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Reviewer Reports on the Initial Version: 

Ref #1 

In this work, Guo et al. investigate the recently proposed non-Abelian band topology that arises in 
one-dimensional systems with PT (parity and time-reversal) symmetry in the presence of multiple 
band gaps. In particular, they use transmission-line networks to emulate 1D systems characterized 
by the various elements of the underlying quaternion group. These 1D systems are then used by 
the authors to experimentally confirm a previously predicted bulk-boundary correspondence, and 
to establish a new bulk-domain wall correspondence for these one-dimensional topological bands. 
 
Let me first put this work into a wider perspective. The non-Abelian band topology considered here 
was recently predicted to characterize gapped PT-symmetric systems in one dimension, and to 
capture momentum-space exchange of band nodes in two-dimensional PT-symmetric systems. The 
interplay of the non-Abelian topology with crystalline symmetry has led to fresh insights into the 
stability of nodal chains, braided Dirac points, and into nodal links; yet simple and tunable systems 
to investigate the non-Abelian topological charges are at present missing. From this perspective, 
the results and the experimental setting presented by Guo et al. are very timely, and certainly 
deserve publication. On the other hand, however, I would like to point out that there is nothing 
intrinsically “quantum” about this topology (as the authors implicitly admit when referring to line 
defects in nematic crystals), therefore I find the references by the authors to “quantum 
computation” misleading, and suggest to drop them. There is a major conceptual difference 
between non-Abelian topological order required for quantum computing and the non-Abelian band 
topology discussed here. 
 
When considering the suitability of this work for a high-profile journal, one should regard the 
novelty brought by this work, and the impact it would have on the field. From this perspective, it 
appears to me that this work does not put forward a new theory [the theoretical discussion until 
Eq. (3) is mostly a review of Ref. 19, while the bulk-edge correspondence follows Supplementary 
Material of the same reference], nor a novel experimental technique [transmission-line networks 
have become a common tool of choice for tabletop emulation of band structures, and the 
introduction of complex hoppings through the internal structure of the “meta-atoms” has been also 
previously established e.g. by Ref. 30], nor a striking experimental result [the correspondence 
between theoretical spectrum of a (non-interacting) matrix Hamiltonian and its emulation in 
artificial systems is generally good in this class of experiments]. Therefore, I am of the opinion 
that this work does not constitute a paradigm shift and the very high standards expected by 
journal Nature. 
 



 

On the other hand, as the work provides the (to my knowledge) very first experiment detection of 
the non-Abelian band topology of one-dimensional bands and of their bulk-edge correspondence, I 
can imagine it could possibly be suitable for one of the Nature sister journals (such as 
[REDACTED]), provided that the work is properly edited and supplemented (see concrete 
suggestions and questions listed below). What I see as a further value of this work is the 
illustrative way of presenting the 1D Hamiltonians using the eigenstate-frame sphere, and the 
investigation of bound states at domain walls, thus generalizing the previously introduced bulk-
boundary correspondence for the non-Abelian topological charge. To meet these goals, the article 
would serve better if it were shortened to the “letter format”, with properly referencing and 
shortening the theoretical review (which presently constitutes the first half of the text), while 
moving to the main text certain details about the experiment. 
 
In summary, I think the work (even after the appropriate revisions) does not meet the high 
standards of journal Nature. However, assuming the work is properly edited, it could be 
appropriate for a more topic-specific NPG journal. 
 
Besides the general assessment summarized above, I list here several concrete comments and 
questions that the authors should consider before resubmitting their work. 
 
1.) The authors write in the abstract, that they “propose the non-Abelian bulk-edge 
correspondence, where the edge states are found to be fully determined by non-Abelian 
topological charges”. However, this bulk-edge correspondence does not seem to encapsulate a 
particularly strong statement, namely, it is stated in the text that the edge state pertaining to 
charge j “can be anywhere between the 1st and 3rd band”, while the edge states emanating from 
charge -1 “are fickle”. Can the bulk-edge correspondence be transformed into a some stronger 
statement? 
 
2.) Eq. (2) contains a general nearest-neighbor PT-symmetric Hamiltonian. The authors claim that 
by choosing the parameters properly, they can mimic all the flat-band cases in Fig.1b—e (do these 
correspond to Fig. S16 and S17 from Ref. 19?). However, a look at the Supplementary Material 
reveals that Fig.1(e) requires next-nearest-neighbor elements beyond the Hamiltonian in Eq. (2). 
 
 
3.) Certain key specifications of the experimental setting are missing. Is a coaxial used as the 
transmission line? Furthermore, the authors claim below Eq. (2) that the constructed tight-binding 
model breaks both time-reversal and parity symmetry (while preserving the combined PT-
symmetry). Could the authors specify where in their experimental setting is the time-reversal-
breaking element? (Or do the authors mean that although the most general model described by 
Eq. (2) breaks P and T individually, the specific 1D models which they experimentally build 
preserve both symmetries?) 
 
4.) Per the trick with the four internal nodes of each “meta-atom” (sublattice), there are in total 
4x3 = 12 nodes per unit cell, which should result in 12 bands. However, only three bands that 
emulate the non-Abelian band topology with quaternion invariant are explicitly discussed and 
plotted. Could the authors comment/clarify what is the fate of the remaining (12-3) = 9 bands? 
 
5.) Could the authors briefly comment how the bulk and edge spectra in Fig. 3 are measured? It 
appears to me, that to obtain the bulk spectrum through Fourier-transforming the measured 
voltages, a periodic boundary condition needs to be set up by closing the 1D system into a ring. In 
contrast, open boundary conditions should be present to detect the edge spectrum. 
 
6.) It remains unclear to me after studying this manuscript to what extent are the topological 
phases “+i” and “-i” distinct from each other. Naively, I would expect that the overall sign cannot 
be meaningfully defined, since one can change the pi-rotation of the eigenstate-frame into a (-pi)-
rotation by doing a discrete gauge transformation on the eigenstate-frame with an element of the 



 

O(3) group. In other words, the action of the gauge group should split the elements of the 
quaternion group into conjugacy classes, with “+i” and “-i” corresponding to a single conjugacy 
class. 
 
However, my conclusion seems be refuted by the data in Fig.S12(a), where a domain wall between 
phases “+i” and “-i” results in bound states reminiscent of the edge of phase -1 (=+i/-i). Could the 
authors clarify this issue? In fact, this is the only type of domain where the arising bound states 
cannot be explained using solely the quantized Berry phases in the individual band gaps. From this 
perspective, I would like to urge the authors to move this very interesting result from the 
Supplemental Material into Fig. 4 of the main text. 

Ref  #2 

The non-Abelian quaternion topological charges in momentum space were firstly introduced in ref. 
19 (Science 364, 1273, 2019) to characterize some novel line nodes. Some features of these non-
Abelian quaternion topological charges have been demonstrated in the authors’ recent work in ref. 
22 (Phys. Rev. Lett. 125, 033901 2020), but those are indirect evidences. I believe the current 
work is indeed the first direct measurement on the non-Abelian quaternion topological charges, 
which certainly is very important. I have a few questions, which hopefully the authors can clarify. 
 
1. In the case of a domain wall between +i and -i charges, if we follow Fig. 4c, then the first 
bandgap should have no edge state, and the second bandgap should have no edge state either 
(Zak phase of pi is equivalent to -pi). But according to the new bulk-edge correspondence 
proposed in the current work, the edge state should correspond to the case of charge -1, which 
does support edge states as shown in Fig. 2e. Could the authors clarify this issue? 
 
2. In Fig. S12a, varying the probe position changes not only the edge state distribution, but also 
the number of edge states. Why is that? 

Ref #3 

In their manuscript “Experimental observation of non-Abelian topological charges and bulk-edge 
correspondence”, Guo and collaborators investigate both theoretically and experimentally the 
emerging concept of non-Abelian topological charges in 1D reciprocal space, which was first kick 
started by Bzdusek and his colleagues last year. The authors present the mathematical analysis 
(homotopy group theory) as well as the first experimental observation of the quaternions in the 1D 
PT-symmetric transmission line network. In particular, the authors propose for the first time the 
non-Abelian bulk-edge correspondence, and provide the experimental evidences for their 
statement. All of these aspects are novel and very interesting, their experimental results are neat 
and timely, and the manuscript is well organized. I believe this work will be of significant interest 
to the community. Before recommending it for publication in Nature, the authors need to address 
the following comments and suggestions. 
 
I find the mathematical model present to explain the essential idea of the paper is hard to read, I 
believe the readers who are not familiar with the language of homotopy group need more 
explanations from the authors. For example, how does the rotation matrix R(k) come? Why it has 
the form R(k)=exp((k+\pi)/2*Lx,y,z) for topological charges +i/+j/+k but has the different form 
R(k)=exp((k+\pi)*Lx,y,z) for charge -1? What’s more, The discussion of isomorphism map 
between O(3) and S0(3) reads obscure, and the figure 1(f-i) do not provide me more insight than 
the figure 1(b-e) do, and I don’t see the single curve is terminated at antipodal points in SO(3) 
sphere for charges +i/+j/+k. I suggest the authors either provide more physical intuition for these 
abstract concepts in the main text, and detail the according explanation in the supplementary 
materials if necessary, or give relevant references to their argument. 
 
In the 3 bands model, the topological transition between different non-Abelian charges follows the 



 

order +i -> +j -> +k because of the bandgaps close and reopen. For Abelian case, the topological 
transition occurs between the trivial phase and topological phase. Does similar scenario occur for 
the non-Abelian case, for example, the quaternion charge transition from +i/+j+/k to +1? A 
broader question is, can the topological transition of quaternion charges occur in an arbitrary 
order? 
 
The bulk quaternions are distinguished by their distinct behaviors on the so called “EigenS-Frame” 
sphere, which not only determine the number of edge states in the bandgap, but also decide the 
distribution of them over several bandgaps. To experimentally show the non-Abelian topological 
charges, the authors extract the eigenvectors from measured phases and fields and plot them on 
the “EigenS-Frame”, and the experimental results and theoretical results match so well. Since 
eigenvectors are not gauge invariant, and therefore, in principle are not measurable quantities, 
how do the authors keep track of the right eigenstates (eigenstates might not be excited), and fix 
the gauge of the measured eigenvectors in the experiment? 
 
Different from the edge states in 1D SSH model, the edge states for charge +j and -1 are not 
topologically stable in their energy since they are fickle and vary according to the details of the 
model. What about the edge states for charge +i/+k? Are they stable in their energy? In relation 
to this, are these edge states topologically robust again the disorder? The authors may include the 
study of this aspect either theoretically or experimentally. 
 
The authors claim the non-Abelian bulk-edge correspondence is determined by \DeltaQ=Q_L/Q_R, 
although all edge states can be predicted from Zak phases of the respective bandgaps, or 
equivalently the phases \pi winding of the eigenstates. The authors provide some but not exclusive 
examples to show such relation indeed holds, but how can we assure this non-Abelian relation is 
generally true? 
 
For the model implemented in the experiment, why the number of edge states is 4 for topological 
charge +j (Figure S4, (b))? I expect it is also 2 based on the flat band TBM in Figure 2(c). 
 
 
The following questions are also very interesting and general, but they might not directly relate to 
the major points of this manuscript, therefore, the authors might or might not consider 
implementing them. 
 
Are the quaternion charges unique for three bands model? Assume if an extra band is added into 
the system, will this band trivialize other bands like the case of fragile topology? 
 
Since the non-Abelian charges are non-commutative, do they place the constraint on the 
admissible configurations of the 3 bands model? 
 
Provided further studies addressing my comments are performed, the manuscript meets the 
criteria of Nature and therefore I recommend the acceptance. 

Author Rebuttals to Initial Comments: 

Referee #1 (Remarks to the Author): 

 
Comment 1.1: In this work, Guo et al. investigate the recently proposed non-Abelian band 
topology that arises in one-dimensional systems with PT (parity and time-reversal) symmetry 
in the presence of multiple band gaps. In particular, they use transmission-line networks to 
emulate 1D systems characterized by the various elements of the underlying quaternion 
group. These 1D systems are then used by the authors to experimentally confirm a previously 



 

predicted bulk-boundary correspondence, and to establish a new bulk-domain wall 
correspondence for these one-dimensional topological bands. 

Reply 1.1: We thank the referee for the careful reading and nice summary of our work. 

 
Comment 1.2: Let me first put this work into a wider perspective. The non-Abelian band 
topology considered here was recently predicted to characterize gapped PT-symmetric 
systems in one dimension, and to capture momentum-space exchange of band nodes in two-
dimensional PT-symmetric systems. The interplay of the non-Abelian topology with 
crystalline symmetry has led to fresh insights into the stability of nodal chains, braided Dirac 
points, and into nodal links; yet simple and tunable systems to investigate the non-Abelian 
topological charges are at present missing. From this perspective, the results and the 
experimental setting presented by Guo et al. are very timely, and certainly deserve 
publication. On the other hand, however, I would like to point out that there is nothing 
intrinsically “quantum” about this topology (as the authors implicitly admit when referring to 
line defects in nematic crystals), therefore I find the references by the authors to “quantum 
computation” misleading, and suggest to drop them. There is a major conceptual difference 
between non-Abelian topological order required for quantum computing and the non-Abelian 
band topology discussed here. 

Reply 1.2: We thank the referee for his/her recognitions and positive assessments of our 
work. 

We comply with the referee’s suggestion and we have deleted the phrase “quantum 
computation” as well as the related reference in the revised text. 

