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I. Note on first- and second-order moiré

In the main text, we mentioned that bilayer graphene and BN form a long wavelength moiré pattern at
zero-degrees twist angle due to their lattice mismatch. Here, we hope to discuss the scenario of 30-degrees
twist angle alignment and explore the concept of first- and second-order moiré.

We start from a generic discussion of stacking between two honeycomb lattices as shown in Fig. S1. δ is the
lattice mismatch and θ is the alignment angle. As shown in Figs. S1a,b, at θ = 0◦, a long wavelength moiré
pattern is more significant when the lattice mismatch δ is small. By contrast, at θ = 30◦ (see Figs. S1c,d),
a long wavelength moiré pattern is more significant when the lattice mismatch δ is large.

In the case of graphene and BN, the lattice mismatch is small (∼ 1.8%). This small number refers to
the mismatch between a single graphene unit cell and a single BN unit cell. However, because of lattice
periodicity, one can also consider the mismatch between M unit cells of graphene and N unit cells of BN.
Indeed, we found a large mismatch of δ ∼ 15% between a 15 × 15 graphene supercell and a 17 × 17 BN
supercell (Figs. S1e), which leads to a moiré pattern with periodicity of 7.5 nm at θ = 30◦. Because the large
mismatch is achieved by supercells from each layer, this moiré pattern is also referred as the second-order
moiré pattern. Interestingly, we only find a long-wavelength second-order moiré pattern at θ = 30◦, but not
at θ = 0◦ and θ = 20◦.

Therefore, in devices where the BLG is aligned with one BN flake at θ ∼ 0◦ and with the other BN flake
at θ ∼ 30◦ (e.g., Device H2), we expect the BLG to form a first-order long-range moiré pattern with one
BN flake and a second-order long-range moiré pattern with the other BN flake. Noticeably, these two moirés
have similar wavelengths. In terms of the electronic band structure, although the effect of second-order moiré
pattern is not extensively studied, we in general expect it to create band folding and moiré sub-bands in a
similar but potentially weaker fashion as the first-order moiré.

Figure S1: a-d, Schematics of moiré patterns at 0◦ and 30◦ for small and large lattice mismatch δ. e,
Schematics of a second-order moiré pattern formed between a 15× 15 graphene supercell and a 17× 17 BN
supercell.
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II. Discussion on possible alternative origins of resistance switching

II.1. Discussion on extrinsic charge trapping states

In the main text, we briefly discussed the relevance of extrinsic charge trapping states. In this section, we
will elaborate on this. We consider two possible locations for the trapping states: (a) inside the BN dielectric;
(b) at the moiré interface between BN and graphene. We first discuss scenario (a) with the following “control
experiments”:

Control devices with BN as dielectric:

1. We, as well as many other groups, use BN as a dielectric for most of our 2D devices, including mono-
layer, bilayer, and trilayer graphene, WSe2, WTe2, and many others. The prominent hysteresis and
“anomalous screening” features, particularly as in Devices H2 and H4 have not been observed before
in such structures.

2. Normal BN-sandwiched bilayer graphene (not aligned) has been extensively studied for more than 10
years. We also measured such normal bilayer devices in this work. It is clear that such systems do not
show hysteretic, particularly the “anomalous screening” features.

Considering the above experimental facts, it is unlikely that defects within BN can cause the prominent
switching behavior in this work. The same argument can be also applied to a BN/graphene interface where
the two layers are not closely aligned. What makes the configuration in our study more special is that we
add the moiré potential into the system by aligning the bilayer graphene with the BN. Therefore, we consider
impurity states unique to the moiré interface, for example, due to local lattice reconstruction [1]. Those
impurity states can serve as charge trapping sites. Below, we discuss whether the LSAS behavior can be a
result of the charge trapping states associated with the moiré interface.

Control moiré devices:

1. Others’ devices: monolayer graphene/BN moiré (one-side or both-side aligned with BN),
twisted bilayer graphene/BN moiré, etc. We note that recent experiments have studied a num-
ber of graphene/BN moiré systems, including monolayer graphene/BN moiré (one side or both sides
aligned with BN) [2], twisted bilayer graphene/BN moiré [3], etc. However, the strong hysteresis with
displacement field and LSAS have not been observed in any of these systems.

2. Our devices made in this work: ABA trilayer/BN moiré, monolayer graphene/BN moiré:
We have fabricated an ABA trilayer graphene/BN one-side aligned device and a monolayer graphene
double-aligned device. The dual-gated maps are shown in Extended Data Fig.1. Neither of them shows
any hysteresis.

In the following, we also show how other experimental aspects can help us address the impurity scenario.

Scan rate of the displacement field: One important observation with defect/impurity induced charge
trapping is that the resulting hysteresis strongly depends on the scan rate of the gate voltages. In Fig. S2
and Fig. S3, we compare the scan rate dependence between extrinsic charge trapping induced hysteresis, as
observed in Ref. [4] and the rate-independent hysteresis observed in our samples. The schematics in Fig. S2
shows the hysteresis in an electrolyte-gated graphene device, where the hysteresis could be reduced by slowing
down the gate sweeping rate due to the competing mechanisms of charge transfer from/to graphene and the
capacitive gating effect. Therefore, the hysteresis shows an strong dependence on the different scan rates.

By contrast, our measurements show that the observed hysteresis is independent of the scan rate. In
Fig. S3, we show the line traces (forward and backward) scanned along the displacement field direction at
a fixed carrier density for scan rates comparable to those shown in Ref. [4]. It is clear that the hysteretic
behavior is independent of the scan rate in terms of both the peak position and magnitude.
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Figure S2: Schematics of charge-trapping hysteresis. The schematics from left to right illustrate the
hysteresis in an electrolyte-gated graphene device with increasing scan rates. For the actual experimental
data, please refer to Ref. [4].
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Figure S3: Independence of hysteretic behavior of our devices on the scan rate . a-c, Forward
(red) and backward (blue) scans of the bottom capacitance, Cb, for different scan rates from Device H2
at a fixed nominal carrier density. Scan rates shown in each panel denote the rate at which the external
displacement field Dext/ε0 was changing in the BN dielectric layers. No systematic variation was observed
in the capacitance features for a large range of scan rates from 2.2 mV/nm·s to 9.8 mV/nm·s.

II.2. Discussion on lattice symmetry and lattice driven ferroelec-
tricity

In this section, we only consider the bilayer graphene/BN heterostructures without lattice reconstruction
and domain walls. Lattice reconstruction and domain walls will be discussed in the next section.

Ferroelectric materials have an internal spontaneous electric polarization, which can be switched by
applying an external displacement field. In conventional ferroelectric materials, the formation of such a
dipole can be naturally understood as the spatial separation of the positive charge center (cation) and
negative charge center (anion) within a unit cell. A small lattice movement can switch the electric dipole
from one direction to the opposite direction, which corresponds to the two stable lattice configurations
(local energy minima). For example, the recently discovered 2D ferroelectricity in bilayer WTe2 [5] can be
understood with such a picture. This mechanism can be regarded as lattice driven ferroelectricity. However,
we find it unlikely that such a picture is relevant to our bilayer graphene/BN moiré system based on our
experimental results and analyses. Our arguments are as follows:

Lattice model and its symmetry:

In the case of lattice driven ferroelectricity, there should be two equivalent energetically favorable lattice
configurations that correspond to the two polarization states. Normal bilayer graphene (not aligned) has
been studied very extensively over the past decade and the Bernal stacking is very stable. The Bernal-
stacked bilayer graphene has inversion symmetry and cannot be polar. Moreover, no ferroelectric instability
or spontaneous layer symmetry breaking has been found in normal bilayer graphene without a magnetic field.

We now consider bilayer graphene crystallographically aligned with the bottom BN. As we will show in
the following, although locally the lattice stacking can correspond to polarization up or down, globally such
polarization is averaged out by the moiré pattern.

4



Let’s consider the case of perfect alignment between bilayer graphene and BN. In this case, we still have a
translational degree of freedom between graphene and BN, i.e., locally, how the boron and nitrogen atoms in
BN are vertically aligned with carbon atoms in graphene. Because the low energy quadratic band touching
arises from the Ab and Bt (“b”(“t”) refers to the bottom(top) layer) orbitals (Fig. S4), the problem boils
down to how the boron and nitrogen atoms from the bottom BN affect the electrostatic potential of the Ab

site. Following this argument, there are three distinct local lattice alignments:

1. The Ab site is vertically aligned with a boron site (cation) (Fig. S4a). In this case, the electrostatic
potential (for electrons) at Ab decreases. Given that the potential at Bt is unaffected, this corresponds
to an electrical polarization pointing up.

2. The Ab site is vertically aligned with a nitrogen site (anion) (Fig. S4c). In this case, the electrostatic
potential (for electrons) at Ab increases. Given that the potential at Bt is unaffected, this corresponds
to an electrical polarization pointing down.

