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A. Topographic identification of the hBN-graphene lattice misalignment 

Fig. S1 shows STM topographic images of Device A (Fig. S1a; same as main text Fig. 

1a) and Device C (Fig. S1b). These topographic images show a triangular (honeycomb) 

superlattice of bright (dark) areas, which are regions of twisted bilayer graphene that exhibit 

local AA (AB/BA) stacking1–3. In Fig. S1a, two different lattice scales can be seen: the graphene-

hBN moiré lattice (1.76 nm moiré wavelength; 8° relative twist angle) and the graphene-

graphene moiré lattice (13.3 nm moiré wavelength; 1.06° relative twist angle; 0.1% interlayer 

relative strain). In Fig. S1b, only the graphene moiré lattice can be seen (1.18° twisted bilayer 

graphene, 0.3% interlayer relative strain, no observable graphene/h-BN moiré pattern). 

Although C3 symmetry is broken by the strain measured in these devices, C2 symmetry does not 

appear to be broken in the moiré superlattice pattern. Similarly, Device B has a 1.04° graphene-

graphene moiré pattern (with 0.4% strain) and a 2.4 nm graphene-hBN moiré pattern (5.8° twist 

angle). Since the graphene-hBN twist angles are measured to be larger than 5° for all of the 

devices studied, our MATBG samples are clearly not aligned with their hBN substrates (perfect 

alignment produces a ~14 nm moiré pattern). Device A is the same sample as “Device A” in 

Wong et al.4 

 

B. High-resolution DT-STS at 200 mK and low magnetic fields 

Fig. S2 shows differential conductance 𝑑𝐼/𝑑𝑉(𝑉𝑠, 𝑉𝑔) obtained at the center of an AA site 

in Device A (which is the device from which data in main text Figs. 1 and 2 come from), 

measured at T = 205 mK at B⊥ = 1 T (Fig. S2a) and B⊥ = 3 T (Fig. S2b). Triangular markers in 

this figure mark the position of the strongly correlated Chern insulating states discussed in the 



main text and observed at these field strengths at partial fillings of the conduction (Figs. S2a,b; 

red triangles) or valence (Figs. S2a,b; blue triangles) flat bands, with the number of left-pointing 

arrows identifying the absolute value of the Chern number of each gap. We observe a number 

of gaps in both the upper and lower flat bands, including two gaps near ν = +2 (clearer in Fig. 

S2b) and ν = -2 (clearer in Fig. S2a), which are very narrow in gate-range, and two gaps in the 

intervals -3 < ν < -2 and +2 < ν < +3 (marked by shaded boxes in Fig. S2). As mentioned in the 

main text, the gaps identified by shaded boxes in Fig. S2 do not systematically shift along the Vg 

axis with the application of a perpendicular magnetic field. Thus, they lie beyond the scope of 

this manuscript and will be discussed elsewhere. 

Interestingly, the cascade of transitions seen at higher temperatures (T = 6 K in Ref. 4 

and at higher magnetic fields (main text Fig. 1e) are much weaker at low temperature, low 

magnetic fields (Figs. S2a,b). This is reminiscent of transport on MATBG, which often show 

peaks in resistivity (most often at |ν| = 1) diminish as the temperature is lowered5–8. More 

studies are needed to understand this strange phenomenon and to uncover the relationship 

between the flavor symmetry of MATBG and the system’s temperature and magnetic field 

strength. 

 

C. Higher-index Landau levels near charge neutrality 

 Fig. S3a shows differential conductance 𝑑𝐼/𝑑𝑉(𝑉𝑠, 𝑉𝑔) obtained at the center of an AA 

site in Device B, measured at T = 320 mK in a B⊥ = 2.3 T out-of-plane magnetic field. The two 

peak features in dI/dV that pass through the Fermi energy (EF; Vs = 0 mV) between Vg = 16 V 

and Vg = 8 V are the eight zeroth Landau levels (ZLLs) discussed in the main text. In addition, at 

low magnetic fields, several quartets of higher-index Landau levels (LLs) can be seen crossing 

the Fermi energy for filling fractions 𝜈𝐿𝐿 > 4 (Vg > 16 V) and 𝜈𝐿𝐿 < -4 (Vg < 8 V), where 𝜈𝐿𝐿 =

𝑛𝛷0/𝐵 is the number of filled LLs at carrier density n and 𝛷0 = ℎ/𝑒 is the magnetic flux 

quantum. The higher-index LLs of the conduction flat band are only visible when the sample is 

n-doped (Vg > 16 V), and likewise for the LLs of the valence flat band when the sample is p-

doped (Vg < 8 V). 

 Fig. S3b shows the same measurement of 𝑑𝐼/𝑑𝑉 divided by 𝐼/𝑉𝑠, which is used to 

partially correct for changes in the initial tunneling feedback condition at different gate voltages 

𝑉𝑔 in systems where there are large variations in tunneling current 𝐼. In this plot, both the ZLLs 

and the higher-index LLs are more clearly discernible than in Fig. S3a. Seven spectroscopic 

gaps (Fig. S3a; marked by purple triangles) equally spaced in 𝑉𝑔 are seen and are labeled by 

their LL filling 𝜈𝐿𝐿 on the right side of Figs. S3a,b. We note that the large energetic separation 

between the ZLLs and the conduction (valence) band LLs in Fig. S3b for ν > 0 (ν < 0) is 

consistent with the sign-switching Haldane mass described in the main text9,10. 

While the quartets of the ZLLs are each seen to split into four, singly-degenerate LLs as 

a result of quantum Hall ferromagnetism11–13, higher-index LLs are not seen to split at EF (within 

our energy resolution). Instead, they pin to EF over a carrier density range equal to 𝛥𝑛 =

 4𝐵/𝛷0. These density-tuned scanning tunneling microscopy (DT-STS) measurements are in 

agreement with those of magnetotransport experiments, which have identified a fourfold-

degenerate LL fan emanating from charge neutrality6,14,15. 

 

D. Magnetic-field dependence of zeroth Landau Level quartet splitting 



 As discussed in the main text, 𝑑𝐼/𝑑𝑉(𝑉𝑠, 𝑉𝑔) measurements show two peaks that 

represent two fourfold-degenerate zeroth LLs. These peaks are energetically separated by 

roughly 3 - 11 meV (depending on the magnetic field strength) when both fourfold-degenerate 

ZLLs are fully occupied or fully empty. This splitting, which could be caused by several possible 

single-particle effects (strain16, orbital Zeeman effect17–19, interlayer bias20), appears to increase 

roughly linearly with magnetic field (see Fig. S4). Theoretical calculations for orbital magnetism 

in MATBG17 predict a large orbital Zeeman splitting corresponding to a g-factor on the order of 

10, which is consistent with the data in Fig. S4. However, we cannot rule out the influence of 

heterostrain, which lifts the degeneracy of Dirac points at opposite corners of a moiré Brillouin 

zone16,21. 

 

E. Effects of local STM tip potential on spectroscopic gap measurements: charging 

energy and Coulomb diamonds 

As noted in Xie et al.22, the relationship between the gate voltage Vg and the density n 

may be affected by tip-induced band bending. In our experiment, we greatly reduce the 

influence of the tip by using a tungsten tip poked into copper (both tungsten and copper have 

work functions similar to graphene). Improvements in the surface cleanliness of the samples 

also reduce the influence of tip-induced band bending by decreasing the likelihood that the tip 

picks up contaminants that modify its work function. However, the effect of the tip cannot be 

completely eliminated. Tip-induced band bending contributes to the gate-voltage widths of the 

Chern gaps, increasing the size of the error bars in main text Fig. 3. We describe below how tip-

induced band bending affects our measurements. 

When performing STM measurements on two-dimensional gate-tunable systems, the 

STM tip is placed within a nanometer of the sample surface. Hence, the STM tip produces a 

local electrostatic potential V(r) whose strength and profile depend on a number of 

characteristics of the tip, such as the work function and the tip shape (see Fig. S5a for a 

schematic). Because the band structure of MATBG varies greatly with carrier density, these 

local modulations in the chemical potential caused by the tip potential can greatly affect the local 

conductivity of the sample, presenting distinct challenges when performing spectroscopic 

studies within these samples.  

