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I. Understand non-Abelian topological charges 

Understanding quaternion charge from rotation matrix 

We start with employing the rotation matrix to build an ideal real Hamiltonian for the three-

band system. Generally a Hermitian Hamiltonian can be constructed by 𝐻(𝑘) =

∑ 𝜆!|𝑢"!⟩⟨𝑢"!|#
!$% , where we assume no band degeneracy and thus 𝜆% < 𝜆& < ⋯ < 𝜆#. Each 

eigenvalue 𝜆! corresponds to a single eigenstate |𝑢"!⟩ , i.e. 𝐻(𝑘)|𝑢"!⟩ = 𝜆!|𝑢"!⟩. Furthermore, 

spectral theorem says that any Hermitian matrix can be written as 𝐻(𝑘) = 𝑈(𝑘)Λ(𝑘)𝑈(𝑘)' 

(‘†’ combines both complex conjugate ‘∗’ and transpose ‘T’) with Λ(𝑘) = 𝑑𝑖𝑎𝑔(𝜆%, 𝜆&, … , 𝜆#) 

being diagonal and real, where 𝑈(𝑘) is a unitary matrix consisting of (ordered) orthonormal 

eigenstates |𝑢"!⟩. In our PT symmetric system, the Hamiltonian can take real symmetric form 

and thus the unitary matrix 𝑈(𝑘) reduces to be real rotation matrix 𝑅(𝑘). On the other hand, 

we make 𝜆! = 𝑛 to further simplify the analytical calculation without changing the underlying 

topological arguments. Thus, the real symmetric Hamiltonian takes the simple form of 𝐻(𝑘) =

𝑅(𝑘)𝑑𝑖𝑎𝑔(1,2, … , 𝑁)𝑅(𝑘)( . When 𝑘 = −𝜋 → 𝜋  runs across the first Brillouin zone, 𝑅(𝑘) 

serves to rotate the eigenstate of each band from an initial state |𝑢"!⟩ = (0,… , 1⏟
!
, … ,0) with 

only the 𝑛𝑡ℎ entry being 1. For the non-Abelian charges +𝑖/+𝑗/+𝑘, two of three eigenstates 

rotate 𝜋 (|𝑢"!⟩ → −|𝑢"!⟩) when 𝑘 = −𝜋 → 𝜋 spanning the 2𝜋 range, which can be expressed 

by 𝑅(𝑘) = exp J("*+)
&

𝐿-L 	(𝑖 = 𝑥, 𝑦, 𝑧)  with (𝐿-)." = −𝜖-."  and 𝜖-."  being the fully 

antisymmetric tensor. For the charge −1, two of three eigenstates rotate 2𝜋 (|𝑢"!⟩ → |𝑢"!⟩) 

when 𝑘 = −𝜋 → 𝜋 spanning the 2𝜋 range, which gives 𝑅(𝑘) = exp[(𝑘 + 𝜋)𝐿-]	(𝑖 = 𝑥, 𝑦, 𝑧). 

Thus, when 𝑘 = −𝜋  the rotation matrix is a 𝑁 × 𝑁  unit matrix 𝐼#×# , i.e., 𝑅(𝑘 = −𝜋) =

exp J(0+*+)
&

𝐿-L = 𝐼#×# 	(𝑖 = 𝑥, 𝑦, 𝑧). Actually, different non-Abelian topological charges will 
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have different rotation matrices 𝑅(𝑘). In other words, the rotation matrix 𝑅(𝑘) carries the 

underlying topological characters and determines the non-Abelian topological charges. 

 

It is worth noting that in general, the winding trajectories of eigenstates in Figs. 1b-e of the 

main text are not fixed on the great circles. In contrast to which axis the states wind about, the 

crucial property of ±𝑖/±𝑗/±𝑘 topological phases is that the trajectories of two of the three 

bands must terminate at pairs of antipodal points on the eigenstate-frame sphere, which 

prohibits the trajectories from contracting to isolated points. And the difference of ±𝑖/±𝑗/±𝑘 

phases is reflected by which two bands are noncontractible. 

 

Understanding the order-parameter space 𝑴𝟑 

The order-parameter space of Hamiltonian of the three-band model can be written as 𝑀2 =

3(2)
3(%)!

≅ 43(2)
5"

 1,2, where the first equality is obtained by an 𝑂(3) rotation of the eigenstate frame. 

As flipping the sign of each eigenstates |𝑢"!⟩ → −|𝑢"!⟩	(𝑛 = 1,2,3) leaves the Hamiltonian 

𝐻(𝑘) = ∑ 𝜆!|𝑢"!⟩⟨𝑢"!|#
!$%  invariant, one then imposes the 𝑂(1)2  quotient, where 𝑂(1)2 ≅

𝐷&6 ≅ ℤ&2  is generated by three mutually perpendicular mirror symmetries. In the second 

equality, both groups have been replaced by their proper subgroups, i.e., 𝑂(3) → 𝑆𝑂(3) and 

𝐷&6 → 𝐷& , where the dihedral point group 𝐷&  consists of the identity and three 𝜋 rotations 

around three mutually perpendicular axes. 

 

The special orthogonal group 𝑆𝑂(3) can be further parameterized as a solid sphere, wherein 

the normalized vector 𝑛_⃗ = (𝑛7 , 𝑛8 , 𝑛9) indicates the rotation axis and radius is rotation angle 

𝜙 ∈ [0, 𝜋]. It is worth noting that the antipodal points (𝑛_⃗ , 𝜋) and (−𝑛_⃗ , 𝜋) represent the same 
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rotation and thus are identical. When 𝑘 runs from −𝜋 to 𝜋, 𝑅(𝑘) traces out a curve in the space 

of 𝑆𝑂(3). On the other hand, one can form the topological space 𝑋/𝐻 with identifying points 

of 𝑋 which can be related by some element of 𝐻 (𝑥 ≡ 𝑥ℎ), where 𝑥 ∈ 𝑋 and ℎ ∈ 𝐻. For the 

above coset space 43(2)
5"

, the 𝐷& quotient further generates each element 𝑅(𝑘) ∈ 𝑆𝑂(3) to be 

four elements as 𝑅(𝑘) ∘ 𝑔  where 𝑔 ∈ 𝐷& = (𝐼, 𝐶&7 , 𝐶&8 , 𝐶&9) . If 𝑅(𝑘) ∈ 𝑆𝑂(3) , then the 

trajectories of 𝑅(𝑘:−𝜋 → 𝜋) ∘ 𝐷& represent the four curves in the 𝑆𝑂(3) parameter space. For 

different non-Abelian charges, the curves shown in Figs. S1a-d correspond to Figs. 1b-e in the 

main text, respectively. Although one single curve cannot connect a pair of antipodal points on 

the parameterized solid sphere of 𝑆𝑂(3), two curves connected together are terminated at the 

antipodal points as shown in Fig. S1. For example, the green and blue (red and black) curves 

in Fig. S1a for charge +𝑖 thread a pair of antipodal points, they are hence closed and not 

contractible, which is topologically guaranteed by 𝜋%(𝑆𝑂(3)) = ℤ&. However, for the charge 

of −1 as shown in Fig. S1d, one single curve connects a pair of antipodal points because when 

𝑘  running across the first Brillouin zone the rotation 𝑅(𝑘)  goes from (𝑛_⃗ , 0) → (𝑛_⃗ , 𝜋) →

(𝑛_⃗ , 2π) ≡ (𝑛_⃗ , 0) as indicated by the black curve. 

 

In Fig. S2 we further show the continuous transition of charge −1 in 𝑆𝑂(3) space, where the 

arcs in Fig. S2b always thread pairs of antipodal points, indicating that the eigenstate 

trajectories (Fig. S2a) cannot be contractible simultaneously. It is worth mentioning that the 

rotation axis does not need to lie in the 𝑥 − 𝑧 plane. In other words, the green eigenstate 

trajectory does not have to be the great circle. More generally, if the rotation axis is away from 

the three central planes (i.e., 𝑥, 𝑦, 𝑧 = 0), no trajectory would be great circle. Certainly, they 

still cannot be contractible simultaneously. 
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Zak phase perspective of quaternion charge 

For a single bandgap system (or we only focus on a single bandgap while ignoring other 

bandgaps, in other words other bandgaps may close at will), the topological phase protected by 

PT symmetry is ℤ& classified (with more than two bands). It means that the bandgap may have 

Zak phase taking values of 0 and ±𝜋, where ±𝜋 refer to the same phase with mod of 2𝜋. Thus, 

no topological domain-wall state is guaranteed to exist on the domain-wall between +𝜋 and 

−𝜋. (Note that in this work the term “edge” can be generalized to be “domain-wall” when 

considering both two charges 𝑄: ≠ 1  and 𝑄; ≠ 1 . Instead, an edge can be viewed as a 

domain-wall between a crystal and vacuum or hard-wall.) 