3. The Ab site is vertically aligned with an empty site (Fig. S4b). In this case, the electrostatic potential
(for electrons) at Ab roughly remains the same. Given that the potential at Bt is unaffected, this
corresponds to a nearly zero electrical polarization.

Figure S4: Drawing of the moiré pattern formed by bilayer graphene and bottom BN (with enhanced lat-
tice mismatch for illustration purpose) and the side views of three different alignment configurations that
correspond to upward, downward, and zero polarization.

Therefore, the three lattice alignments described above have realized P up, P down, as well as P zero.
However, we have only considered local lattice alignments in the above analyses. When we look at the
large scale, regions with different local polarization directions are distributed periodically across the moiré
pattern, meaning that the potential provided by the boron nitride oscillates across the superlattice unit cell,
leading to the cancellation of polarization upon spatial average. Indeed, our calculations (Fig. S10 in Section
IV) show that the normal state electronic structure of a bilayer graphene/BN superlattice is always gapless,
which is the signature of layer degeneracy or Ab and Bt orbital degeneracy. The lateral translation between
graphene and BN will not change the band structure. This argument can be easily generalized to the case of
bilayer graphene aligned with BN on both sides as well as the case of a small twist angle between the bilayer
graphene and BN.

We note that the above argument can also be applied to the monolayer graphene/BN moiré system.
Specifically, one would expect that the monolayer graphene remains gapless even in the presence of the moiré
superlattice potential provided by BN, because of the cancellation due to average within the superlattice
unit cell. On the other hand, experimental studies [2,6] have shown the existence of a gap in the monolayer
graphene/BN moiré system. The origin of this gap, however, remains to be fully understood. Theoretical
studies have proposed different possibilities including electronic interactions [7] and structural reconstruction
on the moiré scale [8].

Below, we discuss possible structural reconstruction in moiré lattices.
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II.3. Discussion on moiré lattice reconstruction and domain walls

We have also considered the possibility of lattice reconstruction and domain walls. First, we enumerate
a few facts that do not directly make use of our data.

1. A recent piezoresponse force microscopy (PFM) experiment on twisted bilayer graphene and other
moiré lattices shows that a strain gradient present near the domain walls of moiré superlattices can
produce a local electric polarization [1]. However, in that case, the direction of the strain gradient in
these systems is considered to be fixed during lattice reconstruction and cannot be flipped with the
external displacement field.

2. Moreover, domain walls and strain are usually non-uniform. By contrast, our features in our transport
and capacitance data are very sharp, suggesting that they arise from the uniform response from the
entire sample.

We summarize here our findings which are relevant to this discussion

1. “Anomalous screening”, LSAS: In a conventional ferroelectric material, positive and negative
bound charges move under the influence of the external displacement field, flipping the polarization. In
this process, charges only move within the ferroelectric material. Therefore, the number of total mobile
carriers does not change. This is the case for all well-studied ferroelectric materials (insulators with
zero carrier density before and after the switching). This is also the case for the recently discovered
ferroelectric metal few-layer WTe2, which is a metallic system whose total mobile carrier density remains
unchanged before and after the switching via displacement field [5]. In sharp contrast, because of the
LSAS behavior in our system, the displacement field can change the total mobile carrier number of
the bilayer graphene, as demonstrated by the Hall measurements. This anomalous behavior cannot be
understood in the framework of conventional ferroelectric switching.

2. Sharpness of the features in resistance and capacitance data: The sharpness of the resistance
peaks and the consistency over many consecutive scans demonstrate that the ferroelectric switching is
a coherent response from the entire sample, rather than from local domain wall motions.

3. Multiple transitions: In Device H2, we are able to resolve multiple “anomalous screening” regimes.
For example, in Fig. S18c and Extended data Figs. 7a-b as in the main text, we clearly see multiple
different regimes where the resistance peaks run parallel to the top gate axis. Between adjacent regimes,
the resistance peak is along a diagonal line as in the common scenario when both gates are working
normally.

4. Magnetic field effect of the electrical hysteresis: Although the effect due to the magnetic field is
beyond the scope of the current paper, we show the n-D maps under different magnetic fields, measured
from Device H2 (Fig. S24). We see from c-f that under magnetic field, an additional switching of the
resistance occurs near Dext = 0. At the same time, the resistance at +D and −D becomes extremely
asymmetric. These interesting observations suggest that the observed ferroelectricity is more likely to
arise from electrons rather than lattice (which usually does not couple to the magnetic field directly).

Given the discussion in the above two sections, it remains to be seen whether the ferroelectricity and
LSAS behavior observed can be reconciled with a model based on lattice structural changes. On the other
hand, bilayer graphene has been predicted to exhibit various types of electronic order [9–12], including
ferroelectric order [10], and experimental evidence for correlated behavior in pristine bilayer graphene has
been reported [13–18] especially at high magnetic fields. Inspired by these facts, we suggest a microscopic
theoretical picture based on spontaneous interlayer charge transfer driven by on-site Coulomb repulsion.
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III. A possible microscopic picture - interlayer charge transfer

In this section, we provide a microscopic theoretical picture based on interlayer charge transfer. This
picture could capture dominant features in our data. However, we do wish to caution that the main purpose of
this picture is to help readers to better understand our data. At this point, existing experimental evidence is
insufficient for us to unambiguously determine the microscopic mechanism. For instance, the band structure
is unknown due to the absence of spectroscopic measurements. We hope that our discussion here can inspire
future experimental and theoretical investigations. We focus on a specific picture accounting for the behavior
of Device H4.

We focus on the following dominant features:

• When scanning away from the gapless point, the peak line becomes parallel to the VBG axis upon
reaching D1 or D2, depending on the scanning direction.
• As soon as the scanning sequence is reversed, both top and back gate appear to function normally.
• D1 and D2 are defined with respect to the gapless point.
• The hysteresis due to the “anomalous screening” behavior can result in a spontaneous polarization even

when the external displacement field is removed.

We now describe our picture step by step:

Evolution of single particle band structure in bilayer graphene moiré system: As mentioned in
the main text, normal bilayer graphene without an external displacement field has layer degeneracy with
parabolic band touching, meaning that the electron wavefunction occupies the two layers with equal proba-
bility (Fig. S5a). In other words, layer polarization is zero everywhere. When an external displacement field
is applied, the inversion symmetry is broken and a bandgap opens up. At the same time, a layer polarization
is induced for states near the edges of the band gap.

To be concrete, let us consider the scenario of a positive displacement field in the +z direction. In this
case, the top of the valence band will become “bottom layer” polarized (i.e., the electron wavefunction at the
edge of the valence band mainly occupies the bottom layer), whereas the electron wavefunction at the edge
of the conduction band mainly occupies the top layer (Fig. S5b). Although the layer polarization increases
with the external displacement field, the polarization is only concentrated at states near K/K’ point of the
Brillouin zone within a reasonable displacement field range.

In a bilayer graphene moiré system, the inclusion of a moiré potential introduces a large real space
periodicity (Lm), which in turn leads to a small wavevector in momentum space (km ∼ π

Lm
) that defines the

moiré superlattice Brillouin zone (BZ). Because the moiré wavevector (and thus the superlattice BZ area) is
much smaller than the original BZ, it is conceivable that the entire moiré valence or conduction band become
nearly fully layer polarized within the displacement field used in the experiments (Fig. S5c).

In real space, this means that electrons occupying the moiré valence or conduction bands are located on
the bottom and top layer respectively in the case of a positive displacement field. In momentum space, the
moiré valence and conduction bands become increasingly flat. The above describes the evolution of the single
particle band structure without considering the effects of correlations.

Layer asymmetry and particle-hole asymmetry: A strong layer asymmetry is expected in our sys-
tem based on experimental observation. In Devices H2 and H4, the LSAS behavior only appears on the top
and bottom gate, respectively. Theoretically, layer asymmetry is the central condition to explain why LSAS
behavior only appears on a particular gate, following the explanations below.

A necessary consequence of layer asymmetry is the particle-hole asymmetry and whether the valence band
or conduction band shows a narrower bandwidth depends on the sign of the displacement field. Physically,
the different moiré potentials experienced by the Ab and Bt atoms in bilayer graphene lead to particle-hole
asymmetry. In bilayer graphene, the low energy electronic states near the charge neutrality are composed of
the orbitals from the Ab and Bt atoms. With a finite displacement field, electronic states from the VB and
CB localize on separate layers.

We first take Device H4 as an example. In Device H4, the device shows an anomalous response to the
bottom gate in the LSAS regime. It is natural to assume that the correlation effect (due to the moiré
potential) considered in our model is more significant for the electronic states associated with the bottom
layer of bilayer graphene. In normal bilayer graphene, under a positive electric field, the valence band will
pick up bottom-layer character. This is true for moiré bands as well. Because of the earlier assumption that
the correlation effect is more significant for electronic states associated with the bottom layer, we consider
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the situation where the moiré valence band becomes nearly flat (or more precisely, flatter than the moiré
conduction band) upon applying an electric field. Consequently, it is the moiré valence band, rather than
the conduction band, that opens up a Hubbard gap in our model. Similarly, in Device H2, only the top
gate shows LSAS, which suggests that the top moiré potential (between the top BN and the top graphene
layer) leads to stronger correlation effects compared with the bottom one. Noticeably, this layer asymmetry
directly translates into the asymmetry between moiré conduction and valence bands in our case, leading to
significant particle-hole asymmetry in our system.