Consider the situation where the filling factor ν in MATBG is tuned near that of a strongly 

correlated Chern insulating phase. Because of the narrow gate range associated with each 

Chern phase, it is possible for tip-gating effects to produce a local chemical potential distortion 

𝜇(𝑟) where a ring-shaped region of MATBG is in the insulating phase, while a “quantum dot” 

region below the tip and the region far away from the tip remain conducting (Fig. S5c). If the 

insulating phase occurs at chemical potential 𝜇𝜈, the insulating ring occurs at radius 𝑟𝜈, where 

𝜇(𝑟 = 𝑟𝜈) =  𝜇𝜈. Regions 𝑟 > 𝑟𝜈 and 𝑟 < 𝑟𝜈 remain conducting. This situation is essentially a 

double-barrier tunneling junction consisting of the metallic tip, the conducting quantum dot, and 

the conducting outer region of the sample, sequentially separated by the insulating vacuum 

tunnel barrier and the insulating ring-shaped region. The size of the quantum dot (and thus the 

charging energy) is tunable via the back-gate because the back-gate shifts 𝜇(𝑟). In 

spectroscopy, we observe this effect as a string of Coulomb diamond features at EF (Fig. S5d; 

marked by black triangles) and nearly horizontal charging lines (Fig. S5d; marked by blue 

triangles) that indicate the addition of a single electron to the quantum dot23. As the quantum dot 



under the tip apex shrinks, the Vg-spacing of the charging lines increases because a larger 

change in density is required to add a single electron to the dot (i.e. the capacitance decreases, 

so ΔVg between charging lines increases). 

In Fig. S5d, the Vg-spacing between charging lines and Coulomb diamonds are generally 

larger for larger Vg (although not monotonically, possibly due to the single-particle energies of 

electrons in the dot). From this observation, we infer that the quantum dot and the insulating ring 

shrink with increasing Vg. Eventually, 𝑟𝜈 → 0, and the insulating region is directly under the tip 

apex. This would indicate that the spectroscopic Chern gap (i.e. the true gap in the LDOS) is 

located slightly above (between 0.1 V and 0.2 V along the Vg axis in Fig. S5d) these charging 

events. 

 

F. Raw dI/dV(Vs,Vg) as a function of magnetic field for Devices B and C 

Measurements in Fig. 1 and Fig. 2 of the main text were taken on Device A, which 

showed signatures of the complete sextet of field-induced correlated Chern insulating phases 

emanating as a function of magnetic field from every integer filling 𝑣 and the octet of ZLLs near 

charge neutrality. Figs. S6 and S7 depict representative data acquired from Device B and 

Device C, respectively, at a variety of magnetic field strengths. As explained in more detail in 

Supplementary Section G, these devices quantitatively reproduce the Chern numbers observed 

in Device A. 

 

G. Quantized field response of strongly correlated Chern gaps in Devices B and C 

 Figs. S8a,b summarize our measurements on Devices B and C by plotting the gate 

voltage at which each gap in spectroscopy occurs with respect to a perpendicular magnetic 

field. As in Fig. 3a in the main text, the red (blue) points represent gaps seen away from the 

CNP within the conduction (valence) flat band, while purple points represent gaps between LLs 

near the CNP. Each point represents the center of a gap measured at EF, where error bars were 

chosen to encapsulate the full gate range of each gap (error analysis as described in 

Supplementary Section J). The data obtained in Device B were acquired between 300 mK and 

320 mK, and the data obtained in Device C were acquired at roughly 6.5 K. 

In Device B (Fig. S8a), we identify field-induced strongly correlated Chern states with C 

= +3 emanating from ν = +1, C = +2 from ν = +2, and C = +1 from ν = +3. Additionally, we 

identify a single gap at 9 T consistent with a Chern state with C = -2 emanating from ν = -2, but 

we were unable to clearly identify this gap at other field strengths. In our measurements of this 

device, the valence flat band appears to be split into two peaks, and the Chern insulating gaps 

are not apparently present for ν < 0 (except C = -2 at 9 T). The cause for this is unclear, but 

could possibly be attributed to the non-negligible interlayer strain (ε = 0.4%) observed in this 

device. Theoretical studies have shown that even small amounts of strain can vastly affect the 

bandwidth of the flat bands in MATBG16. A significant increase in the effective bandwidth of the 

valence band may be responsible for the absence of nearly all signatures of correlation-induced 

Chern phases for ν < 0 in this device. 

In Device C (Fig. S8b), we identify strongly correlated Chern states with C = ±2 

emanating from ν = ±2 and C = ±1 from ν = ±3. In addition, we identify a single gap at 9 T 

consistent with the preformation of a Chern state with C = -3 from ν = -1. This gap is only 

partially formed, where the zero-bias conductance is seen to suppress within a small gate range 



but is not observed to reach zero conductance. Additionally, this gap appears to induce kinks in 

all passive bands (those observed away from EF), implying a jump in the chemical potential of 

the system at this filling. Unlike for Devices A and B, all measurements on Device C were 

performed at roughly 6.5 K. The data presented from Device C represents our only observation 

of Chern phases at this temperature. We speculate that the transition temperatures for the 

Chern phases vary with twist angle and strain. We also note that the size of an energy gap may 

not be directly related to the transition temperature, as is the case for the C = 1 phase in hBN-

aligned samples, where the gap size (~30 K) is larger than the Curie temperature (~7 K)24. We 

were unable to obtain data on Device C at millikelvin temperatures. 

It is clear that, when observed, the Chern numbers seen in Devices B and C agree with 

those found in Device A. This point is most salient in main text Fig. 3b, where reparametrizing B 

and Vg in terms of dimensionless quantities causes the gap data from all three devices to 

collapse onto a single plot. 

 

H. Method used to reparametrize spectroscopic gap information as a function of filling 

and fluxes per unit cell 

 In Fig. 3b of the main text, we plot the spectroscopic gap information extracted from DT-

STS measurements performed at several magnetic fields from three separate devices. Here we 

detail the method used for converting the gate voltage Vg and magnetic field B of a gap to its 

associated flat-band filling factor 𝜈 and magnetic flux per superlattice unit cell 𝛷/𝛷0. This can be 

done using the DT-STS data alone, since the data implicitly contains the device capacitances 

and the moiré unit cell areas. Device capacitances can also be estimated through the parallel 

plate model, and moiré unit cell areas can be measured directly via topographic images, giving 

us a way to verify our method. The method is detailed as follows: 

1. Measure the gate voltage Vg of the gap of interest at magnetic field B. 

2. At zero magnetic field, measure the gate voltages corresponding to 𝜈 = +4 and 𝜈 = -4, 

which we label V+ and V-. These voltages are easy to identify because, at these filling 

factors, the single-particle gaps between the flat bands and the remote bands are 

prominent and quickly cross EF. 

3. The filling factor of the gap is simply 𝜈 = 8(𝑉𝑔 − 𝑉−)/(𝑉+ − 𝑉−)  −  4. 

4. At the highest available magnetic field Bmax (we used 9 T), the field at which the ZLL 

gaps are most prominent, measure the gate voltages corresponding to LL filling factors 

𝜈𝐿𝐿 = +4 and 𝜈𝐿𝐿 = -4 LL gaps, which we label VLL+ and VLL-. 

5. LLs have a Chern number of +1, so they can be used as a figurative “meter stick” for 

measuring the Chern numbers of other insulating gaps. The total number of states in a 

LL at some magnetic field is equal to the total number of magnetic flux quanta that 

pierce the entire sample at that field. This means that (𝑉𝐿𝐿+ − 𝑉𝐿𝐿−)/8 is a measure of 

the number of flux quanta in the sample at magnetic field Bmax (scaled by the sample-

gate capacitance), while (𝑉+ − 𝑉−)/8 is a measure of the number of moiré unit cells in 

the sample (also scaled by the sample-gate capacitance). Thus, we take the ratio of 

these two quantities to convert the magnetic field B at which a gap is observed to units 

of flux quanta per moiré unit cell 𝛷/𝛷0 = (𝐵/𝐵𝑚𝑎𝑥)(𝑉𝐿𝐿+ − 𝑉𝐿𝐿−)/(𝑉+ − 𝑉−). 



With this straightforward conversion method, we find that the data from three devices, with 

different twist angles and amounts of interlayer strain, all collapse onto a single plot, as shown 

in Fig. 3b of the main text. 

 

I. Least squares analysis for the Diophantine equation 

By integrating Streda’s formula, 𝑑𝑛/𝑑𝐵 = 𝑒𝐶/ℎ, the relationship between the charge 

carrier density 𝑛 of an insulating system with Chern number 𝐶 and the magnetic field 𝐵 is given 

by 𝑛 = 𝐶𝐵𝑒/ℎ + 𝑛0𝜈0, where 𝑛0 = 1/Ω is the density for one electron per moiré superlattice unit 

cell area Ω, and 𝜈0 is the number of electrons per superlattice unit cell at zero magnetic field25. 𝐶 

and 𝜈0 are integers (except in special cases where they take fractional values, such as for the 

fractional quantum Hall effect26). Dividing by 𝑛0 gives 𝜈 = 𝐶𝛷/𝛷0 + 𝜈0, where 𝜈 = 𝑛/𝑛0, 𝛷 =

𝐵/𝑛0, 𝛷0 = ℎ/𝑒. 

