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Supplementary Methods 

1. ASTER processing 

We downloaded 440,548 ASTER L1A​43 granules totalling around 30TB of data from            
NASA’s Land Processes Distributed Active Archive Center via EarthData Search          
(https://search.earthdata.nasa.gov). Daytime granules with a cloud coverage below 99% were          
selected, from the first acquisition date of 4th March 2000 until 30th September 2019.              
Spatially, they cover all terrain in 1 by 1 degree tiles containing glaciers. Our tiling was                
extended both in latitude and longitude to retrieve at least one additional granule in each               
direction, based on a 60 km by 60 km granule footprint and the along-track angle of the Terra                  
satellite (boarding ASTER) at a given latitude.  

This coverage extension increased the amount of stable terrain available in each DEM             
in order to improve the along-track corrections and co-registration (later described) and            
mitigate correction errors at the edges. We bypassed the arbitrary 60 km by 60 km splitting of                 
the ASTER archive and combined granules containing a valid 3N and 3B Visible and Near               
Infra-Red (VNIR) band in groups of at most three, depending on whether they were acquired               
sequentially (less than 12s apart), thereby forming 60 km by 180 km image strips. This               
“stitching” was done in image geometry, before stereo matching. We chose a maximum of              
three granules in order to avoid effects from the curvature of the Earth appearing in our                
corrections. We also observed that three granules were sufficient to improve corrections for             
the frequencies typically observed in ASTER along-track undulations biases​50​. For          
occurences with less than three consecutives granules, we stitched two granules if possible or              
kept only one. We left one overlapping granule in between sequential strips to mitigate the               
edge effects of later corrections. The resulting ASTER L1A strips were processed in UTM              
zones based on their new centroid. To generate ASTER DEMs, we used MicMac ASTER              
(MMASTER)​50​, a procedure that is part of the MicMac photogrammetric processing library​49​.            
In total, we generated 198,339 ASTER DEM strips posted at 30 m resolution (Table S1)               
which required about 5 million compute hours. 

Our last step was to correct ASTER DEM strips for systematic biases using             
TanDEM-X as a reference. In this last step, prior to any correction, we performed an initial                
co-registration. We first removed cross-track biases by selecting the best-performing          
polynomial fit within orders 1 to 6 based on their RMSE (Fig. S1a). We then corrected                
along-track low-frequency and high-frequency undulations simultaneously using a sum of          
sinusoids with specific frequencies and amplitudes (Fig. S1b), conditioned by priors and            
optimized through basin-hopping​51​. Finally, ice-free terrain from the DEMs was co-registered           
a second time off-ice to TanDEM-X. We successfully corrected and co-registered 154,565            
ASTER DEM strips (Extended Data Fig. 2, Table S1).  
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2. Elevation time series 

The ASTER elevations are annotated as . The ArcticDEM and REMA elevations,      (t, , )hAST x y       
originating mainly from the WorldView satellite sensors, are annotated as . The          (t, , )hWV x y   
TanDEM-X reference elevations are annotated as .(x, )hTDX y  

2.1. Time stacking 

Following co-registration, we created three-dimensional arrays (time t, space x and y;            
hereafter referred to as “stacks”) of elevation using all available ASTER DEMs, ArcticDEM             
DEMs and REMA DEMs within a 1 by 1 degree tiling. For ASTER DEMs generated with                
MicMac, a raster indicating the quality of stereo-correlation was also stacked in time for each               
corresponding DEM. We did not filter low-correlation pixels and relied solely on the             
statistical filtering and measurement error assessment later described. Only pixels          x, ) ( y  
within a buffer of 10 km of the glacier inventory were kept for further processing. They                
together represent a surface of about 4,000,000 km² including about 700,000 km² of             
glacierized terrain​85​. 

The stacked elevations from ASTER and ArcticDEM/REMA     (t, , )hAST x y    
are annotated as . The stacked quality of stereo-correlation from(t, , )hWV x y     (t, , )hAST /WV x y        

ASTER are annotated as  and varies from 0 to 100%.(t, , )q x y  

2.2. Elevation filtering step 1: reference elevations 

A large number of outliers is present in elevation data due to photogrammetric blunders,              
presence of clouds or low image contrast. We performed an initial filtering of stacked              
elevations to remove extreme outliers using our reference DEM TanDEM-X (Extended Data            
Fig. 3c). 

First, we implemented a spatial filter. We excluded elevation observations          hAST /WV  
for which the absolute elevation difference to the maximum or minimum reference elevation             

 found within a disk  of radius  was larger than a vertical elevation threshold :hTDX D r hΔ D  
 

(t, , ) ax(h (x , )) hmin(h (x , )) ΔhTDX D yD −  D < hAST /WV x y < m TDX D yD + Δ D  (S1) 
 
where  are pixels in the disk  of radius  centered on .x , )( D yD D r x, )( y   

This procedure was performed for each pixel with , and        00 mr = 2  h 00 mΔ D = 7   
repeated with , and , . These large  00 mr = 5  h 00 mΔ D = 5   000 mr = 1  h 00 mΔ D = 3    
threshold values and the ones detailed hereafter were defined and tested over the glacier              
HPS12, Southern Patagonian Icefield, experiencing to our knowledge the most rapid           
sustained elevation change in the world​53​. 

Then, we applied a temporal filter to all pixels with a valid reference value         x, )( y       
(Extended Data Fig. 3c). To constrain this filtering, we assumed the time stamp of(x, )hTDX y                

TanDEM-X, , to be 1st January 2013 which corresponds to the middle of the period tTDX               
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used to generate the TanDEM-X mosaic DEM​46​. To account for possible time differences, we              
included all values within a vertical threshold of 100 m starting 1st January 2013. From       hΔ 0          
this date, we propagated the filtering in time allowing for a maximum and minimum linear               
elevation change rate of 50 meters per year (glacier HPS12). The vertical threshold   Δt

Δh
T            

ensures the conservation of observations of rapidly evolving surfaces, for example that of             
surging glaciers, near the reference date .tTDX  
 

(t, , ) hAST /WV x y < h (x, ) h  (t )|
| TDX y + Δ 0 +  − tTDX · Δt

Δh
T

|
| (S2) 

2.3. Elevation measurement error 

Inspection of our elevation observations revealed a significant variability in     hAST /WV       
elevation precision (heteroscedasticity). To account for it in subsequent analysis, we           
evaluated the dependence of the elevation variance on two factors: terrain slope       ²σhAST /WV

      
and quality of stereo correlation . To assess this dependency, we randomly(x, )α y       (t, , )q x y        

drew without replacement up to 10,000 off-ice elevation differences to the reference            
TanDEM-X, , for varying categories of terrain slope and quality of hhAST /WV −  TDX           
stereo-correlation. We did this for all tiles globally. For each category, we estimated the              
variance as the square of the Normalized Median Absolute Deviation (NMAD) to mitigate             
the effect of elevation outliers​58​.  