In fact, this particle-hole asymmetry in moiré bands are already observed in various moiré graphene
superlattice systems. Here, we refer to three systems: ABC trilayer graphene/BN moiré superlattice [19–21],
Twisted double bilayer graphene [22–25], Twisted mono-bi moiré graphene [26–28]. In all these studies, the
particle-hole asymmetry shows up not only near the charge neutrality, but also reflects as the absence of
correlated quarter/half filling states on one side of the spectrum. A common feature between these systems
and our bilayer graphene/BN moiré system lies in the layer degree of freedom. When low energy moiré bands
couple to the layer degree of freedom, layer asymmetry can result in a particle-hole asymmetry. Therefore,
even if the native band structure of each individual component is roughly symmetric at low energy, a particle-
hole symmetry is not necessarily guaranteed in the presence of moiré superlattices.

Interlayer charge transfer and spontaneous polarization: As mentioned above, with a large enough
positive displacement field, the topmost moiré valence band can become almost fully bottom layer polarized.
The relatively flat band and the large layer polarization significantly enhances the on-site Coulomb repulsion.
Based on our data, we assume that the on-site repulsion within the bottom layer (the moiré valence band in
this particular discussion) is important.

There may exist a critical displacement field above which the on-site repulsion U in the bottom layer
(valence band) is sufficiently strong that the moiré valence band splits into lower and upper Hubbard bands
(Fig. S5d), the latter at an energy above the bottom of the moiré conduction band. An equivalent way of
looking at this is that electrons will be spontaneously transferred from the valence band (bottom layer) to
the conduction band (top layer), i.e., an interlayer charge transfer occurs (Fig. S5d).

This process is actually in the opposite direction of the externally applied positive displacement field,
inducing a spontaneous polarization.

D1 and D2: D1 and D2 can be understood as the displacement field at which the (U > ∆) condition is
achieved and therefore the interlayer charge transfer occurs. It is important to note that what determines the
condition here is the interlayer displacement field “felt” by the low energy electrons of the bilayer graphene,
namely the topmost moiré valence band and the bottommost moiré conduction band that we consider here.
This is a result of a combined effect of the external displacement field and the spontaneous polarization of
the bilayer graphene.

“Anomalous screening” phenomenon and its uni-directional nature: We can now try to under-
stand the “anomalous screening” within the charge transfer picture. Let us assume that the bottom gate
dopes carriers into the bottom layer, whereas the top gate dopes carriers into the top layer. When the charge
transfer occurs, as one further increases the displacement field (i.e., increases VBG), the back gate is trying to
add electrons to the fully polarized upper Hubbard band. However, this process is energetically unfavorable
due to the large energy barrier of U that it needs to overcome. On the other hand, the top gate can work
normally because of the absence of the Coulomb gap associated with the conduction band. Moreover, we can
also explain the uni-directional nature of the “anomalous screening” phenomenon. A unique feature of the
Mott physics is that even though the unfavorable double occupancy condition prevents adding more electrons
into the system, taking an electron out of the bottom layer does not require extra energy and is favored.
Therefore, when the displacement field scanning direction is reversed (i.e., decreasing VBG), the back gate is
trying to remove electrons from the bottom layer, which is allowed. Hence, both top and back gate function
as normal, and the normal bilayer graphene behavior is recovered.

The above discussion is focused on the positive displacement field case, but the argument for the negative
displacement field towards D2 is similar. In this case, the valence and conduction bands are localized on the
top and bottom layers respectively.

Microscopically, based on our theoretical picture, we propose that the LSAS behavior should continue
until all charges in the upper Hubbard band are transferred into the conduction band. Specifically, the LSAS
(i.e., the interlayer charge transfer regime) starts when the top of the upper Hubbard band aligns with the
bottom of the conduction band. The LSAS behavior (i.e., the interlayer charge transfer) ends when the
entire upper Hubbard band rises above the conduction band. Based on our Hall measurement, the estimated
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amount of charge transferred in the LSAS regime in our devices is well within the density of the first moiré
band at low twist angle.

Figure S5: Illustration of the spontaneous charge transfer process due to on-site Coulomb repulsion. For all
the schematics, the x axis is the density of states (DOS) and the y axis is energy. The schematics are simplified
to help understanding. a-b, For normal Bernal-stacked bilayer graphene (no superlattice) without an external
displacement field, valence and conduction bands touch at a single point. b, The external displacement field
opens up a band gap with layer polarization at its band edges. c-d, For Device H4, due to the formation
of moiré superlattice, the bandwidth is significantly reduced. When applying an external displacement field,
the low energy bands can be almost fully layer-polarized, meaning that the electron wavefunction of the
valence band is completely localized in the bottom layer while the electron wavefunction of the conduction
band is completely localized in the top layer. If we further introduce correlation effects for the valence band
(assuming that the valence band is flatter), the on-site Coulomb repulsion will generate a Coulomb gap at
half filling. The top Hubbard band can be pushed above the bottom of the (red) conduction band (which is
associated with the top layer). Such a change to band sequence could induce a spontaneous charge transfer
process, which means electrons transfer from the bottom layer to the top layer in real space.

Comparison between Device H4 and Device H2: We compare important properties between H4
and H2.

Similarities: 1. Both H4 and H2 show strong hysteresis. 2. Both H4 and H2 show the LSAS behavior. 3.
Because of the LSAS behavior, an external displacement field can change the mobile charge density in both
H4 and H2. 4. The remnant polarization in H4 and H2 are on the same order of magnitude (0.1 µC·cm−2).
In fact, we have observed similar behavior in multiple devices (SI.V.4). The polarizations are all on the same
order of magnitude.

Distinctions: 1. The sequence between the normal bilayer graphene behavior and LSAS behavior is the
opposite. For example, starting from Dext = 0, let us consider the situation as we increase Dext. H4 first
shows the normal bilayer graphene behavior. When Dext > D1, H4 shows the LSAS behavior. On the other
hand, H2 first shows the LSAS behavior. When Dext is larger than a critical value, H2 shows normal bilayer
behavior. This difference leads to different P -Dext loops, which will be described below. 2. One may easily
notice that the gate showing the LSAS behavior is opposite for H4 and H2. In H4 (H2), the back gate (top
gate) shows the LSAS behavior. However, we wish to note that we have also made devices whose behaviors
are more similar to H2 in terms of the sequence between the normal bilayer graphene behavior and LSAS
behavior but the back gate shows the LSAS behavior. We believe that which gate shows the LSAS behavior
probably depends on which graphene layer has a stronger moiré potential leading to a layer-specific moiré
flat band. It is unrelated to the sequence between the normal bilayer graphene behavior and LSAS behavior.

We believe that the ferroelectricity and the LSAS behavior in both devices H4 and H2 can be understood
by the layer-specific moiré flat bands and inter-layer charge transfer picture. In Device H4, the flat band is
absent at Dext = 0. Applying finite Dext opens a bandgap and reduces the width of the band. At a critical
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Dext, the band (particularly, valence band) is narrow enough to show correlation-driven charge transfer and
polarization. As a result, Device H4 shows the normal bilayer graphene behavior first and then the LSAS
behavior due to the correlation-driven charge transfer. In Device H2, it is possible that the single-particle
band structure is already quite flat and the correlation effect is already significant. Moreover, the top and
bottom moiré potentials are more different due to the 0◦ and 30◦ alignment. As a result, charge transfer
can occur spontaneously even at zero Dext, leading to the LSAS behavior. When a particular fraction of the
moiré band is filled (or depleted) by the transferred charge, normal bilayer behavior will appear.

The behaviors of Devices H2 and H4 suggest that both the displacement field and the details of the
moiré structures can determine how flat the band is and how strong the correlation effect is. We note that
this is quite likely in our system due to the following: (1) In Bernal bilayer graphene, as a function of the
displacement field, the shape of its band structure changes dramatically from “parabolic” to “Mexican hat”
for the low-energy electrons; (2) The moiré band structure will further depend on the moiré periodicity and
the moiré potential strength. We note that recent experiments on twisted double bilayer graphene show
correlated insulator behavior only at intermediate displacement field ranges [22–25]. Those observations
suggest the tuning of the bandwidth by displacement field is strongly affected by the moiré potential in
a non-trivial way. In our system, the coexistence and independent configuration of the top-BN/graphene
moiré potential and bottom-BN/graphene moiré potential will further fine-tune both the single-particle band
structures and the correlation landscape, giving rise to different behaviors in Devices H4 and H2.