 
Comment 1.3: When considering the suitability of this work for a high-profile journal, one 
should regard the novelty brought by this work, and the impact it would have on the field. 
From this perspective, it appears to me that this work does not put forward a new theory [the 
theoretical discussion until Eq. (3) is mostly a review of Ref. 19, while the bulk-edge 
correspondence follows Supplementary Material of the same reference], nor a novel 
experimental technique [transmission-line networks have become a common tool of choice 
for tabletop emulation of band structures, and the introduction of complex hoppings through 
the internal structure of the “meta-atoms” has been also previously established e.g. by Ref. 
30], nor a striking experimental result [the correspondence between theoretical spectrum of a 
(non-interacting) matrix Hamiltonian and its emulation in artificial systems is generally good 
in this class of experiments]. Therefore, I am of the opinion that this work does not constitute 
a paradigm shift and the very high standards expected by journal Nature. On the other hand, 
as the work provides the (to my knowledge) very first experiment detection of the non-
Abelian band topology of one-dimensional bands and of their bulk-edge correspondence, I 
can imagine it could possibly be suitable for one of the Nature sister journals (such as 
[REDACTED]), provided that the work is properly edited and supplemented (see concrete 
suggestions and questions listed below). What I see as a further value of this work is the 
illustrative way of presenting the 1D Hamiltonians using the eigenstate-frame sphere, and the 



 

investigation of bound states at domain walls, thus generalizing the previously introduced 
bulk-boundary correspondence for the non-Abelian topological charge. To meet these goals, 
the article would serve better if it were shortened to the “letter format”, with properly 
referencing and shortening the theoretical review (which presently constitutes the first half of 
the text), while moving to the main text certain details about the experiment. In summary, I 
think the work (even after the appropriate revisions) does not meet the high standards of 
journal Nature. However, assuming the work is properly edited, it could be appropriate for a 
more topic-specific NPG journal. 

Reply 1.3: We thank the reviewer for considering that our work “provides the (to my 
knowledge) very first experiment detection of the non-Abelian band topology of one-
dimensional bands”. Furthermore, we also propose non-Abelian bulk-edge correspondence 
for the first time, and as the reviewer stated, our work directly generalizes “the previously 
introduced bulk-boundary correspondence for the non-Abelian topological charge”. It has 
been well known that the celebrated Abelian bulk-edge correspondence serves as a corner 
stone for the field of topological physics. Therefore, we believe that the notion of non-
Abelian bulk-edge correspondence will bring similar impact to the field. 

We thank the referee for pointing out that “the article would serve better if it were shortened 
to the “letter format” to improve the presentation of our work. In the revised text (also to 
satisfy the length limit up to 2500 words), we have moved some parts of theoretical 
discussion into the supplementary materials and we have added certain details about the 
experiment in the main text. 

1. We revised and moved the following paragraphs into the supplementary materials (Sec. 
I): 

“It is worth noting that in general, the winding trajectories of eigenstates are not fixed on 
great circles. In contrast to which axis the states wind about, …These curves all thread a pair 
of antipodal points, so they are closed and not contractible, which is topologically guaranteed 
by ߨଵሺܱܵሺ3ሻሻ ൌ Ժଶ.”. 

2. We moved Fig. 1f-i into the supplementary materials (Sec. I) as Fig. S1. 
3. We revised and moved the following paragraph into the method section in supplementary 

materials (Sec. IX), 

“In order to observe the non-Abelian topological charges experimentally, we implement the 
above tight binding model using transmission line networks with braiding connectivity. For a 
network connected by transmission lines, the wave function of each node satisfies the 
network equation1,2: … Thus, transmission line network offers an ideal platform to realize 
various tight binding models.” 

4. We supplemented the following details about the experiment (on page 6 in the revised 
main text). 

“In the experiment, a network consisting of 13 periods was designed to characterize the non-
Abelian topological charges corresponding to ൅݅, ൅݆, ൅݇ and െ1, respectively. There are 



 

three meta-atoms A, B and C in one unit-cell, and Fig. 3a is the photo of the network for the 
specific configuration of charge െ1. The inset shows that there are four nodes represented by 
the cable connectors labelled 1, 2, 3, 4 in each meta-atom. As such, there are four allowed 
subspaces. Each subspace can be characterized by a pseudo angular momentum with ݁௜ସఝ೙ ൌ 1	ሺ݊ ൌ 1,2,3,4ሻ 2, with ߮ଵ ൌ 0, ߮ଶ ൌ గଶ , ߮ଷ ൌ ସ߮	݀݊ܽ	ߨ ൌ െగଶ. In the experiment, 

we work with the subspace ߮ଶ ൌ గଶ to realize our 3 ൈ 3 real Hamiltonian (Eq. 2) and within 

this subspace, the eigenfunctions in the 4 nodes have relative phases of ሺ1, ݅, െ1,െ݅ሻ. The 
meta-atoms were connected to the next unit cell by 2m-long coaxial cables (Model 
RG58C/U) to realize the complex hoppings by braiding (Fig. 3b, see SM, Sec. IX) 2,3. To 
selectively excite the modes in the subspace (1, ݅, െ1,െ݅) realizing our PT-symmetric 

Hamiltonian, the AC signals are input to four nodes with a constant phase shift 
గଶ in a 

designated unit-cell. Both amplitude and phase of the voltage of each meta-atom are 
monitored by an oscilloscope (see detailed methods in SM, Sec. IX and Fig. S25).” 

 
Comment 1.4: Besides the general assessment summarized above, I list here several concrete 
comments and questions that the authors should consider before resubmitting their work. 
1.) The authors write in the abstract, that they “propose the non-Abelian bulk-edge 
correspondence, where the edge states are found to be fully determined by non-Abelian 
topological charges”. However, this bulk-edge correspondence does not seem to encapsulate 
a particularly strong statement, namely, it is stated in the text that the edge state pertaining to 
charge j “can be anywhere between the 1st and 3rd band”, while the edge states emanating 
from charge -1 “are fickle”. Can the bulk-edge correspondence be transformed into a some 
stronger statement? 

Reply 1.4: We thank the referee for the nice question. 

We will first give a short answer and more detailed explanation will follow. 

In the original text, there is a statement " the edge states can be anywhere between the 1st and 
3rd bands for the charge of േ݆”. This statement is correct and consistent with the bulk-edge 
correspondence. What we mean by the statement is that the "frame rotation bands" are the 1st 
and the 3rd bands, and hence the edge states with a hard boundary should exist in the 
bandgaps sandwiched by these two bands, meaning that the edge states can exist in both the 
bandgaps between 1st/2nd band and 2nd/3rd band. In the general situation, each bandgap will 
carry one edge state; but in the special configuration that the middle 2nd band is decoupled 
from the 1st and 3rd bands, the edge states can be "anywhere" in the big bandgap sandwiched 
between the 1st and 3rd bands. As the original statement, while correct, is difficult to 
understand; we removed it from the revised text. 

The edge states emerging from charge -1 “are fickle”, we mean the following: The charges േ݅, േ݆, േ݇ are topologically distinct, they cannot be transformed to one another without gap 
closing. However, all configurations as shown in Figs. R1a-c are classified as charge െ1 and 
can be transformed to one another by system parameter tuning without gap closing. But, they 



 

still differ in details, which can affect how boundary states are formed as shown in Fig. R1d-
f. The bulk-edge correspondence can predict those properties that are mandated by the 
topological principles, but not those properties that come from the "details". As the charge െ1 is "richer in details" than charges േ݅, േ݆, േ݇, the formation of edge modes is more 
subtle, we hence say in the original text that "edge states emerging from charge -1 are fickle”. 

In the revised manuscript, we have rephrased the sentence (as shown below) to make the 
statement of non-Abelian bulk-edge correspondence more accurate, 

“propose the non-Abelian bulk-edge correspondence, which provides a global view of the 
distribution of edge/domain-wall states.” 

In the revised supplementary materials, we have added a section (Sec. VII) to predict the 
positions of edge state for all charges, especially for charge െ1. 

 

Fig. R1 (Figure S11) | Continuous transition parametrized by ߠ௫,௬,௭ in the charge െ1. a, The 

eigenstate frame evolving with rotating the rotation axis ݔො to ݕො as parametrized by ߠ௭: 0 → గଶ. 

The rotation axis is defined as ො݊ ൌ cos ௭ߠ ොݔ ൅ sin ௭ߠ ොݕ ො. b, Similar to (a) but forݕ →  The .ݖ̂



 

rotation axis is defined as ො݊ ൌ cos ௫ߠ ොݕ ൅ sin ௫ߠ ݖ̂ c, Similar to (a) but for .ݖ̂ →  ො. Theݔ
rotation axis is defined as ො݊ ൌ cos ௬ߠ ݖ̂ ൅ sin ௬ߠ  ො. Red/green/blue color indicates theݔ

eigenstate trajectory of the 1st /2nd /3rd band. d/e/f, Edge states (black lines) evolve with ߠ௭/௫/௬ defined in (a/b/c). The 1st, 2nd and 3rd bulk bands are coloured in red, green and blue, 

respectively. 

 

Detailed explanation: 

In the revised text, we have added more information for the understanding and the prediction 
of the edge states, especially for the charge െ1. As the complete argument is long, to make 
the reply well organized, we respectfully ask the referee to check the details in the 
supplementary materials, Sec. VI and VII, where we prove the non-Abelian bulk-edge 
correspondence and predict the edge states for different quaternion charges. In the following, 
we give the key arguments to show our ideas. 

In an Abelian topological system, the bulk-edge correspondence can precisely predict the 
number of edge/domain-wall states as there is only one single bandgap under consideration. 
More generally in the non-Abelian topological system, the bulk-edge correspondence shows a 
global view of edge/domain-wall states, which includes both the number of edge/domain-wall 
states and the positions (bandgaps) they reside in. 

For those edge/domain-wall states that can transform into each other by system parameter 
tuning while no topological phase transition happens in the bulk, we regard them as 
topologically equivalent. This is exemplified by the edge state configurations of charge െ1 as 
shown in Fig. R1. Although these edge states change with parameter ߠ௜, they are 
topologically equivalent as they all belongs to charge െ1. While the same number of edge 
states are sandwiched between the 1st and the 3rd bands in all the configurations, the details 
vary. It means we need a finer description beyond the current topological classification to 
precisely predict the edge state distributions in charge െ1. 

Our basic arguments are outlined (Fig. R2) in the following, 

1. A topological phase transition does not occur without bandgap closing. In turn, the detail 
of bandgap closing determines the topological phase transition. 

2. The bandgap closing determines the position (i.e. which bandgap) and number of 
edge/domain-wall states for systems. For example, the 2nd bandgap has to close when we 
tune system parameters to induce the transition between charges ൅݅ and ൅1. We then 
expect the existence of edge states in the 2nd bandgap with a hard boundary. 

3. The bandgap closing and the transformation of a specific 1D Hamiltonian labelled by 
quaternion charges to the trivial case with charge ൅1 can be visualized clearly by 
extending the 1D Hamiltonian onto a 2D plane, as we shall see below. 

4. Topological phase transition from charge െ1 to ൅1 is multiple-pathed, thus the edge 
states are “fickle”. 



 

 

 

Fig. R2 (Figure S12) | Flow chart for proving bulk-edge correspondence 

 

Arguments #1: 

For Abelian topological phase transition, we only need to consider a single bandgap. Thus the 
bandgap closing happens there without any doubt. 

For non-Abelian topological phase transition, there are multiple bandgaps. The topological 
transition requires that there must be bandgap closing during the process. However, the 
position and number of bandgap closing need more details. In our three-band system, either 
the 1st or 2nd bandgap may close, or both of them can close. 

 

 

Fig. R3 (Figure S15) | Extension to 2D extended plane of the flat-band Hamiltonian 
(parameters are from Tab. S1). The non-Abelian charges are labelled in each panel (a-e). The 
white unit circle indicates the 1D Hamiltonian. The three bands are coloured in red, green and 
blue, respectively. The bottom plane indicates the eigenstate distribution. 



 

 

Arguments #2 and #3: 

First we extend the 1D Hamiltonian ܪሺ݇ሻ (Eq. 2 or Eq. S2) onto a 2D extended plane, ܪሺ݇ሻ ൌ ഥሺcosܪ ݇ , sin ݇ሻ → ,෩ሺ݇ଵܪ ݇ଶሻ 
where we applied the substitution cos ݇ → ߩ cos ݇ ൌ ݇ଵ	ܽ݊݀ sin ݇ → ߩ sin ݇ ൌ ݇ଶ with ߩ ∈ ሾ0,1ሿ. It is worth noting that the substitution preserves PT symmetry with ܪሺ݇ଵ, ݇ଶሻ ൌܪ∗ሺ݇ଵ, ݇ଶሻ. The parameter ߩ can be absorbed by those hopping parameters in Eq. 2 (or Eq. 
S2) in actual implementation. 

The advantage of this extension is that the quaternion charge configuration and the edge state 
formation become visually obvious. Figure R3 shows the 2D band structure and eigenstate 
distribution for different non-Abelian topological charges, where the original Hamiltonian 
exactly locates on the unit circle ݇ଵଶ ൅ ݇ଶଶ ൌ 1. According to the definition of non-Abelian 
topological charges, there must be band degeneracy, i.e., Dirac cone, in the range ݇ଵଶ ൅ ݇ଶଶ ൏1 as one can see in Fig. R3a. 

This can be understood in the following way. This 2D plane can be regarded as a cutting 
plane in the 3D space. According to the definition of non-Abelian topological charges4, the 
unit circle here works like a closed loop encircling nodal lines in the 3D space. Thus, inside 
the unit circle (݇ଵଶ ൅ ݇ଶଶ ൏ 1) there must be band degeneracy for those non-trivial topological 
charges (് ൅1). They cannot be removed unless a topological phase transition happens with 
the degeneracy point moving out of the unit circle. 

