . To estimate the mean occupancy at each POI pj in an hour202

t, we multiply the expected number of visitors present at pj in hour t by the dwell time correction203

factor dpj , which measures the expected fraction of an hour that a visitor present at pj at any hour204

will spend there. In other words, conditioned on a visitor being at pj at some time within an hour205

t, dpj is the expected fraction of the hour t that the visitor physically spends at pj . The same two206
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assumptions above allow us to calculate dpj : since each visitor stays for exactly δ̂pj hours, and on207

average is counted as being present in δ̂pj + 1 different hours, we have dpj = δ̂pj/(δ̂pj + 1).208

Truncating outliers. As described in Methods M3, our model necessarily makes parametric as-209

sumptions about the relationship between POI characteristics (area, hourly visitors, and dwell time)210

and transmission rate at the POI; these assumptions may fail to hold for POIs which are outliers,211

particularly if SafeGraph data has errors. We mitigate this concern by truncating extreme values212

for POI characteristics to prevent data errors from unduly influencing our conclusions. Specifi-213

cally, we truncate each POI’s area (i.e., square footage) to the 5th and 95th percentile of areas in214

the POI’s category; for every hour, we truncate the number of visitor arrivals for each POI to its215

category’s 95th percentile of visitor arrivals in that hour; and we truncate each POI’s median dwell216

time to its category’s 90th percentile of median dwell times in that period.217

3.2 Estimating the visit matrix W (t)
218

Overview. We estimate the visit matrix W (t) = {w(t)
ij }, which captures the number of visitors219

from CBG ci to POI pj at each hour t from March 1, 2020 to May 2, 2020, through the iterative220

proportional fitting procedure (IPFP).7 The idea is as follows:221

1. From SafeGraph data, we can derive a time-independent estimate W̄ of the visit matrix222

that captures the aggregate distribution of visits from CBGs to POIs from January 2019 to223

February 2020.224

2. However, visit patterns differ substantially from hour to hour (e.g., day versus night) and225

day to day (e.g., pre- versus post-lockdown). To capture these variations, we use current226

SafeGraph data to estimate the CBG marginals U (t), i.e., the number of people in each CBG227

who are out visiting POIs at hour t, as well as the POI marginals V (t), i.e., the total number228

of visitors present at each POI pj at hour t.229

3. We then use IPFP to estimate an hourly visit matrix W (t) that is consistent with the hourly230

marginals U (t) and V (t) but otherwise “as similar as possible” to the distribution of visits231

in the aggregate visit matrix W̄ . Here, similarity is defined in terms of Kullback-Leibler232

divergence; we provide a precise definition below.233

Estimating the aggregate visit matrix W̄ . The estimated monthly visit matrices Ŵ (r) are typi-234

cally noisy and sparse: SafeGraph only matches a subset of visitors to POIs to their home CBGs,235

either for privacy reasons (if there are too few visitors from the given CBG) or because they are236
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unable to link the visitor to a home CBG.9 To mitigate this issue, we aggregate these visit matrices,237

which are available at the monthly level, over the R = 14 months from January 2019 to February238

2020:239

W̄ :=
1

R

∑
r

Ŵ (r). (4)

Each entry w̄ij of W̄ represents the estimated number of visitors from CBG ci that are present at240

POI pj in an hour, averaged over each hour. After March 2020, SafeGraph reports the visit matrices241

Ŵ (r) on a weekly level in the Weekly Patterns v1 dataset. However, due to inconsistencies in the242

way SafeGraph processes the weekly versus monthly matrices, we only use the monthly matrices243

up until February 2020.244

Estimating the POI marginals V (t). We estimate the POI marginals V (t) ∈ Rn, whose j-th245

element V (t)
pj represents our estimate of the number of visitors at POI pj (from any CBG) at time t.246

The number of visitors recorded at POI pj at hour t in the SafeGraph data, V̂ (t)
pj , is an underestimate247

because the SafeGraph data only covers on a fraction of the overall population. To correct for this,248

we follow Benzell et al.10 and compute our final estimate of the visitors at POI pj in time t as249

V (t)
pj

=
US population

total number of SafeGraph devices
· V̂ (t)

pj
. (5)

This correction factor is approximately 7, using population data from the most recent 1-year ACS250

(2018).251

Estimating the CBG marginals U (t). Next, we estimate the CBG marginals U (t) ∈ Rm. Here,252

the i-th element U (t)
ci represents our estimate of the number of visitors in CBG ci who are out253

visiting a POI at time t. We first use the POI marginals V (t) to calculate the total number of people254

who are out visiting any POI from any CBG at time t,255

N
(t)
POIs :=

n∑
j=1

V (t)
pj
, (6)

where n is the total number of POIs. Next, we estimate the number of people from each CBG ci256

who are not at home at time t as ĥ(t)
ci Nci; recall that Nci is the total population of ci, as derived257

from US Census data. In general, the total number of people who are not at home in their CBGs,258 ∑m
i=1 ĥ