Figure S6: Illustration for interplay among moiré configuration and physical properties. Moiré schematics
for a, Device H4 and b, Device H2. c, Dual-gate map for Device H4: VTG is the slow scan axis, VBG is the
fast scan axis. d, Dual-gate map for Device H2: VBG is the slow scan axis, VTG is the fast scan axis. The
white arrows denote the displacement field axis in c and d.

P -Dext schematics: After explaining the LSAS behavior based on the interlayer charge transfer picture,
we schematically map out the electrical polarization (P ) as a function of the external displacement field
(Dext). Here, the P has two contributions, the polarization generated by the external displacement field and
the spontaneous polarization due to interlayer charge transfer.

For device H4, we start by considering the forward scan. The system behaves as the normal bilayer
graphene below D1. Therefore, in this region, the polarization P has one contribution, i.e., the polarization
generated by the external displacement field. Upon reaching D1, the “anomalous screening” occurs. As
explained above, the interlayer charge transfer contributes a spontaneous polarization which is in the opposite
direction of the externally applied positive displacement field. Therefore, the polarizability, defined as ∂P

∂D ,
decreases. This manifests as a decrease of the slope in the P −Dext schematic. When the displacement field
scanning direction is reversed, the system recovers the normal bilayer graphene behavior. Upon reaching
D2 in the backward scan, we enter the “anomalous screening” regime, which, again, leads to a decrease of
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the polarizability. As such, the polarization P at Dext = 0 for the forward scan is positive, whereas the
polarization P at Dext = 0 for the backward scan is negative, as depicted in Fig. S7a. This is consistent with
observations in Fig. 3a in the main text.

We can similarly sketch the P − Dext dependence for Device H2. However, there are some interesting
differences between Devices H2 and H4. As mentioned above, a prominent difference is the sequence of the
normal bilayer graphene behavior and “anomalous screening” behavior. In Device H2, the forward scan first
shows the “anomalous screening” behavior and then the normal bilayer graphene behavior. Based on this,
we can sketch the P −Dext dependence for Device H2, as shown in Fig. S7b. For H2, the polarization P at
Dext = 0 for the forward scan is negative, whereas the polarization P at Dext = 0 for the backward scan is
positive. This is consistent with observations in Fig. 3b in the main text.

Figure S7: Schematics of electrical polarization (P ) as a function of the external displacement field (D) for
a, Device H4 and b, Device H2.

In the main text, we mentioned that the reversed P −Dext loop is energetically possible due to the ∆n
feature in our system. Here, we will elaborate on this point based on the above proposed picture. When
considering the internal energy of the system, we should consider both E,P and µ,n:

dU = EdP + µdn

where µ is chemical potential and n the number of electrons per unit area. One can show that the contribution
of EdP over a hysteresis loop is essentially the area of the P − E loop, the sign of which is determined by
whether it is clockwise or counter-clockwise (Fig. S8g). A clockwise P − E loop implies a reduction of the
system’s internal energy over a closed cycle.

On the other hand, because the system exchanges particles with the ground, we also need to consider the
–µdn term. We have now considered the course of µ and n over a cycle with the model provided in the main
text and indeed obtained a counter-clockwise µ− n loop as shown in Fig. S8h. Therefore, the sum of EdP
and µdn term over the cycle may be positive.

Specifically, we study a hysteresis loop as a function of D-field defined by 1©- 6© as noted in Fig. S8e,f. The
evolution of n can be directly obtained from our Hall measurement data. The evolution of µ can be inferred
based on our microscopic picture. Specifically, since the BLG is grounded, the sum of chemical potential
µ and the electrostatic potential φ for the electrons at the Fermi level is always zero, namely, µ + φ = 0.
In BLG, the overall electrostatic potential φ can be considered as φ = (φt + φb)/2, where φt and φb are
the electrostatic potential energy (of electrons) of the top and bottom layers. Therefore, we can derive the
evolution of chemical potential µ from the evolution of φt and φb.

1. Along Path 1© of the P − Dext loop, the system is in the normal bilayer graphene behavior regime,
which is mapped to a single point in the µ−n loop (Fig. S8h). n is fixed because no charge is exchanged
with the ground. µ is also fixed for the following reasons: The application of Dext changes φt and φb
in opposite directions (Fig. S8a) but φ = (φt + φb)/2 stays constant. For instance, with a positive,
increasing Dext, φt increases while φb decreases. We can arrive at the same conclusion from the band
structure diagram. As shown in Fig. S8b, φb can be defined as the energy difference from the band
representing the bottom layer (the blue band) to the ground; φt can be defined as the energy difference
from the band representing the top layer (the red band) to the ground. With increasing Dext field
(Fig. S8b), the red band moves up whereas the blue band moves down. Thus, φt increases but φb
decreases; φ = (φt + φb)/2 stays constant; µ stays constant.
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2. Point 2© of the P − Dext loop represents the critical displacement field where the switching between
the normal bilayer graphene behavior and LSAS occurs. At point 2©, µ jumps but n remains constant.
Therefore, point 2© is mapped to a horizontal line in the µ − n loop (Fig. S8h). This conclusion is
derived as follows: within our model, a Hubbard gap opens up at point 2© (blue band splits into the
upper and lower Hubbard bands shown in Fig. S8c). Therefore, φb jumps up whereas φt remains
constant; φ = (φt + φb)/2 jumps to a positive value; µ jumps to a negative value.

3. Next, along Path 3© of the P −Dext loop, the LSAS occurs. In this regime, the combination of VBG and
VTG cannot keep a constant n; instead, electrons are drained out from the system to the ground along
Path 3©. Therefore, n decreases continuously and Path 3© is mapped to a line pointing downward in
the µ− n loop.

4. We can further finish the loop by analyzing the rest of the cycle as shown in Fig. S8h. It is straight-
forward because 4©, 5©, and 6© are similar to 1©, 2©, and 3©, respectively, except that the red band
becomes the valence band whereas the blue band becomes the conduction band.

While we provided a possible scenario above, we do wish to acknowledge that the evolution of µ in the
loop is based on our theoretical picture. Our current measurements do not provide a direct measure of
chemical potential. Also, even if the µ− n loop does contribute to a positive area, one would need that the
area contributed by µ − n to compensate for the contribution by EdP . This cannot be rigorously proven
unless we measure E,P , and µ,n precisely over the cycle. On the other hand, our data clearly show that
our system is an open system and that it exchanges charged particles with the exterior. Therefore, only
considering the P −E contribution is incomplete and the µ−n loop must be considered when analyzing the
system.

Figure S8: Upper panel: a, Schematics of bilayer systems under positive displacement field. b-d, Schematics
of energy vs. DOS at different stages. Lower panel: Resistance map of n − D scan in e, forward and f,
backward direction. Schematics of g, P − Dext loop and h, µ − n loop, when Dext is swept forward and
backward, as shown in panels e,f.
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IV. Band structure calculations

In the previous sections, we have demonstrated the electronically driven nature of the moiré ferroelectricity
and suggested a possible microscopic picture that can capture many of the striking features in our data. Here,
we consider the non-interacting band structure of Bernal-stacked bilayer graphene with one side aligned
hexagonal boron nitride (BN) substrate as shown in Fig. S9. The purpose of this section is only to outline
the general trend of the bilayer graphene band structure in a moiré system and its evolution under the
interlayer electric field. It is, by no means, a one to one correspondence to the microscopic picture, let alone
a complete explanation of moiré ferroelectricity.

Figure S9: a, Schematic plot for the sample. b, A demonstration of moiré brillouin zone folding. In our case,
the ratio between lattice constants is aBN/aG ∼= 1.01786 ∼= 57/56, which has the same folding structure as
a′/a = 6/5. In this case, the K point of the graphene brillouin zone is folded to the ΓM point of the moiré
brillouin zone.

The moiré Brillouin zone is shown in Fig. S9b. The moiré band structure is a function of the interlayer
electric field as shown in Fig. S11. We use the continuum model developed in Ref. [29] and the effective model
of bilayer graphene given in Ref. [30]. At zero electric field, there is no gap between the moiré conduction
band and moiré valence band, as in the case of normal bilayer graphene. No matter how we shift the bottom
BN laterally with respect to the bilayer graphene, the calculated band structure remains gapless at zero
electric fields, shown in Fig. S10.

Figure S10: a, Schematic diagram for lateral shift of BN with respect to bilayer graphene. b, The moiré
band structure for E · d = 0 meV, where E is the interlayer electric field and d is the interlayer distance.

As we apply an electric field, a gap opens up and the gap size grows with the electric field. The bottommost
moiré conduction band and topmost moiré valence band then become increasingly flat. The bandwidth is a
monotonically decreasing function of the electric field as shown in Fig. S12a.
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Besides the gap opening and change in the bandwidth, the polarization of the moiré conduction band
and moiré valence band is also changing as a function of the electric field. As mentioned in the previous
section, as the electric field increases, the layer polarization starts from the band edge and expands outward.
The calculated percentage of the layer polarization of the topmost moiré valence band is shown in Fig. S12b.
A large layer polarization can be achieved in the low energy moiré bands within a reasonable electric field
range.