 

In the non-Abelian topological system with three bands separated by two bandgaps, if we label 

each band with Zak phase, there are 2!0% = 4 (the total number of bands 𝑛 = 3) possibilities. 

Because each band can take two values, 0 or ±𝜋	(±𝜋	𝑎𝑟𝑒	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒	𝑤𝑖𝑡ℎ	𝑚𝑜𝑑	𝑜𝑓	2𝜋), and 

the sum of all Zak phases ∑ 𝜙!2
!$% = 0	(𝑚𝑜𝑑	2𝜋)  imposes that only 𝑛 − 1  bands are 

independent. However, the non-Abelian topological charge ℚ  has 5 conjugacy classes 

(+1,±𝑖, ±𝑗, ±𝑘,−1). Therefore, the class −1 goes beyond the Zak phase description1. In Fig. 

4c we label it as 2𝜋 to make the distinction between it and the trivial class +1. Note that1 a 2𝜋 

frame rotation does not imply that the Zak phase of charge −1 is 2𝜋, which is the case only in 

some special configurations when one of bands is fully decoupled and the other two bands can 

be classified by ℤ for the PT symmetric system. For other conjugacy classes, each has the 

unique Zak phase distribution. Between two different classes, the Zak phases +𝜋 and −𝜋 are 

topologically equivalent being consistent to the usual arguments in the Abelian topological 

phases. But, in a single conjugacy class, we apply them two to distinguish two distinct elements. 

For example, we label the 1st/2nd bandgap of charge ±𝑖 with 0 ±𝜋⁄  (as shown in Fig. 4c in 
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the main text). It is due to that in each conjugacy class the two elements (i.e. +𝑖 and −𝑖) have 

a relative meaning, i.e., representing the two opposite rotations of the eigenstate frame when 𝑘 

running across the first Brillouin zone (𝑘 = −𝜋 → 𝜋). It is worth stressing that although the 

two charges +𝑖 and −𝑖 belong to one conjugacy class, they are still two topologically distinct 

charges as their transition has to induce bandgap closing (given a common basepoint). 

Furthermore, there are two linear Dirac cones during the transition (as shown in Fig. S9d). 

Thus, the domain-wall between +𝜋 and −𝜋 of charges +𝑖 and −𝑖 supports two topological 

domain-wall states, just like the edge states of charge −1 (Fig. S11d with 𝜃9 → 0). On the other 

hand, according to our non-Abelian quotient relation, the relation Δ𝑄 = +𝑖 −𝑖⁄ = −1 implies 

that the domain-wall of charge pair (+𝑖, −𝑖) supports similar edge states of charge −1 with a 

hard boundary. Finally, the two arguments are consistent. 

 

Understanding the conjugacy class of quaternion group 

The quaternion group ℚ has five conjugacy classes (+1,±𝑖, ±𝑗, ±𝑘,−1) in total and three of 

them contain two conjugate elements, i.e., ±𝑖, ±𝑗 and ±𝑘. In the Abelian topological charge 

group, such as ℤ	𝑎𝑛𝑑	ℤ& , each element is a class by itself. However, in the non-Abelian 

topological charge group one class may contain several elements. Thus, conjugacy class is 

special to the non-Abelian topological phases. Elements of the same conjugacy class cannot be 

distinguished by using only the group structure and therefore share many similar features. 

However, it does not mean that the two conjugate elements are the same. In the non-Abelian 

topological phases one cannot continuously transform charge +𝑖 to −𝑖 without gap closing 

given a common basepoint (see Fig. S9d). 

 

Calculating non-Abelian topological charges 
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In this work we follow Ref.1 to calculate the non-Abelian topological charges. The generalized 

Wilson operator can be written as, 

𝑊<(Γ) = exp[∮ 𝐴=>>(𝑘) ∙ 𝑑𝑘]                                         (S1) 

where [𝐴=>>(𝑘)]!?@ = }𝑢"@~𝜕"#~𝑢"
!�  being anti-symmetric under PT symmetry is a 𝔰𝔬(𝑁) -

valued 1-form. 𝑚	𝑎𝑛𝑑	𝑛 are the band indices which cover all of bands to obtain the affine 

Berry-Wilczek-Zee (BWZ) connection. We first decompose the affine BWZ connection into 

the 𝔰𝔬(𝑁) basis as, 

[𝐴=>>(𝑘)]? = ∑ 𝛽?!(𝑘)𝐿!!                                               (S2) 

and then lift it onto the 𝔰𝔭𝔦𝔫(𝑁)-valued 1-form as, 

[𝐴̅=>>(𝑘)]? = ∑ 𝛽?!(𝑘)𝑡!!                                              (S3) 

where the basis element 𝑡!  is defined as 𝑡! = − -
&
𝜎!  with 𝜎!  being Pauli matrix. The 

generalized quaternion charge acquired along a closed loop can be expressed as, 

Q = exp[∮ 𝐴̅=>>(𝑘) ∙ 𝑑𝑘]                                             (S4) 

Finally, we discretize the integration (Eq. S4) and obtain the non-Abelian charge. The 

quaternion group elements are represented as 1 → 𝜎A , 𝑖 → −𝑖𝜎7 , 𝑗 → −𝑖𝜎8  and 𝑘 → −𝑖𝜎9 , 

where 𝜎A is the 2 × 2 identity matrix. 

 

II. Continuous transition in the charge −𝟏 

The singularity of charge −1 is schematically illustrated in Fig. S3a, where red and green 

vectors rotate 2𝜋 around the centre while the blue ones pointing upwards. After applying a 

continuous local gauge field, one can smoothly map the triad-vector field onto a semi-sphere 

as shown in Fig. S3b. During the mapping, the singularity point remains intact and thus the 
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topology is well preserved. We then increase the cyan loop radius in Fig. S3b. Finally, we find 

that along the cyan loop the red vectors almost remain fixed while the other two rotate 2𝜋 as 

shown in the right panel of Fig. S3c. 

 

When we rotate the cyan loop from Fig. S3d to f, the topological charge changes from −1 to 

+1 , where the singularity goes out the cyan loop. Obviously, the trajectories of three 

eigenstates are contractible for the charge +1 as shown in Fig. S3g. 

 

The topological features illustrated in Fig. S3 are closely related to the topology of the 

eigenmodes in our multi-band system. The red/green/blue vectors in these figures correspond 

to the eigenstates of the 1st /2nd /3rd band in our multi-band system. The cyan loops correspond 

to the 1D first Brillouin zone, along which the eigenstates of a “1D Hamiltonian” rotate as 

shown in Figs. S3c, e and g. Different panels in Fig. S3c represent different configurations of 

the charge −1. But we can see from Figs. S3a and b that they are all topologically equivalent, 

as they all correspond to a loop (cyan loop) encircling the same singularity point. In the later 

Secs. VI and VII (Figs. S15-S19) we propose a systematic way of extending the 1D 

Hamiltonian onto an extended 2D plane. Based on the degeneracy details of 2D band 

dispersions, we predict the edge state distributions of the 1D Hamiltonian for different 

quaternion charges. 

 

III. Tight binding model and edge states 

The real-space Hamiltonian reads (Fig. S4), 
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																							ℋ =�

⎝

⎜
⎜
⎛

� 𝑠BC𝑐B,!
' 𝑐C,!

B$E,F,G
C$E,F,G

+

� 𝑣BC𝑐B,!
' 𝑐C,!*%

B$E,F,G
C$E,F,G

+ � 𝑣BC>𝑐B,!
' 𝑐C,!*& + ℎ. 𝑐.

B$E,F,G
C$E,F,G ⎠

⎟
⎟
⎞

!