We fit the data in main text Fig. 3b using weighted least squares regression. We require 

𝜈0 to be an integer, so the least squares line 𝜈′ = 𝐶𝛷/𝛷0 (where 𝜈′ = 𝜈 − 𝜈0) is constrained to 

pass through the origin (fits without this restriction yield the same Chern numbers with larger 

error bounds). Each squared residual in the linear regression was weighted by the error in 𝜈′ 

(calculated through the errors in the gate voltages in step 3 of Supplementary Section H). The 

values of 𝐶 obtained through this method are: 

𝐶 = −1.37 ± 0.29 from 𝜈0 = −3 

𝐶 = −2.13 ± 0.32 from 𝜈0 = −2 

𝐶 = −3.14 ± 0.33 from 𝜈0 = −1 

𝐶 = 3.16 ± 0.27 from 𝜈0 = 1 

𝐶 = 2.15 ± 0.25 from 𝜈0 = 2 

𝐶 = 1.09 ± 0.24 from 𝜈0 = 3 

These values are consistent with the claim in the main text: 𝐶 = −1 from 𝜈0 = −3, 𝐶 = −2 from 

𝜈0 = −2, 𝐶 = −3 from 𝜈0 = −1, 𝐶 = 3 from 𝜈0 = 1, 𝐶 = 2 from 𝜈0 = 2, and 𝐶 = 1 from 𝜈0 = 3. 

 

J. Spectroscopic gap location and error extraction 

When performing high-resolution spectroscopy measurements on MATBG, spectral 

gaps in the system are convolved with charging effects due to the unavoidable influence of the 

STM tip (discussed in Supplementary Section E). This can make it difficult to identify the precise 

gate voltages at which gaps in spectroscopy occur. Therefore, it is crucial that our method for 

extracting the gate voltage of each Chern gap is robust against the systematic errors that may 

arise in the data analysis process. For this reason, we use very conservative error bounds on 

the reported gate locations of the gaps, which were determined using a set of three criteria 

discussed in this section. With these criteria, the error bars reported in the summary Landau fan 

diagrams in main text Fig. 3 and in Fig. S8 were chosen to display the full Vg ranges of the 

observed spectral gaps, which consist of the charging effects (Coulomb diamonds) and Chern 

gaps. Stricter error bounds are unnecessary for this study because we have used Streda’s 

theorem to analyze the magnetic-field dependence of each correlation-induced gap, which has 

the advantage of vastly reducing the measurements’ conclusions to only integer-valued linear 

slopes in n vs. B plots. 

To demonstrate the error analysis method we have used, Figs. S9a-d show the same 

data depicted in Fig. 1d of the main text within a restricted energy range around EF (from -20 



meV to +20 meV) and in a different color scale that highlights the Chern gaps and LLs observed 

at B = 6 T in the conduction (Fig. S9a,b) and valence (Fig. S9c,d) flat bands. Figs. S10a-d show 

the same data depicted in Fig. 1e of the main text with a similarly restricted energy range (from 

–12 meV to +12 meV) and in a saturated color scale that highlights the gaps observed at B = 9 

T. Similar procedures for extracting error bounds of Chern gaps were carried out on equivalent 

data sets acquired at other magnetic fields, and on Devices B and C. 

Dashed lines in Figs. S9a-d and S10a-d bound the error reported in the gate voltage of 

each gap. Correlated Chern gaps were found to exhibit the following characteristic signatures: 

(1) Each gap occurs only at EF without association with any single-particle gap features away 

from EF. This signifies an origin based on electronic interaction effects. (2) Each gap showed a 

strong suppression of LDOS around EF, many times showing characteristics of a hard gap (i.e. 

zero conductance within a finite energy window around EF) between Chern sub-bands. (3) Each 

gap is accompanied by an abrupt jump in the dispersion of features in the spectra away from EF. 

This signifies a sudden change in the chemical potential of the system at these fillings. 

Throughout much of this measurement, a persistent suppression of the spectral weight 

is observed around EF, which is not seen at lower magnetic fields. This has previously been 

observed in magnetic-field-dependent tunneling spectroscopy in other electronic systems, and 

were attributed to Coulomb gaps27,28. 

Since the ZLL gaps are used as a figurative “meter stick” for measuring the Chern 

numbers of the correlated gaps, we must accurately determine Vg for the ZLL gaps. An example 

of how this is done is shown in Figs. S9b,c,e. The full width of the gap is bounded by the gate 

voltages where a LL is seen to cross zero bias (i.e. where the gap closes). The data points in 

main text Fig. 3 are taken to be the centers of the gaps (i.e. the arithmetic means of the upper 

and lower bounds), with the error bars taken to be the full widths. In Supplementary Section H, 

Vg is converted to ν using the νLL = ±4 gaps, minimizing the influence of this error. 

 

K. Chern insulating states: Staggered potential mass vs. Haldane mass 

The Dirac points that connect the conduction and valence flat bands in MATBG can be 

gapped by breaking the C2T symmetry of the system, where C2 is 2-fold rotation about the z-

axis, and T is time-reversal (which we define as spinless here, namely, T only acts on the orbital 

wave function and does not reverse spin). Breaking this composite symmetry can be done by 

breaking either the C2 symmetry or the T symmetry of MATBG, as we discuss below. One could 

break both C2 and T symmetry, but we do not consider such cases. 

When C2 symmetry is either externally broken (e.g. by alignment with the hBN substrate) 

or spontaneously broken (possibly by electronic interactions), the A and B sublattices of the 

microscopic graphene lattice become effectively inequivalent, and the Dirac points gap with 

equal masses (equal signs and magnitudes) in the K and K’ valleys. We write this staggered 

sublattice potential mass as 𝑚(𝜂, 𝑠) = 𝑚 at valley 𝜂 and spin 𝑠 (𝜂 = ±1 for K and K’, and 𝑠 =↑

, ↓). Since the Dirac cones of the K and K’ valleys have opposite helicities, the conduction and 

valence flat bands at valley 𝜂 carry Chern number +𝜂 and −𝜂, respectively, independent of spin. 

As a result, the 4 conduction bands at valley and spin (+↑, +↓, −↑, −↓) carry Chern numbers 

(+1,+1,-1,-1)*sgn(𝑚), and the 4 valence bands carry Chern numbers (-1,-1,+1,+1)*sgn(𝑚), 

respectively, as shown in Fig. S12a, where sgn(𝑚) is the sign of the mass. If interactions further 

split the degeneracy of these flat bands, such that each Chern band is either fully occupied or 



fully empty at integer fillings, the system can form insulating gaps with Chern numbers C = ±1, 0 

or ±2, ±1 near integer fillings ν = ±3, ±2, ±1, respectively (states with positive � depicted in Fig. 

S12a). 

In contrast, when T symmetry is spontaneously broken (by an interaction-induced 

“mean-field” Haldane mass term), the Dirac points gap with opposite masses (opposite signs 

and equal magnitudes) in the K and K’ valleys. We write this Haldane mass as 𝑚(𝜂, 𝑠) = 𝜂𝑚 at 

valley 𝜂 and spin 𝑠. In this case, all the 4 conduction bands (of both valleys and both spins) 

carry a Chern number sgn(𝑚), while all the valence bands carry a Chern number -sgn(𝑚). 

Assume the Chern numbers of the valence bands have the same sign as νB for filling 𝜈 ≠ 0 

(justified in Supplementary Section L), as shown in Fig. S12b. If interactions further split the 

degeneracy of these bands (as in quantum Hall ferromagnetism), such that each Chern band is 

either fully occupied or fully empty at integer fillings, the system will form insulating gaps with 

Chern numbers C = ±1, ±2, ±3 near integer fillings ν = ±3, ±2, ±1, respectively (states at positive 

fillings depicted in Fig. S12b), as observed in our experiments. 