Then we apply the Jackiw-Rebbi type argument5 to show that there must be domain-wall 
state relating to the topological phase transition. In Fig. R4, we take the ൅݅ charge as an 
example. First, by tuning system parameter, we continuously shrink the unit circle (black 
circle in Fig. R4a) into the magenta one, which still belongs to the charge ൅݅ as long as the 
Dirac point lies within the circle. Secondly, when we further shrink the magenta circle as 
shown in Fig. R4b, topological phase transition happens and the 2nd bandgap closes. Finally, 
the degeneracy point of Dirac cone stands outside the magenta circle and the topological 
charge becomes ൅1 (Fig. R4c). Figure R4d-f give the corresponding 1D band structures 
along the polar angles of the three magenta circles. Around the transition point ߠ ൌ  the ,ߨ
PT-symmetric Hamiltonian can be parameterized as ܪ ൌ ௫ߪఏ݇ߜ െ ܪ ௭ (Fig. R4d) andߪ݉ߜ ൌ ௫ߪఏ݇ߜ ൅ ௭ (Fig. R4f) with 0ߪ݉ߜ ൏ ݉ߜ ≪ 1 being the mass term. The standard Jackiw-
Rebbi argument claims that there must be one domain wall state between them two, described 
by ܪ ൌ െ߲݅௫ߪ௫ ൅ ݉ሺݔሻߪ௭ and lim௫→േஶ݉ሺݔሻ ൌ േ1. When one consider the Dirac cone 

between the 1st and 3rd bands, the edge state in charge ൅݆ (Fig. R3b) can be explained 
similarly. The arguments also work for the quadratic degeneracy as shown in Fig. R3e with 
charge െ1. The difference for the charge െ1 is that the degeneracy is quadratic, which splits 
into to two linear Dirac cones upon small perturbation and hence it carries two edge states 

(see Fig. R1e with ߠ௫ → గଶ). 



 

From the above argument, we see that the distribution of edge states becomes apparent when 
we examine degeneracy in the extended 2D space as shown in Fig. R3. And this relation can 
be checked with comparing Fig. 2 (copied below as Fig. R5 for convenience) and Fig. R3. 
For example, in Fig. R3a, there is a single degeneracy between the 2nd and 3rd bands, then 
there exists an edge state (per edge) located in the 2nd bandgap as shown in Fig. 2b (Fig. 
R5b). The charge െ1 in Fig. R3e and Fig. 2e (Fig. R5e) supports the similar argument. It is 
worth reiterating that the quadratic degeneracy supports two edge states per edge because 
they can split into two linear Dirac cones as mentioned above. Following the same way, more 
detailed explanation of edge states for charge െ1 (corresponding to Figs. R1d-f) can be found 
in the revised supplementary materials, Sec. VII (Figs. S17-S19). 

Finally, the number of extended 2D band degeneracy (as given by the number of linear Dirac 
cones) is equal to the number of edge states per edge. Moreover, the bandgap in which the 
edge states locate in is also implied by the position of degeneracy in the 2D extended space. 
We conclude that the gapless topological phase transition in k-space (bulk) implies the 
presence of topological edge/domain-wall state in r-space. More specifically, where there is a 
bandgap closing there is an edge/domain-wall state. 

 



 

 

Fig. R4 (Figure S14) | Jackiw-Rebbi argument for “where there is a bandgap closing there is a 
domain-wall state”. a-c, Topological phase transition from charge ൅݅ to ൅1 when 
continuously shrinking the magenta circle (white circle in each 2D band sheet) via system 
parameter tuning. d-f, The corresponding 1D band structure along the polar angle ߠ of each 
magenta circle. The gap-closing and gap reopening imply edge mode. g, Schematically 
localized domain-wall state between charges ൅݅ and ൅1, corresponding to the topological 
phase transition (b and e). 

 



 

 

Fig. R5 (Fig. 2 in the main text) | Distribution of edge states in flat-band models. 

 

Arguments #4: 

However, the topological phase transition is more complicated in non-Abelian topological 
phases. For conventional topological systems characterized by Abelian charges, the transition 
from one topological state to another topological state involves a fixed sequential path 
(similar to nodes on a string or a loop as shown in Fig. R6a) and a fixed number of gap 
closing steps, and as such, the number of topological edge states is well defined. This is not 
the case for non-Abelian systems, where the transition from one topological phase to another 
one can take multiple distinct paths (like nodes in a network as shown in Fig. R6b). Along 
different paths, the topological phase transition will close the corresponding bandgap(s), 
which is path-dependent. Taking our system as an example, the gapless topological phase 
transition between charges െ1 and ൅1 can lead to the closing of either the 1st bandgap or the 
2nd bandgap, or even both them, depending on how we continuously tune system parameters. 
Thus, specifying charge െ1 alone cannot determine the precise positions of edge/domain-
wall states. Thus, the positions of edge states in charge െ1 need more information of bulk 
bands (which depend on the details), which is not outside the scope of the non-Abelian bulk-
edge correspondence. In this case, the existence of edge/domain-wall states is guaranteed by 
the topological charge, as there must be topological phase transition between charges െ1 and ൅1 and thus (bandgap closings in the k-space) edge/domain-wall states in the real space; but 
the precise details depend on the structural details. 

Very similar arguments also work for charges േ݆. The only difference is that for charges േ݆, 
both the 1st and 2nd bandgaps have to close simultaneously during the topological phase 
transition to charge ൅1. Therefore, one can expect edge states locating in the whole bandgap 
bounded by the top (3rd) and the bottom (1st) bands. If the 2nd band is fully decoupled from 
the other two bands, the whole bandgap supports a single edge state per edge (like a two-band 



 

model). In the general situation where the 2nd band couples to other bands, the 2nd band will 
separate the whole bandgap into two adjacent bandgaps, each of them support one edge state 
per edge. Again, the existence of edge states is topologically guaranteed. 

 

Fig. R6 (Figure S10) | Topological phase transition with Abelian (a) and non-Abelian (b) 
topological charges. b, Cycle graph of the quaternion group ℚ. In the Abelian topological 
phase, the topological phase transition is single pathed. While in the non-Abelian topological 
phase, the topological phase transition is multiple-pathed. There are six paths that the system 
can be changed from charge െ1 to ൅1, and the bandgap closing details are different in these 
paths. 

 

Put it in a simple way, the complication of edge states in charges െ1 േ݆⁄  is due to the 
involvement of multiple bandgaps in non-Abelian topological phases. In the revised 
supplementary materials, we have added a section (Sec. VII) to predict the positions of edge 
state for all charges. 

Overall, the details of edge/domain-wall states depend on additional detailed information of 
bulk bands, which is not outside the scope of the non-Abelian bulk-edge correspondence. 

 
Comment 1.5: 2.) Eq. (2) contains a general nearest-neighbor PT-symmetric Hamiltonian. 
The authors claim that by choosing the parameters properly, they can mimic all the flat-band 
cases in Fig.1b—e (do these correspond to Fig. S16 and S17 from Ref. 19?). However, a look 
at the Supplementary Material reveals that Fig.1(e) requires next-nearest-neighbor elements 
beyond the Hamiltonian in Eq. (2). 



 

Reply 1.5: Yes, the flat-band cases correspond to Figs. S16 and S17 from Ref. 19.  

Fig. 1(e) does require next-nearest-neighbor hoppings beyond the Hamiltonian in Eq. (2) for 
the “flat band” model. Here, we want to use an ideal model with flat bands to describe the 
non-Abelian topological charges. However, in the practical experiment, we realized all the 
cases (including charge െ1) with the general nearest-neighbor Hamiltonian, and the bands 
are not flat in the experimental configuration, which are nonetheless topologically equivalent 
to the ideal flat band mathematical models. 

We have further stressed this in the revised text as following (on page 5), 

“We first choose parameters (Tab. S1) that can mimic the flat-band cases as shown in Figs. 
1b-e (Note: the panel (e) requires next-nearest-neighbour hoppings, see SM, Sec. III).” 
 
Comment 1.6: 3.) Certain key specifications of the experimental setting are missing. Is a 
coaxial used as the transmission line? Furthermore, the authors claim below Eq. (2) that the 
constructed tight-binding model breaks both time-reversal and parity symmetry (while 
preserving the combined PT-symmetry). Could the authors specify where in their 
experimental setting is the time-reversal-breaking element? (Or do the authors mean that 
although the most general model described by Eq. (2) breaks P and T individually, the 
specific 1D models which they experimentally build preserve both symmetries?) 

Reply 1.6: Yes, in the experiment we used coaxial cable as the transmission line. 

We apologize for the lack of detailed information of the experimental setting in our original 
manuscript. In the revised text, we have supplemented those parts (on page 6) as following. 

“In the experiment, a network consisting of 13 periods was designed to characterize the non-
Abelian topological charges corresponding to ൅݅, ൅݆, ൅݇ and െ1, respectively. There are 
three meta-atoms A, B and C in one unit-cell, and Fig. 3a is the photo of the network for the 
specific configuration of charge െ1. The inset shows that there are four nodes represented by 
the cable connectors labelled 1, 2, 3, 4 in each meta-atom. As such, there are four allowed 
subspaces. Each subspace can be characterized by a pseudo angular momentum with ݁௜ସఝ೙ ൌ 1	ሺ݊ ൌ 1,2,3,4ሻ 2, with ߮ଵ ൌ 0, ߮ଶ ൌ గଶ , ߮ଷ ൌ ସ߮	݀݊ܽ	ߨ ൌ െగଶ. In the experiment, 

we work with the subspace ߮ଶ ൌ గଶ to realize our 3 ൈ 3 real Hamiltonian (Eq. 2) and within 

this subspace, the eigenfunctions in the 4 nodes have relative phases of ሺ1, ݅, െ1,െ݅ሻ. The 
meta-atoms were connected to the next unit cell by 2m-long coaxial cables (Model 
RG58C/U) to realize the complex hoppings by braiding (Fig. 3b, see SM, Sec. IX) 2,3. To 
selectively excite the modes in the subspace (1, ݅, െ1,െ݅) realizing our PT-symmetric 

Hamiltonian, the AC signals are input to four nodes with a constant phase shift 
గଶ in a 

designated unit-cell. Both amplitude and phase of the voltage of each meta-atom are 
monitored by an oscilloscope (see detailed methods in SM, Sec. IX and Fig. S25).” 

In order to realize a full rotation of the three-band eigenstate frame, we start from the ideal 
flat-band configuration (Fig. 1b-e), where the Hamiltonian takes an explicit real form. When 



 

realizing the Hamiltonian in a tight-binding model, one has to introduce imaginary hopping 
parameters, which breaks time-reversal symmetry. Here the time-reversal and inversion 
symmetries are represented by the complex conjugate ܭ and identity matrix under operation ݇ → െ݇, respectively. Obviously, each of them has been explicitly broken in Eq. 2 (or Eq. 
S2). 

In the experimental setup, there is no time-reversal breaking element (i.e., magnetic field) 
involved in the system. Thus, the overall system is time-reversal invariant. 

However, there are four nodes designed in each meta-atom. As such, there are four allowed 
subspaces. Each subspace can be characterized by a pseudo angular momentum with ݁௜ସఝ೙ ൌ 1	ሺ݊ ൌ 1,2,3,4ሻ, with ߮ଵ ൌ 0, ߮ଶ ൌ గଶ , ߮ଷ ൌ ସ߮	݀݊ܽ	ߨ ൌ െగଶ. We work with the 

subspace ߮ଶ ൌ గଶ to realize our 3 ൈ 3 Hamiltonian and within this subspace, the 

eigenfunctions in the 4 nodes have relative phases of ሺ1, ݅, െ1, െ݅ሻ. 
In the experiment, we specifically excite the four-nodes inside the meta-atom with a relative 

constant phase shift 
గଶ as (1, ݅, െ1, െ݅). The system of course has its time-reversal counterpart 

subspace (1,െ݅, െ1, ݅) (corresponding to ߮ସ), but there is no conversion between them (i.e. 
the system contains two block-diagonalized time-reversal counterparts, in a similar way as 

the Kane-Mele model). Thus, in the subspace corresponding to ߮ଶ ൌ గଶ, the time reversal 

symmetry is effectively broken, in the same way as that each spin space in the Kane-Mele 
model breaks the time-reversal symmetry. 

Overall, both the tight-binding model and experiment setup break the time-reversal symmetry 
within the subspace we are considering. 

We have added the above statement in the method section of revised supplementary materials 
(Sec. IX). 

 
Comment 1.7: 4.) Per the trick with the four internal nodes of each “meta-atom” (sublattice), 
there are in total 4x3 = 12 nodes per unit cell, which should result in 12 bands. However, only 
three bands that emulate the non-Abelian band topology with quaternion invariant are 
explicitly discussed and plotted. Could the authors comment/clarify what is the fate of the 
remaining (12-3) = 9 bands? 

Reply 1.7: Yes, the reviewer is correct that there should be a total of 12 bands. As mentioned 
in Reply 1.6, here we constrain the excitation of the four internal nodes by a constant phase 

step (
గଶ) between the neighboring nodes, then three bands are relevant to our investigation. In 

other words, our system can be block-diagonalized into the four disjoint subspaces, with each 
subspace containing three degrees of freedom. Here we only consider one subspace, which 
corresponds to our three-band system. 

We have added the above statement in the method section of revised supplementary materials 
(Sec. IX). 



 

 
Comment 1.8: 5.) Could the authors briefly comment how the bulk and edge spectra in Fig. 
3 are measured? It appears to me, that to obtain the bulk spectrum through Fourier-
transforming the measured voltages, a periodic boundary condition needs to be set up by 
closing the 1D system into a ring. In contrast, open boundary conditions should be present to 
detect the edge spectrum. 

Reply 1.8: Yes, the bulk bands can be investigated by applying a periodic boundary 
condition via arranging the 1D system into a ring, as mentioned by the reviewer. On the other 
hand, the bulk bands together with edge states can be simultaneously studied by using a finite 
but long chain of lattices. In a Hermitian system, the periodic boundary condition and open 
boundary condition have the same bulk continuum as long as the systems contain a large 
enough number of unit cells.  

In the experiment, we measured the bulk spectrum using an open chain containing 13 unit 
cells (and about 470 coaxial cables) and an open chain of this size gives essentially the same 
bulk spectrum as a ring configuration. In our measurement of bulk bands, the signal is 
injected from the middle position of an open chain that is very far away from the boundary so 
that the edge states cannot be excited. For the detection of edge states, the signal is injected at 
the position near the edge. 