																	(S5) 

where 𝑐B,!
'  and 𝑐B,! are creation and annihilation operators on the sub-lattice ‘𝑋/𝑌’ and site ‘𝑛’, 

respectively. Here, we consider a more general case having both the NN (nearest neighbour) 

and NNN (next-nearest neighbour) hoppings. After Fourier transformation we obtain, 

𝐻(𝑘) = �
𝑠EE + 2𝑣EE cos 𝑘 2𝑢 sin 𝑘 2𝑤 sin 𝑘

2𝑢 sin 𝑘 𝑠FF + 2𝑣FF cos 𝑘 2𝑣 sin 𝑘
2𝑤 sin 𝑘 2𝑣 sin 𝑘 𝑠GG + 2𝑣GG cos 𝑘

�																											

+ �
2𝑣EE> cos 2𝑘 2𝑢> sin 2𝑘 2𝑤> sin 2𝑘
2𝑢> sin 2𝑘 2𝑣FF> cos 2𝑘 2𝑣> sin 2𝑘
2𝑤> sin 2𝑘 2𝑣> sin 2𝑘 2𝑣GG> cos 2𝑘

�																																																				

+ �
0 𝑠EF + 2𝑟 cos 𝑘 𝑠EG + 2𝑞 cos 𝑘

𝑠FE + 2𝑟 cos 𝑘 0 𝑠FG + 2𝑝 cos 𝑘
𝑠GE + 2𝑞 cos 𝑘 𝑠GF + 2𝑝 cos 𝑘 0

�																																									

																																+ �
0 2𝑟> cos 2𝑘 2𝑞> cos 2𝑘

2𝑟> cos 2𝑘 0 2𝑝> cos 2𝑘
2𝑞> cos 2𝑘 2𝑝> cos 2𝑘 0

�																																																							(S6) 

where we have set 𝑣EF = 𝑟 + 𝑖𝑢 = 𝑣FE , 𝑣FG = 𝑝 + 𝑖𝑣 = 𝑣GF , 𝑣GE = 𝑞 + 𝑖𝑤 = 𝑣EG , 𝑣EF> =

𝑟> + 𝑖𝑢> = 𝑣FE>, 𝑣FG> = 𝑝> + 𝑖𝑣> = 𝑣GF> and 𝑣GE> = 𝑞> + 𝑖𝑤> = 𝑣EG>. The red parts will only 

be used when calculating edge state evolution of charge −1 (Fig. S11). Ignoring the red parts 

of the Hamiltonian, there is a total of 15 variables. 

 

We then write the above Hamiltonian in the form as, 

																																																							𝐻(𝑘) = 𝑅(𝑘)𝑑𝑖𝑎𝑔(1,2,3)𝑅(𝑘)( 																																															(S7) 

When we set 𝑅(𝑘) = 𝑒±
$%&
" :',),* , the tight binding model (Eqs. S5-S6) only involves NN 

hoppings and we can find the 9 coefficients as listed in the Tab. S1, where the corresponding 
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non-Abelian topological charges are given as well. When we set 𝑅(𝑘) = 𝑒("*+):*, the lattice 

only involves NNN hoppings, the corresponding coefficients of charge −1 are given in the last 

row of Tab. S1. The four non-Abelian topological charges of +𝑖, +𝑗, +𝑘 and −1 correspond 

to Figs. 1b-e in the main text, respectively. 

 

The parameters used in the transmission line experiments are given in Tab. S2. Figure S5 shows 

the corresponding edge states at hard boundaries. 

 

We divide all cases of charge +𝑗 into two categories. The first one (as shown in Fig. 2c) is a 

special case in which the 2nd band is fully decoupled from other two bands. We may neglect 

the 2nd band and consider the whole bandgap carrying Zak phase of 𝜋. Thus, the system 

supports 1 edge state per edge (2 edge states in total) accordingly. The other case is the general 

case in which the 2nd band cannot be fully decoupled (as shown in Figs. 3e-f and Fig. S5b), 

there are two bandgaps where each one carries Zak phase of 𝜋, and thus each bandgap supports 

1 edge state per edge (4 edge states in total, including two bandgaps and two edges). We show 

the transition between the two cases, i.e., from decoupling to coupling of the 2nd band in Fig. 

S6. Basically, we see one extra edge state (per edge) appears after turning on the coupling as 

shown in Fig. S6. In other words, the total number of edge states changes from two to be four, 

two of them emerge from middle bulk states when 𝛿𝑢 increases from 0. In Fig. S6b, we shift 

the 2nd band away from 𝐸 = 2 to more explicitly show the phenomena. 

 

The edge states of charge +𝑖/+𝑘 always stably locate in the 2nd/1st bandgap. We calculated a 

disordered system as shown in Fig. S7a/b to exhibit the robustness of the edge states against 

disorder for charge +𝑖 +𝑘⁄ , as long as both two bandgaps are not closed by the disorder. 
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Table S1. Coefficients of tight binding model ideally (flat-band) realizing non-Abelian 

topological charges 

𝑄 𝑠EE 𝑠FF 𝑠GG  𝑣EE 𝑣FF 𝑣GG  𝑢 𝑣 𝑤 
+𝑖 1 5/2 5/2 0 1/4 -1/4 0 1/4 0 
−𝑖 1 5/2 5/2 0 1/4 -1/4 0 -1/4 0 
+𝑗 2 2 2 1/2 0 -1/2 0 0 -1/2 
−𝑗 2 2 2 1/2 0 -1/2 0 0 1/2 
+𝑘 3/2 3/2 3 1/4 -1/4 0 1/4 0 0 
−𝑘 3/2 3/2 3 1/4 -1/4 0 -1/4 0 0 

 
𝑄 𝑠E 𝑠F 𝑠G  𝑣EE> 𝑣FF> 𝑣GG> 𝑢> 𝑣> 𝑤> 
−1 3/2 3/2 3 -1/4 1/4 0 -1/4 0 0 

 

Table S2. Coefficients of tight binding model used in the transmission line experiment 

𝑄 𝑠EE 𝑠FF 𝑠GG  𝑣EE 𝑣FF 𝑣GG  𝑢 𝑣 𝑤 
+𝑖 0 0 -4 -1 1 0 -1 1 0 
+𝑗 0 0 0 -1 1 0 -1 1 0 
+𝑘 0 0 4 -1 1 0 -1 1 0 
−1 0 0 0 -1 0 2 -1 1 0 

 

IV. Non-Abelian topological phase transition 

With PT symmetry preserved, topological phase transition between different non-Abelian 

topological charges has to experience bandgap closing. Here we first show the transition from 

charge +𝑖 to +𝑗 via changing 𝑠GG  as shown in Fig. S8. With continuously increasing 𝑠GG  from 

−2.2 to −1.8, the bandgap is found to be closed at −2, where the two lower bands linearly 

cross each other at 𝑘 = ±𝜋  (Fig. S8a). It is consistent with our usual understanding of 

topological phase transition via bandgap closing and re-opening. It is worth noting that the 

quadratic degeneracy at 𝑘 = 0 is accidental without any topological consequences. From the 

eigenstate frames (Fig. S8b), we further see the details of the transition. In particular, at the 
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gapless points 𝑘 = ±𝜋 two eigenstates are overlapped (indicated by two gray circles in the 

middle panel of Fig. S8b). 

 

The non-Abelian topological phase transitions can occur between two arbitrary charges. For 

the Abelian topological phase transitions, one only needs to focus on a single bandgap, whose 

closing-reopening process implies one topological phase transition. However, in the non-

Abelian topological systems, there are multiple bandgaps involved, they may close-reopen 

individually or simultaneously. For example, the topological phase transition from +𝑖/+𝑗/+𝑘 

to +1 requires for the closing-reopening of the 2nd/(1st and 2nd)/1st bandgap(s) as shown in 

Figs. S9a-c. We also note that the nontrivial phase transitions between two charges 𝑄% and 𝑄& 

with Δ𝑄 = 𝑄% 𝑄&⁄ ≠ −1 have one Dirac-cone like crossing (Figs. S9a-c), while the case Δ𝑄 =

−1 implies two Dirac cones as shown in Fig. S9d between charges +𝑖 and −𝑖. 