(t)
ci Nci , will not be equal to N (t)

POIs, the number of people who are out visiting any POI. This259
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discrepancy occurs for several reasons: for example, some people might have left their homes to260

travel to places that SafeGraph does not track, SafeGraph might not have been able to determine261

the home CBG of a POI visitor, etc.262

To correct for this discrepancy, we assume that the relative proportions of POI visitors com-263

ing from each CBG follows the relative proportions of people who are not at home in each CBG.264

We thus estimate U (t)
ci by apportioning the N (t)

POIs total POI visitors at time t according to the pro-265

portion of people who are not at home in each CBG ci at time t:266

U (t)
ci

:= N
(t)
POIs ·

ĥ
(t)
ci Nci∑m

k=1 ĥ
(t)
ckNck

, (7)

This construction ensures that the POI and CBG marginals match, i.e., N (t)
POIs =

∑n
j=1 V

(t)
pj =267 ∑m

i=1 U
(t)
ci .268

Iterative proportional fitting procedure (IPFP). IPFP is a classic statistical method7 for ad-269

justing joint distributions to match pre-specified marginal distributions, and it is also known in the270

literature as biproportional fitting, the RAS algorithm, or raking.11 In the social sciences, it has271

been widely used to infer the characteristics of local subpopulations (e.g., within each CBG) from272

aggregate data.12–14
273

We estimate the visit matrix W (t) by running IPFP on the aggregate visit matrix W̄ , the274

CBG marginals U (t), and the POI marginals V (t) constructed above. Our goal is to construct a275

non-negative matrix W (t) ∈ Rm×n whose rows sum up to the CBG marginals U (t),276

U (t)
ci

=
n∑
j=1

w
(t)
ij , (8)

and whose columns sum up to the POI marginals V (t)
pj ,277

V (t)
pj

=
m∑
i=1

w
(t)
ij , (9)

but whose distribution is otherwise “as similar as possible”, in the sense of Kullback-Leibler di-278

vergence, to the distribution over visits induced by the aggregate visit matrix W̄ .279

IPFP is an iterative algorithm that alternates between scaling each row to match the row280

(CBG) marginals U (t) and scaling each column to match the column (POI) marginals V (t). We281

provide pseudocode in Algorithm 1. For each value of t used in our simulation, we run IPFP sep-282
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Algorithm 1: Iterative proportional fitting procedure to estimate visit matrix W (t)

Input: Aggregate visits W̄ ∈ Rm×n

CBG marginals U (t) ∈ Rm; POI marginals V (t) ∈ Rn

Number of iterations τmax

Initialize W (t,0) = W̄
for τ = 1, . . . , τmax do

if τ is odd then
for i = 1, . . . ,m do

αi ← U
(t)
ci /

∑n
j=1w

(t,τ−1)
ij // Compute scaling factor for row

i

W
(t,τ)
i,: ← αi ∗W (t,τ−1)

i,: // Rescale row i

end
else if τ is even then

for j = 1, . . . , n do
βj ← V

(t)
pj /

∑m
i=1 w

(t,τ−1)
ij // Compute scaling factor for col

j

W
(t,τ)
:,j ← βi ∗W (t,τ−1)

:,j // Rescale col j

end
end

end
W (t) ← W (t,τmax)

arately for τmax = 100 iterations. Note that IPFP is invariant to scaling the absolute magnitude of283

the entries in W̄ , since the total number of visits it returns is fixed by the sum of the marginals; in-284

stead, its output depends only on the distribution over visits in W̄ . The notion of similarity invoked285

above has a maximum likelihood interpretation: if IPFP converges, then it returns a visit matrix286

W (t) whose induced distribution minimizes the Kullback-Leibler divergence to the distribution287

induced by W̄ .15
288

Convergence of IPFP. For completeness, we briefly review the convergence properties of IPFP.289

Consider the L1-error function290

E(t,τ) :=
∑
i

∣∣∣U (t)
ci
−
∑
j

w
(t)
ij

∣∣∣︸ ︷︷ ︸
Error in row marginals

+
∑
j

∣∣∣V (t)
pj
−
∑
i

w
(t)
ij

∣∣∣︸ ︷︷ ︸
Error in column marginals

, (10)

which sums up the errors in the row (CBG) and column (POI) marginals of the visit matrix W (t,τ)
291

from the τ -th iteration of IPFP. Each iteration of IPFP monotonically reduces this L1-error E(t,τ),292
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i.e., E(t,τ) ≥ E(t,τ+1) for all τ ≥ 0.16 In other words, the row and column sums of W (t,τ) (which293

is initialized as W (t,0) = W̄ ) progressively get closer to (or technically, no further from) the target294

marginals as the iteration number τ increases. Moreover, IPFP maintains the cross-product ratios295

of the aggregate matrix W̄ , i.e.,296

w
(t,τ)
ij w

(t,τ)
k`

w
(t,τ)
i` w

(t,τ)
kj

=
w̄ijw̄k`
w̄i`w̄kj

(11)

for all matrix entries indexed by i, j, k, `, for all t, and for all iterations τ .297