We have added the above statement in the method section of revised supplementary materials 
(Sec. IX). 

 
Comment 1.9: 6.) It remains unclear to me after studying this manuscript to what extent are 
the topological phases “+i” and “-i” distinct from each other. Naively, I would expect that the 
overall sign cannot be meaningfully defined, since one can change the pi-rotation of the 
eigenstate-frame into a (-pi)-rotation by doing a discrete gauge transformation on the 
eigenstate-frame with an element of the O(3) group. In other words, the action of the gauge 
group should split the elements of the quaternion group into conjugacy classes, with “+i” and 
“-i” corresponding to a single conjugacy class. 

Reply 1.9: Yes, the charges of ൅݅ and െ݅ belong to the same conjugacy class. They are 
obtained in the fundamental homotopy group ߨଵ ቂ ைሺଷሻைሺଵሻయቃ ≅ ଵߨ ቂௌைሺଷሻ஽మ ቃ ≅ ℚ ൌ ሺ1,േ݅, േ݆, േ݇,െ1ሻ. The quaternion group ℚ has five 

conjugacy classes in total and three of them contain two conjugate elements, i.e., േ݅, േ݆ and േ݇. In the Abelian topological charge group, such as Ժ	ܽ݊݀	Ժଶ, each element is a class by 
itself. However, in the non-Abelian topological charge group one class may contain several 
elements. Thus, conjugacy class is special to the non-Abelian topological phases. The study 
of conjugacy classes of non-Abelian groups is fundamental for the study of their structure. 
Elements of the same conjugacy class cannot be distinguished by using only the group 
structure and therefore share many properties. However, it does not mean that the two 
conjugate elements are the same. In the non-Abelian topological phases one cannot 
continuously transform charge ൅݅ to െ݅ without gap closing. 



 

In the revised supplementary materials, we have added the above discussion in Sec. I and the 
non-Abelian topological phase transition from ൅݅ to െ݅ in Sec. IV (Fig. S9d, copied below as 
Fig. R7 for convenience). 

In addition, two elements ܽ and ܾ of group ܩ are conjugate, if there exists an element ݃ ∈  ܩ
such that ݃ܽ݃ିଵ ൌ ܾ). An discrete group element in ܱሺ3ሻ does not belong to the quaternion 
group ℚ, and thus it cannot make the conjugacy equivalence between charges ൅݅ and െ݅. 
Although two rotations ݁േഝమ௅ೣ ∈ ܱሺ3ሻ are conjugate by ݁ିഝమ௅ೣ ൌ ௬ܯ) ௬,௭ିଵܯ௬,௭݁ାഝమ௅ೣܯ ൌ݀݅ܽ݃ሺ1,െ1,1ሻ	ܽ݊݀	ܯ௭ ൌ ݀݅ܽ݃ሺ1,1, െ1ሻ ∈ ܱሺ3ሻ indicating mirror operations), ݁േഝమ௅ೣ are 
different from charges േ݅ by definition. The latter are the discrete elements of fundamental 
homotopy group ℚ representing non-Abelian topological phases while the former are 
continuous elements of ܱሺ3ሻ. 

 

Fig. R7 (Figure S9d) | Topological phase transition (T) from charge ൅݅ to – ݅ by changing one 
of the system parameters ሺݑ ൌ െ0.2 → 0.2ሻ. Two linear crossings arise during the transition 
implies a change of charge Δܳ ൌ ݅ െ݅⁄ ൌ െ1. (Parameter setting, ݏ஼஼ ൌ െ4, ஺஺ݒ ൌെ1, ஻஻ݒ ൌ 1, ݒ ൌ 1, the rest are all 0) 

 
Comment 1.10: However, my conclusion seems be refuted by the data in Fig.S12(a), where a 
domain wall between phases “+i” and “-i” results in bound states reminiscent of the edge of 
phase -1 (=+i/-i). Could the authors clarify this issue? In fact, this is the only type of domain 
where the arising bound states cannot be explained using solely the quantized Berry phases in 
the individual band gaps. From this perspective, I would like to urge the authors to move this 
very interesting result from the Supplemental Material into Fig. 4 of the main text. 

Reply 1.10: We thank the referee for the nice suggestion. 

As mentioned in Reply 1.9, charges ൅݅ and െ݅ are two distinct topological phases. There 
must exist two linear Dirac cones (between the 2nd and 3rd bands) during the transition from 
charge ൅݅ to െ݅ (as shown in Fig. R7). Thus, the domain-wall between charges ൅݅ and െ݅ 
supports two topological domain-wall states (in the 2nd bandgap), just like the edge states of 
charge െ1 (Fig. S11d with ߠ௭ → 0). On the other hand, according to our non-Abelian bulk-
edge correspondence, the relation Δܳ ൌ ൅݅ െ݅⁄ ൌ െ1 implies that the domain-wall of charge 
pair ሺ൅݅, െ݅ሻ supports similar edge states of charge െ1 with a hard boundary. Finally, the two 
arguments are consistent. 



 

In the revised manuscript following the referee’s kind suggestion, we have moved Fig. 12a-b  
into the main text as Fig. 4g-h. 

 

 

Referee #2 (Remarks to the Author): 

 
Comment 2.1: The non-Abelian quaternion topological charges in momentum space were 
firstly introduced in ref. 19 (Science 364, 1273, 2019) to characterize some novel line nodes. 
Some features of these non-Abelian quaternion topological charges have been demonstrated 
in the authors’ recent work in ref. 22 (Phys. Rev. Lett. 125, 033901 2020), but those are 
indirect evidences. I believe the current work is indeed the first direct measurement on the 
non-Abelian quaternion topological charges, which certainly is very important. I have a few 
questions, which hopefully the authors can clarify. 

Reply 2.1: We thank the referee for his/her recognitions and positive assessments of our 
work. 
 
Comment 2.2: 1. In the case of a domain wall between +i and -i charges, if we follow Fig. 
4c, then the first bandgap should have no edge state, and the second bandgap should have no 
edge state either (Zak phase of pi is equivalent to -pi). But according to the new bulk-edge 
correspondence proposed in the current work, the edge state should correspond to the case of 
charge -1, which does support edge states as shown in Fig. 2e. Could the authors clarify this 
issue? 

Reply 2.2: We thank the referee for pointing out this concern. 

For a single bandgap system (or we only focus on a single bandgap while ignoring other 
bandgaps, in other words other bandgaps may close at will), the topological phase protected 
by PT symmetry is Ժଶ classified. It means that the bandgap may have Zak phase taking 
values of 0 and േߨ, where േߨ refer to the same phase with mod of 2ߨ. Thus, no topological 
edge state is guaranteed to exist on the domain-wall between ൅ߨ and െߨ. 

In the non-Abelian topological system with three bands separated by two bandgaps, if we 
label each band with Zak phase, there are 2௡ିଵ ൌ 4 (the total number of band ݊ ൌ 3) 
possibilities. Because each band can take two values, 0 or േߨ	ሺേߨ	݁ݎܽ	݄݁ݐ	݁݉ܽݏ	݄ݐ݅ݓ	݀݋݉	݂݋	ߨ2ሻ, and the sum of all Zak phases ∑ ߶௡ଷ௡ୀଵ ൌ0	ሺ݉݀݋	ߨ2ሻ imposes that only ݊ െ 1 bands are independent. However, the non-Abelian 
topological charge ℚ has 5 conjugacy classes ሺ൅1,േ݅, േ݆, േ݇,െ1ሻ. Therefore, the class െ1 
goes beyond the Zak phase description4, where we label it as 2ߨ to make the distinction 
between it and the trivial class ൅1 (as elaborated by the ‘*’ in the caption in Fig. 4). For other 
conjugacy classes, each has the unique Zak phase distribution. Between two different classes, 
the Zak phases ൅ߨ and െߨ are topologically equivalent being consistent to the usual 



 

argument in the Abelian topological phases. But, in a single conjugacy class, we apply them 
two distinguish two distinct elements. For example, we label the 1st/2nd bandgap of charge േ݅ with 0 േߨ⁄  (as shown in Fig. 4c in the main text). It is due to that in each conjugacy class 
the two elements (i.e. ൅݅ and െ݅) have a relative meaning, i.e., representing the two opposite 
rotations of the eigenstate frame when ݇ running across the first Brillouin zone ሺ݇:െߨ →  .ሻߨ
It is worth stressing that although the two charges ൅݅ and െ݅ are belong to one conjugacy 
class, they are still two topologically distinct charges as their transition has to induce bandgap 
closing. Furthermore, there are two linear Dirac cones during the transition (as shown in Fig. 
R8). Thus, the domain-wall between ൅ߨ and െߨ of charges ൅݅ and െ݅ supports two 
topological domain-wall states, just like the edge states of charge െ1 (Fig. S11d with ߠ௭ →0). On the other hand, according to our non-Abelian bulk-edge correspondence, the relation Δܳ ൌ ൅݅ െ݅⁄ ൌ െ1 implies that the domain-wall of charge pair ሺ൅݅, െ݅ሻ supports similar 
edge states of charge െ1 with a hard boundary. Finally, the two arguments are consistent. 

In summary, it is different for a two-bandgap system, where the two bandgaps are tangled 
together. Zak phases േߨ indicate two relatively different phases in one conjugacy class. 
Thus, the domain-wall between ൅ߨ and െߨ supports topological states, just like the edge 
states of charge െ1. 

We have added above discussion in the revised supplementary materials, Sec. I. 

In the main text, we further emphasized this as following (on page 8), 

“As shown in Fig. 4c, two bandgaps are individually labelled by the corresponding Zak 
phases for each quaternion charge. The Zak phase for a single bandgap takes the value of 0 or ߨ as the homotopy mapping ߨଵ ቀ ைሺଷሻைሺଶሻൈைሺଵሻቁ ൌ ଵሺԹܲଶሻߨ ൌ Ժଶ, which means one cannot 

distinguish ൅ߨ from െߨ. Here in the multiple bandgap system, we use ൅ߨ and െߨ to make 
the distinction between two conjugate elements in one conjugacy class. For example, we 
label the 1st/2nd bandgap of charge േ݅ with 0 േߨ⁄  (as shown in Fig. 4c). It is due to that in 
each conjugacy class the two elements (i.e. ൅݅ and െ݅) have a relative meaning, i.e., 
representing the two opposite rotations of the eigenstate frame when ݇ running across the 
first Brillouin zone ሺ݇:െߨ →  ߨand െ ߨሻ. Between two different classes, the Zak phases ൅ߨ
are topologically equivalent being consistent to the usual argument in the Abelian topological 
phases. From above discussion, we see that the non-Abelian system (ܯଷ) possesses a more 
refined topological structure than Թܲଶ. As the class െ1 goes beyond the Zak phase 
description4, where we label it as 2ߨ to make the distinction between it and the trivial class ൅1 (as elaborated by the ‘*’ in the caption of Fig. 4). The Zak phase of charge െ1 is 2ߨ only 
in some special cases, i.e., when one of band is fully decoupled and the rest two bands can be 
classified by Ժ for the PT symmetric system4.” 

 



 

 

Fig. R8 (Figure S9d) | Topological phase transition (T) from charge ൅݅ to – ݅ by changing one 
of the system parameters ሺݑ ൌ െ0.2 → 0.2ሻ. Two linear crossings arise during the transition 
implies a change of charge Δܳ ൌ ݅ െ݅⁄ ൌ െ1. (Parameter setting, ݏ஼஼ ൌ െ4, ஺஺ݒ ൌെ1, ஻஻ݒ ൌ 1, ݒ ൌ 1, the rest are all 0) 

 
Comment 2.3: 2. In Fig. S12a, varying the probe position changes not only the edge state 
distribution, but also the number of edge states. Why is that? 

Reply 2.3: We thank the referee for pointing this out. 

This is due to the different spatial distributions of domain-wall states. In the revised 
supplementary materials, we have added the following figure (Fig. R9) to clearly address the 
issue. For the two domain-wall states (the 1st and 3rd in Fig. R9b), we need to probe them at 
the unit cell indicated by the orange triangle, while the last (the 2nd in Fig. R9b) one can only 
be probed at the position of gray triangle.  

In short, the domain wall states can have nearly zero amplitude at some particular sites and 
the probe has to be moved to other positions to detect those states. 

In the revised supplementary materials (Sec. VIII), we have added the above discussion. 



 

 

Fig. R9 (Figure S22) | Field distribution of domain-wall states between charges of ൅݅ and െ݅. 
a, Bulk (BulkS) and domain-wall states (DWS). On the right side the two experimental panels 
correspond to different probing positions as shown in (b). b, Field distribution of the bulk and 
domain-wall states. Orange/gray triangle indicates the position to probe the (1st and 3rd)/2nd 
domain-wall states. We note that the domain-wall states can have nearly zero amplitude at 
some sites. 

 
 

Referee #3 (Remarks to the Author): 

 
Comment 3.1: In their manuscript “Experimental observation of non-Abelian topological 
charges and bulk-edge correspondence”, Guo and collaborators investigate both theoretically 
and experimentally the emerging concept of non-Abelian topological charges in 1D 
reciprocal space, which was first kick started by Bzdusek and his colleagues last year. The 
authors present the mathematical analysis (homotopy group theory) as well as the first 
experimental observation of the quaternions in the 1D PT-symmetric transmission line 
network. In particular, the authors propose for the first time the non-Abelian bulk-edge 



 

correspondence, and provide the experimental evidences for their statement. All of these 
aspects are novel and very interesting, their experimental results are neat and timely, and the 
manuscript is well organized. I believe this work will be of significant interest to the 
community. Before recommending it for publication in Nature, the authors need to address 
the following comments and 
suggestions. 

Reply 3.1: We thank the referee for the nice summary and positive assessments. 