 

L. Free energy argument for the extremal Chern number phases 

 As described in the main text, interactions in MATBG induce a Haldane mass term, 

which gaps the Dirac points that connect the conductance and valence flat bands to produce 

Chern bands with Chern numbers +1 or -1. Although we experimentally observe only one Chern 

phase near each integer filling, there are four choices for an interaction-induced mass term in 

MATBG (staggered potential mass or Haldane mass, each of which can be either positive or 

negative). At zero magnetic field, since the mass term does not couple the two valleys, the sign 

of the mass in each valley can be chosen freely. Thus, there is no reason to suspect that any of 

these 4 possible mass terms will be dominant, and hence their corresponding Chern phases will 

be degenerate at the mean-field level. Zero-magnetic-field transport measurements of MATBG 

unaligned with hBN do not show Chern insulating phases, implying either that these mass 

interactions could be sub-dominant to those driving correlated insulating or superconducting 

behavior or that the system could be broken into domains of different Chern numbers. However, 

we argue here that a small magnetic field can modify the free energies of the different possible 

Chern phases, favoring the Chern phase with the maximal Chern number that matches the sign 

of the filling factor ν times the magnetic field B of that state. 

We assume an on-site (moiré site) Hubbard interaction U at zero magnetic field (see 

Supplementary Section M). We first consider the energy of the Chern phases with a negative 

Haldane mass term 𝑚 < 0 (yielding mass 𝜂𝑚 in valley 𝜂), which gives Chern numbers C = +1, 

+2, +3, +4, +3, +2, +1 at fillings 𝜈 = -3, -2, -1, 0, 1, 2, 3, respectively. In this case, all four 

conduction (valence) flat bands carry Chern number -1 (+1) (Fig. S13a). As shown by the zero-

field analysis of Ref. 4, in the flat band limit, the chemical potential 𝜇 approximately jumps by U 

at each integer filling 𝜈 = ±1, ±2, ±3, and jumps by 𝑈 + 2𝐸0 at filling 𝜈 = 0 (Fig. S13b; gray 

curve), where we have assumed the single-particle energies of the four conduction flat bands 

and four valence flat bands are at ±𝐸0, respectively (in reality, these bands are coupled at zero 

energy by Dirac nodes, but we can capture the essential physics with this perfectly flat band 

approximation). In the presence of a Haldane mass, these jumps occur at the same fillings as 

the Chern insulator states we mentioned above. We choose 𝜇 = 0 as the chemical potential of 



the ungated MATBG at charge neutrality and zero magnetic field. Accordingly, the energy per 

moiré unit cell of the state at filling 𝜈 is given by 

𝐸(𝜈) = ∫ 𝜇(𝜈′)𝑑𝜈′
𝜈

0

 . 

This is the energy required to adiabatically dope MATBG from charge neutrality to a filling 𝜈 

state using the device’s back-gate. At zero magnetic field, the chemical potential (Fig. S13b; 

gray curve) can be integrated to yield the energy 𝐸(𝜈), as shown by the gray curve in Fig. S13c. 

We now consider the system at some small magnetic field B > 0 in dimensionless units 

of Φ/Φ0 (for which the Landau levels are not yet well-developed). According to Streda’s 

theorem, the number of electron states per moiré unit cell in each conduction (valence) flat band 

is given by 1 - B (1 + B), since the band has Chern number -1 (+1)25. For small B, we assume 

the interaction U is approximately unaffected by B, then the chemical potential 𝜇 as a function of 

the filling 𝜈 would become the red line of Fig. S13b, where 𝜇 jumps by U at fillings 𝜈 = -3 + B, -2 

+ 2B, -1 + 3B, 4B, 1 + 3B, 2 + 2B, 3 + B, respectively. These fillings are where the Chern 

insulator states occur under a negative Haldane mass. As a result, the chemical potential (Fig. 

S13b; red curve) integrates to yield an energy 𝐸(𝜈), shown by the red curve in Fig. S13c. In 

particular, for B > 0, the Chern number C = +3, +2, +1 insulators at positive fillings 𝜈 = 1 + 3B, 2 

+ 2B, 3 + B are all lower in energy compared to the (metallic) states expected at B = 0 at the 

same fillings. In contrast, still for B > 0, the Chern number C = +3, +2, +1 insulators at negative 

fillings 𝜈 = -1 + 3B, -2 + 2B, -3 + B are all higher in energy compared to the (metallic) states at B 

= 0 at the same fillings. 

Under the same analysis for a positive Haldane mass term, we expect Chern numbers C 

= -1, -2, -3, -4, -3, -2, -1 at fillings 𝜈 = -3 - B, -2 - 2B, -1 - 3B, -4B, 1 - 3B, 2 - 2B, 3 - B, 

respectively. At B > 0, the chemical potential 𝜇 and associated energy 𝐸(𝜈) as functions of filling 

𝜈 are illustrated by the blue curves in Figs. S13b,c, respectively. Furthermore, the same 

analysis can be done for the staggered potential mass term (present in hBN-aligned samples), 

which gives Chern numbers C = ±1, ±2 / 0, ±1, 0, ±1, ±2 / 0, ±1 at fillings 𝜈 = -3 ± B, -2 ± (2B / 

0), -1 ± B, 0, 1 ± B, 2 ± (2B / 0), 3 ± B. In each case, one could obtain an energy curve by 

integrating the chemical potential. 

One illustrative way to see that the Haldane mass term with the opposite sign as 𝜈𝐵 will 

form states with the lowest energy is to split the integral for 𝐸(𝜈) into two parts. Without loss of 

generality, we focus on positive fillings 𝜈 > 0. We rely on the fact that all sequences of Chern 

states under a staggered potential mass term contain a C = 0 states at 𝜈 = 0; whereas, for 𝜈 > 0, 

the negative Haldane mass term admits a C = +4 state near 𝜈 = 0. Thus, for fillings 0 < 𝜈 < 4B, 

𝐸(𝜈) = ∫ 𝜇(𝜈′)𝑑𝜈′
𝜈

0
 is negative if and only if the system has a negative Haldane mass term. For 

all systems in the presence of any staggered potential mass term, 𝐸(𝜈) = ∫ 𝜇(𝜈′)𝑑𝜈′
𝜈

0
 is positive, 

and is thus unfavorable. For fillings 4B < 𝜈 < 4, we write the integral in two terms: 𝐸(𝜈) =

∫ 𝜇(𝜈′)𝑑𝜈′
4𝐵

0
+ ∫ 𝜇(𝜈′)𝑑𝜈′

𝜈

4𝐵
. For the negative Haldane mass system, the first term is negative 

and the second term is always equal to or smaller than the second term of an analogous 

equation describing the energy of any staggered potential mass system. A nearly identical 

argument for negative filling 𝜈 < 0 can be made. 

By comparing the energies of various states due to different mass terms, at the same 

filling, it is then clear that for B > 0, a negative Haldane mass term yields the lowest energies at 



positive filling 𝜈 > 0, which yields insulators with Chern numbers C = +3, +2, +1 at fillings 𝜈 = 1 

+ 3B, 2 + 2B, 3 + B, respectively. On the other hand, a positive Haldane mass term yields the 

lowest energies at negative filling 𝜈 < 0, which yields insulators with Chern numbers C = -3, -2, -

1 at fillings 𝜈 = -1 - 3B, -2 - 2B, -3 - B, respectively. Therefore, we find the system favors a 

Haldane mass term of the opposite sign as 𝜈𝐵 when 𝐵 ≠ 0, yielding Chern states with maximal 

Chern numbers. 

 This is consistent with our observations of Chern number C = ±1, ±2, ±3 gaps near 

integer fillings 𝜈 = ±3, ±2, ±1, respectively. In principle, higher order energy considerations 

beyond the above simple argument may allow several Chern phases of different Chern numbers 

C to occur near a nonzero integer filling 𝜈 = 𝜈𝑖 (each as a result of a different mass term that 

may become dominant at slightly different fillings 𝜈 = 𝜈𝑖 + 𝐶𝐵), but thus far, we have found no 

experimental signatures for multiple Chern phases near any nonzero integer filling 𝜈. However, 

future experiments on hBN-aligned devices (where C2- and T-symmetry would both be broken) 

could uncover the coexistence of multiple sequences of Chern phases or a transition between 

the sequences as B is increased. 

 

M. Phenomenological model of DT-STS data at high magnetic fields 

 As described in the main text, we postulate that our observations can be explained by a 

Haldane mass term that changes sign across the CNP (see Supplementary Section L for 

theoretical argument). A sign-switching Haldane mass implies (1) the appearance of Chern flat 

bands at zero magnetic field, and (2) ZLLs near filling 𝜈 = 0 at finite magnetic fields large 

enough to develop clear LLs (the latter will be discussed later in this section). Here, we have 

defined the ZLLs to be those of massive Dirac fermions in the presence of a Haldane mass, 

which emerge no longer from zero energy, but from the band edge of the Chern +1 band. We 

observe that these ZLLs shift with carrier density, carrying states with Berry curvature from the 

conduction flat band to the valence flat band as the system is tuned between different 

topological ground states by increasing Vg (see Fig. S3 and main text Fig. 2a). 