IPFP converges to a unique solution, in the sense that W (t) = limτ→∞W
(t,τ), if there exists298

a matrix W (t) that fits the row and column marginals while maintaining the sparsity pattern (i.e.,299

location of zeroes) of W̄ .16 If IPFP converges, then the L1-error also converges to 0 as τ → ∞,16
300

andW (t) is the maximum likelihood solution in the following sense. For a visit matrixW = {wij},301

let PW represent a multinomial distribution over themn entries ofW with probability proportional302

to wij , and define U (t) ⊆ Rm×n
+ and V(t) ⊆ Rm×n as the set of non-negative matrices whose row303

and column marginals match U (t) and V (t) respectively. Then, if IPFP converges,304

W (t) = arg min
W∈U(t)∩V(t)

KL (PW‖PW̄ ) , (12)

where KL (p‖q) is the Kullback-Leibler divergence KL (p‖q) = Ep
[
log p(x)

q(x)

]
. In other words, IPFP305

returns a visit matrix W (t) whose induced distribution PW (t) is the I-projection of the aggregate306

visit distribution PW̄ on the set of distributions with compatible row and column marginals.15 In307

fact, IPFP can be viewed as an alternating sequence of I-projections onto the row marginals and308

I-projections onto the column marginals.15, 17
309

However, in our setting, IPFP typically does not return a unique solution and instead oscil-310

lates between two accumulation points, one that fits the row marginals and another that fits the311

column marginals.17 This is because W̄ is highly sparse (there is no recorded interaction between312

most CBGs and POIs), so the marginals are sometimes impossible to reconcile. For example, sup-313

pose there is some CBG ci and POI pj such that w̄ij is the only non-zero entry in the i-th row and314

j-th column of W̄ , i.e., visitors from ci only travel to pj and conversely visitors from pj are all315

from ci. Then, if U (t)
ci 6= V

(t)
pj , there does not exist any solution W (t) such that U (t)

ci = V
(t)
pj = w

(t)
ij .316

Note that in this scenario, IPFP still monotonically decreases the L1-error.16
317

In our implementation (Algorithm 1), we take τmax = 100, so IPFP ends by fitting the column318

(POI) marginals. This ensures that our visit matrixW (t) is fully compatible with the POI marginals319
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V (t), i.e.,320

V (t)
pj

=
m∑
i=1

w
(t)
ij , (13)

while still minimizing the L1-error E(t,τ) with respect to the CBG marginals U (t). Empirically, we321

find that τmax = 100 iterations of IPFP are sufficient to converge to this oscillatory regime.322
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Supplementary Discussion323

4 Plausibility of predicted racial/socioeconomic disparities324

To assess the plausibility of the model’s predicted disparities in infection rates, we compared the325

model’s predicted racial disparities to observed racial disparities in mortality rates. (Data on so-326

cioeconomic disparities in mortality was not systematically available on a national level.) The327

model’s predicted racial disparities are generally of the same magnitude as reported racial dispar-328

ities in mortality rates—for example, the overall reported black mortality rate is 2.4× higher than329

the white mortality rate,18 which is similar to the median racial disparity across metro areas of 3.0×330

that our model predicts (Main Figure 3b). However, we note that this is an imperfect comparison331

because many factors besides mobility contribute to racial disparities in death rates.332

In addition, we observed that our model predicted unusually large socioeconomic and racial333

disparities in infection rates in the Philadelphia metro area. To understand why the model predicted334

such large disparities, we inspected the mobility factors discussed in the main text; namely, how335

much each group was able to reduce their mobility, and whether disadvantaged groups encountered336

higher transmission rates at POIs. First, we found that higher-income CBGs and more white CBGs337

in Philadelphia were able to reduce their mobility substantially more than lower-income CBGs338

and less white CBGs, respectively (Extended Data Figure 6). While these trends were true for339

every metro area, the gap between income groups and racial groups was especially noticeable for340

Philadelphia. The other key to Philadelphia’s outlier status lay in the comparison of predicted341

transmission rates. Generally, we found that individuals from lower-income and less white CBGs342

tended to visit POIs with higher predicted transmission rates (Extended Data Tables 3 and 4). This343

was particularly true for Philadelphia; in 19 out of 20 POI categories, individuals from lower-344

income CBGs in Philadelphia encountered higher predicted transmission rates than individuals345

from high-income CBGs, and CBGs with the lowest percentage of white residents encountered346

higher predicted transmission rates than the CBGs with the highest percentage of white residents in347

18 out of 20 categories. The predicted transmission rates encountered by individuals from lower-348

income CBGs in Philadelphia are often dramatically higher than those encountered by higher-349

income CBGs; for example, up to 10.4× higher for grocery stores. Digging deeper, this is because350

the average grocery store visited by lower-income CBGs has 5.3× the number of hourly visitors per351

square foot, and visitors tend to stay 86% longer. Furthermore, Philadelphia’s large discrepancy in352

density between lower-income and higher-income POIs in SafeGraph data is consistent with US353