 

More interestingly, the topological phase transition is more complicated in non-Abelian 

topological phases. For conventional topological systems characterized by Abelian charges, 

the transition from one topological state to another topological state involves a fixed sequential 

path (similar to nodes on a string or a loop as shown in Fig. S10a) and a fixed number of 

bandgap closing steps, and as such, the number of topological edge states is well defined. This 

is not the case for non-Abelian systems, where the transition from one topological phase to 

another one can take multiple distinct paths (like the nodes in a network as shown in Fig. S10b, 

which is the cycle graph of quaternion group3). Along different paths, the topological phase 

transition will close the corresponding bandgap(s), which is path-dependent. For example, from 

charge −1 to +1 there are exhaustively six distinct paths as shown in Fig. S10b. The six paths 

are topologically equivalent, one cannot prefer one of them just from topological viewpoint. 

The topological phase transitions between charges −1 and +1 can lead to the closing of either 
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the 1st bandgap or the 2nd bandgap, or even both them, depending on how we continuously 

tune system parameters. From this perspective we see that the topological phase transitions 

between charges of −1 and +1 are not unique, and this additional complexity implies the 

fickle edge states as shown in Fig. S11. 

 

V. Edge state evolutions in the charge −𝟏 

Although the bulk topological charge is fixed to be −1, the edge states are found to be kind of 

fickle (also see Ref. 1, Fig. S17). Here we first show three continuous transitions (Figs. S11a-

c) in the charge −1 system and then show the corresponding edge state evolutions (Figs. S11d-

f). In Fig. S11a, we rotate the rotation axis from 𝑥¦ to 𝑦¦ parameterized by 𝜃9 from 0 to +
&
. At 

each configuration, three eigenstates (the 1st, 2nd and 3rd bands are marked by red, green and 

blue, respectively) rotate 2𝜋 around the rotation axis 𝑛¦ = cos 𝜃9 𝑥¦ + sin 𝜃9 𝑦¦. Figures S11b 

and c show similar transitions. In Fig. S11d, the edge states evolve with 𝜃9. When 𝜃9 = 0, the 

Hamiltonian reads, 

																																						𝐻(𝑘) =

⎣
⎢
⎢
⎢
⎡
1 0 0

0
1
2
(5 − cos 2𝑘) − cos 𝑘 sin 𝑘

0 − cos 𝑘 sin 𝑘
1
2
(5 + cos 2𝑘)⎦

⎥
⎥
⎥
⎤
																																						(S8) 

Obviously, the first band is fully decoupled with the higher two bands in this model. Then in 

the PT symmetric higher two-band subspace, the edge states can be described by ℤ. Here, the 

number of edge states is two on each edge as the two higher eigenstates rotate 2𝜋 around the 

𝑥 axis. Similar arguments also work at all 𝜃7,8,9 = 0	𝑜𝑟	 +
&
. However, when 𝜃9 increases from 

0 , all bands start to couple with each other. Three edge states emerge and their spectral 

positions evolve in a complicated way (Fig. S11d). 
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The edge state evolution corresponds to energy pumping by simply rotating the rotation axis 

of eigenstates. In particular, in Fig. S11f, the pumping shows a zigzag pattern. It is also 

interesting to note that the energy pumping depends on non-topological properties of 

eigenstates, as all evolutions are occurring in the same topological phase characterized by 

charge −1. In the Sec. VII we try to predict some behaviours of the fickle edge states of charge 

−1 by going to a higher dimension (from a 2D extended plane). 

 

VI. Non-Abelian quotient relation 

We use the following three steps to prove the non-Abelian quotient relation (as schematically 

shown in Fig. S12). 

(1) From the most general perspective, between two distinct topological phases (described by 

two different topological charges) there must exist bandgap closing corresponding to the 

topological phase transition. It works for both Abelian and non-Abelian topological phases. 

(2) The topological phase transition between two distinct topological charges 𝑄:  and 𝑄;  is 

described by 𝛥𝑄 = 𝑄: 𝑄;⁄ . In other words, the detail of bandgap closing is described by Δ𝑄 =

𝑄: 𝑄;⁄ . 

(3) The closing bandgap in 𝑘-space (as a bulk property) implies the domain-wall state(s) in 𝑟-

space when splicing the two topologically distinct samples together (especially in the 1D 

system). The domain-wall state formation between charges 𝑄:𝑎𝑛𝑑	𝑄; can be inferred from the 

edge state formation within the transition Δ𝑄 → +1  (as Δ𝑄  encodes all the topological 

information within the transition 𝑄: → 𝑄;). 
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(Note that left inverse (𝑄;0%𝑄:) and right inverse (𝑄:𝑄;0%) show similar results finally, thus we 

write 𝛥𝑄 = 𝑄: 𝑄;⁄ .) 

 

Proof: 

(1) The first step is obvious. 

 

For Abelian topological phase transition, there is only one bandgap under consideration. Thus 

the bandgap closing happens there without any doubt. 

 

For non-Abelian topological phase transition, there are multiple bandgaps involved. The 

transition requires for that there must be bandgap closing during the process. However, the 

position and number of bandgap closing need more details. In our three-band system, either 

the 1st or 2nd bandgap, or both them have to close. 

∎ 

 

(2) The second step arises from the definition of non-Abelian topological charges (as 

schematically shown in Fig. S13). 

 

Definition: The set of all homotopy classes of loops in a space 𝑋 under the loop product is the 

fundamental homotopy group 𝜋%(𝑋). 

 

For the 1D Hamiltonian when 𝑘 runs from −𝜋 to 𝜋, the Hamiltonian traces a loop in the order-

parameter space1 𝑋 = 𝑀2 =
3(2)
3(%)!

. The quotient form of 𝑀2 imposes that all three bands are 

fully gapped for any 𝑘 ∈ [−𝜋, 𝜋]. Then, each non-Abelian topological charge is well-defined 

via the above definition of fundamental homotopy group 𝜋%(𝑀2) = ℚ . All non-Abelian 
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topological charges together construct the group with satisfying all group axioms. Here, the 

group product is loop product between two homotopy group elements by definition. For 

example, the group product Δ𝑄 ∙ 𝑄; indicates that 𝑘 first running from −𝜋 to 𝜋 obtains charge 

𝑄; and then 𝑘 running (−𝜋 → 𝜋) again with charge Δ𝑄 reaches to 𝑄: = Δ𝑄 ∙ 𝑄; 	(𝑄:,; , Δ𝑄 ∈

ℚ). Obviously, the topological transition between charges 𝑄:  and 𝑄;  has to experience “𝑘 

running from −𝜋 to 𝜋 with charge Δ𝑄”. Finally, the transition between the two charges 𝑄: and 

𝑄;  has to make the Δ𝑄  loop shrink to one point (basepoint), which inevitably encounters 

bandgap closing as long as 𝑄: ≠ 𝑄;  (Δ𝑄 ≠ +1). In other words, the bandgap closing is 

characterized by the charge Δ𝑄. Thus, the topological phase transition is described by Δ𝑄 =

𝑄: 𝑄;⁄ . 

 

Basically, the relation of Δ𝑄 = 𝑄: 𝑄;⁄  works for all of topological charges, including both 

Abelian and non-Abelian, for systems with single and multiple bandgaps, respectively. 

∎ 

 

(3) We apply a 2D extended plane and Jackiw-Rebbi argument to finish the third step. 

 

First we extend the 1D Hamiltonian 𝐻(𝑘) (Eq. 2 or Eq. S6) onto a 2D extended plane, 

																																															𝐻(𝑘) = 𝐻̄(cos 𝑘 , sin 𝑘) → 𝐻°(𝑘%, 𝑘&)																																														(S9) 

where we applied the substitution cos 𝑘 → 𝜌 cos 𝑘 = 𝑘%	𝑎𝑛𝑑 sin 𝑘 → 𝜌 sin 𝑘 = 𝑘&  with 𝜌 ∈

[0,1] . It is worth noting that the substitution preserves PT symmetry with 𝐻°(𝑘%, 𝑘&) =

𝐻°∗(𝑘%, 𝑘&). The parameter 𝜌 can be absorbed by those hopping parameters in Eq. 1 (or Eq. S5) 

in actual implementation. 
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Figure S14a shows the 2D band structure for charge +𝑖, where the original Hamiltonian 𝐻(𝑘) 

exactly locates on the unit circle 𝑘%& + 𝑘&& = 1 (black solid circle). According to the definition 

of non-Abelian topological charges, there must be band degeneracy for those non-trivial 

topological charges (≠ +1), i.e., Dirac cone, in the range 𝑘%& + 𝑘&& < 1 as one can see in Fig. 

S14a. They cannot be removed unless topological phase transition happens with the degeneracy 

point moving out of the unit circle. 