Elevation measurement error increased with terrain slope and, for ASTER   σhAST /WV
        

DEMs, decreased with quality of stereo-correlation (Extended Data Fig. 3a). The dependency            
of error on surface slope is well documented​55,56 while the one to the quality of               
stereo-correlation is inherent to photogrammetry​49 but, despite this, both are rarely accounted            
for. As an example, for a typical ASTER DEM with a co-registration RMSE of 5 m, we                 
found the NMAD to be about 3 m over low slopes (0 to 10 degrees) and exceeding 20 m for                    
steep slopes (> 40 degrees). Similarly, we found the NMAD of elevation differences for              

 to be around 3 m, while it was over 30 m for .00%q = 1 0%q = 4  
The elevation measurement error was estimated by a simple model,    σhAST /WV

       
calibrated on the empirical variance (Extended Data Fig. 3a), to yield an error for all               
elevation observations in space  and time  (Equation 1, repeated below).x, )( y t  
 

²(t, , ) ²(t, , ) ²(α, ) ²(q)σhAST /WV
x y = σc x y + σα q + σq (1) 

 
where is the terrain slope, is the quality of stereo-correlation and (x, )α y      (t, , )q x y        (t, , )σc x y  
is the co-registration error, specific to the DEM from which the elevation observation             

originates. The co-registration error would ideally have to be estimated(t, , )hAST /WV x y      σc        
on pixels with low slopes and good qualities of stereo-correlation to avoid double-counting             
the effect of other errors. However, as this is not possible for some DEMs because of the                 
limited amount of flat terrain available, we conservatively used the RMSE of elevation             
differences over all available stable terrain to derive .σc  
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The errors due to slope  and quality of stereo-correlation  were described as:σα σq  
 

a  ) (α)σα = ( α + a (1 q)q −  bα · tan  (S3) 
 
σq = aq · (1 )− q bq (S4) 
 
where we found m, , m and by manually combining   0aα ≈ 2   bα ≈ 1  0aq ≈ 2    .25bq ≈ 1     
independent least squares optimizations for the slope and the quality of stereo-correlation on             
the empirical variance (Extended Data Fig. 3a). Against the above-mentioned          
approximations, the simplicity of this process was sufficient to calibrate the elevation            
variance at the right order of precision. The slope and quality of stereo-correlation errors              
were not independent, as it proved necessary to integrate some effects of the quality of               
stereo-correlation in the slope error to yield satisfying results (Equation S3). ArcticDEM and             
REMA DEMs being already filtered for low stereo-correlations without any product on            
quality of stereo-correlation provided​44,45,52​, we assigned them a constant worst-case quality of            
stereo-correlation of 60%. 

Over vegetated terrain, the variance in elevation increased by a factor of 1.5-2. We              
interpreted this high variance from vegetation that can dynamically change over time due to              
forest harvesting, wildfire, regrowth and snow-covered vegetation​60​. This does not          
significantly affect elevation measurement error over glacierized terrain and thus was omitted            
from our workflow. We did, however, verify its limited impact in subsequent analysis of              
elevation time series (Section 3). 

2.4. Elevation filtering step 2: linear elevation change and reference elevations 

In most regions of the world, the largest glacier elevation change rates are far lower than the                 
extreme rate of 50 meters per year previously adopted. In order to improve the  Δt

Δh
T              

performance of our filtering (Extended Data Fig. 3c), we estimated a maximum and             
minimum acceptable linear elevation change rate at the pixel-scale.  

First, we estimated a robust linear elevation change rate . For each pixel,         (x, )dt
dh

WLS y     
we performed two successive weighted least-squares (WLS) fits, filtering outliers outside the            
99 percent confidence interval of the first fit, and keeping only the second fit​54​. The elevation                
measurement error  (see above) was used for weighting.σhAST /WV

 
Then, for each pixel, we derived the 20th and 80th percentiles of linear elevation              

change rate within a disk. We computed the maximum absolute value of the two percentiles               
and conservatively used twice this value to constrain the maximum linear elevation change             
rate allowed at the pixel-scale. 
 

(x, ) 2 ax  Δt
Δh

T y =  · m (x , )(|
| dt
dh

WLS D yD 20th
|
| , (x , )|

| dt
dh

WLS D yD 80th
|
|) (S5) 

 
where are pixels in the disk of radius m centered on and the x , )( D yD       D    000r = 1     x, )( y    
subscripts 20th and 80th denote the 20th and 80th distribution percentiles.  
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We refined the temporal filter previously described (Equation S2, Extended Data Fig.            
3c) with the linear elevation change rate (instead of a constant of 50 meters per       (x, )Δt

Δh
T y          

year). We also modified the vertical threshold to better account for the varying       hΔ 0        
timestamp of TanDEM-X: 
 
h (x, ) h Δt (x, )Δ 0 y = Δ 0 +  TDX−TDX · Δt

Δh
T y (S6) 

 
where yr is the maximum number of years that can separate a TanDEM-X tΔ TDX−TDX = 2              
acquisition and the middle date  chosen as 1st January 2013.tTDX  

We refined the spatial filter previously described (Section 2.2, Equation S1, Extended            
Data Fig. 3c) by further constraining the vertical elevation threshold :hΔ D  
 
h (x, ) h  Δt (x, )Δ D y = Δ 0 +  AST−TDX · Δt

Δh
T y (S7) 

 
with m, and yr is the maximum number of years that can h 00Δ 0 = 1    t 5Δ AST−TDX = 1           
separate a TanDEM-X acquisition in 2015 to the furthest observation in 2000. We applied the               
spatial filter with m. This step was especially helpful to filter remaining outliers    1000r =             
for pixels with no valid reference elevation  where the temporal filter cannot be applied.hTDX  

2.5. Temporal covariance of glacier elevation 

Extracting a continuous time series from glacier elevation data is complex​61,62,76​. At the pixel              
scale, glacier surface elevation undergoes changes at different time scales (seasonal, annual,            
decadal) with trends and amplitudes that significantly vary in space (region, glacier, zone of              
the glacier). Parametric methods such as least squares are thus not particularly well-suited to              
fitting a temporal series to glacier elevation data. If an underlying parametrization is             
erroneous, both the temporal interpolation and the propagation of uncertainties will be            
negatively affected.  

We instead chose to interpolate our elevation measurements using non-parametric,          
empirically-based interpolation methods based on the covariance of the data, a technique            
referred to as Gaussian Processes​59​. These methods find the local minima of variance             
propagated from observations. Assuming that the covariance model chosen is statistically           
representative of the underlying process, it provides the best unbiased estimator. These            
methods also yield empirical confidence intervals, having the benefit of being representative            
of the uneven temporal sampling inherent to the data. 

We harnessed the repeat temporal coverage of DEMs to study the temporal            
covariance of glacier elevation change in order to better constrain both our temporal filtering              
and interpolation. Once the temporal covariance is estimated, we derive our best interpolator             
using Gaussian Process (GP) regression​63​. For this type of application, GP regression is             
equivalent to kriging​71,78,79​. Here, we do not optimize covariances for each pixel based on              
priors with a maximum likelihood function, as is usually the case in machine learning              
applications. Instead, our objective is to model variograms with characteristics representative           
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of many pixels at once, and to apply these variograms directly in the regression. The rationale                
behind this approach is to mitigate the sparse sampling of elevations in time at the pixel scale                 
by utilizing the repeat spatial coverage of our observations. 

To derive temporal variograms, we randomly drew up to 10,000 pixels of           x, )( y   
locations containing at least 10 valid observations in time. We did so for all (t, , )hAST /WV x y               
RGI regions. To reduce the effect of outliers, the variograms were estimated by the median of                
squared residuals for each time lag instead of the mean. 

We aggregated our variograms depending on the linear trend of elevation of pixels             
(Section 2.4) to better identify variance components independent of this(t, , )dt

dh
WLS x y            

underlying linear elevation change. The empirical temporal variances varied little between           
regions, and we found no significant variability with external factors (such as slope), as we               
did for the elevation measurement error.  