 
Comment 3.2: I find the mathematical model present to explain the essential idea of the 
paper is hard to read, I believe the readers who are not familiar with the language of 
homotopy group need more explanations from the authors. For example, how does the 
rotation matrix R(k) come? Why it has the form R(k)=exp((k+\pi)/2*Lx,y,z) for topological 
charges +i/+j/+k but has the different form R(k)=exp((k+\pi)*Lx,y,z) for charge -1? What’s 
more, The discussion of isomorphism map between O(3) and SO(3) reads obscure, and the 
figure 1(f-i) do not provide me more insight than the figure 1(b-e) do, and I don’t see the 
single curve is terminated at antipodal points in SO(3) sphere for charges +i/+j/+k. I suggest 
the authors either provide more physical intuition for these abstract concepts in the main text, 
and detail the according explanation in the supplementary materials if necessary, or give 
relevant references to their argument. 

Reply 3.2: We thank the referee for the questions and suggestions. We apologize for the 
confusion in our presentation. 

Here the rotation matrix is employed to build an ideal real Hamiltonian for the three-band 
system. Generally a Hermitian Hamiltonian can be constructed by ܪሺ݇ሻ ൌ ∑ ௞௡|ே௡ୀଵݑۦ௞௡ۧݑ|௡ߣ , 
where we assume no band degeneracy and thus ߣଵ ൏ ଶߣ ൏ ⋯ ൏  ௡ߣ ே. Each eigenvalueߣ
corresponds to a single eigenstate |ݑ௞௡ۧ , i.e. ܪሺ݇ሻ|ݑ௞௡ۧ ൌ  ௞௡ۧ. Furthermore, spectralݑ|௡ߣ

theorem says that any Hermitian matrix can be written as ܪሺ݇ሻ ൌ ܷሺ݇ሻΛܷሺ݇ሻற (‘†’ 
combines both complex conjugate ‘∗’ and transpose ‘T’) with Λ ൌ ݀݅ܽ݃ሺߣଵ, ,ଶߣ … ,  ேሻ beingߣ
diagonal and real, where ܷሺ݇ሻ is a unitary matrix consisting of (ordered) orthonormal 
eigenstates |ݑ௞௡ۧ. In our PT symmetric system, the Hamiltonian can take real symmetric form 
and thus the unitary matrix ܷሺ݇ሻ reduces to be real rotation matrix ܴሺ݇ሻ. On the other hand, 
we make ߣ௡ ൌ ݊ to further simplify the analytical calculation without changing the 
underlying topological arguments. Thus, the real symmetric Hamiltonian takes the simple 
form of ܪሺ݇ሻ ൌ ܴሺ݇ሻ݀݅ܽ݃ሺ1,2,… , ܰሻܴሺ݇ሻ். When ݇ ൌ െߨ →  runs across the first ߨ
Brillouin zone, ܴሺ݇ሻ serves to rotate the eigenstate of each band from an initial state |ݑ௞௡ۧ ൌሺ0, … , 1ณ௡ , … ,0ሻ with only the ݊௧௛ entry being 1. For the non-Abelian charges ൅݅/൅݆/൅݇, two 

of three eigenstates rotate ݑ|) ߨ௞௡ۧ → െ|ݑ௞௡ۧ) when ݇ ൌ െߨ →  range, which ߨspans the 2 ߨ

can be expressed by ܴሺ݇ሻ ൌ exp ቂሺ௞ାగሻଶ ሺ݅	௜ቃܮ ൌ ,ݔ ,ݕ ௜ሻ௝௞ܮሻ with ሺݖ ൌ െ߳௜௝௞ and ߳௜௝௞ being 

the fully antisymmetric tensor. For the charge െ1, two of three eigenstates rotate 2ݑ|) ߨ௞௡ۧ ݇ ௞௡ۧ) whenݑ|→ ൌ െߨ → range, which gives ܴሺ݇ሻ ߨspans the 2 ߨ ൌ expሾሺ݇ ൅ ሺ݅	௜ሿܮሻߨ ൌ



 

,ݔ ,ݕ ݇ ሻ. Thus, whenݖ ൌ െߨ the rotation matrix is a ܰ ൈ ܰ unit matrix ܫேൈே, i.e., ܴሺ݇ ൌെߨሻ ൌ exp ቂሺିగାగሻଶ ௜ቃܮ ൌ ேൈேܫ 	ሺ݅ ൌ ,ݔ ,ݕ  ሻ. Actually, different non-Abelian topologicalݖ

charges will have different rotation matrix ܴሺ݇ሻ. In other words, the rotation matrix ܴሺ݇ሻ 
carries the underlying topological characters and determines the non-Abelian topological 
charges. 

In the revised manuscript, we have added the above details into supplementary materials 
(Sec. I) to make our presentation clearer. 

In order to provide a more compact presentation (and also satisfy the length limit of <2500 
words), we decide to move Fig. 1f-i and the associated discussions into the supplementary 
materials (Sec. I). In addition, in the same section, we added the following paragraph to make 

the arguments of the isomorphism 
ைሺଷሻைሺଵሻయ ≅ ௌைሺଷሻ஽మ  clearer. 

“The space of Hamiltonian can be written as ܯଷ ൌ ைሺଷሻைሺଵሻయ ≅ ௌைሺଷሻ஽మ  4,6, where the first equality is 

obtained by an ܱሺ3ሻ rotation of the eigenstate frame. As flipping the sign of each eigenstates |ݑ௞௡ۧ → െ|ݑ௞௡ۧ	ሺ݊ ൌ 1,2,3ሻ leaves the Hamiltonian ܪሺ݇ሻ ൌ ∑ ௞௡|ே௡ୀଵݑۦ௞௡ۧݑ|௡ߣ  invariant, one 

then imposes the ܱሺ1ሻଷ quotient, where ܱሺ1ሻଷ ≅ ଶ௛ܦ ≅ Ժଶଷ is generated by three mutually 
perpendicular mirror symmetries. In the second equality, both groups have been replaced by 
their proper subgroups, i.e., ܱሺ3ሻ → ܱܵሺ3ሻ and ܦଶ௛ →  ଶܦ ଶ, where the dihedral point groupܦ
consists of the identity and three ߨ- rotations around mutually perpendicular axes.” 

We also have added the following paragraph to further explain the antipodal points in the ܱܵሺ3ሻ space. 

“The special orthogonal group ܱܵሺ3ሻ can be further parameterized as a solid sphere, wherein 
the normalized vector ሬ݊Ԧ ൌ ሺ݊௫, ݊௬, ݊௭ሻ indicates the rotation axis and radius is the rotation 

angle ߶ ∈ ሾ0, ሿ. It is worth noting that the antipodal pairs ሺߨ ሬ݊Ԧ, ,ሻ and ሺെሬ݊Ԧߨ  ሻ represent theߨ
same rotation and thus are identical. When ݇ runs from െߨ to ߨ, ܴሺ݇ሻ traces out a curve in 
the space of ܱܵሺ3ሻ. On the other hand, one can form the topological space ܺ/ܪ with 
identifying points of ܺ which can be related by some element of ݔ) ܪ ≡ ݔ where ,(݄ݔ ∈ ܺ 

and ݄ ∈  For the above coset space .ܪ
ௌைሺଷሻ஽మ , the ܦଶ quotient further generates each element ܴሺ݇ሻ ∈ ܱܵሺ3ሻ to be four elements as ܴሺ݇ሻ ∘ ݃ where ݃ ∈ ଶܦ ൌ ሺܫ, ,ଶ௫ܥ ,ଶ௬ܥ  ଶ௭ሻ. Theyܥ

represent four equivalent rotations up to ܦଶ rotations. If ܴሺ݇ሻ ∈ ܱܵሺ3ሻ, then the trajectories 
of ܴሺ݇:െߨ → ሻߨ ∘  ଶ represent the four curves in the ܱܵሺ3ሻ parameter space. For differentܦ
non-Abelian charges, the curves shown in Figs. S1a-d correspond to Figs. 1b-e in the main 
text, respectively. Although one single curve cannot connect a pair of antipodal points on the 
parameterized solid sphere of ܱܵሺ3ሻ, two curves connected together are terminated at the 
antipodal points as shown in Fig. S1. For example, the green and blue (red and black) curves 
in Fig. S1a for charge ൅݅ thread a pair of antipodal points, they are hence closed and not 
contractible, which is topologically guaranteed by ߨଵሺܱܵሺ3ሻሻ ൌ Ժଶ. However, for the charge 
of െ1 as shown in Fig. S1d, one single curve connects a pair of antipodal points because 



 

when ݇ running across the first Brillouin zone the rotation ܴሺ݇ሻ goes from ሺ ሬ݊Ԧ, 0ሻ → ሺሬ݊Ԧ, ሻߨ →ሺሬ݊Ԧ, 2πሻ ≡ ሺሬ݊Ԧ, 0ሻ as indicated by the black curve.” 

In the revised text, relevant references have been cited accordingly for all above details. 

 
Comment 3.3: In the 3 bands model, the topological transition between different non-
Abelian charges follows the order +i -> +j -> +k because of the bandgaps close and reopen. 
For Abelian case, the topological transition occurs between the trivial phase and topological 
phase. Does similar scenario occur for the non-Abelian case, for example, the quaternion 
charge transition from +i/+j+/k to +1? A broader question is, can the topological transition of 
quaternion charges occur in an arbitrary order? 

Reply 3.3: We thank the referee for the insightful question. 

Yes, the topological phase transitions can occur via different pathways, and there exist 
topological phase transitions from ൅݅/൅݆/൅݇ to ൅1. Generally for the Abelian topological 
phase transitions, one only needs to focus on the single bandgap, whose closing-reopening 
process implies topological phase transitions. However, in the non-Abelian topological 
systems, there are multiple bandgaps involved, and bandgaps may close-reopen individually 
or simultaneously. For example, the topological phase transition from ൅݅/൅݆/൅݇ to ൅1 
requires closing-reopening of the 2nd/(1st and 2nd)/1st bandgap(s) as shown in Fig. R10. We 
also notice that the nontrivial phase transitions with charge change of Δܳ ് െ1 have one 
Dirac like transitions (Figs. R10a-c) while the cases with Δܳ ൌ െ1 imply two Dirac cones 
(Fig. R10d). 



 

 

Fig. R10 (Figure S9) | Topological phase transition (T) between charges ൅݅ to 1 (a), ൅݆ to 1 
(b), ൅݇ to 1 (c) and ሺ൅݅ሻ to െ݅ (d). Two linear crossings in (d) arise during the transition 
implies a change of charge Δܳ ൌ ݅ െ݅⁄ ൌ െ1. All others experience only one linear crossing. 

(Parameter setting, a: ݏ஼஼ ൌ െ4, ஺஺ݒ ൌ െ ଵଶ , ஻஻ݒ ൌ ଵଶ , ݑ ൌ െ ଵଶ , ݒ ൌ ଵଶ; b: ݒ஺஺ ൌ െ ଵଶ , ஻஻ݒ ൌଵଶ , ݑ ൌ െ ଵଶ , ݒ ൌ ଵଶ; c: ݏ஼஼ ൌ 4, ஺஺ݒ ൌ െ ଵଶ , ஻஻ݒ ൌ ଵଶ , ݑ ൌ െ ଵଶ , ݒ ൌ ଵଶ; d: ݏ஼஼ ൌ െ4, ஺஺ݒ ൌെ1, ஻஻ݒ ൌ 1, ݒ ൌ 1; the rest are all 0) 

 



 

 

Fig. R11 (Figure S10) | Topological phase transition with Abelian (a) and non-Abelian (b) 
topological charges. b, Cycle graph of the quaternion group ℚ. In the Abelian topological 
phase, the topological phase transition is single pathed. While in the non-Abelian topological 
phase, the topological phase transition is multiple-pathed. There are six paths that the system 
can be changed from charge െ1 to ൅1, and the bandgap closing details are different in these 
paths. 

 

More interestingly, the topological phase transition is more complicated in non-Abelian 
topological phases. For conventional topological systems characterized by Abelian charges, 
the transition from one topological state to another topological state involves a fixed 
sequential path (similar to nodes on a string or a loop as shown in Fig. R11a) and a fixed 
number of bandgap closing steps, and as such, the number of topological edge states is well 
defined. This is not the case for non-Abelian systems, where the transition from one 
topological phase to another one can take multiple distinct paths (like nodes in a network as 
shown in Fig. R11b). Along different paths, the topological phase transition will close the 
corresponding bandgap(s), which is path-dependent. For example, from charge െ1 to ൅1 
there are exhaustively six distinct paths as shown in Fig. R11b. The six paths are 
topologically equivalent, one cannot single out any one of them just from topological 
viewpoint. The gapless topological phase transition between charges െ1 and ൅1 can lead to 
the closing of either the 1st bandgap or the 2nd bandgap, or even both them, depending on 
how we continuously tune system parameters. From this perspective we see that the gapless 
topological phase transitions between charges of െ1 and ൅1 are not unique, and this 
additional complexity implies the fickle edge states. 



 

We have added the above discussion in the revised supplementary materials, Sec. IV (Figs. 
S9-S10). 

 
Comment 3.4: The bulk quaternions are distinguished by their distinct behaviors on the so 
called “EigenS-Frame” sphere, which not only determine the number of edge states in the 
bandgap, but also decide the distribution of them over several bandgaps. To experimentally 
show the non-Abelian topological charges, the authors extract the eigenvectors from 
measured phases and fields and plot them on the “EigenS-Frame”, and the experimental 
results and theoretical results match so well. Since eigenvectors are not gauge invariant, and 
therefore, in principle are not measurable quantities, how do the authors keep track of the 
right eigenstates (eigenstates might not be excited), and fix the gauge of the measured 
eigenvectors in the experiment? 

Reply 3.4: We thank the referee for the interesting question. 