 

Then we apply the Jackiw-Rebbi type argument4 to show that there must be domain-wall state 

relating to the topological phase transition. In Fig. S14a-c, we take the +𝑖 charge as an example. 

First, by the tuning system parameters, we continuously shrink the unit circle (black circle in 

Fig. S14a) into the magenta one, which still belongs to the charge +𝑖 as long as the Dirac point 

lies within the circle. Secondly, when we further shrink the magenta circle as shown in Fig. 

S14b, topological phase transition happens and the 2nd bandgap closes as the Dirac point sits 

on the magenta circle. Finally, the degeneracy point of Dirac cone stands outside the magenta 

circle and the topological charge becomes +1  (Fig. S14c). Figures S14d-f give the 

corresponding 1D band structures along the polar angles of the three magenta circles. In the 

vicinity of the transition point 𝜃 = 𝜋, the PT-symmetric Hamiltonian can be parameterized as 

𝐻 = 𝛿𝑘J𝜎7 − 𝛿𝑚𝜎9  (Fig. S14d) and 𝐻 = 𝛿𝑘J𝜎7 + 𝛿𝑚𝜎9  (Fig. S14f) with 0 < 𝛿𝑚 ≪ 1 

being the mass term. The standard Jackiw-Rebbi argument states that there must be one 

domain-wall state between them two, described by 𝐻 = −𝑖𝜕7𝜎7 +𝑚(𝑥)𝜎9 and lim
7→±L

𝑚(𝑥) =

±1. When one considers the Dirac cone between the 1st and 3rd bands, the edge states in 

charge +𝑗 (Fig. S15b) can be explained similarly. The arguments also work for the quadratic 

degeneracy as shown in Fig. S15e with charge −1. The difference for the charge −1 is that the 

degeneracy is quadratic, which can split into to two linear Dirac cones upon small perturbation 

and hence it carries two edge states (per edge). 
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From the above arguments, we see that the bandgap that the edge states locate in is implied by 

the position of degeneracy in the 2D extended space. Finally, the number of extended 2D band 

degeneracies (as given by the number of linear Dirac cones) is equal to the number of edge 

states per edge. We conclude that the topological phase transition in 𝑘-space (bulk) implies the 

presence of topological edge/domain-wall states in 𝑟-space. More specifically, where there is 

a bandgap closing there is an edge/domain-wall state. 

 

Therefore, the edge/domain-wall states are characterized by Δ𝑄 = 𝑄: 𝑄;⁄  as it fully describes 

the topological phase transition (from Step 2). 

∎ 

 

VII. Predict edge states from the extended 2D plane 

In the following we show some examples (Figs. S15-S19) to illustrate the above arguments. 

Fig. S15 shows the flat-band cases. For charge +𝑖 (Fig. S15a), there is one Dirac cone between 

the 2nd and 3rd bands, thus the 2nd bandgap supports one edge state per edge (see Fig. 2b in 

the main text). In the flat band model, the 2nd band is fully decoupled for the charge +𝑗 (Fig. 

S15b) and thus the Dirac cone is constructed between the 1st and 3rd bands. There is one edge 

state (per edge) merging in the 2nd band (BICs in Fig. 2c in the main text). For charge −1 (Fig. 

S15e) there is a quadratic band degeneracy between the 1st and 2nd bands, which can split into 

two linear Dirac cones upon small perturbation. Thus, there are two edge states per edge (see 

Fig. 2e in the main text) in the 1st bandgap. Figure S15d gives the trivial case with charge +1, 

there is no degeneracy in the unit circle as expected, and thus there is no topological edge state. 
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Figure S16 shows the 2D extended band structures for our experiment systems. They share 

very similar arguments with Fig. S15. Except that both charges +𝑗 and −1 exhibit triple linear 

degeneracies and support one edge state per bandgap (per edge) (see Figs. S5b and d), it is due 

to that the linear triple degeneracy may split into two linear Dirac cones as well. Here, the 2nd 

band in both cases are not decoupled. Therefore, the edge states of charge +𝑗 are different from 

the decoupled case as shown in Fig. S15b (see details in Sec. III and Fig. S6). 

 

Figure S17a (see Fig. S11a for the definition of 𝜃9) shows the case of charge −1, we argue that 

the two edge states in the upper bandgap are of topological origin, while the edge state in the 

lower bandgap is non-topological in the 1D system. The appearance of latter is mainly due to 

the introduction of the new parameter 𝜃9, which effectively pumps the lowest edge state across 

the 1st bandgap. However, at a given value of 𝜃9, we argue that the lowest edge state is trivial 

as it can be removed by continuously tuning 𝜃9 → 0 (i.e. parameter changing without bandgap 

closing). It is possible to give a topological meaning to the existence of the lowest edge state if 

one considers 𝜃9  as a synthetic dimension, so that the whole system is promoted to one-

dimension higher (i.e. a 2D system). It is worth noting that the synthetic 2D space of (𝑘, 𝜃9) is 

different from our previous extended plane spanned by (𝑘%, 𝑘&)  in Sec. VI, the latter is 

introduced to show the topological reason of each 1D non-Abelian topological phase and 

further predict the positions of edge states. Here, pumping edge state via parameter 𝜃9 is similar 

to Thouless pump – integer charge is pumped across a 1D insulator in one period of an adiabatic 

cycle, which has been widely employed to understand the edge states of Chern insulator5,6. 

 

Therefore, here we only focus on the edge states in the upper bandgap. During this evolution 

from 𝜃9 = 0 → +
&
, the two edge states (per edge) hosted by the 2nd bandgap gradually merge 
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into the 2nd band. This can be understood from the evolution of the extended 2D Hamiltonian 

in the extended 2D plane, as shown in Figs. S17b-f. Initially there is a quadratic degeneracy at 

the origin inside the unit circle between the 2nd and 3rd bands, ensuring the presence of two 

edge states in the upper bandgap. Gradually, the quadratic degeneracy point of the two higher 

bands is lowered as system parameter changes (with keeping quadratically touched), and 

eventually forms a triple degeneracy with the lowest band. Meanwhile the 2nd band becomes 

flat and it decouples from the 1st and 3rd bands. Thus, two edge states (per edge) are guaranteed 

to merge into the 2nd band. Note that during this process, there is no band crossing along the 

unit circle, ensuring that there is no topological transition in the original 1D Hamiltonian 𝐻(𝑘). 

We further show the gradual transition of 𝜃7 = 0 → +
&
 in Fig. S18, which shows similar features 

as those in Fig. S17, except for that the quadratic degeneracy is between the two lower bands. 

 

For the gradual transition (𝜃8 = 0 → +
&
) shown in Fig. S19, the three edge states in the two 

bandgaps form a ‘z’ pattern. It shows that between the two bands that have quadratic 

degeneracy in the 2D extended plane (the lower two bands in Figs. S19b-c, and the higher two 

bands in Figs. S19e-f), there are always two edge states (per edge) located in the bandgap of 

the corresponding 1D system. Interestingly, at the transition point (𝜃8 =
+
M
)  where the 

quadratic degeneracy is transferred from the two lower bands to the two higher bands, a linear 

triple degeneracy is formed between the three bands (Fig. S19d), which resembles the band 

structure of charge +𝑗 as shown in Fig. S15b. However, one should note that in contrast to the 

case of +𝑗, in which the 2nd flat band is decoupled from other two bands, while here all three 

bands have to be coupled together to realize the linear triple degeneracy in Fig. S19d for charge 

−1. In other words, the decoupled triple degeneracy of charge −1 must be quadratic as shown 

in Fig. S17f (Fig. S18b). 
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In Fig. S20, we have summarized all different types of the extended 2D band degeneracies in 

Figs. S15-S19. By fixing the six black dots on the two sides in each panel, the degenerate points 

may vary between Figs. S20b to c for charges +𝑗 and between Figs. S20e-h for charge −1. 

Following our main argument in Sec. VI, “where there is a bandgap closing there is an 

edge/domain-wall state”, we conclude that: 1. For the bandgap supporting linear/quadratic 

double degeneracy, there must exist one/two edge states (per edge) in the corresponding 

bandgap; 2. For the coupled linear triple degeneracy, there is one edge state per bandgap (per 

edge), i.e., for both the 1st and 2nd bandgaps, each supports one edge state per edge; 3. Special 

cases with decoupled triple degeneracy can be regarded as two-band systems, one/two edge 

states may merge into the 2nd band for linear/quadratic triple degeneracy in the form of BICs. 