Through analysis of the empirical variograms, we found that the data temporal            
covariance (Extended Data Fig. 3b) consisted of a sum of: 

- a pairwise linear (PL) kernel, manifesting parabolically in variance, that represents the            
long-term, decadal linear elevation trend of the pixel (over 20 years in our case) 

- a periodic, exponential sine-squared (ESS) kernel, corresponding to how seasonality          
is captured by the elevation data, for example by the fact that summer-to-summer             
observations of glacier elevations can be much closer than summer-to-winter          
observations 

- a local, radial basis-function (RBF) kernel, showing how close elevation observations           
are to each other with varying time differences 

- white noise, representative the average of the measurement errors .σhAST /WV
 

To capture nonlinear elevation change trends (with time scales larger than the local             
RBF kernel), we added a local linear kernel, described by a rational quadratic (RQ) kernel               
multiplied by the pairwise linear kernel. We chose to model local linear changes using a RQ                
kernel times PL kernel instead of solely a RQ kernel. The latter was discarded after initial                
testing due to undesired effects at the temporal boundaries (2000 and 2020). The RQ times               
PL implies that the “mean” linear trend can vary locally and, when no observation is               
available at the boundaries, the extrapolated trend falls back towards the local “mean” linear              
trend. Physically, this is behaviour consistent with existing observations and with known            
decadal and sub-decadal climatic oscillations that influence glacier change. In practice, there            
is little extrapolation made in our study due to the dense repeat data coverage (Fig. 1). 

We used our measurement error having a value specific to each elevation     ,σhAST /WV
        

observation in space and time, instead of the average measurement error (white noise)             
sampled by the empirical variograms. We semi-automatedly modelled the temporal          
covariance with time scales and amplitudes estimated from the empirical covariance           
(Extended Data Fig. 3b) and used the same ESS, RBF and RQ parameters for all pixels given                 
the absence of significant nonstationarities. The pairwise linear kernel was estimated           
independently for each pixel  (Equation 2, repeated below):x, )( y  
 

 



 

(x, , t)² L(x, , t) SS(ϕ , ², t) BF (Δt , ², t)  σhAST /WV
y Δ = P y Δ + E p σp Δ + R l σl Δ +  

Q(Δt , , , t) L(x, , t)+ (t, , )R nl σnl
2 αnl Δ · P y Δ σhAST /WV

x y 2 (2) 
 
where  is the time lag between observations.tΔ  

We found yr, m, implying a seasonal periodicity component of 5 m on   ϕp = 1   σp ≈ 5            
average. We found that the local signal was best decomposed into a sum of three RBF kernels                 
with yr, m, yr, m and yr, m, which t .75Δ l1 ≈ 0   σl1 ≈ 5   t .5Δ l2 ≈ 1   σl2 ≈ 4    tΔ l3 ≈ 3   σl3 ≈ 2    
suggests that, once the underlying linear trend and periodicity is removed, inter-annual            
glacier elevations are on average within 5 m of each other within a year, within 9 m within                  
1.5 year and within 11 m within 3 years. Finally, based on pixel-scale testing (for filtering                
purposes) and the temporal range of the underlying linear trend observed in our empirical              
variograms, we constrained the local linear values to m, and        0σnl ≈ 1   0αnl ≈ 1   t1

2αnl
· Δ nl ≈ 5  

yr. Those values mean that, on average, local nonlinearity lasts around 5 years and within 10                
m of the underlying linear trend. Our primary objective was to ensure a low sensitivity to                
outliers, which were not effectively filtered out when using shorter-time scale parameters. In             
order to avoid removing glacier surges, we included a conditional loop in our procedure,              
which was calibrated on Nathorstbreen glacier, Svalbard (the largest surge observed during            
our period of study, Fig. S3). 

The variances described above do not directly condition the mean of the GP elevation              
time series, which is interpolated from available observations, but only leave the opportunity             
to find periodicity and local variations in those observations within an order of magnitude.              
For example, the periodic kernel (with m) applied to elevation observations in the      σp ≈ 5         
Low Latitudes yields elevation temporal series with no marked seasonality, despite leaving            
the opportunity to find amplitudes of the order of 5 m. This is because, in this region, the                  
elevation observations categorized by seasons do not show a significant seasonal trend (in             
front of linear, local trends) and thus the periodic kernel does not find significant seasonality               
to propagate from observations.  

With the same rationale, sensitivity tests showed limited influence of the seasonal,            
local and non-linear variances , and , time parameters and , and scale    σp  σl   σnl    tΔ l   tΔ nl    
parameter for values within the same order of magnitude (Supplementary Discussion αnl            
section “Sensitivity to the Gaussian Process hyperparameters”.). The limited influence of GP            
parameters within the same order of magnitude is due to the dense repeat coverage, and the                
relatively large measurement error of ASTER elevations (of about 5 m) which generally             
prevents complete deconvolution of local and periodic signals. This effect is later accounted             
for by our uncertainty propagation of interpolation biases (Section 4.3) and, when aggregated             
at different spatial scales, is essentially what defines the temporal resolution of our dataset              
(Supplementary Discussion section “Time series comparison and temporal resolution”). We          
found that the credible interval of the GP regression was the most impacted by parameter               
changes and was thus validated in a later analysis (Section 3.4). For estimating changes over               
stable terrain in the surroundings of glaciers, we used only a linear and seasonal kernel. 

 



 

2.6. Elevation filtering step 3: iterative GP filtering of elevation 

We applied GP regression iteratively, fitting an interpolated time series to our          (t, , )hGP x y    
elevations at a monthly temporal resolution from January 1st, 2000 to (t, , )hAST /WV x y            
January 1st, 2020 for each pixel at a posting of 100 m. The interpolation period is 20 years,                  
with boundaries positioned exactly three months before the earliest (early March, 2000) and             
after the latest (late September, 2019) observations. We used the GP error            (t, , )σhGP

x y  
propagated in time to filter any remaining outliers. 

Ideally, we would filter the largest outliers first, and repeat this process iteratively             
outlier by outlier to avoid biasing new fits with previous outliers. However, as this process               
would be too computationally intensive, we chose instead to remove several outliers at once.              
For each pixel, we performed five iterative GP regressions for filtering, where we removed              
outliers successively from a 20-sigma ( ) interval, a 12-sigma interval, a 9-sigma interval,     σhGP

        
a 6-sigma interval and, finally, a 4-sigma interval (Extended Data Fig. 3d). 

2.7. Temporal GP interpolation of glacier elevation 

After excluding the outliers, we performed a final GP regression at a monthly temporal              
resolution, to yield the final interpolated elevation time series with error         (t, , )hGP x y    

(Extended Data Fig. 3e). The repeat temporal coverage allowed us to correctly(t, , )σhGP
x y              

identify the expected seasonal minimum of glacier elevation at the pixel-scale (e.g. around             
the end of September in the Northern Hemisphere, and around the end of March in the                
Southern Hemisphere). 

Qualitative evaluation of the time series showed that the fit and the GP credible              
interval performed well for typical glacier elevation change signals (Fig. S2). However, in the              
case of abrupt changes such as glacier surges, the method fails to represent the true temporal                
evolution of elevation even if the overall elevation change signal is captured (Fig. S3).              
Improving these aspects would require a classification of glacierized terrain for extreme            
events prior to constraining the temporal covariance and performing temporal interpolation,           
which was not feasible at a global scale. 

3. Validation of elevation time series 

The ICESat elevations are annotated as . The IceBridge elevations are annotated      (t, , )hICS x y       
as . The elevations from high-resolution DEMs are annotated as .(t, , )hICB x y (t, , )hHR x y  

3.1. Comparing to ICESat 

Before comparing ICESat elevations to our interpolated elevation time series    (t, , )hICS x y        
, we verified that ICESat was aligned off-ice with our reference TanDEM-X(t, , )hGP x y             
by computing the co-registration shifts between the two datasets over all stable(x, )hTDX y              

terrain in the region​48​. ICESat showed very negligible horizontal and vertical shifts with the              
reference TanDEM-X in all regions. This is expected given that during its production the              
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TanDEM-X was co-registered to ICESat data​46​. Thus, we chose not to apply any horizontal or               
vertical shift. 

To compare ICESat elevations at the same points in time as our    (t, , )hICS x y        tICS    
elevation time series , we performed a linear interpolation of our monthly   (t, , )hGP x y          
elevation time series to extract elevation at the center date of each ICESat campaign. Most               
ICESat campaigns last 30 to 40 days, thus the longest possible time lag to their center date is                  
15 to 20 days. This 15 to 20-day period of time corresponds to about half of the temporal                  
resolution of our monthly time series, which is why we considered using the middle ICESat               
campaign date a sufficient approximation for this analysis. 