The case with both top and bottom BN aligned is qualitatively similar to the single side aligned case.

Figure S11: The moiré band structure of graphene/BN moiré at different interlayer electric fields. a, E ·d = 0
meV, b, E · d = 50 meV, c, E · d = 100 meV. The bandwidth W monotonically decreases with increasing
interlayer electric field, for instance, a, W ∼= 97 meV, b, W ∼= 72 meV, c, W ∼= 52 meV.

Figure S12: a, Bandwidth as a function of interlayer electric field. b, Electric polarization as a function of
the interlayer electric field.

Due to the unique gate-tunable bandwidth feature in bilayer graphene, U , the onsite repulsion energy,
is also dependent on the external electric field. Below, we derive the expression of U and comment on its
relation with ∆ and W .

What determines U : U , the onsite repulsion energy, is proportional to the overlap integral of Wannier
wave-packets on the same site. Therefore, a more essential length scale here is the size of the electron Wannier
orbital L rather than the moiré wavelength Lm. In other words, even in a fixed moiré lattice (Lm fixed),
U can still vary significantly depending on the size of the Wannier orbital L. In bilayer graphene moiré
superlattice, the size of the Wannier orbital L depends on the electric field. As one increases the electric
field, electrons can become increasingly localized, meaning a smaller L, leading to a larger U .

To substantiate the picture described above, we derive the expression of U in a moiré lattice under a
harmonic approximation. Specifically, we expand the moiré potential at its local minimum in a harmonic
approximation. The low energy electrons of bilayer graphene moving in this harmonic potential give rise to
the Gaussian wave packet which is an approximation for the Wannier function. This allows us to estimate
the size of Wannier orbital and eventually U .
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Mathematical derivation:
We can write the moiré potential in the following form:

V ext(r) = −2V0

3∑
j=1

cos(Gj · r + φ), (S1)

in which V0 is the potential modulation, Gj is the reciprocal vector of the moiré superlattice. This can be
expanded at local minimum based on a harmonic approximation and written as

vext(r) =

[
−6v0 cosφ+

1

2
ω2(r −R)2

]
, where v0 =

V0
E0

, ω2 = 16π2v0 cosφ, (S2)

If we approximate the low energy electrons with a quadratic dispersion, then the low energy Hamiltonian
near a single site reads:

H = −~2∇2

2m∗
+

1

2
m∗ωr2, (S3)

where m∗ is the effective mass of the low energy electrons. From this, we can obtain the Wannier orbital and
calculate the overlap integral:

U =
~2

m∗aB

∫
drdr′

|ψ(r, 0)|2 |ψ (r′; 0)|2

|r − r′|
=

~2

m∗aBξ

√
π

2
, aB =

4πε0ε~2

m∗e2
, (S4)

where ξ is the size of the Wannier orbital, which can also be related to the effective mass through:

ξ =

√
~

m∗ω
=
(
16π2 cosφ

)−1/4√
Lmλ ∼ (m∗)−1/4, λ =

~√
m∗V0

, (S5)

Thus, we can ultimately relate the on-site Coulomb repulsion/ interaction strength U with the effective mass:

U =
e2

4
√

2πεξ
∝ (m∗)1/4, (S6)

As we mentioned in the manuscript, the moiré bands can become very narrow when we increase the
displacement field, which means the effective mass of electrons can be large with increasing displacement
field. Therefore, we expect U to be tunable by the displacement field and become large in the large field
limit.

We estimate the effective mass using the following crude approximation

U =
~2G2

M

2m∗
∼W (bandwidth)→ m∗ ∼ ~2G2

M

2W
, (S7)

where GM is the linear size of the moiré Brillouin zone. With this estimated effective mass and the moiré
potential strength, we can estimate the strength of on-site Coulomb repulsion.

Calculating U , W , and ∆: Following the derivation above, which shows that U ∝ (m∗)1/4, we now
calculate U , W and ∆(bandgap) as a function of the difference of on-site potential energy between the two
layers (φt − φb) based on the simple kp model provided above. We note that, in our simple model, (φt − φb)
equals the band gap ∆ and scales with Dext. As shown in Fig. S13, we see that both ∆ and U increase
whereas W decreases with increasing (φt − φb).

Before we further proceed, we wish to caution that this is a model for BLG aligned with BN on one side,
whereas the other side of the BLG is bare, without BN. To theoretically simulate the structure used in our
experiments is quite challenging and requires advances in theory. The current theoretical calculation may be
used as a rough guide that may capture some of the important aspects of the physics, such as the opening
up of the band gap and the flattening of the bands with increasing displacement field.

Experimentally, in Device H4, the upper bound of the band gap at the transition to the LSAS behavior
is found to be ∼ 90 meV based on thermal activation measurement. We now return to the theoretical
calculation (Fig. S13). Since, in our model, (φt − φb) equals the band gap ∆, the band gap ∆ (blue dashed
line) is a straight line with the slope of 1. Within the range of the band gap achieved in experiments (∼ 90
meV), our calculations in Fig. S13 show ∆ < U . Therefore, if a Hubbard gap opens (with W reduced to a
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Figure S13: Calculation of ∆, u, and W as a function of the layer potential energy difference (φt − φb).

critical value), the system will enter the charge transfer regime, meaning that once a Hubbard gap opens in
the valence band, the top of the valence band moves above the bottom of the conduction band.

What determines the conditions under which the Coulomb gap opens: In general, a Mott tran-
sition happens when the ratio U/W reaches an O(1) number (W is the bandwidth of the moiré band). The
exact critical value of U/W for a Hubbard gap to open up depends on many details of the system, which
requires more sophisticated numerical study such as quantum Monte Carlo or DMRG. In our case, the actual
band structure details remain unknown. Therefore, a more detailed theoretical calculation of the electric
field driven charge transfer transition is perhaps more useful after future experiments have determined the
detailed band structure of our devices. Presently, we know from our data that the field-driven transition
is first-order because of the strong hysteresis. Thus, we do not expect universal scaling behaviors near the
critical point.

Irrespective of these details, we emphasize that our preliminary calculation shows that we are indeed in the
∆ < U regime which corresponds to a charge transfer transition, which is consistent with our experimental
findings.

Remnant polarization and band polarization: In the main text, we measured the remnant polar-
ization experimentally. In the above band calculation, we estimate the band polarization. Though these two
quantities are different, we can relate them through the proposed interlayer charge transfer picture. The
surprising agreement between the two further validates our theoretical picture and experimentally obtained
polarization.

First, We want to make a note about how we obtain the ferroelectric polarization from our data. As
described in the main text, the gapless point is achieved when the total displacement field in between two
graphene sheets is zero, i.e., D0 = 0. From this, we have the internal polarization equals the opposite
of the externally induced field, which can be approximated as the averaged electrical displacement field
induced by the top and bottom gate, i.e., Dext = 1

2 ( εbε0VBG

db
− εtε0VTG

dt
). Therefore, we have P = −Dext.

Here, we only consider the ferroelectric polarization. In principle, it is more precise to consider both the
paraelectric and ferroelectric polarization. In that case, one would have P = Ppara + Pferro = −Dext. The
paraelectric polarization was found to be proportional to Dext (i.e., Ppara = αDext) by previous works and
was experimentally measured to be ∼ 0.8 [14]. Therefore, this additional consideration will not change
the results in terms of the order of magnitude. We wish to note that, our goal was to give an order of
magnitude estimate for the ferroelectric polarization. Indeed, we obtained the ferroelectric polarization by two
independent methods, (1) this method P = −Dext at the gapless point and (2) the top monolayer graphene
sensor as described in methods and Extended data Fig. 6. Both methods gave consistent polarization on the
order of 0.1 µC/cm2, which further confirms the validity of the obtained polarizations.

Next, we want to clarify on band polarization. In our model, we calculate the paraelectric polarization in
the following way: The calculated paraelectric polarization is essentially the percentage of layer polarization
of the topmost moiré valence band in an external electric field. Mathematically, it is then defined as the
following,

P1 =
∑
k∈BZ

|ψAb
(k)|2 − |ψBt

(k)|2, (S8)
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where ψAb
(k) and ψBt(k) are components on the Ab and Bt sublattices of the Bloch wavefunction from the

first moiré band. This calculation only considers the paraelectric polarization in response to the electric field
without the consideration of ferroelectric ordering.

In order to make a quantitative comparison between theoretical calculation and experimental data, we
make the following further assumptions based on our charge transfer picture in the following steps:

1. In this picture, we can estimate the magnitude of the ferroelectric polarization from the amount of
charges transferred from one layer to the other due to the opening of the Coulomb gap. At near 0 degrees
alignment between the graphene and BN, the density of the first moiré band is about 2.5× 1012cm−2.

2. The portion of the first moiré band that contributes to the ferroelectric polarization depends on device
details and range of the displacement field. As a rough estimation, we can assume that electrons
occupying half of the first moiré band take part in the charge transfer, i.e., 1.25× 1012cm−2. We then
multiply this density with the calculated band polarization, we can get the ferroelectric polarization.