Yes, eigenvectors are not gauge invariant, it is hard to measure without imposing some extra 
conditions. In other words, one has to fix the gauge field first and then map them in the 
experiment. First we design the PT symmetric Hamiltonian (Eq. 2) to be real (via carefully 
introducing complex hoppings). Consequently, the eigenvectors are real as well. From this 
perspective, the only freedoms left are േ|ݑ௞௡ۧ. Finally, we impose the right-handed rule to the 

eigenstate frame, i.e., ሺ|ݑ௞ଵۧ ൈ ௞ଶۧሻݑ| ∙ ௞ଷۧݑ| ൐ 0 when plotting the eigenstate frame sphere.. 
The eigenstates in the momentum space (݇-dependent) are Fourier-transformed from their 
distribution in the real space. In the experiment, to excite the eigenmodes better, the AC 
signals are input to meta-atoms A, B and C successively in a designated unit cell. 

In the revised manuscript, we have added the above description in the method section (SM, 
Sec. IX). 

 
Comment 3.5: Different from the edge states in 1D SSH model, the edge states for charge +j 
and -1 are not topologically stable in their energy since they are fickle and vary according to 
the details of the model. What about the edge states for charge +i/+k? Are they stable in their 
energy? In relation to this, are these edge states topologically robust against the disorder? The 
authors may include the study of this aspect either theoretically or experimentally. 

Reply 3.5: 

The edge states of charge ൅݅/൅݇ always stably locate in the 2nd/1st bandgap. Following the 
referee’s nice suggestion, we have calculated the disorder system as shown in Fig. R12a/b to 
show the robustness of the edge states against disorder for charge ൅݅ ൅݇⁄ , as long as both 
two bandgaps are not closed by the disorder. 

We have added the discussion in the revised supplementary materials, Sec. III (Fig. S7). 



 

 

Fig. R12 (Figure S7) | Robustness of edge states against disorder for charges ൅݅ (a) and ൅݇ 
(b). The solid red lines indicate non-Abelian topological phase transitions (as long as one of 
two bandgaps is closed) with increasing the disorder strength ߜ added onto ݏ஺஺, ஼஼ݏ	݀݊ܽ	஻஻ݏ , 
i.e., ݏ஺஺,௡ ൌ ஺஺ݏ ൅ ߳஺ሺ|߳஺| ൏  .ሻ with ݊ indicating the site number (Parameters are from Tabߜ

S2). The red ellipses indicate the corresponding edge states. 

 
Comment 3.6: The authors claim the non-Abelian bulk-edge correspondence is determined 
by \DeltaQ=Q_L/Q_R, although all edge states can be predicted from Zak phases of the 
respective bandgaps, or equivalently the phases \pi winding of the eigenstates. The authors 
provide some but not exclusive examples to show such relation indeed holds, but how can we 
assure this non-Abelian relation is generally true? 

Reply 3.6: We thank the referee for the great question. 

In the revised text we use the following three steps to prove the non-Abelian bulk edge 
correspondence. 

 

Fig. R13 (Figure S12) | Flow chart for proving bulk-edge correspondence 



 

 

1. From the most general perspective, a topological phase transition between two distinct 
topological phases (described by two different topological charges) must be accompanied 
by bandgap closing and re-opening. It works for both Abelian and non-Abelian 
topological phases. (Fig. R13) 

2. The topological phase transition between two distinct topological charges ܳ௅ and ܳோ is 
described by ܳ߂ ൌ ܳ௅ ܳோ⁄ . In other words, the detail of bandgap closing is described by ܳ߂ ൌ ܳ௅ ܳோ⁄ . (Fig. R14) 

3. The closing bandgap in k-space implies the existence the domain wall state(s) in r-space 
when splicing the two topologically distinct samples together (especially in the 1D 
system). And thus the domain wall states are described by ܳ߂ ൌ ܳ௅ ܳோ⁄ . 

(Note that left inverse (ܳோିଵܳ௅) and right inverse (ܳ௅ܳோିଵ) show similar results finally, thus 
we write ܳ߂ ൌ ܳ௅ ܳோ⁄ .) 

 

Proof: 

1. The first step is obvious. 

For Abelian topological phase transition, we only need to consider a single bandgap. Thus the 
bandgap closing happens there without any doubt. 

For non-Abelian topological phase transition, there are multiple bandgaps. The topological 
transition requires that there must be bandgap closing during the process. However, the 
position and number of bandgap closing need more details. In our three-band system, either 
the 1st or 2nd bandgap may close, or both of them can close. ∎ 
2. The second step arises from the definition of non-Abelian topological charges. 

 

 

Fig. R14 (Figure S13) | The loop product in the fundamental homotopy group and topological 
phase transition from charge ܳ௅ (a) to charge ܳோ (c) with shrinking the blue loop charge Δܳ 



 

(b) to the base point (black dot). a, The charge ܳ௅ ൌ Δܳ ∙ ܳோ indicated by the loop product. 
b, Shrinking the charge Δܳ loop to be the base point to enable the topological phase 
transition from ܳ௅ to ܳோ. c, The charge ܳோ after topological phase transition. 

 

Definition: The set of all homotopy classes of loops in a space ܺ under the loop product is 
the fundamental homotopy group ߨଵሺܺሻ. 
For the 1D Hamiltonian when ݇ runs from െߨ to ߨ, the Hamiltonian traces a loop in the 

order parameter space4 ܺ ൌ ଷܯ ൌ ைሺଷሻைሺଵሻయ. The quotient form of ܯଷ imposes that all three bands 

are fully gapped for any ݇ ∈ ሾെߨ, -ሿ. Then, each non-Abelian topological charge is wellߨ
defined via the above definition of fundamental homotopy group ߨଵሺܯଷሻ ൌ ℚ. All non-
Abelian topological charges together construct the group satisfying all group axioms. Here, 
the group product is loop product between two homotopy classes by definition. For example, 
the group product Δܳ ∙ ܳோ indicates that ݇ first running from െߨ to ߨ obtains charge ܳோ and 
then ݇ running again with charge Δܳ finally reaches to ܳ௅ ൌ Δܳ ∙ ܳோ	ሺܳ௅, ܳோ, Δܳ ∈ ℚሻ. 
Obviously, the topological transition between charges ܳ௅ and ܳோ has to experience “݇ 
running from െߨ to ߨ with charge Δܳ”. Finally, the continuous transition between the two 
charges ܳ௅ and ܳோ has to make the Δܳ loop shrink to one point (base point), which inevitably 
encounters bandgap closing as long as ܳ௅ ് ܳோ (Δܳ ് ൅1). In other words, the bandgap 
closing is characterized by the charge Δܳ. Thus, the topological phase transition is described 
by Δܳ ൌ ܳ௅ ܳோ⁄ . 

Basically, the relation of Δܳ ൌ ܳ௅ ܳோ⁄  works for all of topological charges, including both 
Abelian and non-Abelian, for systems with single and multiple bandgaps, respectively. ∎ 
3. First we extend the 1D Hamiltonian ܪሺ݇ሻ (Eq. 2 or Eq. S2) onto a 2D extended plane, ܪሺ݇ሻ ൌ ഥሺcosܪ ݇ , sin ݇ሻ → ,෩ሺ݇ଵܪ ݇ଶሻ 
where we applied the substitution cos ݇ → ߩ cos ݇ ൌ ݇ଵ	ܽ݊݀ sin ݇ → ߩ sin ݇ ൌ ݇ଶ with ߩ ∈ ሾ0,1ሿ. It is worth noting that the substitution preserves PT symmetry with ܪሺ݇ଵ, ݇ଶሻ ൌܪ∗ሺ݇ଵ, ݇ଶሻ. The parameter ߩ can be absorbed by those hopping parameters in actual 
implementation. 

The advantage of this extension is that the quaternion charge configuration and the edge state 
formation become visually obvious. Figure R15 shows the 2D band structure and eigenstate 
distribution for different non-Abelian topological charges, where the original Hamiltonian 
exactly locates on the unit circle ݇ଵଶ ൅ ݇ଶଶ ൌ 1. According to the definition of non-Abelian 
topological charges, there must be band degeneracy, i.e., Dirac cone, in the range ݇ଵଶ ൅ ݇ଶଶ ൏1 as one can see in Fig. R15a. 

This can be understood in the following way. This 2D plane can be regarded as a cutting 
plane in the 3D space. According to the definition of non-Abelian topological charges4, the 



 

unit circle here works like a closed loop encircling nodal lines in the 3D space. Thus, inside 
the unit circle (݇ଵଶ ൅ ݇ଶଶ ൏ 1) there must be band degeneracies for those non-trivial 
topological charges (് ൅1). They cannot be removed unless a topological phase transition 
happens with the degeneracy point moving out of the unit circle. 

Then we apply the Jackiw-Rebbi type argument5 to show that there must be domain-wall 
state relating to the topological phase transition. In Fig. R16, we take the ൅݅ charge as an 
example. First, by tuning system parameter, we continuously shrink the unit circle (black 
circle in Fig. R16a) into the magenta one, which still belongs to the charge ൅݅ as long as the 
Dirac point lies within the circle. Secondly, when we further shrink the magenta circle as 
shown in Fig. R16b, topological phase transition happens and the 2nd bandgap closes. 
Finally, the degeneracy point of Dirac cone stands outside the magenta circle and the 
topological charge becomes ൅1 (Fig. R16c). Figures R16d-f give the corresponding 1D band 
structures along the polar angles of the three magenta circles. Around the transition point ߠ ൌ ܪ the PT-symmetric Hamiltonian can be parameterized as ,ߨ ൌ ௫ߪఏ݇ߜ െ  .௭ (Figߪ݉ߜ
R16d) and ܪ ൌ ௫ߪఏ݇ߜ ൅ ௭ (Fig. R16f) with 0ߪ݉ߜ ൏ ݉ߜ ≪ 1 being the mass term. The 
standard Jackiw-Rebbi argument claims that there must be one domain wall state between 
them two, described by ܪ ൌ െ߲݅௫ߪ௫ ൅ ݉ሺݔሻߪ௭ and lim௫→േஶ݉ሺݔሻ ൌ േ1. When one 

consider the Dirac cone between the 1st and 3rd bands, the edge state in charge ൅݆ (Fig. 
R15b) can be explained similarly. The arguments also work for the quadratic degeneracy as 
shown in Fig. R15e with charge െ1. The difference for the charge -1 is that the degeneracy is 
quadratic, which splits into two linear Dirac cones upon small perturbation and hence it 
carries two edge modes. 

From the above arguments, we see that the bandgap that the edge states locate in is implied 
by the position of degeneracy in the 2D extended space. Finally, the number of extended 2D 
band degeneracy (as given by the number of linear Dirac cones) is equal to the number of 
edge states per edge. Moreover, the bandgap in which the edge states locate in is also dictated 
by the position of degeneracy in the 2D extended space. We conclude that the gapless 
topological phase transition in k-space (bulk) implies the presence of topological 
edge/domain-wall state in r-space. More specifically, where there is a bandgap closing there 
is an edge/domain-wall state. 

Therefore, the edge/domain-wall states are characterized by Δܳ ൌ ܳ௅ ܳோ⁄  as it fully describes 
the topological phase transition (Step 2). ∎ 



 

 

Fig. R15 (Figure S15) | Extension to 2D extended plane of the flat-band Hamiltonian 
(parameters are from Tab. S1). The non-Abelian charges are labelled in each panel (a-e). The 
white unit circle indicates the 1D Hamiltonian (Eq. 2 or Eq. S2). The three bands are 
coloured in red, green and blue, respectively. The bottom plane indicates the eigenstate 
distribution. 

 



 

 

Fig. R16 (Figure S14) | Jackiw-Rebbi argument for “where there is a bandgap closing there is 
a domain-wall state”. a-c, Topological phase transition from charge ൅݅ to ൅1 when 
continuously shrinking the magenta circle (white circle in each 2D band sheet) via system 
parameter tuning. d-f, The corresponding 1D band structure along the polar angle ߠ of each 
magenta circle. The gap-closing and gap reopening imply edge mode. g, Schematically 
localized domain-wall state between charges ൅݅ and ൅1, corresponding to the topological 
phase transition (b and e). 

 

The above proof has been added as a new section (Sec. VI) in the revised supplementary 
materials. 

We have also added another new section (Sec. VII) in the revised supplementary materials to 
further make the arguments with predicting edge states from the extended 2D plane. 



 

 
Comment 3.7: For the model implemented in the experiment, why the number of edge states 
is 4 for topological charge +j (Figure S4, (b))? I expect it is also 2 based on the flat band 
TBM in Figure 2(c). 

Reply 3.7: We thank the referee for pointing this out. 

We divide all cases of charge ൅݆ into two categories. The first one is a special case in which 
the 2nd band is fully decoupled from other two bands, and as such we can neglect the 2nd 
band and consider the whole bandgap carrying Zak phase of ߨ and thus supporting 1 edge 
state per edge (2 edge states in total) accordingly. The other case is the more general case in 
which the 2nd band couples with the 1st and 3rd bands, and there are two bandgaps 
(respectively between 1st/2nd band and 2nd/3rd band), where each gap carries a Zak phase of ߨ and thus supports 1 edge states per edge (in total of 4 edge states for two bandgaps and two 
edges). 

Following the referee’s suggestion, we show the transition between the two cases, i.e., from 
decoupling to coupling of the 2nd band (Fig. R17). Basically, we see one extra edge state (per 
edge) appears upon switch-on of the coupling. In Fig. R17b, we shift the 2nd band away from ܧ ൌ 2 to more explicitly show the phenomena. 

We have added the above discussion in the revised supplementary materials (Fig. S6). 

 

Fig. R17 (Figure S6) | Coupling of the 2nd band induces one more edge state (red line) per 
edge in the charge ൅݆. a and b, Corresponding to ݏ஻஻ ൌ 2 and ݏ஻஻ ൌ 2.2, respectively. When ݑߜ ൌ 0, the 2nd band is decoupled from the other two bands, the system can be regarded as a 
two-band system. There is only one edge state per edge as indicated by the grey circle in (b) 
(see Fig. 2c in the main text corresponding to (a)), while one more edge state (per edge) 
emerges from the middle (2nd) band when ݑߜ ൐ 0 (switching on the coupling). (Parameter 
setting, ݑ → ݑ ൅  (the rest is from Tab. S1 ,ݑߜ

 
Comment 3.8: The following questions are also very interesting and general, but they might 



 

not directly relate to the major points of this manuscript, therefore, the authors might or might 
not consider implementing them. 