Finally, for each individual ICESat laser shot (point data), we performed a spatial             
bilinear interpolation of our elevations (gridded data) to estimate the elevation     (t, , )hGP x y        

 at the center of each ICESat footprint .(t , , )hGP ICS xICS yICS x , )( ICS yICS  

3.2. Comparing to IceBridge 

For IceBridge elevations, we bilinearly downsampled our two sets of IceBridge elevations            
(DMS-based and lidar-based) to 50 m (half the horizontal resolution of our time(t, , )hICB x y               

series). This resampling aimed simply at reducing the large amount of repeat spatial samples              
while conserving the vertical precision of the data. We then extracted elevations at the center               
of each pixel containing valid data, and subsequently compared to our interpolated time series              
by estimating  using the same procedure as described for ICESat data.(t , , )hGP ICB xICB yICB  

3.3. Systematic errors 

We intersected over ten million ICESat and a hundred million IceBridge measurements in             
space and time with our interpolated elevation time series on both glacierized and stable              
terrain. We annotate validation elevations composed of both ICESat and IceBridge .hIC  
 
h  hΔ GP /IC =  GP − hIC (S8) 

 
To assess whether our elevation estimates were unbiased, we studied the median of             

elevation differences . For all statistical operations, IceBridge points - about 40  hΔ GP /IC           
times more dense spatially than ICESat points - were weighted at 1/40th of ICESat points to                
represent a comparable spatial sampling. 

On average, glacierized terrain was found to be lower than true elevation, while stable              
terrain was slightly higher (Fig. S4a,b). These biases between stable terrain and glacierized             
terrain varied between regions (Table S3) and seasons (Fig. S4c). Our reference, TanDEM-X             
was also found to be higher over stable terrain, while we previously described the absence of                
vertical shift with ICESat (Section 3.1). The reason for this difference is that terrain here is                
limited to a 10 km buffer around glaciers instead of the whole region. 

We attributed these biases to snow cover, originating from two distinct sources. First,             
we explained the seasonal variations by the fact that snow-covered terrain is not masked out               
from stable terrain during co-registration of the ASTER, ArcticDEM and REMA DEMs (Fig.             
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S5). The varying height of snow-cover in those DEMs directly leads to the observed seasonal               
biases. Second, we attributed the average differences between stable, glacierized terrain and            
our reference TanDEM-X to the fact that TanDEM-X has no defined timestamp but is a               
mosaic of different seasons, which also unevenly contains snow-covered terrain (Fig. S5a).            
At present, the lack of a homogeneous and global DEM with a well-defined seasonal              
timestamp prevents correcting these issues to improve the co-registration in regards to            
snow-covered terrain.  

In order to derive volume change, our interest however lies in elevation change and              
not absolute elevation. Thus, the mean elevation bias between stable and glacierized terrain             
does not have an impact on elevation differences. The seasonal cycle of this bias has a                
systematic impact on seasonal elevation differences, however. We estimated this seasonal           
bias of co-registration by fitting a sinusoidal function (Fig. S4c ; Table S3). These sinusoidal               
fits revealed that the maximum and minimum bias occurred symmetrically around the dates             
of September 30th and March 30th for the Northern and Southern hemispheres, agreeing with              
prior knowledge. Additionally, the amplitude of the snow-cover biases were found to be             
relatively small for Arctic regions (RGI regions 3, 4, 5, 7, 9), large for mountainous areas                
(RGI regions 2, 8, 11, 12, 13, 14, 15, 17, 18) and absent in the Tropics (RGI region 16)                   
(Table S3). 

We used these sinusoidal fits to remove the seasonal biases in our elevation             
differences for further validation purposes. We derived a linear trend (WLS) in time from the               
remaining differences to ICESat and IceBridge (Extended Data Fig. 4d). We thereby verified             
the absence of elevation change bias in our GP time series globally and along several               
variables of interest. Less sampled regions yield larger trends, but do not statistically differ              
from zero (Table S3). 

We also identified elevation biases with curvature (Fig. S4d), on both stable and             
glacierized terrain. This bias was also observable when differencing to the reference DEM             
TanDEM-X on stable terrain, suggesting that it originates from an inherent difference            
between the datasets rather than our temporal interpolation method, as shown in previous             
studies​69​. The lower resolution of our DEMs does not allow us to reliably capture elevation in                
places of high curvatures such as peaks, ridges or narrow valleys. Being independent of time,               
this bias does not need to be accounted for when differencing the elevation time series into                
elevation change and does not affect our glacier mass balance estimates. 

3.4. Random errors 

For each ICESat and IceBridge observation, we also derived a z-score, or elevation difference              
divided by our time series error at a given point of time and space: 
 

 zGP /IC = σhGP

(h −h )GP IC (S9) 

 
This standardized metric allows us to compare the performance of the elevation time series              

in relation to its GP credible interval which varies significantly in space and timehGP         σhGP
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based on factors such as elevation measurement errors, number of observations, or time lag to               
the closest observations (Figs. S2, S3). Ideally, for a performant interpolation method, the             
z-score would be normally distributed, centered on 0 with a standard deviation of 1. A mean                
of 0 would signify that our elevation estimates are unbiased and a standard deviation of        hGP         
1 would signify that our modelled error is representative of the elevation error at the       σhGP

         
right confidence level. 

We used the NMAD as a robust estimator of the standard deviation of the z-score               
distribution (Fig. S6). The standard deviation of z-scores was verified to be independent of              
several factors: the terrain slope, the terrain curvature, the time of the year, the time lag to the                  
closest elevation observation, and the size of the GP credible interval. The lack of              
dependency on these two last factors validates the reliability of our empirically-based GP             
parameters (Section 2.5). The z-score standard deviation was found to be very close to 0.5 for                
glaciers (Fig. S6, Extended Data Fig. 4d) and close to 1 for stable terrain (Table S3) in all                  
regions, implying that our GP method is able to estimate elevation in space and time at the                 
right confidence level. Over glaciers, our elevation uncertainties are thus conservative by a             
factor of over two. 

4. Spatial correlation of elevation change time series 

We identified three sources of correlation to account for when propagating           
uncertainties from our elevation change time series into volume change time series. The first              
source is the short range spatial correlation originating from instrument resolution (Section            
4.1). The second is the long range spatial correlation originating from instrument noise,             
generally not accounted for in earlier studies (Section 4.2). The third and final source              
originates from our temporal interpolation (Section 4.3). We accounted for these three            
sources of spatial correlation when aggregating both from pixels to individual glaciers and             
from glaciers to regional volume change estimates (see Aggregation to regions in Methods). 

4.1. Spatial correlation due to instrument resolution 

Conservatively, we estimated spatial uncertainties that originate from instrument resolution          
solely on ASTER, which has the coarsest resolution. We derived a short-range spatial             
variogram​80 over ASTER DEMs to assess the short-range spatial correlation that can be             
attributed to the effects of spatial resolution :σdh,res  
 

(d)² (d, , ) σdh,res = S s0 r0 (S10) 
 
where is the spatial lag, or distance between pixels, the spherical model of partial d          (d, , )S s r       
sill and range . We found a range of m. The partial sill derived in our spatial s    r       50r0 = 1      s0      
variograms is only a representative average of the many factors affecting elevation variance             
(Section 2.3). Instead of using this average, we estimated from our individual pixel errors         s0       
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over glacierized terrain after removing contributions from longer range correlationsσdhGP
           

(described in Section 4.3). 