Therefore, with providing the degeneracy information in the extended 2D plane one can predict 

the topological edge states, especially for charge −1. 

 

The edge states of hard boundaries can be regarded as the domain-wall states between various 

non-Abelian topological charges and +1. For the domain-wall states between two arbitrary 

non-Abelian topological charges, one can combine the above arguments and the non-Abelian 

quotient relation of Δ𝑄 = 𝑄: 𝑄;⁄  together to make similar predictions. 

 

Coincidentally, in our experiment due to the special onsite energy setting, i.e., 𝑆EE = 𝑆FF in 

Tab. S2, both 𝑗 and −1 cases happen to be linear triple degenerate as shown in Figs. S16b and 

d. 

 



 22 

VIII. Domain-wall states 

The parameters used to construct the domain-walls in Fig. 4 (main text) are listed in Tab. S3. 

Figure S21 shows the corresponding domain-wall (dashed box) settings, where points and lines 

indicate the onsite energies and NN hoppings, respectively. Worth mentioning on the domain-

wall is that its onsite energies may sensitively contribute to the trivial domain-wall states. In 

addition, we neglect those edge states localized on the two hard boundaries when studying the 

domain-wall states in both the simulation and experiment. 

 

The arrows/triangles indicate the excitation/probing positions in the experiment measurements. 

In the charge pair (+𝑖, −𝑖), two excitation/probing positions are used to fully excite/measure 

the domain-wall states. This is due to the special spatial distributions of the domain-wall states 

as shown in Fig. S22. For two of three domain-wall states (the 1st and 3rd in Fig. S22b), we 

need to probe them at the unit cell indicated by the orange triangle, while the last (the 2nd in 

Fig. S22b) one can only be probed at the position of gray triangle. 

 

Table S3. Coefficients of tight binding models used for the domain-wall state 

measurements. 

𝑄 𝑠EE 𝑠FF 𝑠GG  𝑣EE 𝑣FF 𝑣GG  𝑢 𝑣 𝑤 
+𝑖 2 2 -4 -1 1 0 -1 -1 0 
+𝑗 0 0 0 -2 2 0 -1 1 0 
+𝑘 -2 -2 4 -1 1 0 -1 -1 0 
−𝑖 2 2 -4 -1 1 0 1 1 0 
−1 0 0 0 -2 0 2 -2 1 0 
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IX. Method: Transmission line theory and experimental 

characterization 

Transmission line theory 

In order to observe the non-Abelian topological charges experimentally, we implement the 

tight binding model using transmission line networks with braiding connectivity. For a network 

connected by transmission lines, the wave function of each node satisfies the network 

equation7-9: 

																								−𝜓@�·� cothº𝑧𝑙@!
(")¼

#+,

"$%

½
!

+�·�
1

sinhº𝑧𝑙@!
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#+,
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½𝜓!
!

= 0																									(S10) 

where 𝜓@ and 𝜓! are, respectively, wave amplitudes at nodes 𝑚 and 𝑛, 𝑁@! denotes the cable 

number connecting nodes 𝑚 and 𝑛, 𝑙@!
(")  is the length of the kth cable between nodes 𝑚 and 𝑛, 

𝑧 = (𝑖𝜔/𝑐A)√𝜖N with 𝜔, 𝑐A and 𝜖N being the angular frequency, the speed of light in vacuum, 

and the relative permittivity of the dielectric medium in the coaxial cables, respectively. In the 

lossless case, 𝑧 is a purely imaginary number. If we set all the lengths of cables to be the same 

𝑙@!
(") = 𝑙A and each node connects the same number of cables 𝑁A, the Eq. (S10) can be deformed 

to: 

																																																													�𝑁@!
!

𝜓! = 𝑁Acos(𝑔𝑙A) ∙ 𝜓@																																								(S11) 

where 𝑔 = (𝜔/𝑐A)√𝜖N  is a purely real number for lossless case. This equation form is 

mathematically equivalent to the tight binding equation with eigen-energy 𝑁Acos(𝑔𝑙A) and 

hopping strength 𝑁@!  between nodes 𝑚 and 𝑛. The on-site energy can also be realized by 

connecting cables staring from node 𝑚 and ending also at node 𝑚 itself to form loops, then on-

site energy is 𝑁@@ = 2𝑗, where 𝑗 is the number of loops on node 𝑚. Thus, transmission line 

network offers an ideal platform to realize various tight binding models. 
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To show how to relate the transmission line network with tight binding model, we take a 1D 

periodic system as an example as shown in Fig. S23. 

 

In the pedagogical example, we just assume there are two sublattices A and B in one unit-cell 

connected by N1 transmission lines and they are also connected with the sublattices of the 

neighbouring unit cells by N2 transmission lines. All the transmission lines have the same 

length l0 and the lattice constant is a. According to the transmission line equation, we can write 

the following equation for node A: 

−(𝑁% + 𝑁&) ∙ cot(𝑔𝑙A) ∙ 𝜓E + J
#-

OPQ	(S>.)
+ #"

OPQ	(S>.)
∙ exp(−𝑖𝑘7𝑎)L ∙ 𝜓F = 0      (S12) 

The kx is the Bloch wave vector. For node B, we can also write its equation in the same way: 

J #-
OPQ	(S>.)

+ #"
OPQ	(S>.)

∙ exp(𝑖𝑘7𝑎)L ∙ 𝜓E − (𝑁% + 𝑁&) ∙ cot(𝑔𝑙A) ∙ 𝜓F = 0         (S13) 

By combining the Eqs. S12 and S13 and after some deformation, we can get the matrix form 

of the transmission line equations: 

À 0 𝑁% + 𝑁& ∙ exp(−𝑖𝑘7𝑎)
𝑁% + 𝑁& ∙ exp(𝑖𝑘7𝑎) 0 Á À𝜓E𝜓F

Á = (𝑁% + 𝑁&)cos	(𝑔𝑙A) À
𝜓E
𝜓F
Á  (S14) 

We see that Eq. S14 is an eigen-equation of the tight binding model with eigen-energy of 

(𝑁% + 𝑁&)cos	(𝑔𝑙A). The intra-unit cell hopping term is N1 and the inter-unit cell one is N2. 

This example shows that the transmission line network can exactly mimic a tight binding model 

with integer hoppings. 

 

Figure S24 shows the realistic connectivity in transmission line networks towards realizing the 

cases shown in Fig. 3 in the main text. 

 

Experimental characterization 
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The tight-biding model in the main text (Eq. 2) looks deceptively simple but its experimental 

realization is a bit tricky as it requires complex number hoppings. To realize the complex 

hoppings, the network is required to have multiple nodes in each meta-atom10. Each meta-atom 

is actually the compactification of a hidden dimension carrying four nodes (layers) from top to 

down as shown in the inset of Fig. 3a. We label the four nodes in one meta-atom by indices 1, 

2, 3 and 4 from top to bottom. As such, there are four allowed subspaces. Each subspace can 

be characterized by a pseudo angular momentum with 𝑒-MT, = 1	(𝑛 = 1,2,3,4), with 𝜑% =

0, 𝜑& =
+
&
, 𝜑2 = 𝜋	𝑎𝑛𝑑	𝜑M = − +

&
. We work with the subspace 𝜑& =

+
&

 to realize our 3 × 3 

Hamiltonian and within this subspace, the eigenfunctions in the 4 nodes have relative phases 

of (1, 𝑖, −1,−𝑖). When we specifically excite the four-nodes inside the meta-atom with a 

relative constant phase shift +
&
 as (1, 𝑖, −1,−𝑖), in the subspace the time-reversal symmetry is 

effectively broken, following the same way as that each spin space (if applicable) in the Kane-

Mele model breaks the time-reversal symmetry. Of course, there exists its time-reversal 

counterpart subspace (1,−𝑖, −1, 𝑖), but there is no conversion between them (i.e. the system 

contains two block-diagonalized time-reversal counterparts, in a similar way as the Kane-Mele 

model). 