Are the quaternion charges unique for three bands model? Assume if an extra band is added 
into the system, will this band trivialize other bands like the case of fragile topology? 

Reply 3.8: We thank the referee for the interesting questions. 

Here, we mainly focus on experimentally characterization of the non-Abelian topological 
phases in a three-band PT symmetric system, which has the smallest band number towards 
realizing non-Abelian topological phases. Involving extra bands into the system definitely 
deserves further investigations and may introduce novel physics as well. 

We initially divide the questions into two categories: 1. The first one is that after involving 
the extra bands there is no degeneracy between two mutually adjacent bands, i.e., the 
eigenvalues ߣଵ ൏ ଶߣ ൏ ⋯ ൏  ே; 2. The second case is that after involving the extra bands theߣ
degeneracies between adjacent bands are permitted, i.e., ߣଵ ൏ ଶߣ ൏ ⋯ ൑ ⋯ ൏  .ேߣ

The first category has been theoretically studied by Bzdušek and his colleagues (Science 365, 
1273, (2019)) via generalizing the quaternion charge from ℚ to be തܲே, i.e., തܲே ൌ⋃ ሺേ݁ଵ௡భ݁ଶ௡మ … ݁ேିଵ௡ಿషభሻ௡೔∈ሺ଴,ଵሻ  (2ே	݈݁݁݉݁݊ݏݐ	݊݅	݈ܽݐ݋ݐ) with the Clifford algebra satisfying ݁௜ଶ ൌ െ1, ݁௜ ௝݁ ൌ െ ௝݁݁௜, 1 ൑ ݅ ് ݆ ൑ ܰ െ 1. Basically, the corresponding topological charges 

are non-Abelian and exhibit many intriguing properties. 

The second category still remains an open question, the order space of Hamiltonian is 

different and may have more fine structures, i.e., 
ைሺேሻைሺଵሻ…ைሺଶሻ…. It may exhibit the fragile 

topology as speculated by the referee. We will work on this interesting topic in the future. 

 
Comment 3.9: Since the non-Abelian charges are non-commutative, do they place the 
constraint on the admissible configurations of the 3 bands model? 

Reply 3.9: Yes, they do place some constraints on the admissible configurations of the three-
band model. Particularly in the 3D, the PT symmetric nodal links formed by consecutive 
pairs of bands exhibit interesting braiding structures and the underlying topological features 
are described by the non-Abelian topological charges, such as quaternions4. 

Interestingly, on each cutting-plane in the 3D momentum space, 3D nodal lines reduce to 2D 
Dirac points and so the same admissible constraints can also be inherited by 2D Dirac points. 
The two Dirac points of honeycomb lattices carry opposite winding numbers and they can 
annihilate in pairs7 due to the famous no-go theorem8. However, when multiple bands (n>2) 
are involved, the annihilation of Dirac points depends on the path they travel before merging. 
It implies the so-called “failure of no-go theorem” 9 and shows the non-Abelian braiding 
features. 



 

In addition, in a 3D system, if the whole system does not possess PT symmetry but there 
exists ܥଶܶ-invariant plane, Weyl points can be braided on the ܥଶܶ plane10 and the underlying 
non-Abelian constraints will determine the path-dependent pairwise-annihilation of Weyl 
points. 

 
Comment 3.10: Provided further studies addressing my comments are performed, the 
manuscript meets the criteria of Nature and therefore I recommend the acceptance. 

Reply 3.10: We genuinely thank the referee for the recommendation. 
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Reviewer Reports on the First Revision: 

Ref #1 

I have read the resubmitted version of the manuscript by Guo et al., titled “Experimental 
observation of non-Abelian topological charges and bulk-edge correspondence”, and also carefully 
studied the detailed reply to all the referees’ comments. Although I have read the largely supportive 
reports of the other two referees, I am still wondering why this particular work merits the high 
attention of journal Nature. It is admittedly an enthusiastic experience to emulate tight-binding 
models of novel topological bands in a table-top experiment with hundreds of coaxials, and 
eventually to observe that the spectra of an actual physical system match the theory. However, from 
the broader perspective, the authors’ results don’t push neither the theoretical understanding of the 
non-Abelian band topology, nor do they put forward novel experimental technique or overcome a 
major experimental challenge. I don’t want to be disrespectful, but one could say the authors 
manifested a great ability to practically implement matrix Hamiltonians, but what does one really 
learn? How is an experiment of a scientific value, if it does not really offer a possibility to disprove a 
theory (in this case the diagonalization of Hermitian matrices)? If the authors failed to find 
agreement with the theory, the explanation would most certainly be that their emulation of the 
matrix Hamiltonian was not precise enough. Therefore, while the experiment looks impressive, and 
it is the first particular such experiment to implement the non-Abelian band-topological models, my 
recommendation (which I fear to be overruled by the other two referees) remains to publish these 
results in a more specialized journal such as [REDACTED]. Irrespective of my critique above, let me 
comment on the actual experiment and analysis presented in this work, which applies regardless of 
the journal in which the results would eventually be disseminated. I find the reply to most referees’ 
comments satisfiable, and I appreciate the authors’ efforts with moving parts of the theoretical 
discussion to the Supplemental Material, significantly shortening the text while improving its clarity, 
and providing a more detailed information about the further details on the experimental setup. The 
analysis of experimental data looks solid and the text is well organized. The work is nearly ready for 
publication. There is, however, one major point about which I must be very strict. In all fairness, the 
authors cannot claim that they propose a non-Abelian bulk-edge correspondence (as they do in both 
the abstract and the introduction). While in their reply (and also in the amended version of the 
Supplemental Material) the authors go to great lengths to the make the appearance of a novel proof 
of the bulk-edge correspondence, their results cannot be taken as one; in fact the authors hardly 
prove anything on this question beyond what has already been established by previous works. 
Before I explain the problems with the “proof”, let me emphasize that this deficiency does not in any 
way spoil the value of the experimental efforts and data presented by this work. However, 
misleading advertisements and false claims in abstract would have adverse implications on the 
overall understanding of the authors’ results by the community, as well as for the interpretation of 
any follow- up studies. Therefore, I must insist that a milder formulation, such as “Furthermore, we 
experimentally observe the manifestation of the non-Abelian topological charges [at domain 
walls…]” would be far more appropriate in the abstract/intro. Let me explain why the authors’ proof 



 

and statement on this issue are very misleading. Due to the technicality and the various aspects of 
the “proof”, I have divided my critique into three parts: 1.) When focusing on the case of conjugacy 
classes of “i/j/k”, one is considering topological bands that are readily distinguished by the quantized 
Berry-Zak phases. The bulk-edge correspondence for non-trivial Berry-Zak phase is well understood: 
in general, it does not lead to in-gap edge state, because by shifting the energy of the edge state it 
can disappear inside the bulk energy band. When that happens, the edge develops a quantized (e/2) 
edge charge of the valence/conduction bands, which is taken as the universal signature of the non-
trivial Berry-Zak phase. Equivalently, the filling anomaly is developed, and also taken to be a 
universal signature of the non-trivial Berry-Zak phase irrespective of the presence/absence of the 
topological edge mode [see e.g. the discussion in Sec. III of PRB 99, 245151 (2019)]. The signatures of 
the non-trivial Berry-Zak phase as summarized by the previous paragraph are at present well 
established. By applying this known correspondence to any selected energy gap (one gap at a time) 
of multi-gapped models, one readily deduces the completely analogous signatures of the conjugacy 
classes i/j/k beyond the discussion of the present work. In a sharp contrast, as the authors’ analysis 
in the present work focuses too much on band structures close to a topological phase transition (i.e., 
near a gap closing), cf. Figs. S14-S19, their “proof” completely overlooks the possible absence of the 
edge mode in generic models with more complicated dispersion. In particular, it should in principle 
be possible for the topological edge states of the “+/-i” phase to drop all the way from the upper 
energy gap to the lower energy gap. (This is compatible with the known bulk-boundary 
correspondence for non-trivial Berry-Zak phase, and is not refuted by the authors’ present analysis.) 
Note also that the conjectured bulk-boundary correspondence for these classes does not go beyond 
the one readily conjectured by Ref. [19]. 2.) The topological class “-1” is the only one here that really 
goes beyond the characterization with BerryZak phases. Therefore, here there is a possibility to 
discover some truly novel aspect of the bulkboundary correspondence. However, as the authors 
themselves admit in their reply: “As the charge −1 is "richer in details" than charges ±i, ±j, ±k, the 
formation of edge modes is more subtle, we hence say in the original text that "edge states 
emerging from charge -1 are fickle”” The authors present an argument based on an analogy with the 
Jackiw-Rebbi model, which suggests that the -1 charge should exhibit a pair of edge modes. 
Nevertheless, as visible in Fig. S11, this charge is found to be associated with three (rather than two) 
edge state in the studied models, unless the model parameters are fine-tuned to specific values 
(namely ones that correspond to a complete decoupling of the third band – cases which I find 
analyzed below Eq. (69) of Ref.19). The authors’ simplistic analysis has troubles interpreting these 
features, and it also does not predict any actually robust signature (such as the bulk polarization and 
filling anomaly for the non-trivial Berry-Zak phase) which would characterize the -1 charge. Once 
again, there is simply not enough ground for the claim “we propose the non-Abelian bulk-edge 
correspondence” in the abstract and introduction. 3.) The authors seem to distinguish between the 
bulk-edge (two different band structures meeting at a domain wall?) and the bulk-boundary 
(vacuum on the other side of the edge?). I didn’t find the distinction explicitly clarified in the text, 
and it thus took me a while to decipher in their reply the intended meaning of “Furthermore, we 
also propose non-Abelian bulk-edge correspondence for the first time, and as the reviewer stated, 
our work directly generalizes “the previously introduced bulk-boundary correspondence for the non-
Abelian topological charge””. Perhaps “bulk-domain wall” would be a less confusing formulation. In 
either case, there is a subtle but important issue here that closely relates to one of my earlier 
questions. Namely, in my previous reply, I have asked how does one distinguish phases “+i” and “-i", 
which are related to each other by a gauge transformation. I respectfully disagree with the authors 



 

statement that “In the non-Abelian topological phases one cannot continuously transform charge +i 
to −i without gap closing” and with the paragraphs that follow this statement. To see the problem, 
consider the explicit (flat-band) model encoded with the SO(3) eigenframe ܴ(݇) = ( cos ݇ 2 sin ݇ 2 0 − 
sin ݇ 2 cos ݇ 2 0 0 0 1) which the authors take to corresponds to charge „+i“. By flipping in this 
expression the sign k → -k, one obtains the inverse matrix which encodes a Hamiltonian with charge 
“-i”. Now, imagine a system with a domain wall, and a band structure initially characterized by the 
R(k) given above on both sides of the domain wall (thus, initially, the domain wall is not “really” 
there as the system remains translationally invariant). Then, as a function of a tuning parameter p, 
one changes the flat-band Hamiltonian on the right side of the domain wall to ܳ(݇; ݌) = ( 0 0 0 1 cos ݌ sin 0 ݌ − sin ݌ cos ݌ ) ( cos ݇ 2 sin ݇ 2 0 − sin ݇ 2 cos ݇ 2 0 0 0 1) ( 1 0 0 0 cos ݌ − sin 0 ݌ + sin ݌ cos ݌ 
) while keeping the system on the left side of the domain wall unchanged. This is a continuous 
deformation that keeps the energy bands on both sides flat (and both energy gaps open), and which 
interpolates between what the authors would call “charge +i" at p=0 and “charge -i" at p=Pi [note 
that Q(k,Pi) = R(-k)]. The authors claim to investigate the domain wall between band structures with 
charges “+i" and “-i" (which is found to resemble end modes of charge “-1”). However, as the above 
example explicitly illustrates, this domain wall is continuously removable without closing the bulk 
energy gaps and while keeping the PT symmetry of each band structure. [An analogous issue 
stemming from the related non-Abelian properties of the Euler class in 2D PTsymmetric systems is 
discussed in Appendix D of PRB 102, 115135 (2020).] Therefore, when comparing two different band 
structures, one can only tell whether they are in the same or different conjugacy class. In contrast, 
the “absolute” charge difference ΔQ=QL/QR (the quantity purported to govern the “generalized 
bulk-edge correspondence”) seems to be meaningful only if the two models are relatable through a 
small (gap-closing) tuning of parameters, but not in general. [In particular, the explicit models 
considered by the authors’ simplistic analysis all produce the same matrix H(k=0). This choice 
misguides one to think that a canonical gauge/base point can always be found that leads to a unique 
element of the quaternion group, but it really is just a consequence of the overly simple form of the 
models considered by the authors.] These simple observations thus further undermine the authors’ 
claim that their work “generalizes “the previously introduced bulk-boundary correspondence for the 
non-Abelian topological charge””. I don’t find in this work any new and rigorous theoretical analysis 
concerning the non-Abelian bulk-boundary correspondence. For all these reasons, I have to urge the 
authors to relax their statement in the abstract and in the introduction (as well as at the appropriate 
places in the main text) by the weaker, but more appropriate, formulation such as the one I have 
explicitly suggested in blue earlier in my report. I cannot recommend this work for publication unless 
this serious issue is properly resolved by the authors. I have no further major comments on the 
manuscript – the authors have improved its quality and readability significantly following the various 
suggestions of myself and of the other referees. I have thought, however, that it might be 
appropriate to cite in this context the very recent theoretical work by Kang and Vafek “PRB 102, 
035161 (2020)” which shows how non-Abelian braiding could be at the heart of certain strongly-
correlated phases of twisted bilayer graphene at the magic angle. 