4.2. Spatial correlation due to instrument noise 

We accounted for long-range correlations due to instrument noise, such as the ones present in               
ASTER DEMs that we described in Section 1​50,82​. Depending on the distribution of stable              
terrain in a specific DEM, it can be difficult to fully correct the low-frequency along-track               
undulations, and even more so for the high-frequency along-track undulations (also called            
“jitter”)​83​. We know from ASTER corrections that the low-frequency along-track undulation           
has a range of about 5 to 20 km, while the jitter has a range of 2 km. Residuals from this                     
correlated noise can be described by a sum of nested spatial variograms at these correlation               
lengths with specific variances, which in turn can be used to derive the uncertainty in the                
volume changes obtained by spatial aggregation​72​. 

In order to account for improvements brought by corrections (Section 1), filtering and             
interpolation (Section 2) we deduced our spatial correlations directly from the elevation            
differences to ICESat and IceBridge data (Section 3). The procedure for estimating      hΔ GP /IC        
the spatial correlation is the same as used for longer range correlation which is described               
extensively in the next section. We modelled our empirical variogram by a sum of spherical               
variograms  with correlation lengths of 2 km, 5 km and 20 km:σdh,noise  
 

(d)² S(d, , ) (d, , ) S(d, , ) σdh,noise =  s1 r1 + S s2 r2 +  s3 r3 (S11) 
 
with  km,  km and  km.2r1 =  r2 = 5 0r3 = 2  
 
The sills we estimated indicate that, for the average ASTER DEM, we corrected on average               
around 90% of the typically observed low-frequency along-track undulation of range 20 km,             
and about 70% of the high-frequency undulation (jitter) of range 2 km. 

4.3. Spatial correlation due to temporal interpolation 

Previously, we treated our elevation time series uncertainty as a random error term        σhGP
      

(Section 3.4), but this qualification does not always hold. Because of the nature of the spatial                
coverage of DEMs, temporal data gaps are often spatially correlated over large areas.             
Although we know that our GP credible interval contains the true elevation at the right        σhGP

        
confidence level, the elevation difference to the true elevation might be spatially correlated.             
For example, let’s assume that there are three years without data for the entire region of                
Svalbard and that we independently interpolate all pixels of the region in time. Assume also               
that in the middle of that period, one winter had stronger accumulation than usual. At this                
point in time, our GP credible interval might still contain the true values of glacier elevations                
at the pixel scale (Figs. S2, S3), but at the regional scale this stronger accumulation manifests                
as a systematic error, or as a random error correlated over large distances.  
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We accounted for the spatial correlation inherent to the temporal interpolation to            
correctly propagate uncertainties into the resulting volume changes. For this, we used the             
ICESat validation data only, which has a more diverse regional coverage than IceBridge. We              
categorized our validation elevation differences by date, corresponding to ICESat     hΔ GP /ICS       
campaigns. For each campaign, at the pixel scale, we also categorized by time lag           hΔ GP /ICS     

. The time lag is the time between the ICESat acquisition and the closest validtΔ AST /WV                
ASTER/WV observation used to derive the time series during the  (t , , )hAST /WV AST /WV x y          
temporal interpolation: 
 
t (t, , )Δ AST /WV x y = t|| − tAST /WV

|
| (S12) 

 
For each region, date and time lag bin, we randomly drew up to 10,000 observations of                
validation elevation differences and quantified their spatial correlation​81​. We did so   hΔ GP /ICS          
by computing their variance correlations at distances of 0.15 km, 2 km, 5 km, 20 km, 50 km,                  
200 km and 500 km (Extended Data Fig. 5a,b). The first four ranges of 0.15 km, 2 km, 5 km                    
and 20 km correspond to the correlation ranges for instrument resolution and instrument             
noise (preceding sections). We found similar variograms between well-sampled regions and           
chose to aggregate and apply a single variogram globally for robustness in less-sampled             
regions. This approach is expected to be conservative for instrument noise, due to the larger               
residuals of correlated signals captured over large ice caps (corrected with less stable terrain)              
that dominate the ICESat sample. Aggregating all available variograms, we derived the            
median variance of elevation differences at different correlation lengths depending     hΔ GP /IC       
on the time lag to the closest observation. We showed that there was no significant               
correlation in the variance beyond 500 km, a finding consistent with known estimates of              
correlations of glacier mass balances​77​, and we thus considered elevation differences to be             
independent beyond this range. We modelled these correlations as a sum of spherical             
variograms: 
 

(d, t)² (d, (Δt), )σdh Δ = ∑
6

i=0
S si ri (S13) 

 
where km, km. We found for km. The partial sills 50r4 =    00r5 = 2     (Δt)s6 = 0   00r6 = 5      s0  
to depend on the time lag to the closest valid observation . For to , we used the s5            tΔ   s1   s5     
empirical values of the partial sills to estimate it as a function of the time lag. We found a                   
good fit between the complete sills (sum of partials sill) and a sum of quadratic and squared                 
sinusoidal functions by least squares optimization (Extended Data Fig. 5b): 
 

(Δt) (a t )  c∑
k

i=1
si =  k · Δ + bk

2 +  · sin(d t)· Δ 2 (S14)  
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where we found two constants for the sinusoidal component m​2 and yr. At         .4c = 1    d = 1    
, we deduced the values of , and described in the previous sectiont 0Δ =        (0)s1  (0)s2   (0)s3       

on instrument noise.  
We accounted for the random error due to instrument resolution, represented by the             

partial sill at a correlation length of m, using the original pixel error .  s0       50r0 = 1        (t, , )σdh x y  
To avoid double-counting errors in , we quadratically subtracted the partial sills of range     s0          

 to  to :r1 r5 (t, , )σdh x y  
 

(t, , )² (t, , )² (Δt)σdh,0 x y = σdh x y − ∑
6

i=1
si (S15) 

 
For each glacier and time step, we used the mean of all pixel errors over glacierized              ²σdh,0    
terrain to estimate . We then spatially integrated this sum of variograms​72 over each   s0            
glacier, for each time step, accounting for each individual glacier pixel’s distance to the              
closest observation at this time step to yield the uncertainty in the mean elevation change  tΔ               

 (see Methods, Equations 4 and 5).σdh   
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Supplementary Discussion 

Improved elevation change estimation 

Our surface elevation change maps (Extended Data Fig. 6, and Data availability statement)             
visually testify to the improved quality brought out by our novel methodology in comparison              
to preceding ASTER-based studies​28,53,54,74​. It is most notable through the reduction of            
elevation change outliers and through stable terrain surfaces that consistently show elevation            
changes close to 0 m. The improved quality and increased spatial coverage is the combined               
result of (i) the inclusion of low stereo-matching correlation data that is statistically weighted,              
(ii) a multi-step filtering of outliers conditioned by a reference elevation model, an elevation              
measurement error and temporal covariances throughout the different steps of our statistical            
modelling approach, (iii) the mitigation of seasonality, and other non-linear responses during            
the final interpolation into surface elevation time series. Although having fewer data gaps             
than preceding studies, our time series of elevation change still contain uncertainties that vary              
in space and time for different regions, periods, and for different areas of a given glacier (e.g.                 
low-contrast accumulation areas). Stable terrain is not directly comparable to glacierized           
terrain, as it only includes a pairwise linear kernel and a periodic kernel during GP regression                
(i.e. a linear trend with mitigated seasonality). Non-linear kernels were not applied to stable              
terrain as those were estimated using glacier elevation observations only, non-applicable to            
other types of terrain (bare-ground, vegetated, ...). Nonetheless, the linear estimation allows            
similar 20-year changes to be captured at the boundary of glacierized and stable terrain. For               
instance, unmapped debris-covered tongues treated as stable terrain show long-term elevation           
changes consistent with the rest of the glacier. 