In this section, we provide a phenomenological model that assumes the existence of the 

Hofstadter Chern sub-bands and ZLLs, and includes mean-field interactions between electrons 

in those sub-bands and ZLLs, which we use to understand the LDOS measured away from EF 

and use to extract quantitative measurements of the interaction strengths among these states. 

Our simple local interacting model describes the spectroscopic behavior of the flat sub-bands 

observed in DT-STS at finite magnetic field and correctly produces the density-dependent 

asymmetric ZLLs. Because the ZLLs only come from the edge of the Chern +1 sub-bands, this 

asymmetry cannot arise from a staggered sublattice potential mass term (i.e. the C2-symmetry 

breaking mass from hBN alignment), which would produce symmetric ZLLs arising from Chern 

+1 sub-bands in both the conduction and valence flat bands. Instead, the asymmetric ZLL 

behavior can be explained by a Haldane mass, which only produces Chern +1 sub-bands in 

either the conduction or valence flat band and switches signs as the ZLLs move from the 

conduction flat band to the valence flat band. At zero magnetic field, electrons in MATBG 

localize to AA sites, thus setting the moiré wavelength 𝜆𝑚 as the natural length scale for 

Coulomb interactions, and in turn setting the natural energy scale for the Coulomb interaction to 

be on the order of 20 meV. Previous experiments have reported that the flat bands of MATBG 

split into a series of reduced degeneracy sub-bands as a result of this on-site Coulomb 



(Hubbard) interaction 𝑈, where the energy of the splitting provided a direct measurement of 𝑈 =

 23 ±  5 meV4,29. 

At a finite magnetic field B, the two Dirac points of the two flat bands at each spin and 

valley produce two ZLLs around zero energy. Each ZLL carries a Chern number C = +1. The 

energy states above (below) the two ZLLs are separated from the ZLLs by a large gap (gap size 

around 𝑊√𝐵 where 𝑊 is the bandwidth, 𝐵 = Φ/Φ0 is the magnetic field in units of flux per 

moiré unit cell), because the gap between the ZLLs and the first LLs of a Dirac fermion is the 

largest (the energy of the Nth LL in a Dirac system is 𝐸(𝑁)  ∝  √𝑁). Meanwhile, the energy 

states above (below) the ZLLs in each spin and valley are relatively close in energy (within an 

energy range 𝑊(1 − √𝐵) approximately), and carry a total Chern number C = -1, which we will 

regard as a Chern -1 sub-band. Therefore, for 2 spins and 2 valleys in total, we approximately 

regard the system (at finite magnetic field and without interactions) as carrying 8 ZLLs with 

Chern number C = +1 at zero energy, and 4 upper (lower) Chern sub-bands with Chern number 

C = -1. In real space, states are localized on the magnetic length scale. At a magnetic field 

corresponding to 
𝑝

𝑞
 fluxes per moiré unit cell (𝐵/𝑛0 =

𝑝

𝑞
Φ0), where 𝑝 and 𝑞 are coprime integers 

and 0 <
𝑝

𝑞
< 1, according to the Streda formula, 𝑝 ZLL electron states in each ZLL band and 𝑞 −

𝑝 Chern sub-band states in each Chern sub-band are localized within a cluster of 𝑞 AA sites, 

which make up a single magnetic unit cell. 

We assume that interaction energies are much larger than the bandwidths of the ZLLs 

and of the upper (lower) Chern sub-bands. We then assume that within a cluster of 𝑞 moiré unit 

cells (i.e. a magnetic unit cell), there are two groups of (q - p) spin-valley 4-fold degenerate 

Chern sub-band orbitals that make up the upper and lower Chern sub-bands. Within each of 

these groups, the q-site magnetic unit cell is evenly distributed among these (q – p) states, 

where each of these orbitals occupies an area of q / (q - p) moiré unit cells (i.e. non-overlapping 

within each group). Similarly, there are 2p spin-valley 4-fold degenerate ZLL orbitals, each of 

which occupies an area of q/p moiré unit cells (non-overlapping within each group). The 

Hamiltonian within the q moiré unit cells is the following: 

𝐻 = 𝐻0 +
1

2
∑ 𝑈𝛼𝛽 ∑ ∑ 𝜆𝑖,𝛼

𝑗,𝛽
(𝑛𝑖,𝛼 −

1

2
) (𝑛𝑗,𝛽 −

1

2
)

𝑁𝛽

𝑗=1

𝑁𝛼

𝑖=1𝛼,𝛽=𝐶𝑐,𝐶𝑣,𝑍

 , 

𝐻0 = 𝐸+ ∑ (𝑛𝑖,𝐶𝐶
− 𝑛𝑖,𝐶𝑉

)

4(𝑞−𝑝)

𝑖=1

+ 𝐸0 ∑(𝑛𝑖,𝑍1
− 𝑛𝑖,𝑍2

)

4𝑝

𝑖=1

 

where 𝐶𝐶 , 𝐶𝑉, 𝑍1, 𝑍2 stand for the upper Chern sub-bands, the lower Chern-sub-bands, and the 

ZLLs at single-particle energies 𝐸0 and −𝐸0, respectively, 𝑁𝐶𝐶
= 𝑁𝐶𝑉

= 4(𝑞 − 𝑝) and 𝑁𝑍𝑖
= 4𝑝 

are the number of states of the three kinds of sub-bands within the cluster of 𝑞 AA sites, 𝐸+ and 

𝐸0 are the single-particle energies of the upper 4 Chern sub-bands and the upper 4 ZLLs, and 

𝑛𝑖,𝛼 =0 or 1 is the electron occupation number of state 𝑖 in band 𝛼. The interaction 𝑈𝛼𝛽 is a 

symmetric matrix with matrix elements given by three numbers 𝑈𝐶𝐶𝐶𝐶
= 𝑈𝐶𝐶𝐶𝑉

= 𝑈𝐶𝑉𝐶𝑉
= 𝑈𝐶𝐶, 

𝑈𝑍𝑖𝐶𝐶
= 𝑈𝑍𝑖𝐶𝑉

= 𝑈𝑍𝐶 and 𝑈𝑍𝑖𝑍𝑗
= 𝑈𝑍𝑍. They represent the local interactions within the 8 Chern 

sub-bands with Chern number -1, between the Chern sub-bands and the ZLLs, and within the 

ZLLs, respectively. 𝜆𝑖,𝛼
𝑗,𝛽

 is a dimensionless factor defined as the overlapping area of orbitals 



(𝑖, 𝛼) and (𝑗, 𝛽) divided by the smaller of the areas of orbitals (𝑖, 𝛼) and (𝑗, 𝛽). Therefore, 0 ≤

𝜆𝑖,𝛼
𝑗,𝛽

≤ 1 characterizes how close to each other the two orbitals (𝑖, 𝛼) and (𝑗, 𝛽) are. Note that 

this is a classical model (without non-commuting terms). The model is intuitively illustrated in 

Fig. S14a. We then calculate the spectral weight of this model at different fillings using the 

classical Monte Carlo method. 

The spectroscopic features in DT-STS data measured emanating from near every 

strongly correlated Chern insulating gap first emerge at EF and extend to roughly ±20 meV 

before vanishing, which qualitatively parallel previously reported cascade of features in zero 

magnetic field4. The spectroscopic behavior of the cascade features at zero magnetic field were 

attributed to the on-site localization of electrons and allowed us to measure the Coulomb 

repulsion energy. Here, in the presence of a magnetic field, we can perform a similar analysis 

on the cascade features emanating from sequential Chern sub-band splittings (main text Fig. 

1e; 𝑉𝑔 ∈ [−39𝑉, −10.9𝑉] ∪ [13.8𝑉, 42𝑉]) and from sequential ZLL quantum Hall ferromagnetic 

splittings (main text Fig. 1e; 𝑉𝑔 ∈ [−10.9𝑉, 13.8𝑉]), where the magnitudes of the sub-band or ZLL 

splittings can approximately give the intraband interactions between electrons within Chern sub-

bands (𝑈𝐶𝐶) and ZLLs (𝑈𝑍𝑍), respectively. These splittings strongly resemble the splitting of 

spin-degenerate bands into Hubbard sub-bands in the Hubbard model, where the splitting is 

equal to the on-site Hubbard interaction. 