3. From our model calculation, we take a characteristic band polarization ∼ 70% at E · d = 100 meV.
Therefore, the ferroelectric polarization is 1.25×1012cm−2×70% = 0.875×1012cm−2. In the experiment,
we measured the remnant polarization to be 0.05 µC · cm−2 which converts to 0.3× 1012cm−2.

Therefore, our estimation of ferroelectric polarization based on our calculated band polarization and
interlayer charge transfer picture is in line with our experimentally measured remnant polarization. We do
want to caution that our band polarization calculation is based on a one-side alignment BLG/BN moiré
superlattice in a single particle picture with no correlation. Our proposed interlayer charge transfer is the
key to relate the band polarization to ferroelectric ordering. A more accurate estimation will necessarily rely
on a better understanding of the band structure, either through theoretical investigation or spectroscopic
studies. Nevertheless, our current estimation is already at the same order of magnitude with the measured
value, rendering our interlayer charge transfer picture a plausible theoretical explanation and our observation
of ferroelectricity an experimentally sound case.
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V. Additional data and analyses

V.1. Device H1

V.1.1. Resistance switching behavior at zero B field:

Device H1 is a dual-gated BLG with flower shape (Fig. S14). The special device structure allows us to
measure different local areas of the device.

Main characteristics of Device H1:

• Misalignment between top and bottom BN: The top and bottom BN are from two different
flakes. According to the optical SHG measurement, top and bottom BN are rotated ≈ 20 degrees (or
80 degrees due to the 60◦ periodicity of the SHG signal).

• Clear superlattice peaks: We can clearly see superlattice resistance peaks appearing on both sides
of the charge neutrality line (cyan dashed lines in Fig. S14e). Based on the superlattice density ns, we
calculate a moiré wavelength λ ≈ 10 nm and an angle of roughly 1.1◦. Noticeably, Fig. S14e shows
prominent asymmetry between the electron and hole-side and also between +Dext and −Dext. This
asymmetry is more extreme in Devices H2 and H4.

• Hysteresis (mainly along Dext direction, no ∆n behavior): In Fig. S15, we show as we gradually
increase the range of the displacement field, the hysteresis becomes more and more prominent between
the forward and backward field scans. Particularly, in panels b and c, there is a prominent resistance
peak on the Dext > 0 side for the forward but on the Dext < 0 side for the backward scan.

• Robustness: (1) The device has been measured after a few thermal-cycles and in different fridge
setups, always with the same results. (2) Different contact configurations have been tested, yielding
the same qualitative results (Fig. S16).

Figure S14: a, The optical image of Device H1. Black, purple and orange outline bottom BN, BLG, and top
BN, respectively. b, Different measurement configurations defined by current injection and voltage probe
contacts. c-d, SHG signals for top and bottom BN, respectively. e, Dual-gate four-probe resistance map.
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Figure S15: (Configuration I) Resistance hysteresis as the sweeping range of Dext field increases. Line traces
are taken at next = 0 from the forward and backward n − D maps at each displacement field range. The
backward line trace is taken right after the forward line trace for each n.

Figure S16: Same measurements as in Fig. S15 panel c for two different measurement configurations. Con-
figurations I and II are defined in Fig. S14b. Both show the same qualitative results.

V.2. Device H2

V.2.1. Resistance switching behavior at zero B field:

Now, we present additional measurements of Device H2, whose hysteretic n −D maps are shown in the
main Fig. 3b. During the fabrication of this device, we intentionally aligned the straight edges of both top
and bottom BN flakes and graphene (Fig. S17a). It turns out that the bottom BN is rotated roughly 30
degree relative to the top BN based on SHG measurements. We made this device in the flower geometry
with many electrical connections that allow us to measure different local areas of the sample.

This device was measured over the course of a few months, in different cryostats, and after multiple
thermal cycles. The results are extremely robust. We emphasize two important observations:

• Resistance map is very sensitive to stacking angles:

During the fabrication, wrinkles were formed in the stack, as shown in Fig. S17b. Such ripples will
introduce small angular rotations between adjacent layers. Therefore, areas A, B, and C are expected
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Figure S17: Basic information on Device H2. a, Optical image of BN-encapsulated BLG stack on the metal
bottom gate before contacts were made to the graphene. The red circled area highlights the aligned edges of
all three flakes. b, Optical image of the final device: 24 contacts, and top and bottom gates. There are two
wrinkle lines formed that separate the device into three areas labeled A, B, C. c, Four different measurement
configurations of current injection and voltage probe contacts. The numbers correspond to the contact labels
in (b).
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Figure S18: a, n−D map for configuration I, which is the same measurement as main Fig. 3e. b, Converted
dual-gated map from panel (a). c-d, Dual-gate resistance map. The scanning sequence is shown in the inset.

to have slightly different stacking angles, despite originating from the same graphene and BN flakes. We
take advantage of these ripples to explore the dependence of the hysteretic behavior on angle variations
by performing four-probe resistance measurements with different electrical configurations, as described
in Fig. S17c. In Configuration I, the current is injected through contacts 14 and 2, and the voltage is
measured across Contacts 13 and 3. The four-probe resistance measured is most sensitive to Area A,
the largest area of the device. Similarly, Configuration II primarily measures Area B, Configuration III
primarily measures Area C, and Configuration IV measures the combination of all three areas A, B,
and C.

In Fig. S19, we show the four-probe resistance maps as a function of both gates for Configurations
I-IV. As expected, the resistance features are vastly different. Here are the main observations:

– Panels (a) and (b) both have a region of “anomalously screened” VTG around the origin. But the
extension of such a region is very different between (a) and (b).

– In panel (c), at the D < 0 side, the resistance peak is sharply broken into pieces along two different
but parallel diagonal lines.

– The resistance features in panel (d) are the richest. It contains all the features of a-c.

There are also other interesting features that are beyond our discussions here. In summary, the
distinct resistance features in (a-c) correspond to areas A, B, C with slightly different stacking angles
due to wrinkles. Panel (d) combines the features of (a-c) because Configuration I contains all three
areas. Therefore, we conclude that the transport response is indeed very sensitive to alignment angles.
At the same time, since on the large scale, the stacking orders are similar and close to a special
arrangement, all the configurations show strong and robust hysteretic behavior, as shown in the n−D
maps (Fig. S20).
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Figure S19: Dual-gate resistance maps for the four measurement configurations labeled in Fig. S17c. For all
the maps, VBG is the fast scan axis (forward) and VTG is the slow scan axis (forward). The red dashed lines
in (c) mark the resistance peak positions at D < 0.

Figure S20: n −D maps (forward, backward scans, and their difference) for the four measurement configu-
rations labeled in Fig. S17c. The color scale is 10 kΩ for (a,d), 5 kΩ for (b) and 1 kΩ for (c).

• “Anomalous screening” and its dependence on the sweeping range of Dext:
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Figure S21: n − D maps (the difference between forward and backward scans) for four different ranges of
displacement field in Device H2. The color scale is 10 kΩ for (a), 20 kΩ for (b-d).

Although Devices H2 and H4 show very similar hysteretic “parallelograms” in n −D maps (main
Figs. 3a,b), there are some key differences and details worth mentioning:

– In Device H4, the “anomalously screened” gate is VBG while in Devices H2, the “anomalously
screened” gate is mainly VTG. We add “mainly” here because in Configuration III (Fig. S20c),
we do see resistance features (with hysteresis) along VBG (purple dashed line), although these
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are comparatively weak. This interesting variation, which leads to either VBG or VTG being
anomalously screened, points towards the delicate nature of the electronic band structure that is
highly sensitive to angle alignments.

– In the main text, we go through the scanning sequence in Device H4 to uncover the onset of the
hysteretic behavior in Fig. 2. In comparison, a similar scanning sequence in Extended Data Fig.
3 reveals that in Device H2, the “anomalous screening” behavior appears immediately, followed
by normal bilayer graphene behavior. This switching order can also be seen in the n−D map, as
shown in Fig. 3b and Fig. S21. This also links to a unique feature in Device H2: the “anomalous
screening” behavior can occur near the origin (VBG = VTG = 0), as best shown in Fig. S19b.

– In Fig. S21, we demonstrate that we can vary the size of the hysteresis parallelogram in the n−D
map by changing the displacement field range. Similar to Device H4, there is a displacement field
that separates the normal bilayer graphene and “anomalous screening” behavior in Device H2.
While the displacement field range remains below this threshold, there is no switching between
the two scanning directions and hence no hysteresis (Fig. S23a inset). Once we reach the onset
condition, the size of the parallelogram grows as we increase the displacement field range. How-
ever, it is worth pointing out that the sides of the parallelogram that corresponds to “anomalous
screening” behavior and the value of ∆next remain fixed while the sides that run horizontally in
the n−D map can vary in length. In the next section, we will further show that the parallelogram
saturates in size at a large enough displacement field.