 

When we excite one meta-atom by imposing the phase shift, the excitation only has projection 

on the eigenmodes of the selected sub-space (and is orthogonal to the modes in other sub-

spaces) and hence only the three modes in that subspace are excited. In other words, each 

subspace corresponds to a pseudo angular momentum (as mentioned in the main text), and as 

long as the angular momentum is preserved, other subspaces are not excited. In the experiment, 

we checked the results by making the projection of the measured data onto the specified 
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subspace and we indeed found that the projection is nearly 100%, reassuring that the leakage 

into other subspaces (due to imperfections) is negligibly small. 

 

There are three meta-atoms in a unit cell labelled with A, B, and C. In total, 12 nodes are 

constructed in each unit cell. As mentioned above, the whole system can be block-diagonalized 

into the four disjoint subspaces represented by the four pseudo angular momenta, and each 

subspace contains three degrees of freedom. Here we only consider one subspace, which 

corresponds to three bands, the rest of 12 − 3 = 9 bands goes beyond our interests here. 

 

In experiment, we use a signal generator (Keysight 8647A Synthesized Signal Generator) 

which is marked with ‘S’ as shown in Fig. S25 to be the source, and an oscilloscope marked 

with ‘O’ (Keysight DSOX2002A Oscilloscope) to measure the voltage at each meta-atom. The 

AC frequency signal from the signal generator is input to the nodes of one meta-atom by cable 

1 as indicated with the red arrow. The eigenmodes in the topological networks are excited by 

the input signal, all meta-atoms together provide the corresponding voltage distributions. To 

measure the voltage at each node without breaking the original system, we directly connect the 

node to the oscilloscope using a short cable (cable 2). The impedance of the oscilloscope is 

much higher compared to the transmission lines (1𝑀𝛺	𝑡𝑜	50	𝛺), so the oscilloscope connected 

to the node with very short line could be regarded as a hard wall to our system. The influence 

of the measurement equipment to our system could be ignored in this way. 

 

Here cable 3 is used to provide a reference signal for the phase measurement. To excite the 

specified eigenmodes better, the AC signals are input to the four-layer nodes with a phase shift 

+
&
 of meta-atoms A, B and C successively in a designated unit cell. With each excitation, both 
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the amplitude and phase of the site-resolved voltage from all the meta-atoms in our 

transmission line networks are recorded. The Bloch wave functions can be obtained after 

Fourier transformation, which give the experimental band structures and eigenstate mappings 

of our system. 

 

We measured the bulk spectrum using an open chain containing 13 unit cells (and about 470 

coaxial cables). In our measurement of bulk bands, the signal is injected from the middle 

position of the open chain that is very far away from the boundary so that the edge states cannot 

be excited. For the detection of edge/domain-wall states, the signal is injected at the positions 

near the edge/domain-wall. 

 

In realistic systems, eigenvectors are not gauge invariant, it is hard to measure without 

imposing some extra conditions. In other words, one has to fix the gauge field first and then 

map them in the experiment. First we design the PT symmetric Hamiltonian (Eq. 2) to be real 

(via carefully introducing complex hoppings). Consequently, the eigenvectors are real as well. 

From this perspective, the only freedoms left are ±|𝑢B(𝑘)⟩	𝑤𝑖𝑡ℎ	𝑋 = 𝐴, 𝐵, 𝐶 . Finally, we 

impose the right-handed rule to the eigenstate frame, i.e., (|𝑢E(𝑘)⟩ × |𝑢F(𝑘)⟩) ∙ |𝑢G(𝑘)⟩ > 0, 

when plotting the eigenstate frame sphere. 
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XI. Figures 

 

 

Figure S1 | a-d The curve cosets of 𝑫𝟐 in 𝑺𝑶(𝟑) space corresponding to Figs. 1b-e in the 

main text, respectively. Black, red, green and blue curves indicate 𝑅(𝑘)  acting on 𝐷& =

[𝐼, 𝑅(𝑥¦, 𝜋), 𝑅(𝑦¦, 𝜋), 𝑅(𝑧̂, 𝜋)] , respectively. One can form the topological space 𝑋/𝐻  with 

identifying points of 𝑋  which can be related by some element of 𝐻  (𝑥 ≡ 𝑥ℎ ). This is to 

intuitively show the fundamental homotopy group of space 43(2)
5"

. 
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Figure S2 | Continuous transition of charge −𝟏 in SO(3) space. a, Eigenstate frames vary 

along with the rotation of rotation axis. The rotation axis is defined as 𝑛¦ = cos 𝜃8 𝑧̂ + sin 𝜃8 𝑥¦. 

Red/green/blue indicates the eigenstate trajectory of the 1st /2nd /3rd band. b, The 

corresponding curve cosets of 𝐷& in 𝑆𝑂(3) space. Black, red, green and blue curves indicate 

𝑅(𝑘) acting on 𝐷& = [𝐼, 𝑅(𝑥¦, 𝜋), 𝑅(𝑦¦, 𝜋), 𝑅(𝑧̂, 𝜋)], respectively. Here, 𝑆𝑂(3) space is a solid 

sphere embedded in the three-dimensional space ℝ2  with a radius of 𝜋 . Each point is 

parametrised by the rotation with normalized axis 𝑛¦(𝑘)  and rotation angle 𝜙(𝑘)  as 

𝑅[𝑛¦(𝑘), 𝜙(𝑘)] = expÌ𝜙(𝑘)	𝑛¦(𝑘) ∙ 𝐿_⃗ Í . The wedge colorbars indicate the direction of 

wavevector 𝑘 running from −𝜋 to +𝜋. 
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Figure S3 | Continuous transition in the charge −𝟏. a, Triad-vector field with a singularity 

located at the centre. b, Mapping the triad-vector field on to a semi-sphere. c, Eigenstate 

trajectories (𝑘:−𝜋 → 𝜋)  along the cyan loops shown in (b). Red/green/blue indicates the 

eigenstate trajectory of the 1st /2nd /3rd band. d, Tilted cyan loop encircling the singularity. e, 

The trajectories of three eigenstates corresponding to (d). f, Contractible cyan loop without 

encircling the singularity indicating charge +1 . g, The trajectories of three eigenstates 

corresponding to (f) are contractible. The arrow position indicates the start point in (a, b, d and 

f), corresponding to the thickest point in (c, e and g). 
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Figure S4 | Tight binding ladder with three legs. a, ‘Short’ indicates the NN (nearest 

neighbour) hoppings. b, ‘Long’ indicates the NNN (next nearest neighbour) hoppings. c, The 

case when considering both the NN and NNN hoppings together. For brevity, 

𝑠BC𝑐B,!
' 𝑐C,!(𝑋, 𝑌 = 𝐴, 𝐵, 𝐶	𝑎𝑛𝑑	𝑋 ≠ 𝑌) hoppings are not illustrated. 
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Figure S5 | Edge states at hard boundaries with parameters listed in Tab. S2. a-d, Edge 

states (red dots) at hard boundaries for charges +𝑖 , +𝑗 , +𝑘  and −1 , respectively. The 

eigenstate distributions (left panels) are illustrated accompanying with the eigen-energy 

profiles (right panels). 
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Figure S6 | Coupling of the 2nd band induces one more edge state (red line) per edge in 

the charge +𝒋. a and b, Corresponding to 𝑠FF = 2 and 𝑠FF = 2.2, respectively. When 𝛿𝑢 =

0, the 2nd band is decoupled from the other two bands, the system can be regarded as a two-

band system. There is only one edge state per edge as indicated by the gray circle in (b) (see 

Fig. 2c in the main text corresponding to (a)), while one more edge state (per edge) emerges 

from the middle (2nd) band when 𝛿𝑢 > 0 (switching on the coupling). (Parameter setting, 𝑢 →

𝑢 + 𝛿𝑢, the rest is from Tab. S1) 

  



 36 

 

 

Figure S7 | Robustness of edge states against disorder for charges +𝒊 (a) and +𝒌 (b). The 

solid red lines indicate non-Abelian topological phase transitions (as long as one of two 

bandgaps is closed) with increasing the disorder strength 𝛿 added onto 𝑠EE, 𝑠FF 	𝑎𝑛𝑑	𝑠GG , i.e., 

𝑠EE,! = 𝑠EE + 𝜖E(|𝜖E| < 𝛿) with 𝑛 indicating the site number (Parameters are from Tab. S2). 