Additionally, we observe the ZLLs to disperse in energy as a function of filling ν (main 

text Fig. 1e, 𝑉𝑔 ∈ [−39𝑉, −10.9𝑉] ∪ [13.8𝑉, 42𝑉]) while the Chern sub-bands are pinned to EF. 

This is the result of interband interaction 𝑈𝑍𝐶 between electrons in Chern sub-band states and 

ZLL states, which can be understood at the mean-field level as follows. Without loss of 

generality, assume the lower Chern sub-bands are partially filled, while the upper Chern sub-

bands and the ZLLs are all fully unoccupied, namely, 𝑛𝑖,𝐶𝑉
= 𝑛𝑖,𝑍1

= 𝑛𝑖,𝑍2
= 0. In this case, the 

average occupation of the lower Chern sub-band orbital is ⟨𝑛𝑖,𝐶𝑉
⟩ = (

𝜈

4
+ 1)

𝑞

𝑞−𝑝
 , where 𝜈 is the 

filling fraction of the original moiré unit cell. By the definition of our Hamiltonian 𝐻, adding an 

electron in the lower Chern sub-bands cost an average energy equal to the chemical potential 

𝜇(𝜈) =
𝜕𝐻

𝜕𝑛𝑖,𝐶𝑉

 at filling 𝜈. At the same time, adding an electron in the lower 4 ZLLs cost an energy 

𝜕𝐻

𝜕𝑛𝑖,𝑍2

. Therefore, one expects to observe the lower ZLL spectral weight peak at energy bias 

𝐸𝑍2
(𝜈) ≈

𝜕𝐻

𝜕𝑛𝑖,𝑍2

− 𝜇(𝜈) =
𝜕𝐻

𝜕𝑛𝑖,𝑍2

−
𝜕𝐻

𝜕𝑛𝑖,𝐶𝑉

. We can then calculate the slope of this peak with respect 

to filling 𝜈, which is (for 𝑝/𝑞 < 1/2)  

 

𝜕𝐸𝑍2
(𝜈)

𝜕𝜈
=

𝜕

𝜕𝜈
(

𝜕𝐻

𝜕𝑛𝑖,𝑍2

−
𝜕𝐻

𝜕𝑛𝑖,𝐶𝑉

) ≈
𝑞

4(𝑞 − 𝑝)
∑

𝜕

𝜕𝑛𝑗,𝐶𝑉

(
𝜕𝐻

𝜕𝑛𝑖,𝑍2

−
𝜕𝐻

𝜕𝑛𝑖,𝐶𝑉

)

𝑗

 

=
𝑞

𝑝
𝑈𝐶𝑍 −

𝑞

𝑞 − 𝑝
𝑈𝐶𝐶  , 

 

where we have used the fact that ∑ 𝜆𝑖,𝑍2

𝑗,𝐶𝑉
𝑗 = 4

𝑞−𝑝

𝑝
 for 𝑝/𝑞 < 1/2. This is expected to be the 

average slope of the lower ZLL peak vs. 𝜈 in this regime (which corresponds to 𝑉𝑔 ∈



[−39𝑉, −10.9𝑉] in main text Fig. 1e). One can show the higher ZLL peak has the same slope in 

this regime. Ultimately, given 𝑈𝐶𝐶, this allows us to extract out 𝑈𝐶𝑍. 

We consider the data from Device A at B = 9 T (main text Fig. 1e), where all three 

interaction measurement signatures are clearly visible (i.e. the Chern sub-band splittings, the 

ZLL splittings, and the energy dispersion of the fully filled/empty ZLLs as a function of filling). 

From the direct observation of the maximum energy to which the Chern sub-bands extend, we 

estimate the interaction strength between Chern sub-bands at this field strength to be 𝑈𝐶𝐶 =

17 ±  3 meV, a value slightly smaller than the zero-field equivalent (i.e. the on-site Hubbard 

interaction U). One expects this inequality 𝑈𝐶𝐶 < 𝑈 from the intuitive understanding that the 

localization of states of a single band at zero field (one state per AA sites) is slightly stronger 

than that of a Chern sub-band at finite magnetic field (two states per three AA sites at ~9 T), 

purely resulting from the Hofstadter criterion. 

Similarly, using the direct observation of the maximum energy to which the ZLLs extend, 

we estimate the interaction strength between ZLLs at this field to be 𝑈𝑍𝑍 = 7 ±  1.5 meV. This 

energy is far smaller than 𝑈𝐶𝐶 at this field strength because each local orbital in these LLs is 

delocalized to roughly three AA sites, allowing for significantly less overlap between 

wavefunctions. 

Finally, the dispersion slope of the ZLLs was measured in the upper gate regime (𝑉𝑔 ∈

[13.8𝑉, 42𝑉]) of main text Fig. 1e, where the ZLLs are seen to increase in energy by 10.9 meV 

over the full filling of the 4 upper Chern bands, each with filling (1 –  𝑝/𝑞)Φ/Φ0 = (1 −

 0.304)Φ/Φ0, where 0.304Φ/Φ0 is equivalent to 9 T in Device A. Thus, we measure the slope to 

be this energy divided by the total ν: 
∆𝐸𝑍+

∆𝜈
= 10.9 𝑚𝑒𝑉/4(1 − 0.304 Φ/Φ0). This slope was 

explained to be equal to 
𝑞

𝑝
𝑈𝐶𝑍 −

𝑞

𝑞−𝑝
𝑈𝐶𝐶 above. Thus, we extract a value for the interband 

interactions between the ZLL states and Chern band states to be 𝑈𝑍𝐶  =  8.5 ±  1.5 meV from 

this measurement. This value is smaller than 𝑈𝐶𝐶, but larger than 𝑈𝑍𝑍, explained by the 

intermediate level of wavefunction overlap between the slightly delocalized Chern sub-band 

orbitals and the greatly delocalized ZLL orbitals at B = 9 T. 

The numerical results (calculated by Monte Carlo method) of the spectral weight for this 

interaction model, using the experimentally extracted parameters above, are shown in Fig. S14b 

(Simulation parameters: 𝐵/𝑛0 =
3

8
Φ0, 𝑈𝐶𝐶 = 15.6 meV, 𝑈𝐶𝑍 = 7.6 meV, 𝑈𝑍𝑍 = 7.4 meV, 𝐸+ = 14 

meV, 𝐸0 = 5 meV). The Monte Carlo calculation for the quantum dot model with 8q orbitals in 

the q moiré unit cells is done using the Metropolis algorithm30 as follows (which is generically 

used in the Ising model). For notation convenience, we sort the 8q orbitals in the q moiré unit 

cells (which are labeled by (𝑖, 𝛼) in the above quantum dot Hamiltonian 𝐻) in a certain fixed 

order, and denote the occupation number of the 𝑘-th orbital as 𝑛𝑘 (1 ≤ 𝑘 ≤ 8𝑞). The Monte 

Carlo is done at a fixed temperature T and a given chemical potential 𝜇. In the first step, we start 

from a random configuration of occupation numbers 𝑛𝑘 = 0 or 1, where 𝑘 runs over all the 8q 

orbitals. We denote this initial occupation configuration as {𝑛𝑘
(1)

}, and denote the total energy of 

this initial configuration (defined as 𝐻 − 𝜇 ∑ 𝑛𝑘𝑘 ) as 𝐸𝑡𝑜𝑡
(1)

. Then, in the 𝑚-th step (𝑚 ≥ 2), we flip 

the occupation number of the 𝑘𝑚-th orbital from 𝑛𝑘𝑚

(𝑚−1)
 to 1 − 𝑛𝑘𝑚

(𝑚−1)
, where 𝑘𝑚 = 𝑚 (𝑚𝑜𝑑 8𝑞) +

1, and examine the increment of the total energy Δ𝐸(𝑚) after the occupation number flip. By 



defining a flipping probability 𝑝𝑚 = min(1, 𝑒−Δ𝐸(𝑚)/𝑘𝐵𝑇), we keep the flip (i.e., define the 

configuration of the 𝑚-th step as 𝑛𝑘
(𝑚)

= 𝑛𝑘
(𝑚−1)

 for 𝑘 ≠ 𝑘𝑚, and 𝑛𝑘𝑚

(𝑚)
= 1 − 𝑛𝑘𝑚

(𝑚−1)
) with 

probability 𝑝𝑚, and reverse the flip (i.e. define 𝑛𝑘
(𝑚)

= 𝑛𝑘
(𝑚−1)

 for all 𝑘) with probability 1 − 𝑝𝑚. 