Census data, which shows that the discrepancy in population density between lower- and higher-354

income CBGs is larger in Philadelphia than in any of the other metro areas that we examine. In355
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Philadelphia, CBGs in the bottom income decile have a population density 8.2× those in the top356

income decile, a considerably larger disparity than the overall median across metro areas (3.3×)357

or the next-highest CBG (4.5×).358

Since there are many other factors contributing to disparity that we do not model, we do not359

place too much weight on our model’s prediction that Philadelphia’s disparities will be larger than360

those of other cities. However, we consider this a valuable finding in terms of Philadelphia’s mobil-361

ity patterns, suggesting that mobility may play an especially strong role in driving socioeconomic362

and racial infection disparities in this metro area, and we encourage policy-makers to be aware of363

how differences in mobility patterns may exacerbate the disproportionate impact of SARS-CoV-2364

on disadvantaged groups.365

5 Model limitations366

In this section, we discuss limitations in the dataset and model which are relevant to interpreting367

our results. The cell phone mobility dataset we use has limitations: it does not cover all popula-368

tions (e.g., prisoners, children under 13, or adults without smartphones), does not contain all POIs369

(e.g., nursing homes are undercovered, and we exclude schools and hospitals from our analysis370

of POI category risks), and cannot capture sub-CBG heterogeneity in demographics. Individuals371

may also be double-counted in the dataset if they carry multiple cell phones. While the dataset372

allows us to illuminate mobility-related mechanisms which contribute to racial and socioeconomic373

disparities, these disparities are also driven by differences our dataset cannot capture (e.g., public374

transit use, or working at a restaurant as opposed to dining there) as well as non-mobility-related375

factors including differences in household size, access to healthcare, and comorbidities. These376

limitations notwithstanding, cell phone mobility data in general and SafeGraph data in particular377

have been instrumental and widely used in modeling SARS-CoV-2 spread.10,19–26
378

Our model itself is parsimonious, and does not include such relevant features as asymp-379

tomatic transmission; variation in household size; travel and seeding between metro areas; differen-380

tials in susceptibility due to pre-existing conditions or access to care; age-related variation in mor-381

tality rates or susceptibility (e.g., for modeling transmission at elementary and secondary schools);382

various time-varying transmission-reducing behaviors (e.g., hand-washing, mask-wearing, and383

holding events in outdoor spaces); and some POI-specific risk factors (e.g., ventilation). Although384

our model recovers case trajectories and known infection disparities even without incorporating385

these features, we caution that this predictive accuracy does not mean that our predictions should386

be interpreted in a narrow causal sense. Because certain types of POIs or subpopulations may387

disproportionately select for certain types of omitted processes, our findings on the relative risks388
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of different POIs should be interpreted with due caution, and the potential public health benefits of389

restricting access to POIs should always be assessed in conjunction with the short-run and long-390

run economic impacts of doing so. However, the predictive accuracy of our model suggests that391

it broadly captures the relationship between mobility and transmission, and we thus expect our392

broad conclusions—e.g., that people from lower-income CBGs have higher infection rates in part393

because because they tend to visit smaller, denser POIs and because they have not been able to394

reduce mobility by as much (likely in part because they cannot as easily work from home27)—to395

hold robustly.396

18



Supplementary Tables
Category % visits % POIs
Full-Service Restaurants 14.82% 10.86%
Limited-Service Restaurants 8.08% 3.69%
Elementary and Secondary Schools 6.36% 3.06%
Other General Stores 5.97% 1.37%
Gas Stations 4.56% 2.94%
Fitness Centers 4.55% 2.98%
Grocery Stores 4.16% 2.17%
Cafes & Snack Bars 4.01% 2.70%
Hotels & Motels 2.93% 1.57%
Religious Organizations 2.31% 5.04%
Parks & Similar Institutions 1.93% 2.31%
Hardware Stores 1.79% 1.87%
Department Stores 1.78% 0.32%
Child Day Care Services 1.71% 2.76%
Offices of Physicians 1.63% 4.02%
Pharmacies & Drug Stores 1.54% 0.95%
Sporting Goods Stores 1.16% 1.05%
Automotive Parts Stores 1.16% 1.80%
Used Merchandise Stores 1.15% 1.01%
Colleges & Universities 1.12% 0.44%
Convenience Stores 1.09% 0.66%
Pet Stores 0.93% 0.85%
New Car Dealers 0.73% 0.43%
Hobby & Toy Stores 0.73% 0.36%
Offices of Dentists 0.70% 2.67%
Commercial Banking 0.70% 2.05%
Gift Stores 0.69% 0.57%
Liquor Stores 0.61% 0.82%
Women’s Clothing Stores 0.59% 1.00%
Home Health Care Services 0.55% 1.02%
Furniture Stores 0.53% 0.89%
Electronics Stores 0.51% 0.72%
Used Car Dealers 0.50% 1.08%
Book Stores 0.49% 0.32%
Musical Instrument Stores 0.49% 0.50%
Optical Goods Stores 0.47% 0.76%
Family Clothing Stores 0.46% 0.49%
Car Repair Shops 0.41% 1.83%
Offices of Mental Health Practitioners 0.41% 1.05%
Tobacco Stores 0.41% 0.31%
Office Supplies 0.40% 0.33%
Beauty Salons 0.39% 1.58%
Paint and Wallpaper Stores 0.38% 0.56%
Other Gas Stations 0.37% 0.20%
Sports Teams and Clubs 0.37% 0.03%
Cosmetics & Beauty Stores 0.36% 0.71%
Jewelry Stores 0.34% 0.60%
Junior Colleges 0.34% 0.07%
Sewing & Piece Goods Stores 0.34% 0.39%
Senior Homes 0.34% 0.41%
Libraries & Archives 0.3% 0.3%