Subaqueous mass loss 

Our analysis is limited to measuring glacier elevation change above water by assessing only              
topographic changes and not bathymetric ones. The subaqueous mass loss due to retreat of              
ice fronts over water for marine- or lake-terminating glaciers cannot be captured, leading to              
an underestimation of the total glacier mass loss​29​. This omitted underwater contribution is             
largely dominated by marine-terminating glaciers, however, and thus does not impact the            
contribution to sea-level rise. This limitation is shared between geodetic, gravimetric (for            
marine-terminating glaciers) and altimetric (ICESat) estimates. 

Time series comparison and temporal resolution 

We compare our results to the time series of previous studies​19,21 (Fig. S7) and, for this                
exercise, use the same density conversion factor and errors for annual mass change rates              
despite the known limitations of density conversion assumptions at such short time scales​23​.             
We find good agreement to gravimetric time series​19 in regions where competing mass             
change signals are weak (e.g., Russian Arctic), and to geodetic and glaciological-based time             
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series in regions with dense in-situ measurements​21​. At the regional scale, we generally             
observe a temporal autocorrelation, or “smoothing” of extreme glaciological years in our time             
series, either due to the limits of local and seasonal elevation change deconvolution from our               
Gaussian Processes method (where repeat data coverage is good, e.g. Iceland), or originating             
from the near-linear interpolation over long observational data gaps (where data coverage is             
more limited). In practice, the rapid change of extreme years is redistributed into adjacent              
years. This effect is accounted for by our improved uncertainty approaches calibrated on             
spatial correlations with observational time lag, validated with high-resolution data (Extended           
Data Fig. 5d-f). Based on our volume change uncertainties, the temporal resolution at which              
volume changes are statistically significant at the regional scale (95% confidence interval            
<0.2 m yr​-1​) is of 3-7 years depending on the spatial domain and temporal coverage. This is                 
confirmed by the inter-comparison to regional estimates of temporally resolved, gravimetric           
studies. 

Decadal changes in summer temperature and winter precipitation 

For the Northern Hemisphere, we define winter to coincide with the accumulation period             
which, for high-altitude glaciers is typically October-April whereas we define the summer            
season to include the months May-September. Winter and summer seasons in the Southern             
Hemisphere are respectively defined as the months April-October and November-March.          
Decadal changes between annual and seasonal components show minor differences of           
precipitation patterns (Fig. S8). However, the increase of summer temperature over glaciers            
(corresponding to a global trend of 0.037 K yr​-1​) is slightly larger than that of annual                
temperature (0.031 K yr​-1​) and thus yields a slightly lower global mass balance sensitivity to               
temperature of -0.24 m w.e. yr​-1 K​-1​. We also find little difference in temperature and               
precipitation change conditions between tidewater and non-tidewater glaciers aggregated at          
the global-scale. 

Uncertainty propagation and limits of density-based mass change uncertainties 

Volume change uncertainties sources are dominated by short- to long-range spatial           
correlations (2-200 km) and our pixel-wise GP uncertainties only have influence for very             
small glaciers (<0.1 km², Extended Data Fig. 5h,g). While our volume change time series              
have rigorously constrained uncertainties (Extended Data Fig. 5d-f), density-based mass          
change uncertainties are still poorly known. We thus use conservative approaches that likely             
lead to an overestimation of mass change uncertainties. We conservatively applied our            
uncertainties by considering them completely correlated in space at the scale of RGI regions,              
which leads to larger regional mass change uncertainties than previous DEM-based           
studies​29,53,54 that considered subregions of RGI regions as independent. Additionally, the           
current formulation of the density uncertainty​23 linearly scales with specific elevation changes            
while it is known that it is with most negative elevation change rates that the density                
conversion factor is best constrained towards 850 kg m​-3​. This effect likely provides             
uncertainties that are too large, especially for regions with strong mass losses (e.g., Fig. 3).               
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This limitation is currently shared among all existing geodetic studies due to the poorly              
constrained dependencies between density conversions and specific mass change rates, and           
poorly known spatial and temporal correlations of density conversions. Progress in the            
understanding of these conversion factors might be made possible by coupling our            
observational baseline with glaciological models. 

Sensitivity to the Gaussian Process hyperparameters 

In addition to the validation, we performed sensitivity analysis of the parameters to ensure              
that our results were not significantly affected by the choice of using a global median               
temporal covariance. By making all parameters vary within an order of magnitude from the              
values defined through our empirical covariance (Section 2.5), we computed all elevation            
time series for two glacierized regions, Iceland, with the densest temporal sampling; and             
Scandinavia, with the sparsest temporal sampling (Antarctic and Subantarctic excluded). We           
selected these two regions as potentially the most sensitive ones because of (i) their nonlinear               
evolution during 2000-2019 (Extended Data Table 1), and (ii) their small size which implies              
strongly spatially correlated signals. Our results show little sensitivity (Fig. S9), with a mean              
absolute deviation of less than 3%, falling well within volume change uncertainties for these              
regions (<30% of the 95% uncertainty range of volume change, <10% for that of mass               
change). This low sensitivity is due to the dense temporal coverage of our observations (on               
average 39 in 20 years), which results in a minor overall influence from the interpolation               
approach based on GP regression. The GP approach is harnessed in great part to better filter                
outliers and mitigate the effects of seasonality. While there is no doubt that further              
characterization of underlying nonstationarities in the temporal covariance could allow for           
improved analysis of local glacier elevation change, especially for elevation data of higher             
vertical precision, the current parametrization is therefore sufficiently robust for the dense            
repeat coverage of ASTER and its vertical precision.. 

Inventory biases 

Based on visual inspection of glacier inventories superimposed with our elevation change            
maps over the entire period of 2000 to 2019, we noticed that glacier outlines based on recent                 
imagery (acquired later than 2000) were in some cases omitting part of the glaciers lowest               
elevations. Factors that could explain this pattern include exclusion of debris-covered ice in             
the glacier inventory or substantial glacier retreat over the period 2000 to 2019​74​. Therefore,              
we note that the errors due to inventory and outlines, considered as random errors in our                
analysis, most likely integrate some systematic effects that might lead to a slight             
underestimation, within uncertainties, of global glacier mass loss.  
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Supplementary Figures 

Fig. S1. ASTER bias corrections. 

MMASTER corrections​50​ for cross-track (​a​) and along-track biases (​b​) and overall (​c​). For (​a​) and (​b​), 
elevation corrections shown correspond to the median of parameters (i.e. the most typical case of 
correction, which vary greatly between images) found when optimizing corrections individually for 
154,565 ASTER DEM strips. For the along-track corrections, we show the median of parameters 
decomposed by additive frequencies of long range undulations and jitter. ​c​, Boxplots of off-ice RMSE 
between ASTER DEMs and the reference TanDEM-X before (blue) and after (orange) bias correction with 
the number of valid points for corrections. Boxes show the distribution from first to third quartiles, with 
the median represented as a line and the whiskers extending to the 10th and 90th percentiles. RMSE 
improvement is a limited but simple indicator of the underlying removal of large-scale correlated noise on 
top of the inherent random noise, typically observed at an amplitude of 5 to 10 m in ASTER DEMs. Most 
DEMs are confidently corrected with a large number of points which reflects in their lesser spread of 
RMSE, later used to assess measurement error and weighting.  
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Fig. S2. Gaussian Process regression elevation time series. 

Time series of final Gaussian Process Regression fits and standard deviation after the removal of outliers. 
These temporal fits are shown for: a pixel in the ablation area of Upsala where a strongly nonlinear 
elevation loss occurred​99​ which is used as an example in Extended Data Fig. 3c-e (​a​), a zone of low quality 
of stereo-correlation in the accumulation area of Upsala, Southern Patagonian Icefield, Argentina that is 
undergoing slow elevation loss (​b​), the data-scarce ablation area of Pio XI, Southern Patagonian Icefield, 
Chile, facing a steady elevation gain (​c​) and the highly sampled tongue of Tasman Glacier, New Zealand 
showing steady elevation loss (​d​). 
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Fig. S3. Gaussian Process regression elevation time series for extreme observations. 