The total energy (the value of 𝐻 − 𝜇 ∑ 𝑛𝑘𝑘 ) of the configuration {𝑛𝑘
(𝑚)

} in the 𝑚-th step is 

denoted by 𝐸𝑡𝑜𝑡
(𝑚)

. After sufficient number of steps, the configurations will converge into those at 

low energies according to the probabilities given by the partition function. The convergence is 

slower for lower temperatures 𝑇. If the number of steps in total is 𝑁𝑀𝐶, the spectral weight at 

energy 𝜔 can be calculated by  

𝐴(𝜔) =
1

𝑁𝑀𝐶 − 𝑁0
∑ ∑ 𝐼𝑚 (

1

𝜔 + 𝑖𝛿 − (−1)𝑛𝑘
(𝑚)

(𝐸𝑘
(𝑚)

− 𝐸𝑡𝑜𝑡
(𝑚)

)
)

8𝑞

𝑘=1

𝑁𝑀𝐶

𝑚=𝑁0

 , 

where 𝑁0 is a step number after which the configurations are trusted to be distributed according 

to the partition function, 𝛿 is a small positive number for smearing out the delta functions 

numerically, and 𝐸𝑘
(𝑚)

 is the value of 𝐻 − 𝜇 ∑ 𝑛𝑘𝑘  for the occupation configuration with 𝑛𝑘′ = 𝑛
𝑘′
(𝑚)

 

for 𝑘′ ≠ 𝑘 and 𝑛𝑘 = 1 − 𝑛𝑘
(𝑚)

. The filling fraction per moiré unit cell is given by 

𝜈 =
1

𝑞(𝑁𝑀𝐶 − 𝑁0)
∑ ∑ (𝑛𝑘

(𝑚)
−

1

2
)

8𝑞

𝑘=1

𝑁𝑀𝐶

𝑚=𝑁0

 . 

In our calculations, we take a temperature T = 6 K (higher than the experimental temperature, 

for numerical convergence), 𝑁𝑀𝐶 = 2000, 𝑁0 = 400, and 1000 values of chemical potential 𝜇 are 

examined. 

This calculation qualitatively reproduces the spectroscopic features measured in Fig. 1e 

of the main text. For filling factor |𝑣|  >  3/2, our calculations show the sequential splitting of the 

Chern sub-bands that make up the conduction and valence flat bands. For filling factor |𝑣|  <

 3/2, our calculations show the sequential splitting and degeneracy liftings of the ZLLs as a 

result of quantum Hall ferromagnetism. Fig. S14c shows line cuts of Fig. S14b, which highlights 

the asymmetry in the ZLLs when MATBG is n-doped vs. when it is p-doped. This agrees with 

the direction of the ZLL energy shifting under a Haldane mass term of the opposite sign as 𝜈𝐵. 

Because the Chern numbers and degeneracies of each band in this model have been defined 

by hand, this model is phenomenological and cannot explain the mechanism that gives rise to 

the mean-field Haldane mass or the strongly correlated Chern gaps. However, it does connect 

the features of the spectroscopic data to the existence of the Chern sub-bands and the ZLLs. 

 

N. Quantum Hall ferromagnetism in the zeroth Landau level 

We interpret the 9 gaps near the CNP in main text Fig. 2a as quantum Hall 

ferromagnetic states due to electron-electron-interaction driven breaking of the symmetry of the 

zeroth Landau level. This is consistent with the observation that the gaps are evenly spaced in 

gate voltage by an amount compatible with a parallel-plate capacitance model (
Δ𝜈𝐿𝐿𝑒2𝐵

ℎ
=

𝜖

𝑑
Δ𝑉𝑔, 

where 𝜖 ≈ 4𝜖0 and 𝑑 ≈ 300 nm). This is also consistent with transport measurements, which 

observe the lifting of the degeneracy of the CNP Landau fan at similar magnetic fields6,14,15. This 

stands in contrast to Jung et al.28, where O(10 meV)-wide Coulomb diamonds are observed 



when the ZLL crosses EF due to localization of states in an electron-hole puddle. In MATBG, the 

energy scale of the splitting of the ZLLs is ~8 meV, which is smaller than the Coulomb blockade 

energy for tunneling into an AA-site quantum dot (~20 meV). Furthermore, the gaps in main text 

Fig. 2a lack a diamond shape, but instead the gaps run parallel to the Vg-axis for some ranges 

of the gate voltage. 
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SUPPLEMENTARY FIGURE S1 

 
Figure S1 |  STM topographic identification of hBN-graphene lattice misalignment. a, STM 

topographic image of 1.06° MATBG (Device A) with a visible hBN-graphene moiré pattern (Vs = 

-98 mV, I = 200 pA; Scale bar = 5 nm). b, STM topographic image of 1.18° MATBG (Device C) 

without a visible hBN-graphene moiré pattern (Vs = -150 mV, I = 200 pA; Scale bar = 5 nm).  



SUPPLEMENTARY FIGURE S2 

 
Figure S2 | Magnetic-field independent spectroscopic gaps in MATBG at T = 200 mK. a, 

dI/dV(Vs,Vg) measured at the center of an AA site in Device A at B = 1 T. b, dI/dV(Vs,Vg) 

measured at the center of an AA site in Device A at B = 3 T. Features near EF in b between -1 < 

ν < 1 may be ZLLs and higher-index LLs. Shaded boxes indicate gaps that appear not to move 

along the Vg axis with increasing magnetic field. Arrows identify strongly correlated Chern 

insulating gaps near fillings +3, +2, and -3, with Chern numbers +1, +2, and -1 respectively, that 

move along the Vg axis with increasing magnetic field. (Initial tunneling parameters: Vs = -80 mV 

(a,b); I = 1.5 nA (a,b); 4.121 kHz sinusoidal modulation at Vrms = 200 μV (a,b)). c, Same 

dI/dV(Vs,Vg) data as a in a saturated color scale used to highlight a strongly correlated Chern 

gap near filling +2 with Chern number +2 gap. d,e,f, Same dI/dV(Vs,Vg) data as b in saturated 

color scales used to highlight strongly correlated Chern gaps near fillings +3 (d), +2 (e), and –3 

(f), with Chern numbers +1 (d), +2 (e), and –1 (f), respectively. A nearby band edge is also 

shown for c, d, and e, which each shows a sudden shift in the energy of the band that signals a 

change in the chemical potential commensurate with the gap opening. 

  



SUPPLEMENTARY FIGURE S3

 
Figure S3 | Higher-index Landau levels near charge neutrality. a, dI/dV(Vs,Vg) measured at 

the center of an AA site in Device B at B = 2.3 T (Initial tunneling parameters: Vs = -80 mV, I = 

1.0 nA, 381.7 Hz sinusoidal modulation at Vrms = 500 μV). The markers on the right side of the 

plot indicate the LL filling, as measured by the gate voltages at which LL gaps are seen at the 

Fermi energy. Purple triangles mark gaps at EF. b, Same as a except normalized by dividing by 

I/Vs. 

  



SUPPLEMENTARY FIGURE S4 

 
Figure S4 | Linear in magnetic-field dependence of the ZLL quartet splitting. a,b, 

Representative dI/dV(Vs) spectra at each field in Device A (a) and Device B (b) showing the 

single-particle energy separation of the ZLLs, as observed away from EF. c,d, Summary of the 

single-particle energy splitting as a function of magnetic field in Device A (c) and Device B (d). 

Device A shows a clear linear dependence on magnetic field strength, while the functional 

dependence of the data from Device B appears inconclusive. 

  



SUPPLEMENTARY FIGURE S5 

 
Figure S5 | Effects of local STM tip potential on spectroscopic gap measurements: 

charging energy and Coulomb diamonds. 

a, Schematic drawing of tip-induced gating effect, where a local electric field induced by a 

difference in electrostatic potential leads to a spatially-dependent charge distribution in the 

sample. b, Schematic diagram of the tunneling junction geometry of the quantum dot model 

described in the Supplementary Section E. c, Schematic circuit drawing of the quantum dot 

model. V(r) represents a confining potential induced by the tip-gating effect, which causes an 

insulating ring (I) to form between non-insulating regions (N) in the presence of a spatially 

varying chemical potential. d, dI/dV(Vs,Vg) measured at the center of an AA site in Device B at 6 

T (Initial tunneling parameters: Vs = -90 mV, I = 600 pA, 381.7 Hz sinusoidal modulation at Vrms 

= 200 μV). Labeled in this data are the charging lines (blue triangles) and Coulomb-diamond-

like features (black triangles) observed in spectroscopy near a strongly correlated Chern 

insulating gap with Chern number +3 near filling +1.  