Table S1: The 50 POI categories accounting for the largest fraction of visits in the full SafeGraph dataset. Collectively
they account for 88% of POI visits and 76% of POIs.
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Google category Google description NAICS categories

Retail & recreation

Restaurants
Cafes
Shopping centers
Theme parks
Museums
Libraries
Movie theaters

Full-Service Restaurants
Limited-Service Restaurants
Snack and Nonalcoholic Beverage Bars
Drinking Places (Alcoholic Beverages)
Malls, Amusement and Theme Parks
Museums, Libraries and Archives
Motion Picture Theaters (except Drive-Ins)

Grocery & pharmacy

Grocery markets
Food warehouses
Farmers markets
Specialty food shops
Drug stores
Pharmacies

Supermarkets and Other Grocery (except
Convenience) Stores
Food (Health) Supplement Stores
Fish and Seafood Markets
All Other Specialty Food Stores
Pharmacies and Drug Stores

Table S2: Mapping of Google mobility data categories to NAICS categories. Google descriptions taken from
https://www.google.com/covid19/mobility/data documentation.html.

State Retail & recreation Grocery & pharmacy Residential
California 0.947 0.834 0.876
Delaware 0.957 0.847 0.856
Florida 0.963 0.814 0.885
Georgia 0.948 0.682 0.868
Illinois 0.964 0.710 0.899
Indiana 0.956 0.741 0.877
Maryland 0.956 0.825 0.886
New Jersey 0.951 0.720 0.935
New York 0.958 0.763 0.909
Pennsylvania 0.971 0.850 0.875
Texas 0.965 0.789 0.886
Virginia 0.967 0.840 0.877
Washington, DC 0.959 0.889 0.780
West Virginia 0.960 0.740 0.814
Wisconsin 0.967 0.783 0.886
Median 0.959 0.789 0.877

Table S3: Pearson correlations between the Google and SafeGraph mobility timeseries. We report correlations over
the period of March 1–May 2, 2020 for the 15 states that we model. See SI Methods 1 for details.
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Metro area 7 days earlier 3 days earlier 3 days later 7 days later
Atlanta 0.586 (0.397, 0.834) 0.803 (0.639, 0.956) 1.359 (1.075, 1.741) 1.981 (1.189, 2.761)
Chicago 0.641 (0.563, 0.711) 0.848 (0.769, 0.933) 1.226 (1.143, 1.365) 1.542 (1.446, 1.639)
Dallas 0.642 (0.495, 0.782) 0.855 (0.693, 1.013) 1.298 (1.09, 1.577) 1.722 (1.487, 1.966)
Houston 0.656 (0.500, 0.812) 0.848 (0.663, 1.021) 1.288 (1.079, 1.541) 1.731 (1.493, 2.064)
Los Angeles 0.608 (0.407, 0.848) 0.816 (0.639, 0.984) 1.265 (1.041, 1.554) 1.692 (1.216, 2.137)
Miami 0.576 (0.424, 0.795) 0.792 (0.669, 0.919) 1.317 (1.117, 1.559) 1.856 (1.281, 2.27)
New York City 0.818 (0.795, 0.856) 0.909 (0.890, 0.927) 1.113 (1.094, 1.133) 1.27 (1.246, 1.307)
Philadelphia 0.799 (0.731, 0.868) 0.916 (0.823, 1.005) 1.12 (1.031, 1.206) 1.287 (1.246, 1.351)
San Francisco 0.609 (0.408, 0.798) 0.815 (0.666, 1.012) 1.271 (1.048, 1.527) 1.689 (1.452, 2.029)
Washington DC 0.671 (0.447, 0.879) 0.848 (0.627, 1.045) 1.207 (0.959, 1.586) 1.488 (1.158, 1.789)

Table S4: Effects of shifting past mobility reduction earlier or later. We report the expected ratio of the number
of infections predicted under the counterfactual to the number of infections predicted using observed mobility data; a
ratio lower than 1 means that fewer predicted infections occurred under the counterfactual. The numbers in parentheses
indicate the 2.5th and 97.5th percentiles across sampled parameters and stochastic realizations. See Methods M5 for
details.