V.2.2. Additional capacitance data:
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Figure S22: a, Bottom-gate capacitance (in-phase) and b, dissipation (out-of-phase) signal, sweeping VBG

as the fast axis and scanning VTG slowly from top to bottom. Where the dissipation is small (dark regions),
the sample is highly conducting and the measurement may be regarded as purely capacitive. In highly
incompressible regions, however, the out-of-phase part can increase due to resistive behavior in the lateral
charge transport through the bilayer. The data are rotated with respect to the applied gate voltages (shown
in insets) and plotted versus the gate-defined displacement field and gate-defined carrier density.

We introduced the capacitance measurement and the basic characteristics of the bottom capacitance
measurement in the Methods section and Extended Data Fig. 7. In Fig. S22, we plot both the in-phase
(capacitance) and out-of-phase (dissipation) signals accompanying the data shown in Extended Data Fig.
7. The out-of-phase signal is significantly smaller, which demonstrates that our capacitance measurement is
valid. To some extent, the capacitance dips correspond to the resistance peaks in transport measurement.
In the following, we present systematic capacitance data to show the dependence of the switching behavior
on the displacement field range.

In Fig. S23a, we show a series of line traces in the back gate capacitance measurement at zero externally
gate-defined carrier density, next, with an increasing range of displacement field, Dext, in both forward and
backward scanning directions. We start from zero displacement field and slowly increase the range of the
displacement field. Each time when the forward and backward scans go across the charge neutrality line (the
side of the parallelogram as shown in Fig. 3e), there is a dip in the capacitance data. At the beginning, the
range of the displacement field is within the “anomalous screening” range, and there is no transition to the
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normal bilayer graphene behavior. Thus, there is no hysteresis in the forward and backward scans. As the
Dext range increases, the parallelogram grows in size, consistent with Fig. S21. Another feature captured
here is that there is an upper bound of the displacement field beyond which the parallelogram stops growing.
At large displacement fields, the forward and backward scans overlap with each other as demonstrated in the
schematics.
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Figure S23: (a) Back-gate capacitance measurements with incrementally increasing range of Dext at next = 0.
Curves are vertically offset for clarity. (b) Diagrams that schematically depict the scans from (a) as a dashed
line in each panel, from top to bottom, representing the approximate sampling region with respect to the
hysteretic parallelogram.

V.2.3. Magnetic field dependent measurements:

We also measured how an externally applied magnetic field affects the behavior of this device. Since
the magnetic field response is beyond the scope of the current report, we only show some representative
measurements and preliminary results. We observed the features of the hysteresis loop evolve gradually
under the magnetic field, especially around the zero displacement field regime.

Figure S24: n−D maps (forward and backward scans) at three different B fields. a-b, Forward and backward
D maps at B = 0. c-d, Forward and backward D maps at B = 5 T. e-f, forward and backward D maps at
B = 10 T.
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V.3. Device H4

Device H4 has been discussed in detail in the main text. Here, we show some supplementary data and
analyses to further demonstrate the striking behavior of this device.

V.3.1. Resistance switching behavior at zero B field:

• Dual-gate map with VBG as fast axis:

In the main text, we focus on the dual-gate maps with VTG as the fast scan axis. Here, we show the
results with VBG as the fast scan axis in Fig. S25. Figure. S25a-b shows the measurement with VBG

within ±10 V. Within this range, it follows a normal bilayer behavior with no hysteresis, consistent
with Fig. 2a, in which VBG is scanned as the slow axis. Once the range of VBG is extended to ≈ ±25
V or larger, we again start to see “anomalous screening” behavior and hysteresis. Depending on the
scan direction of VBG, the “anomalous screening” regime shows up on the left or right of the gapless
point, also consistent with the scenario when VBG is used as the slow scan axis. However, the resistance
features between the two scan configurations are not exactly the same. The existence of such differences
is consistent with the existence of hysteresis: swapping the fast and slow scan axes changes the history
before reaching a particular point in the (VBG, VTG) parameter space. This difference also demonstrates
an important fact: Although the hysteresis is most prominent when sweeping VBG back and forth, the
history of VTG is equally important because the critical field is determined by VBG and VTG together.
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Figure S25: Dual gate resistance map with VBG as the fast scan axis. a-b, At each VTG, VBG is scanned
forward and backward. The data collected during the forward scan forms (a) and that collected during the
backward scan forms (b). c-d, and e-f, are the same kind of measurements but for larger scan ranges of
VBG. i, The difference between (e) and (f). g-h, j-k, The Hall density along the dashed lines (from top to
bottom) in i.

In the main text and sections above, we point out the fact that the gapless point, in the region where
the resistance map resembles the normal bilayer graphene behavior, can be moved around in terms of
its exact applied top and back gate voltage. By applying an appropriate sequence of gate voltages,
its value can be programmed to be far away from the origin. This movement of the gapless point is
reversible and its position at the origin can be recovered as follows: In a dual-gate resistance map
with the VTG as the fast scanning axis, the “anomalous screening” behavior appears when a relative
critical displacement field is reached, corresponding to a well-defined change in the back gate voltage.
Depending on how far we travel beyond the critical point, we can change the vertical extent of the
parallelogram. If we start from a large negative back gate voltage and scan in the forward direction,
when we reverse the scanning direction at a positive back gate voltage with a small magnitude compared
to the starting point, we recover the normal bilayer graphene behavior and thus shrink the size of the
parallelogram. By repeating this process, we effectively move the gapless point closer and closer to
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the origin. Once the range of the back gate voltage is small enough that D1 and D2 are not reached
anymore, no switching behavior is observed and the gapless point returns to the origin.

• “Anomalous screening” and its dependence on the sweeping range of Dext:

Here, we highlight additional interesting details in terms of the “anomalous screening” behavior and
its displacement field dependence:

– In Fig. 2j-l, we show the Hall measurement along the displacement field direction at various
nominal carrier densities next. One of the main features is that the external field D1 and D2

mark the onset of the “anomalous screening” behavior regardless of next. This suggests that there
is a minimum field that we need to reach before the hysteretic behavior starts to occur at any
carrier density. Indeed, as shown in Fig. S21a, for a small displacement field range, the n − D
map exhibits normal bilayer graphene behavior with no hysteresis.

– As with Device H2, the enclosed area of the parallelogram in the n − D map can vary with the
displacement field range. However, in Device H4, the sides that run parallel to the displacement
field remain the same while the sides that correspond to the “anomalous screening” behavior can
vary in length. Interestingly, the gapless point can move around in both the dual-gate map and the
n−D map but always remains at the same position within the normal bilayer graphene behavior
line. Hence, the difference in terms of displacement field value between the gapless point and
D1(D2) also remains unchanged.

– As the “anomalous screening” side of the hysteresis parallelogram becomes longer, it enlarges the
parallelogram so that the ∆next between the Dirac peaks of forward and backward scans also
increases. Since the relative distance between the gapless point and D1 and D2 are fixed, ∆P
increases proportionally to ∆next. In the range of displacement fields we tested, we have not
reached a saturation value where the size of the parallelogram stops growing.
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measurement in (b) was conducted with a different contact configuration of Device H4, hence the variation
of the resistance magnitude.
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Following the above descriptions, we expect the remnant polarization to scale with the range of Dext.
Below, we extract their relation directly based on our data plotted in Fig.3a and Fig. S26. Fig. S26a,b
show a normal bilayer graphene behavior with no hysteresis at a small scan range of Dext/ε0. The
minimum range of Dext/ε0, below which there is no LSAS and hence zero remnant polarization, is
determined to be 0.388V/nm from Figs.2j-l. In addition, we can read out the remnant polarization
as described in the main text with three different scan ranges from Fig.3a and Fig. S26, giving us
three additional data points. By plotting out ∆P vs. the scan range of Dext/ε0, we see a clear linear
dependence with a slope of 0.7892 and R squared of 0.9985. This is consistent with our speculation that
the remnant polarization is linearly proportional to the range of displacement field above the critical
field.

Figure S27: ∆P v.s. Scan range of Dext/ε0

• Non-monotonic dependence of Dirac peak on Dext:

In normal bilayer graphene, the single-particle band gap has a linear dependence on the external
electric field. However, it is in general hard to infer such linear dependence from the device resistance.
Nevertheless, one should expect the resistance along the Dirac peak to show a monotonic trend in
the electric field direction. If a non-monotonic trend is observed, it can be a strong indication of the
non-linear dependence of the band gap.

In Fig. S28, we plot out the conductance along the charge neutrality for Device N0, H2, and H4. For
Device N0, the conductance starts from the gapless point near zero fields and decreases monotonically
with the displacement field, consistent with the normal gap-opening behavior. For both Device H2 and
H4, besides the apparent hysteresis between the forward and backward scans, the conductance in each
curve shows a nontrivial dependence on the displacement field. Significantly away from the gapless
point, the conductance stops decrease and even slightly increases. Such a non-monotonic trend of the
conductance with the displacement field indeed suggests that the interlayer electric field and/or the
band gap depends on the externally applied field in a non-trivial way in our devices.