Time series of final Gaussian Process Regression fits and standard deviation over extreme elevation 
observations, after the removal of outliers. We show pixels in: the edge of the ablation area of outlet 
glacier Breidamerkurjökull of Vatnajökull, Iceland, showing rapid thinning and then no elevation change 
after 2008 due to complete deglaciation (​a​), the nonlinear thickening on the outlet glacier Dyngjujökull, in 
the accumulation area of Vatnajökull, Iceland (​b​), the elevation gain at the bottom of Nathorstbreen 
glacier, Svalbard, after a massive surge in 2009​40​ (​c​) and the mass loss in the accumulation area of 
Nathorstbreen glacier, Svalbard, from the same surge event (​d​). 
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Fig. S4. Systematic error analysis. 

Median elevation differences between ICESat/IceBridge and our GP regression elevation time series on 
stable and glacierized terrain, and for TanDEM-X on stable terrain. Elevation differences are shown 
globally for all ICESat campaigns (​a​), all IceBridge campaigns (​b​), seasonal timestamps independently for 
the Northern and Southern hemisphere (ICESat samples only, Antarctic and Subantarctic excluded) (​c​) and 
terrain maximum curvature (​d​). Panels (​a​), (​b​) and (​c​) are shown on the same scale. 

 

 



 

Fig. S5. Schematic representation of the effects of snow-covered terrain on 
co-registration. 

Summer and winter co-registration biases. ​a​, The coregistration of summer ASTER DEMs to a reference 
DEM (TanDEM-X) that includes snow cover on stable terrain creates a positive elevation bias over 
glaciers. ​b​, The coregistration of winter ASTER DEMs to a reference DEM (TanDEM-X) that, on average, 
includes less snow, creates a negative elevation bias over glaciers. 
 
 

  

 



 

Fig. S6. Random error analysis. 

Distribution of z-scores of elevation differences for stable and ice-free surfaces. The distribution of ICESat 
(​a​) and IceBridge (​b​) z-scores for stable and glacierized terrain with the corresponding median and 
Normalized Median Absolute Deviation. ​c​, NMAD of the z-score with the time lag to the closest 
observation. IceBridge points are weighted 1/40th to represent similar spatial sampling as ICESat points. 

 



 

Fig. S7. Comparison of mass change time series with earlier studies. 

Regional and global time series of cumulative glacier mass change between 2002 to 2016 compared to 
earlier global or near-global studies​19,21​. Time series are zeroed at the starting date of September 2002 to 
coincide with the northern hemisphere glaciological years reported in an earlier global study​21​. 
Uncertainties are shown at 95%. For our study, we show annual uncertainties despite known limitations for 
density assumptions and show our monthly time series uncorrected for seasonal biases. 
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Fig. S8. Decadal changes in summer temperature and winter precipitation. 

Difference between 2010-2019 and 2000-2009 for summer temperature (May-September in the northern 
hemisphere, October-April for southern hemisphere) (​a​) and winter precipitation (November-March in the 
northern hemisphere, April-October in the southern hemisphere) (​b​). Decadal patterns are similar to those 
of annual temperature and precipitation (Fig. 4). 

 



 

 

Fig. S9. Sensitivity to Gaussian Process kernel parameters. 

Sensitivity of the regional estimates of glacier volume changes to the Gaussian Process kernels parameters 
for Scandinavia ​(a,b)​ and Iceland ​(c,d)​. The kernel parameters are varied by multiplying and dividing the 
value used in this study by 2, and refer to Equation 2 (see Methods, or Supplementary Methods section 
2.5). Iceland and Scandinavia were selected as they are potentially the most sensitive to Gaussian Process 
kernel parameters. This is due to both their small size (spatially correlated signal) and the fact that they 
show strong nonlinear changes during the past two decades (Extended Data Table 1). Additionally, they 

 



 

include a wide spectrum of temporal coverage, as Iceland is the region with the largest repeat coverage 
(~66 observations in 20 years per pixel) while Scandinavia is the region with the lowest repeat coverage 
(~27 observations in 20 years per pixel), excluding the Antarctic and Subantarctic. Panels ​(a)​ and​ (c)​ show 
the mean absolute deviation relative to the regional estimate and panels​ (b)​ and ​(d)​ the mean absolute 
deviation relative to the estimated volume change uncertainty. The mean absolute deviation is computed 
from all possible successive time periods of a certain length in 2000-2019 (e.g., 5-year periods indicate 
2000-2004, 2005-2009, 2010-2014 and 2015-2019) and varied parameters (x2,÷2). Overall, varying all 
Gaussian Process kernel parameters within this order of magnitude impacts the estimates less than 3%, 
which is well within estimated volume change uncertainties (at most 30% of uncertainty range) and 
estimated mass change uncertainties (at most 10% of uncertainty range). The maximum absolute deviation 
is within the same range and does not exceed 1.5 times the mean absolute deviation. 
  

 



 

Supplementary Tables 
 
 

Table S1. Regional data coverage for ASTER, ArcticDEM, REMA and IceBridge 
DEMs. 

Number of DEMs and corresponding area covered for RGI regions. ASTER initial DEMs are the strips 
generated from stereo imagery. ASTER, ArcticDEM and REMA final DEMs are the DEM strips 
successfully corrected (for ASTER), merged (for ArcticDEM and REMA) and co-registered to 
TanDEM-X (for both). ASTER initial and final DEM footprint is generally 180 km x 60 km, ArcticDEM 
and REMA DEM footprint is on average 50 km x 15 km and IceBridge DEMs 500 x 500 m. ICESat points 
are only considered in a buffer of 10 km around glaciers, the count of points on glacier and stable terrain is 
reported in Table S3. 

  

 

Region 
ASTER 

initial DEMs 
ASTER 

final DEMs 

ArcticDEM & 
REMA final 

DEMs 
ICESat points 

IceBridge 
DEMs 

01, 02 Alaska & Western Canada 
and USA 28,705 24,681 3,763 1,137,548 273 

03 Arctic Canada North 9,610 7,645 4,209 2,220,084 78,434 

04 Arctic Canada South 3,702 3,013 2,832 584,499 39,113 

05 Greenland 24,290 16,837 14,353 2,375,214 334,721 

06 Iceland 3,439 2,569 701 72,811 0 

07 Svalbard and Jan Mayen 2,870 1,750 3,507 350,053 4,882 

08 Scandinavia 3,432 2,770 1,143 16,157 0 

09 Russian Arctic 9,137 4,485 5,635 596,456 0 

10 North Asia 15,693 12,867 4,248 309,226 0 

11 Central Europe 4,499 4,304 0 2,277 0 

12 Caucasus and Middle East 5,745 5,563 0 31,580 0 

13-15 High Mountain Asia 31,676 30,774 0 2,169,746 0 

16 Low Latitudes 15,689 14,800 0 61,845 0 

17 Southern Andes 9,076 8,124 0 237,559 495 

18 New Zealand 2,221 1,922 0 13,998 0 

19 Antarctic and Subantarctic 28,555 12,461 3,456 559,639 154,770 



 

 

Table S2. High-resolution DEMs. 

High-resolution DEM pairs used to validate glacier volume changes and their related uncertainty 
propagation. Only glaciers covered over more than 70% of their surface are considered. A minimum time 
interval of 5 years between the DEMs was chosen, corresponding to the length of the periods reported in 
our study. 
 