Metro area 0% 25% 50%

Atlanta 16.593 (3.088, 30.532) 7.714 (1.73, 15.833) 2.265 (1.17, 3.673)
Chicago 6.202 (5.2, 7.088) 3.329 (2.761, 3.759) 1.587 (1.421, 1.704)
Dallas 18.026 (10.361, 27.273) 5.908 (3.75, 8.857) 1.87 (1.532, 2.349)
Houston 18.964 (11.949, 32.755) 5.725 (3.761, 9.233) 1.659 (1.362, 2.109)
Los Angeles 12.926 (3.15, 24.207) 5.097 (1.779, 9.721) 1.665 (1.176, 2.309)
Miami 10.781 (3.382, 15.935) 4.85 (1.886, 7.405) 1.777 (1.208, 2.3)
New York City 2.037 (1.902, 2.174) 1.73 (1.603, 1.811) 1.333 (1.258, 1.389)
Philadelphia 2.976 (2.734, 3.39) 1.894 (1.747, 2.137) 1.211 (1.141, 1.305)
San Francisco 9.743 (7.089, 15.596) 4.282 (3.124, 6.781) 1.714 (1.427, 2.255)
Washington DC 5.85 (2.329, 9.713) 3.032 (1.541, 4.646) 1.509 (1.132, 1.959)

Table S5: Scaling the magnitude of past mobility reduction. Each column represents a counterfactual scenario where
the magnitude of mobility reduction is only a some percentage of the observed mobility reduction, i.e., 0% corresponds
to no mobility reduction, and 100% corresponds to the real, observed level of mobility reduction. We report the
expected ratio of the number of infections predicted under the counterfactual to the number of infections predicted
using observed mobility data; a ratio lower than 1 means that fewer infections occurred under the counterfactual. The
numbers in parentheses indicate the 2.5th and 97.5th percentiles across sampled parameters and stochastic realizations.
See Methods M5 for details.
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Metro area # sets βbase ψ p0

Atlanta 16 0.004 (0.001, 0.014) 2388 (515, 3325) 5× 10−4(1× 10−4, 2× 10−3)
Chicago 4 0.009 (0.006, 0.011) 1764 (1139, 2076) 2× 10−4(2× 10−4, 5× 10−4)
Dallas 5 0.009 (0.004, 0.011) 1452 (1139, 2388) 2× 10−4(1× 10−4, 2× 10−4)
Houston 8 0.001 (0.001, 0.009) 2076 (1139, 2076) 2× 10−4(1× 10−4, 5× 10−4)
Los Angeles 25 0.006 (0.001, 0.016) 2076 (515, 3637) 2× 10−4(2× 10−5, 1× 10−3)
Miami 7 0.001 (0.001, 0.011) 2388 (515, 2388) 2× 10−4(2× 10−4, 2× 10−3)
New York City 7 0.001 (0.001, 0.009) 2700 (1452, 3013) 1× 10−4(5× 10−5, 1× 10−3)
Philadelphia 3 0.009 (0.001, 0.009) 827 (827, 1452) 5× 10−4(1× 10−4, 5× 10−4)
San Francisco 5 0.006 (0.001, 0.009) 1139 (827, 1764) 5× 10−4(2× 10−4, 1× 10−3)
Washington DC 17 0.016 (0.001, 0.019) 515 (515, 3949) 5× 10−4(2× 10−5, 5× 10−4)

Table S6: Estimated model parameters in each metro area. # sets counts the number of parameter sets that are within
20% of the RMSE of the best-fit parameter set, as described in Methods M4. For each of βbase (which scales the
transmission rates at CBGs), ψ (which scales the transmission rates at POIs), and p0 (the initial proportion of infected
individuals), we show the best-fit parameter set and, in parentheses, the corresponding minimum and maximum within
the 20% threshold.

22



Supplementary Figures
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Figure S1: Google versus SafeGraph mobility trends for New York state. The x-axis is the same across plots, showing
the date from March 1–May 2, 2020. The y-axis represents percent change in mobility levels compared to baseline
activity in January and February 2020. For the categories from left to right, the Pearson correlations between the
datasets in New York state are 0.96, 0.76, and 0.91. See SI Methods 1 for details.
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Figure S2: For each POI category, we plot the predicted cumulative number of infections (per 100k population) that
occurred at that category for CBGs in the bottom- (purple) and top- (gold) income deciles. Shaded regions denote
2.5th and 97.5th percentiles across sampled parameters and stochastic realizations. See Methods M5 for details.
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Figure S3: Visits per capita from CBGs in the bottom- (purple) and top- (gold) income deciles to each POI category,
accumulated from March 1–May 2, 2020. See Methods M5 for details.
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Figure S4: Model predicted additional infections (per 100k population) from reopening each POI category, for CBGs
in the top- (gold) and bottom- (purple) income deciles. Predicted reopening impacts are generally worse for lower-
income CBGs. Shaded regions denote 2.5th and 97.5th percentiles across sampled parameters and stochastic realiza-
tions. See Methods M5 for details.
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range across metro areas