SUPPLEMENTARY FIGURE S6

 
Figure S6 | Raw dI/dV(Vs, Vg) as a function of magnetic field for Device B at T = 300 mK. a, 

dI/dV(Vs,Vg) measured at the center of an AA site at B = 5 T (Initial tunneling parameters: Vs = -

80 mV, I = 1.0 nA, 381.7 Hz sinusoidal modulation at Vrms = 500 μV). Red arrows identify 

strongly correlated Chern insulating gaps near fillings +3 and +2, with Chern numbers +1 and 

+2 respectively. Purple arrows identify the ZLL gaps at LL fillings –4 to +4. b, dI/dV(Vs,Vg) 

measured at the center of an AA site at B = 9 T (Initial tunneling parameters: Vs = +80 mV, I = 

900 pA, 381.7 Hz sinusoidal modulation at Vrms = 500 μV). Red arrows identify strongly 

correlated Chern insulating gaps emanating from fillings +3, +2, and +1, with Chern numbers 

+1, +2, and +3 respectively. Blue arrows identify a strongly correlated Chern insulating gap 

emanating from fillings -2, with Chern number -2. Purple arrows identify the ZLL gaps at LL 

fillings –4 to +4. c-r, Zoomed-in dI/dV(Vs,Vg) plots of various Chern gaps for various values of 

the magnetic field. A nearby band edge is also shown for c, e-g, i, k-p, and r, which each shows 

a sudden shift in the energy of the band that signals a change in the chemical potential 

commensurate with the gap opening. Dashed lines, if shown, indicate the error bar for the gap. 

  



SUPPLEMENTARY FIGURE S7

 
Figure S7 | Raw dI/dV(Vs, Vg) as a function of magnetic field for Device C at T = 6.5 K. a, 

dI/dV(Vs,Vg) measured at the center of an AA site at B = 3 T. Red arrows identify a strongly 

correlated Chern insulating gaps near fillings +2 with Chern number +2. Purple arrows identify 

the ZLL gaps at LL fillings -4, -2, 0, +2, and +4. b, dI/dV(Vs,Vg) measured at the center of an AA 

site at B = 6 T. Red arrows identify strongly correlated Chern insulating gaps emanating from 

fillings +3 and +2, with Chern numbers +1 and +2 respectively. Blue arrows identify strongly 

correlated Chern insulating gaps emanating from fillings -2 and -3, with Chern numbers -2 and -

1 respectively. Purple arrows identify the ZLL gaps at LL fillings -4, -2, 0, +2, and +4. c, 

dI/dV(Vs,Vg) measured at the center of an AA site at B = 9 T. Red arrows identify strongly 

correlated Chern insulating gaps near fillings +3 and +2, with Chern numbers +1 and +2 

respectively. Blue arrows identify strongly correlated Chern insulating gaps near fillings -1, -2, 

and -3, with Chern numbers -3, -2, and -1 respectively. Purple arrows identify the ZLL gaps at 

LL fillings –4, -3, -2, -1, 0, +2, and +4. Initial tunneling parameters: Vs = -80 mV; I = 1.5 nA (a), 

500 pA (b,c); 381.7 Hz sinusoidal modulation at Vrms = 1 mV. d-h, Zoomed-in dI/dV(Vs,Vg) plots 

of the Chern gaps for B = 9 T. A nearby band edge is also shown for each gap. 

  



SUPPLEMENTARY FIGURE S8 

 
Figure S8 | Quantized field response of strongly correlated Chern insulating phases in 

Devices B and C. a, Scatter plot of gate voltage as a function of magnetic field for extracted 

spectroscopic gaps from dI/dV(Vs,Vg) measurements on Device B. Purple shaded bars depict 

expected quantized field response of LL gaps with LL filling factors 𝑣𝐿𝐿 ∈ [−4, +4]. Red and blue 

shaded bars depict expected quantized field response of Chern insulating gaps with C = ±1, ±2, 

±3 emanating integer flat-band fillings 𝜈 = ±3, ±2, ±1, respectively. The width of the shaded bars 

is derived from the error in determining band full (𝜈 = +4) and empty (𝜈 = -4) fillings, between 

which all integer fillings 𝜈 were defined to be equally spaced. b, Same as a for the 

measurements performed on Device C. 

  



SUPPLEMENTARY FIGURE S9

 
Figure S9 | Spectroscopic gap location and error extraction in example from main text 

Fig. 1d. a-d, dI/dV(Vs,Vg) measured at the center of an AA site in Device A at B = 6 T. The 

dashed lines enclose the LL and SCCI gaps and define the gate-voltage error bars used in the 

extracted gap information plotted in main text Figs. 3a,b. e, dI/dV near zero bias (Vs = 1.4 mV) 

showing peaks that appear when a LL crosses EF. The purple data points in main text Fig. 3a 

(and purple triangles in b and c) are defined to be halfway between peaks, with error bars 

encompassing the full widths between peaks. 

  



SUPPLEMENTARY FIGURE S10 

 
Figure S10 | Spectroscopic gap location and error extraction in example from main text 

Fig. 1e. a-d, dI/dV(Vs,Vg) measured at the center of an AA site in Device A at B = 9 T. The 

dashed lines enclose the LL and SCCI gaps and define the gate-voltage error bars used in the 

extracted gap information plotted in main text Figs. 3a,b. 

  



SUPPLEMENTARY FIGURE S11 

 
Figure S11 | Strongly correlated Chern insulating gaps and zeroth Landau level gaps 

observed at different locations in the moiré superlattice. a,b,c, dI/dV(Vs,Vg) measured at 

the center of an AA site (a), AB / BA site (b), and a bridge site (c) in Device B at B = 9 T. 

 

 

 

 

  



SUPPLEMENTARY FIGURE S12

 
Figure S12 | Chern insulating states: Staggered potential mass vs. Haldane mass. a, 

Schematic diagram of the expected Chern phases in C2-symmetry-broken MATBG near fillings ν 

= +3 (top), ν = +2 (upper middle), and ν = +1 (lower middle). Band labels indicate the Chern 

numbers of each sub-band / pair of degenerate sub-bands. In the presence of an interaction-

induced staggered sublattice potential mass, insulating states with Chern numbers C = ±1, 0 or 

±2, ±1 form near integer fillings ν = ±3, ±2, ±1. b, Schematic diagram of the expected Chern 

phases in T-symmetry-broken MATBG near fillings ν = +3 (top), ν = +2 (upper middle), and ν = 

+1 (lower middle). In the presence of an interaction-induced Haldane mass, insulating states with 

Chern numbers C = ±1, ±2, ±3 form near integer fillings ν = ±3, ±2, ±1. 

  



SUPPLEMENTARY FIGURE S13 

 
Figure S13 | Free energy argument for extremal Chern number phases. a, Schematic 

diagram of the influence of a positive (top) or negative (bottom) Haldane mass on the single-

particle band picture of MATBG. b, Chemical potential µ as a function of filling 𝜈 at zero magnetic 

field (gray) or at finite magnetic field with a positive (blue) or negative (red) Haldane mass. Values 

of E0 = 12.3 meV, U = 21.1 meV, and B = 0.2 were chosen for this schematic diagram to be 

broadly consistent with values extracted from the comparison of experimental measurements 

(Fig. 1e) to the phenomenological model discussed in Supplementary Section M. c, Energy per 

moiré unit cell E(𝜈) as a function of filling 𝜈. States with positive (negative) Chern numbers, which 

exist when the Haldane mass is negative (positive), are lowest in energy. 

  



SUPPLEMENTARY FIGURE S14

 
Figure S14 | Mean-field interaction model of Coulomb repulsion energy at high magnetic 

Fields. a, Schematic diagram of perfectly flat band mean-field model. At zero magnetic field, the 

upper (red) and lower (blue) flat bands each hold 4 states per moiré unit cell. At finite field, 

states transfer from these bands to new zeroth Landau levels (purple). Depicted are single-

particle and mean-field interactions between various bands used in this model. b, Simulated 

dI/dV(Vs,Vg) using the described mean-field interaction model. Simulation parameters: 𝐵/𝑛0 =
3

8
Φ0, 𝑈𝐶𝐶 = 15.6 meV, 𝑈𝐶𝑍 = 7.6 meV, 𝑈𝑍𝑍 = 7.4 meV, 𝐸+ = 14 meV, 𝐸0 = 5 meV. c, Simulated 

dI/dV line cuts taken from b (spectra labels correspond to regions labeled on the right side of b) 

that show the shifting zeroth Landau levels (highlighted in purple), which move from the valence 

flat band to the conduction flat band as MATBG shifts from n-doped to p-doped. 
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