• Non-hysteretic gate:

In the main text, we point out that the special gate for Device H2 and H4 are top and bottom gate,
respectively and there is no hysteresis if we scan along the other gate direction. Here, we show our
experimental observations.

In order to illustrate clearly the gate dependent hysteresis behavior, we plot out two sets of mea-
surements for both Device H4 and H2 in Fig. S29. The four panels for each of the devices show all
combinations of the gate sweeping direction. Apart from some minor shifts from instrumental back-
lash, there is no obvious hysteresis in the top gate and bottom gate direction in Device H4 and H2
respectively. This is consistent with the data we present in the manuscript that Device H4 shows a
hysteretic dependence on VBG, and Device H2 shows a hysteretic dependence on VTG.
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Figure S28: Conductance along Dirac peak as a function of displacement field for a, Device N0, b, Device
H2, and c, Device H4.

Figure S29: Dual-gate maps for Device H2 and H4 in all scanning configurations.
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V.3.2. Transport simulations for Device H4 based on a phenomenological model:

In this subsection, we simulate Device H4’s main transport behavior based on a phenomenological ca-
pacitance model. This simulation does not involve the microscopic theoretical mechanism for the moiré
ferroelectricity. Rather, all the microscopic physics (moiré band structure, correlations, ferroelectric phase
transition, etc.) are phenomenologically represented in this simulation by the way in which the top and
bottom gates inject charges into the system. We found that, by assuming a definitive but unconventional
relationship between the gate voltages and gate-injected charges, we can successfully capture the main data
observations such as the strong hysteresis and the “anomalous screening” phenomenon. The purpose is two-
fold: First, it provides a simulation of the transport data; Second, it may provide hints and inspiration for
a microscopic theoretical understanding of the data, as the way in which the gates inject charges into the
system depends on the quantum capacitance and thus the microscopic physics of the electronic state.

In a dual-gated Bernal-stacked BLG, the total carrier density is generally given by n = nt + nb, with nt
and nb contributed from the top and bottom gates, respectively. With the commonly adopted parallel-plate
capacitor model, nt can be described by nt = (Ct/e)VTG, where Ct is the top gate capacitance per unit area.

On the other hand, the bottom-gate-contributed carrier density nb in our experiment exhibits an unusual
behavior which cannot be described by the parallel-plate capacitor model (See Fig. S25 for Hall density
measured as a function of VBG). By observation, we found that the following phenomenological model leads
to transport simulations that agree well with the experiment:

nb =


Cb

e
[VBG − (V0 + ∆V )] , VBG < V0 + 2∆V

Cb

e
∆V , VBG ≥ V0 + 2∆V

(forward sweep)

nb =


Cb

e
[VBG − (V0 −∆V )] , VBG > V0 − 2∆V

−Cb

e
∆V , VBG ≤ V0 − 2∆V

(backward sweep)

Here, parameters Cb ≈ Ct · 4/11 and ∆V = 12 V are obtained by observations, and V0 is the initial back
gate voltage value for each VBG sweep. The above phenomenological model is depicted in Fig. S30a and b
for the forward and backward sweep, respectively.
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Figure S30: Phenomenological model for the bottom-gate-contributed carrier density under (a) forward VBG

sweep and (b) backward VBG sweep. c, Schematic of the modeled dual-gated BLG device. d, Exemplary
carrier density profiles n(x) at VTG = 2 V and various VBG, corresponding to the colored circles on the
black solid line in (e), which shows the simulated two-point conductance. The dashed line in e considers the
reversed VBG sweep. e, The phenomenological model function nb described in (a) and (b) along the gate
voltage sweeps considered in e.

Our transport simulations are based on the nearest-neighbor tight-binding model for BLG, using the same
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method described in [31]: The model Hamiltonian is composed of the clean part, H0, along with the onsite
energy term,

H = H0 +
∑
s=±1

∑
j

[
V (xj) + s

U(xj)

2

]
c†jcj , (S9)

where s = −1 and s = +1 account for the bottom and top layer of the BLG, respectively, and cj (c†j)
annihilates (creates) an electron on the j-th site located at (xj , yj). Furthermore, the band offset profile in
Eq. (S9) is given by

V (x) = −sgn[n(x)]

√
γ21
2

+
U2(x)

4
+ (~vF)2π|n| −

√
γ41
4

+ (~vF)2π|n|[γ21 + U2(x)] , (S10)

where γ1 = −0.39 eV is the nearest-neighbor interlayer hopping strength, vF ≈ 106 m/s is the Fermi velocity
of electrons in graphene, and the asymmetry parameter U (≈ gap size) follows Ref. [32] and is a function of top
density nt and bottom density nb. With the method of periodic boundary hopping [33,34] implemented, we
first compute the normalized conductance g by integrating the two-terminal transmission over the transverse
momentum. Assuming the width of the sample to be W , the two-terminal conductance is then obtained by

G =
e2

h

W

3πa
g , (S11)

where a is the lattice spacing. In the following simulations, we consider W = 1 µm in Eq. (S11).

Figure S31: Simulated two-point resistance maps with VTG as the fast axis, and VBG as the slow axis, for
various sweeping ranges of VBG. a-b show forward and backward sweeps for VBG in the range (-50, 50) V.
c-e show the resistance difference between forward and backward sweeps for different VBG ranges.

Our dual-gated BLG device is schematically sketched in Fig. S30c. Although the transport behavior of
our device is dominated by BLG, we found that the contact doping effect is unavoidable. To demonstrate
this, we focus on the junction between the left contact. We model the contact as BLG also, but with pinned
top and bottom densities nt = n0/2 = nb. In the simulations we show here, we take n0 = 3 × 1012 cm−2,
which does not drastically influence the results. Away from the contact, the top and bottom carrier densities
are dominated by the gates. The position-dependent profile connecting the pinned and the gate-controlled
densities is described by a simple hyperbolic tangent function. A few examples of n(x) = nt(x) + nb(x) are
given in Fig. S30d, for VTG = 2 V and various VBG along a forward sweep of the back gate. The simulated
conductance for this VBG sweep is shown by the black solid line in Fig. S30e, where the circles correspond
to the n(x) profiles shown in panel d. In this particular sweep, the model function for nb (away from the
contact), as described by Fig. S30a, is shown by the solid red line in Fig. S30f. The dashed lines in panels e
and f of Fig. S30 consider the backward sweep at the same VTG.

The forward and backward sweeps of the conductance shown in Fig. S30e are line cuts of simulated
conductance maps G(VTG, VBG), whose inverse, i.e., the two-point resistance, are shown in Fig. S31a-b. In
the following, we consider various gate sweeps with VTG as the fast axis and VBG as the slow axis. We
plot the two-point resistance with forward VBG sweep in Fig. S31a and backward sweep in Fig. S31b. The
resistance difference between forward and backward sweeps for different VBG ranges is shown in Fig. S31c-e
for different ranges of VBG. Our phenomenological model is able to accurately reproduce the main features
of the experimental data and could therefore indicate unusual back gate capacitance behavior in our system.
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V.4. Additional Devices

Here we show some additional data on other devices that also show LSAS behavior. We plot them
together with Device H2 to demonstrate the similarity in terms of device behaviors.

In Fig. S32, we show a comparison between Device H2 and H5. The top gate is the fast scan axis and the
red and blue colors represent the forward and backward scan direction, respectively. The two devices both
have the top gate as the special gate, meaning that the LSAS behavior appears in the top gate direction. In
addition, both devices show the LSAS behavior first, followed by normal bilayer graphene behavior.

Figure S32: Dual-gate map for Device H2 and H5 with VTG as the fast scan axis.

In Fig. S33, we show a comparison between Device H2 and H6. Device H6 shows a new type of behavior
that has the same sequence of LSAS and normal bilayer behavior as Device H2, but the bottom gate is the
special gate. This is consistent with our argument that the specific gate shows the LSAS behavior probably
depends on the specific graphene layer has a stronger moiré potential leading to a layer-specific moiré flat
band. It is unrelated to the sequence between the normal bilayer graphene behavior and LSAS behavior.

Figure S33: Dual-gate map for Device H2 and H6 with VBG and VTG as the fast scan axis, respectively.
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[31] Varlet, A. et al. Fabry-pérot interference in gapped bilayer graphene with broken anti-klein tunneling.
Phys. Rev. Lett. 113, 116601 (2014).

[32] McCann, E. & Koshino, M. The electronic properties of bilayer graphene. Reports on Progress in Physics
76, 056503 (2013).

[33] Wimmer, M. Quantum transport in nanostructures: From computational concepts to spintronics in
graphene and magnetic tunnel junctions. Ph.D. thesis, Universität Regensburg (2008).

[34] Liu, M.-H., Bundesmann, J., Richter, K. et al. Spin-dependent klein tunneling in graphene: Role of
rashba spin-orbit coupling. Phys. Rev. B 85, 085406 (2012).

32


	Unconventional ferroelectricity in moiré heterostructures