plausible range

mean

Metro area

Figure S5: Rbase and RPOI implied by model parameter settings, where ψ is the scaling factor for POI transmission
and βbase is the base CBG transmission rate. In the top two plots, dotted black lines denote plausible ranges from prior
work, the blue line shows the mean across metro areas, and the grey shaded area indicates the range across metro
areas. Rbase does not vary across metro areas because it does not depend on metro area-specific social activity. The
bottom two plots show the same results broken down by metro area. See Methods M4.1 for details.
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Figure S6: Sensitivity analysis of time-varying base transmission rate. Instead of assuming a fixed base transmission
rate, we designed an alternate model where each CBG’s base transmission rate varied with the proportion of the CBG
that was at home at time t; see SI Methods 2.1 for details. We found that the predictions of this modified model
(left) were highly similar to the predictions of the original model (right). The x-axis is the same across plots, showing
the date from March 8–May 9, 2020. The grey x’s represent the daily reported cases; since they tend to have great
variability, we also show the smoothed weekly average (orange). Shaded regions denote 2.5th and 97.5th percentiles
across sampled parameters and stochastic realizations.
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(a) (b)Comparison to external risk 
analysis by Emanuel et al.2

Comparison to external risk 
analysis by Sims et al.3
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Figure S7: Sensitivity analysis on the parametric form for POI transmission rate. Our model assumes that POI
transmission rates depend on two factors: time spent at the POI and the density of individuals per square foot. We
tested this assumption by computing an alternate transmission rate that only included time spent (removing density)
and another version that only included density (removing time spent); see SI Methods 2.2 for details. We found that the
relative risks predicted by our original transmission rate formula concorded best with the assessments of risk proposed
by independent epidemiological experts.2, 3 The x-axis represents their proposed risk scores; some scores are missing
(e.g., 3 and 4 on the right) because there was no overlap between the categories they assigned that score and categories
that we analyzed. The y-axis represents each category’s predicted average transmission rate in the first week of March,
taking the median over metro areas. Due to space constraints, only a subset of the categories scored at 2 by Emanuel
et al. (left) are labeled – the labels are reserved for either the 2 most visited categories in this group (Grocery Stores
and Other General Stores) and/or the 3 categories with highest predicted transmission rates within the group.
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(a) (b)
Delay distribution: Gamma(1.85, 3.57) 

Li et al., Science, 20204
Delay distribution: Exp(6.1)

Kucharski et al., The Lancet, 20205

Date Date

D
ai

ly
 c

on
fir

m
ed

 c
as

es

Figure S8: Sensitivity analysis on confirmation rate and delay. Instead of assuming a constant confirmation rate
and constant infectious-to-confirmation delay on cases, we tested sampling the number of confirmed cases and delay
distribution stochastically. The number of confirmed cases was sampled from a Binomial distribution, and we tried
two different delay distributions that were fitted on empirical line list data, (a) Li et al.4 and (b) Kucharski et al.5 (see
SI Methods 2.3 for details). For both delay distributions, we find that model predictions under the stochastic setting
are highly similar to the predictions made under the constant rate and delay setting (labeled as “deterministic” in the
plot). Note that the “deterministic” and “stochastic” labels only apply to the computation of confirmed cases from
infectious individuals to confirmed cases; the underlying SEIR models are all stochastic, as described in Methods M3.
The x-axis is the same across plots, showing the date from March 8–May 2, 2020. Shaded regions denote 2.5th and
97.5th percentiles across sampled parameters and stochastic realizations.
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Figure S9: Predicted (green) and true (brown) daily death counts, when our model is calibrated on observed death
counts. The x-axis is the same across plots, showing the date from March 19–May 9, 2020. The grey x’s represent the
daily reported deaths; since they tend to have great variability, we also show the smoothed weekly average (brown).
Shaded regions denote 2.5th and 97.5th percentiles across sampled parameters and stochastic realizations. See SI
Methods 2.4 for details.
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Figure S10: A small fraction of POIs account for a large fraction of the predicted infections at POIs. We additionally
conducted a sensitivity analysis on which metric was used for model calibration (SI Methods 2.4) and show that this
key finding holds across all metrics. For each metric, we ran the fitted models on the observed mobility data from
March 1–May 2, 2020 and recorded the predicted number of infections that occurred at each POI (Methods M5).
Shaded regions denote 2.5th and 97.5th percentiles across sampled parameters and stochastic realizations.
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Chicago metro area