 
 
 

  

 

Region Site Early DEM 
date 

Early DEM 
source 

Late DEM 
date 

Late DEM 
source 

Resolution 
(m) 

Glacier 
area 

(km²) 

Number 
of 

glaciers 
covered 

01 Alaska Yukon 2007-09-03 SPOT-5HRS 2018-10-01 SPOT6/7 20 
2387.4 

139 

02 Western Canada and USA Place 2006-08-15 LiDAR 2018-09-04 LiDAR 1 4.9 7 

02 Western Canada and USA Sentinel 2006-08-15 LiDAR 2018-09-04 LiDAR 1 22.3 10 

02 Western Canada and USA Bridge 2006-08-15 LiDAR 2017-09-27 LiDAR 1 142.6 23 

02 Western Canada and USA Weart 2006-08-15 LiDAR 2018-09-04 LiDAR 1 12.8 9 

02 Western Canada and USA Conrad 2005-07-31 Aerial Photo 2017-09-17 Aerial Photo 5 19.4 11 

02 Western Canada and USA Nordic 2004-08-21 Aerial Photo 2017-09-27 Aerial Photo 5 5 3 

11 Central Europe Mont Blanc 2003-08-21 SPOT5-HRG 2018-08-09 Pleiades 10 141.1 105 

11 Central Europe Gries 2012-08-27 Aerial Photo 2018-08-19 Aerial Photo 1 6 10 

11 Central Europe Silvretta 2012-08-20 Aerial Photo 2018-08-16 Aerial Photo 1 6.8 7 

11 Central Europe Plaine Morte 2012-09-14 Aerial Photo 2018-08-28 Aerial Photo 1 11.6 10 

11 Central Europe Aletsch 2009-09-08 Aerial Photo 2017-08-29 Aerial Photo 25 120 61 

11 Central Europe Gorner 2007-09-13 Aerial Photo 2015-08-26 Aerial Photo 25 54.1 8 

11 Central Europe Rhone 2000-08-24 Aerial Photo 2007-09-12 Aerial Photo 25 16 6 

11 Central Europe Morteratsch 2008-09-09 Aerial Photo 2015-08-29 Aerial Photo 25 17 14 

11 Central Europe Unteraar 2003-07-14 Aerial Photo 2009-08-19 Aerial Photo 25 23.9 6 

13 Central Asia Abramov 2003-08-27 SPOT5-HRS 2015-09-01 Pleiades 40 114.7 121 

14 South Asia West Mera 2012-11-25 Pleiades 2018-10-28 Pleiades 4 
33.6 

44 

14 South Asia West Chhota Shigri 2005-09-21 SPOT5-HRG 2014-09-26 Pleiades 10 
97.9 

65 

15 South Asia East Gangotri 2004-11-26 SPOT5-HRG 2014-08-25 Pleiades 10 
199.9 

17 



 

 

Table S3. Validation of elevation time series with ICESat and IceBridge. 

Elevation biases are decomposed in a sinusoidal function of amplitude, phase at maximum and vertical 
bias at the end of summer: mid-September for the northern hemisphere (decimal month: 8.5), mid-March 
for the southern hemisphere (decimal month: 2.5). Elevation change bias is the residual linear trend in time 
(weighted least squares) of seasonally de-biased mean elevation differences, shown with 95% CI. 
Standardized elevation uncertainty is the standard deviation of z-scores (conservative if less than 1). 

 

RGI 
Region 
number 

Glacierized terrain (Stable terrain) 

ICESat points IceBridge points 
Elevation bias Elevation 

change 
bias (m yr​-1​) 

Standardized 
elevation 

uncertainty 
Amplitude 

(m) 
Phase 

(decimal month) 
Summer 

vertical bias (m) 

01 
330,297 

(658,370) 
8,523,287 
(463,310) 

2.0 
(0.1) 

5.5 
(3.5) 

0.8 
(1.1) 

-0.046±0.033 
(0.076±0.055) 

0.51 
(0.99) 

02 
30,011 

(118,880) 
0 

(0) 
1.8 

(0.3) 
5.9 

(2.8) 
2.2 

(2.4) 
0.035±0.216 

(0.043±0.165) 
0.54 

(1.31) 

03 
1,139,069 

(1,081,015) 
4,833,055 

(1,789,711) 
1.8 

(0.9) 
6.6 

(0.2) 
2.1 

(-0.6) 
0.029±0.048 

(0.007±0.104) 
0.47 

(1.01) 

04 
178,770 

(405,729) 
2,060,069 

(1,381,223) 
0.1 

(0.1) 
3.2 

(1.8) 
0.0 

(0.5) 
-0.001±0.014 
(0.013±0.018) 

0.32 
(0.60) 

05 
878,141 

(1,497,073) 
3,150,014 

(13,772,122) 
0.4 

(0.1) 
6.3 

(1.0) 
0.0 

(0.3) 
0.008±0.014 

(0.007±0.018) 
0.47 

(1.02) 

06 
27,480 

(45,331) 
0 

(0) 
1.3 

(0.3) 
4.3 

(6.2) 
1.0 

(0.7) 
0.023±0.071 

(-0.041±0.034) 
0.32 

(0.77) 

07 
214,912 

(135,141) 
179,851 
(18,227) 

0.6 
(0.4) 

5.7 
(5.5) 

0.2 
(0.4) 

-0.026±0.039 
(-0.046±0.037) 

0.38 
(0.63) 

08 
5,421 

(10,736) 
0 

(0) 
2.3 

(0.4) 
4.5 

(4.3) 
1.7 

(1.6) 
-0.092±0.160 
(0.062±0.145) 

0.55 
(0.97) 

09 
383,224 

(213,232) 
0 

(0) 
0.2 

(0.3) 
6.0 

(5.4) 
-0.4 
(0.1) 

-0.015±0.022 
(-0.013±0.014) 

0.28 
(0.45) 

10 
3,183 

(306,043) 
0 

(0) 
1.4 

(0.3) 
3.2 

(6.0) 
1.2 

(0.8) 
0.206±0.126 

(-0.007±0.067) 
0.60 

(0.93) 

11 
1,891 

(46,722) 
0 

(0) 
1.2 

(0.0) 
6.2 

(4.7) 
2.1 

(1.5) 
0.052±0.263 

(0.066±0.189) 
0.67 

(1.48) 

12 
929 

(30,651) 
0 

(0) 
1.7 

(0.4) 
6.0 

(3.3) 
1.3 

(0.3) 
-0.183±0.440 

(-0.031±0.378) 
0.69 

(1.67) 

13 
105,218 

(1,238,894) 
0 

(0) 
0.5 

(0.1) 
3.5 

(0.9) 
1.2 

(0.4) 
0.110±0.090 

(0.018±0.062) 
0.68 

(1.16) 

14 
54,382 

(423,848) 
0 

(0) 
0.7 

(0.0) 
3.2 

(0.4) 
1.4 

(0.4) 
0.102±0.083 

(0.017±0.070) 
0.64 

(1.15) 

15 
19,961 

(327,443) 
0 

(0) 
0.2 

(0.2) 
4.3 

(1.5) 
1.1 

(0.5) 
0.122±0.106 

(0.050±0.074) 
0.63 

(1.10) 

16 
897 

(60,948) 
0 

(0) 
0.0 

(0.4) 
2.7 

(1.7) 
0.3 

(1.0) 
0.045±0.500 

(0.086±0.159) 
0.58 

(1.14) 

17 
21,157 

(216,402) 
109,339 

(178,910) 
2.5 

(1.0) 
11.8 
(0.8) 

2.0 
(2.0) 

-0.007±0.082 
(0.010±0.215) 

0.44 
(1.29) 

18 
401 

(13,597) 
0 

(0) 
2.5 

(0.8) 
9.5 

(1.2) 
-0.4 
(2.7) 

-0.142±0.671 
(0.167±0.685) 

0.71 
(1.47) 

19 
445,523 

(114,116) 
2,208,460 

(3,997,523) 
0.0 

(0.9) 
2.2 

(3.0) 
2.2 

(4.4) 
-0.004±0.048 
(0.150±0.214) 

0.33 
(1.47) 
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