The red ellipses indicate the corresponding edge states. 
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Figure S8 | Topological phase transition from charge +𝒊 to +𝒋. a, Band structure transition 

experiencing bandgap opened→closed→reopened process. The gray circles indicate linear 

band crossings. The quadratic degeneracy at 𝑘 = 0  is accidental. b, The corresponding 

eigenstate frame transition. The gray circles indicate the double degeneracies of eigenstates at 

𝑘 = ±𝜋. Red/green/blue colour indicates the eigenstate trajectory of the 1st /2nd /3rd band. 

The direction of line-width decreasing indicates 𝑘:−𝜋 → 𝜋. The rest parameters are 𝑣EE =

−1, 𝑣FF = 1, 𝑢 = −1, 𝑣 = 1. 
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Figure S9 | Topological phase transition (T) from charges +𝒊 to 1 (a), +𝒋 to 1 (b), +𝒌 to 1 

(c) and +𝒊 to −𝒊 (d). Two linear crossings in (d) arise during the transition implies a change 

of charge Δ𝑄 = 𝑖 −𝑖⁄ = −1. All others experience only one linear crossing. (Parameter setting, 

a: 𝑠GG = −4, 𝑣EE = − %
&
, 𝑣FF =

%
&
, 𝑢 = − %

&
, 𝑣 = %

&
; b: 𝑣EE = − %

&
, 𝑣FF =

%
&
, 𝑢 = − %

&
, 𝑣 = %

&
; c: 

𝑠GG = 4, 𝑣EE = − %
&
, 𝑣FF =

%
&
, 𝑢 = − %

&
, 𝑣 = %

&
; d: 𝑠GG = −4, 𝑣EE = −1, 𝑣FF = 1, 𝑣 = 1 ; the 

rest are all 0) 
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Figure S10 | Topological phase transition with Abelian (a) and non-Abelian (b) 

topological charges. b, (ref. 11) Cycle graph of the quaternion group ℚ . In the Abelian 

topological phase, the topological phase transition is single pathed. While in the non-Abelian 

topological phase, the topological phase transition is multiple-pathed. There are six paths that 

the system can be changed from charge −1 to +1, and the bandgap closing details are different 

in these paths. 
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Figure S11 | Continuous transition parametrized by 𝜽𝒙,𝒚,𝒛  in the charge −𝟏 . a, The 

eigenstate frame evolving with rotating the rotation axis 𝑥¦ to 𝑦¦ as parametrized by 𝜃9: 0 →
+
&
. 

The rotation axis is defined as 𝑛¦ = cos 𝜃9 𝑥¦ + sin 𝜃9 𝑦¦. b, Similar to (a) but for 𝑦¦ → 𝑧̂. The 

rotation axis is defined as 𝑛¦ = cos 𝜃7 𝑦¦ + sin 𝜃7 𝑧̂. c, Similar to (a) but for 𝑧̂ → 𝑥¦. The rotation 

axis is defined as 𝑛¦ = cos 𝜃8 𝑧̂ + sin 𝜃8 𝑥¦ . Red/green/blue color indicates the eigenstate 

trajectory of the 1st /2nd /3rd band. d/e/f, Edge states (black lines) evolve with 𝜃9/7/8 defined 

in (a/b/c). The 1st, 2nd and 3rd bulk bands are coloured in red, green and blue, respectively. 
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Figure S12 | Flow chart for proving the non-Abelian quotient relation. 
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Figure S13 | The loop product in the fundamental homotopy group and topological phase 

transition from 𝑸𝑳  (a) to 𝑸𝑹  (c) with shrinking the blue loop 𝚫𝑸 (b) to the basepoint 

(black dot). a, The charge 𝑄: = Δ𝑄 ∙ 𝑄; indicated by the loop product. b, Shrinking the charge 

Δ𝑄 loop to be the basepoint to enable the topological phase transition from 𝑄: to 𝑄;. c, The 

charge 𝑄; after topological phase transition. 
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Figure S14 | Jackiw-Rebbi argument for “where there is a bandgap closing there is a 

domain-wall state”. a-c, Topological phase transition from charge +𝑖  to +1  when 

continuously shrinking the magenta circle (white circle in each 2D band sheet) via system 

parameter tuning. d-f, The corresponding 1D band structure along the polar angle 𝜃 of each 

magenta circle. The bandgap-closing and reopening imply the existence of edge mode. g, 

Schematically localized domain-wall state between charges +𝑖 and +1, corresponding to the 

topological phase transition (b and e).  
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Figure S15 | Extension to 2D extended plane of the flat-band Hamiltonian (parameters 

are from Tab. S1). The non-Abelian charges are labelled in each panel (a-e). The white unit 

circle indicates the 1D Hamiltonian (Eq. 2 or Eq. S6). The three bands are coloured in red, 

green and blue, respectively. The bottom plane indicates the eigenstate distribution. 
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Figure S16 | Extension to 2D extended plane of the Hamiltonian measured in experiment 

(parameters are from Tab. S2). The non-Abelian charges are labelled in each panel (a-d). 

The white unit circle indicates the 1D Hamiltonian (Eq. 2 in the main text). The three bands 

are coloured in red, green and blue, respectively. The bottom plane indicates the eigenstate 

distribution. 
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Figure S17 | Extension to 2D extended plane of the flat-band Hamiltonian for charge −𝟏. 

a, The edge states (black) evolution with 𝜃9. With increasing the angle 𝜃9, the 2D extended 

bands change from (b) to (f). The white unit circle indicates the 1D Hamiltonian (Eq. S6). The 

three bands are coloured in red, green and blue, respectively. The bottom plane indicates the 

eigenstate distribution. 
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Figure S18 | Extension to 2D extended plane of the flat-band Hamiltonian for charge −𝟏. 

a, The edge states (black) evolution with 𝜃7. With increasing the angle 𝜃7, the 2D extended 

bands change from (b) to (f). The white unit circle indicates the 1D Hamiltonian (Eq. S6). The 

three bands are coloured in red, green and blue, respectively. The bottom plane indicates the 

eigenstate distribution. 
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Figure S19 | Extension to 2D extended plane of the flat-band Hamiltonian for charge −𝟏. 

a, The edge states (black) evolution with 𝜃8. With increasing the angle 𝜃8, the 2D extended 

bands change from (b) to (f). The white unit circle indicates the 1D Hamiltonian (Eq. S6). The 

three bands are coloured in red, green and blue, respectively. The bottom plane indicates the 

eigenstate distribution. 
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Figure S20 | Summary of band degeneracies in the extended 2D plane for various non-

Abelian topological charges. With fixing the left and right end points (black points), one can 

smoothly adjust the interval bands arbitrarily, i.e., from b to c and mutual transitions between 

e-h. Here we just show the representative and neat degeneracy forms. The quadratic 

degeneracies in e-g may split into two Dirac cones. 
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Figure S21 | Domain-wall constructions of different cases measured in experiment, 

corresponding to Figs. 4d-h in the main text. Arrows/triangles with the corresponding 

colours are the excitation/probing unit cells of domain-wall states. Dashed boxes indicate the 

domain-walls, where the onsite energies are chosen from left or right bulk lattices as 

schematically shown. The domain-wall onsite energies in the charge pair of (+𝑖, −𝑖) are 2, 4 

and -4 corresponding to meta-atoms A, B and C, respectively. 
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Figure S22 | Field distribution of domain-wall states between charges of +𝒊 and −𝒊. a, 

Bulk (BulkS) and domain-wall states (DWS). On the right side the two experimental panels 

correspond to different probing positions as shown in (b). b, Field distribution of the bulk and 

domain-wall states. Orange/gray triangle indicates the position to probe the (1st and 3rd)/2nd 

domain-wall states. We note that the domain-wall states can have nearly zero amplitude at 

some sites.  
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Figure S23 | A one-dimensional periodic transmission line network. 
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Figure S24 | Transmission line connectivity of four cases measured in experiments (Fig. 

3 in the main text). The corresponding parameters in the tight binding model are listed in Tab. 

S2. 
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Figure S25 | Setups for the experimental measurements. ‘S’ indicates the signal generator 

(Keysight 8647A Synthesized Signal Generator), and ‘O’ is the oscilloscope (Keysight 

DSOX2002A Oscilloscope). The AC frequency signal from the signal generator is input to the 

nodes of one meta-atom by cable 1 (red arrow). The short cable 2 (cyan arrow) is used to 

measure the voltage at each node without breaking the original system. The cable 3 (green 

arrow) is used to provide a reference signal for the phase measurement. 
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