Figure S11: Sensitivity analysis on model calibration metrics and reopening risks. We conducted a sensitivity analysis
on which metric was used for model calibration, comparing our default metric (top left) to three other metrics (SI
Methods 2.4). We ran our reopening experiments forward with the model parameters selected by each metric (Methods
M5). The predicted ranking of risk from reopening different POI categories remains consistent across all metrics. All
boxes denote the interquartile range across parameter sets and stochastic realizations, with data points outside the
range individually shown. For the Chicago metro area, with 30 stochastic realizations per parameter set, our original
metric (top left) selected 4 parameter sets (N = 120); RMSE cases with 10% threshold (top right) selected 2 parameter
sets (N = 60); Poisson negative log-likelihood (bottom left) selected 3 parameter sets (N = 90); and RMSE deaths
(bottom right) selected 12 parameter sets (N = 360).
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Model selection metric:
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Figure S12: Sensitivity analysis on model calibration metrics and predicted socioeconomic disparities. We conducted
a sensitivity analysis on which metric was used for model calibration, comparing our default metric (top left) to three
other metrics (SI Methods 2.4). We then analyzed the socioeconomic disparities in each metro area predicted by the
model parameters selected by each metric. The predicted disparities remain remarkably consistent across all metrics,
and, for every metric, the best fit models predict that lower-income CBGs are at higher infection risk. All boxes denote
the interquartile range across parameter sets and stochastic realizations, with data points outside the range individually
shown. Across metro areas, with 30 stochastic realizations per parameter set, our original metric (top left) selected 97
parameter sets (N = 2,910); RMSE cases with 10% treshold (top right) selected 45 parameter sets (N = 1,350); Poisson
negative log-likelihood (bottom left) selected 52 parameter sets (N = 1,560); and RMSE deaths (bottom right) selected
251 parameter sets (N = 7,530).
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Figure S13: Assessing model identifiability on simulated data. The x-axis ranks parameter settings by how well
they fit real data (measured by RMSE to daily cases). The y-axis plots plots RMSE on simulated case count data
generated using the best-fit parameter settings. For all 10 metro areas, the leftmost point—which corresponds to best-
fit parameter setting, i.e., the parameters we use as ground truth for the simulated data—also obtains the lowest loss on
the simulated data. This demonstrates that the model and fitting procedure can correctly recover the true parameters
in simulated data. SI Methods 2.5 provides more details.
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Figure S14: RMSE on daily case count data as a function of parameters ψ (y-axis), which scales POI transmission
rates, and βbase (x-axis), which is the base CBG transmission rate. Color indicates the RMSE, normalized such that
blue represents the RMSE of the best-fit model. The white polygon shows the convex hull of the parameter settings
used to generate results: i.e., all models with an RMSE less than 1.2× that of the best-fit model. For all parameter
combinations, we take the minimum RMSE over p0. SI Methods 2.5 provides more details.
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Atlanta metro area

Figure S15: POI attributes in Atlanta metro area. The top two plots display quantities from the mobility data: the
dwell time and the average number of hourly visitors divided by POI area. Each point represents one POI; boxes
depict the interquartile range across POIs, with data points outside the range individually shown. The bottom two
plots show model predictions for the increase in infections from reopening a POI category: per POI (left bottom) and
for the category as a whole (right bottom). Each point represents one model realization; boxes depict the interquartile
range across realizations, with data points outside the range individually shown. In Atlanta, we model 39,411 POIs in
total, and we sample 16 parameter sets and 30 stochastic realizations (N=480).

Chicago metro area

Figure S16: POI attributes in the Chicago metro area. See Figure S15 for details. In Chicago, we model 62,420 POIs
in total, and we sample 4 parameter sets and 30 stochastic realizations (N=120).
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Dallas metro area

Figure S17: POI attributes in the Dallas metro area. See Figure S15 for details. In Dallas, we model 52,999 POIs in
total, and we sample 5 parameter sets and 30 stochastic realizations (N=150).

Houston metro area

Figure S18: POI attributes in the Houston metro area. See Figure S15 for details. In Houston, we model 49,622 POIs
in total, and we sample 8 parameter sets and 30 stochastic realizations (N=240).
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Los Angeles metro area

Figure S19: POI attributes in Los Angeles metro area. See Figure S15 for details. In Los Angeles, we model 83,954
POIs in total, and we sample 25 parameter sets and 30 stochastic realizations (N=750).

Miami metro area

Figure S20: POI attributes in Miami metro area. See Figure S15 for details. In Miami, we model 40,964 POIs in total,
and we sample 7 parameter sets and 30 stochastic realizations (N=210).
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New York metro area

Figure S21: POI attributes in New York metro area. See Figure S15 for details. In New York, we model 122,428 POIs
in total, and we sample 7 parameter sets and 30 stochastic realizations (N=210).

Philadelphia metro area

Figure S22: POI attributes in Philadelphia metro area. See Figure S15 for details. In Philadelphia, we model 37,951
POIs in total, and we sample 3 parameter sets and 30 stochastic realizations (N=90).
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San Francisco metro area

Figure S23: POI attributes in San Francisco metro area. See Figure S15 for details. In San Francisco, we model
28,713 POIs in total, and we sample 5 parameter sets and 30 stochastic realizations (N=150).

Washington DC metro area

Figure S24: POI attributes in Washington DC metro area. See Figure S15 for details. In DC, we model 34,296 POIs
in total, and we sample 17 parameter sets and 30 stochastic realizations (N=510).
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