Ref  #2 

I think the authors have done a great job in answering my questions and resolving my concerns. 
Although the non-Abelian bulk-edge correspondence is not mathematically proved, it is reasonably 
argued with convincing evidences. I have no more questions and recommend the acceptance. 



 

Ref #3 

I carefully read their response and the revised manuscript. Apparently the authors take significant 
efforts to implement the Reviewers’ comments and suggestion, and address most of my comments 
in a satisfactory manner. I still have few comments with respect to their replies and revision, I 
believe it will help the readers to better understand their work if the authors clarify their 
statements furthermore. 
 
 
Reply 3.3 
When discussing the non-Abelian topological transition (Fig. R11), why there is no direct transition 
between the topological charges -1 and +1? 
 
Reply 3.6 
The authors propose a flow chart to give a proof about non-Abelian bulk edge correspondence, it’s 
very nice to see the connection between the topological transition and charges relation from the 
perspective of fundamental homotopy group. However, I get confused about the argument 3, 
when they extend the 1D Hamiltonian in 2D space, why the 2D plane can be analogous to the 
cutting plane in the 3D space? This statement seems a speculation without a support. Besides, I 
don’t see how using 2D plot to support the Jackiw-Rebbi argument for other topological transitions 
like i->k. 
 
A technique question related to experimental characterization in the supplementary 
If I understand correctly, the authors experimentally choose the subspace \phi_2=\pi/2 by exciting 
the four nodes inside the meta-atom with the corresponding phase shifts. Since they specifically 
excite one meta-atom, how do the authors justify the same subspace is selected for other meta-
atoms? 

Author Rebuttals to First Revision: 

We moved the reply to Referee #1 in the final section as it is comparably lengthy. 

Referee #2 (Remarks to the Author): 

Comment 2.1: I think the authors have done a great job in answering my questions and 
resolving my concerns. Although the non-Abelian bulk-edge correspondence is not 
mathematically proved, it is reasonably argued with convincing evidences. I have no more 
questions and recommend the acceptance. 

Reply 2.1: We thank the referee for his/her positive assessments of our work and reply, 
especially for considering our argument on the non-Abelian bulk-edge correspondence to be 
evidently convincing. 

 

Referee #3 (Remarks to the Author): 

Comment 3.1: I carefully read their response and the revised manuscript. Apparently the 
authors take significant efforts to implement the Reviewers’ comments and suggestion, and 
address most of my comments in a satisfactory manner. I still have few comments with 
respect to their replies and revision, I believe it will help the readers to better understand their 
work if the authors clarify their statements furthermore. 



 

Reply 3.1: We thank the referee for his/her recognitions and positive assessments of our 
work and reply. We have followed the referee’s suggestions to further clarify several related 
statements as detailed below. 

 

Comment 3.2: Reply 3.3-When discussing the non-Abelian topological transition (Fig. R11), 
why there is no direct transition between the topological charges -1 and +1? 

Reply 3.2: We thank the referee for pointing this out. The graph shown in Fig. R11 (Fig. S10 
in supplementary materials) is the “cycle graph” of quaternion group, which shows that each 
element (േ݅, േ݆	ݎ݋ േ ݇) multiplies itself gives −1. As the topological phase transition from 
charge ൅1 to െ1 can only take one of ሺേ݅ሻଶ, ሺേ݆ሻଶ	ܽ݊݀	ሺേ݇ሻଶ configurations, the direct 
transition should not be shown in the cycle graph according to the standard definition of a 
group cycle graph. 

In the revised supplementary materials (Sec. IV and page 11), we have properly cited a 
mathematics book (see below) on the definition of the cycle graph of quaternion group as, 

“where the transition from one topological phase to another one can take multiple distinct 
paths (like the nodes in a network as shown in Fig. S10b, which is the cycle graph of 
quaternion group3).”. 

Reference: 

3Shanks, D. Solved and Unsolved Problems in Number Theory. 2nd edn, pp. 85 (Chelsea, 
1978). 

 

Comment 3.3: Reply 3.6-The authors propose a flow chart to give a proof about non-Abelian 
bulk edge correspondence, it’s very nice to see the connection between the topological 
transition and charges relation from the perspective of fundamental homotopy group. 
However, I get confused about the argument 3, when they extend the 1D Hamiltonian in 2D 
space, why the 2D plane can be analogous to the cutting plane in the 3D space? This 
statement seems a speculation without a support. Besides, I don’t see how using 2D plot to 
support the Jackiw-Rebbi argument for other topological transitions like i->k. 

Reply 3.3: We thank the referee for recognizing our argument upon non-Abelian bulk edge 
correspondence. 

To see the connection with 3D systems, we note that non-Abelian quaternion was first 
introduced to classify the disclination line defects in 3D biaxial nematic liquid crystals [Ref. 
19: Wu, Q. et al., Science 365, 1273 (2019)]. If we cut a 2D plane through the disclination 
line, the line defect appears as a point singularity on the 2D cutting plane. The rotation of the 
principal axis of the biaxial molecule (see Fig. S8 in Ref. 19) around the point singularity 
gives a visually obvious distinction between various quaternion (േ݅, േ݆, േ݇,െ1… etc) 
charges that can label the loops encircling the singularity. 



 

The non-Abelian topological character of our 1D system is also more apparent when we 
extend our 1D Hamiltonian to 2D (so that the 1D Hamiltonian is a unit circle in the 2D 
space). In fact, the eigenvector rotations in the 2D plane (as shown in the bottom planes of 
the Fig. S15 to S19) are the same as the rotation of biaxial molecules in a 2D plane cutting 
through a disclination line defect of 3D biaxial nematic liquid crystals. 

For the band structure of a PT symmetric system, each degeneracy in 2D k-space can also be 
promoted into a nodal line in 3D by adding a synthetic dimension [see for example, Fig. 1 in 
Ref. 23: Bouhon, A. et al., Nature Physics 16, 1137–1143(2020)], and the nodal line is a 
momentum space counterpart of a disclination line defect in 3D biaxial nematic liquid 
crystals. Conversely, the cutting plane of nodal lines in the 3D k-space corresponds to 2D 
degeneracies in the band structure. 

It is worth noting “the 2D plane can be analogous to the cutting plane in the 3D space” is 
really for a better visualization and not a necessary condition in our argument (proof). We 
added it just for further understanding the extended 2D Hamiltonian (Eq. S5). In the revised 
supplementary materials (Sec. VI and page 16), we have deleted “the 2D plane can be 
analogous to the cutting plane in the 3D space” to avoid any misunderstanding caused. 

 

Our argument for the non-Abelian bulk-edge correspondence is divided into three steps 
(Supplementary materials, Sec. VI): 
Step 1. We simply state the well-accepted notion that there must be bandgap closing/re-
opening during topological phase transition. 
Step 2. For the transition from ܳ௅ → ܳோ, we first find Δܳ ൌ ܳ௅ ܳோ⁄  from the homotopy 
group argument (Fig. S13), where Δܳ encodes the information of bandgap closing during the 
transition from ܳ௅ → ܳோ. 
Step 3. The domain-wall state formation between charges ܳ௅ܽ݊݀	ܳோ can be inferred from the 
edge state formation within the transition Δܳ → ൅1 (as Δܳ encodes all topological 
information within the transition ܳ௅ → ܳோ). We then focus on the transition Δܳ → ൅1 and 
Jackiw-Rebbi argument to show the domain-wall states (between charges ܳ௅ܽ݊݀	ܳோ), as an 
example depicted in Fig. S14. 
 
For the domain-wall states between charges ൅݅ and ൅݇, first we have Δܳ ൌ ൅݅ ൅݇⁄ ൌ ൅݆, 
then we apply Jackiw-Rebbi argument onto the charge transition ൅݆ → ൅1 in a similar 
manner (as what we have done in Fig. S14). 
 
In the revised supplementary materials (Sec. VI and page 13) we added, 

“The domain-wall state formation between charges ܳ௅ܽ݊݀	ܳோ can be inferred from the edge 
state formation within the transition Δܳ → ൅1 (as Δܳ encodes all topological information 
within the transition ܳ௅ → ܳோ).” 

 

Comment 3.4: A technique question related to experimental characterization in the 
supplementary. If I understand correctly, the authors experimentally choose the subspace 



 

\phi_2=\pi/2 by exciting the four nodes inside the meta-atom with the corresponding phase 
shifts. Since they specifically excite one meta-atom, how do the authors justify the same 
subspace is selected for other meta-atoms? 

Reply 3.4: We thank the referee for the question. The transmission line system is a linear 
system which can be block-diagonalized into 4 disjoint sub-spaces, each having 3 modes. 
Each subspace can be labeled by a pseudo angular momentum (or a fixed phase shift between 
nodes inside a meta-atom). In the experiment, we could specifically control the phase shift of 
the four nodes in one meta-atom to selectively excite one particular sub-space. When we 
excite one meta-atom by imposing the phase shift, the excitation only has projection on the 
eigenmodes of the sub-space (and is orthogonal to the modes in other sub-spaces) and hence 
only the three modes in that selected subspace are excited. In other words, each subspace 
corresponds to a pseudo angular momentum (as mentioned in the main text), and as long as 
the angular momentum is preserved, other subspaces are not excited. 

In the experiment, we checked the results by making the projection of the measured data onto 
the specified subspace and we indeed found that the projection is nearly 100%, reassuring 
that the leakage into other subspaces (due to imperfections) is negligibly small. 

In the revised supplementary materials (Sec. IX and page 24) we added the above discussion 
to further clarify our descriptions. 

 

 

Referee #1 (Remarks to the Author): 

Comment 1.1: I have read the resubmitted version of the manuscript by Guo et al., titled 
“Experimental observation of non-Abelian topological charges and bulk-edge 
correspondence”, and also carefully studied the detailed reply to all the referees’ comments. 

Although I have read the largely supportive reports of the other two referees, I am still 
wondering why this particular work merits the high attention of journal Nature. It is 
admittedly an enthusiastic experience to emulate tight-binding models of novel topological 
bands in a table-top experiment with hundreds of coaxials, and eventually to observe that the 
spectra of an actual physical system match the theory. However, from the broader 
perspective, the authors’ results don’t push neither the theoretical understanding of the non-
Abelian band topology, nor do they put forward novel experimental technique or overcome a 
major experimental challenge. I don’t want to be disrespectful, but one could say the authors 
manifested a great ability to practically implement matrix Hamiltonians, but what does one 
really learn? How is an experiment of a scientific value, if it does not really offer a possibility 
to disprove a theory (in this case the diagonalization of Hermitian matrices)? If the authors 
failed to find agreement with the theory, the explanation would most certainly be that their 
emulation of the matrix Hamiltonian was not precise enough. 



 

Therefore, while the experiment looks impressive, and it is the first particular such 
experiment to implement the non-Abelian band-topological models, my recommendation 
(which I fear to be overruled by the other two referees) remains to publish these results in a 
more specialized journal such as [REDACTED]. 

Irrespective of my critique above, let me comment on the actual experiment and analysis 
presented in this work, which applies regardless of the journal in which the results would 
eventually be disseminated. 

Reply 1.1: We thank the reviewer think “the experiment looks impressive, and it is the first 
particular such experiment to implement the non-Abelian band-topological models”. 

We respectfully disagree with some other comments. In addition to being the first experiment 
observation of non-Abelian topological charges, we also generalize the bulk-edge 
correspondence for the non-Abelian topological charges. We note that in Ref. 19 (both main 
text and supplementary materials), there has been no mention of the “bulk edge 
correspondence”. Our proposal shows that an elegant global relation exists, which not only 
unifies all the Abelian arguments, but also predicts those that cannot be explained by the 
Abelian arguments, such as the domain-wall states between charges ൅݅ and െ݅. 
We also would like to point out that the reviewer’s suggestion of the gauge transformation in 
Comment 1.7 generates Hamiltonians that violate the periodic boundary condition and hence 
no band structures can be associated with the Hamiltonians defined by such a transformation 

pathway. As such, it cannot be used to describe the transition between charges ൅݅ and – ݅ 
without gap closing and re-opening. We will give detailed replies to each of the reviewer’s 
comments as follows. 

We thank the reviewer for bringing to our attention some interesting works, in particular the 
very recent paper by Jian Kang and Oskar Vafekk [PRB 102, 035161 (2020)], which relates 
non-Abelian braiding and strongly-correlated phases of twisted bilayer graphene at the magic 
angle. 

We also thank the reviewer for all the critical comments to improve our presentation and 
make our work more rigorous. 

 

Comment 1.2: I find the reply to most referees’ comments satisfiable, and I appreciate the 
authors’ efforts with moving parts of the theoretical discussion to the Supplemental Material, 
significantly shortening the text while improving its clarity, and providing a more detailed 
information about the further details on the experimental setup. The analysis of experimental 
data looks solid and the text is well organized. The work is nearly ready for publication. 

Reply 1.2: We thank the reviewer for considering our reply to most referees’ comments to be 
satisfactory, and for considering “The analysis of experimental data looks solid and the text is 
well organized. The work is nearly ready for publication”. 



 

 

Comment 1.3: There is, however, one major point about which I must be very strict. In all 
fairness, the authors cannot claim that they propose a non-Abelian bulk-edge 
correspondence (as they do in both the abstract and the introduction). While in their reply 
(and also in the amended version of the Supplemental Material) the authors go to great 
lengths to the make the appearance of a novel proof of the bulk-edge correspondence, their 
results cannot be taken as one; in fact the authors hardly prove anything on this question 
beyond what has already been established by previous works. 

Reply 1.3: As we have mentioned in Reply 1.1, we generalized for the first time the bulk-
edge correspondence for non-Abelian topological charges. Our argument starts from the 
definition of fundamental homotopy group and shows the relation of Δܳ ൌ ܳ௅ ܳோ⁄  
(governing the topological phase transition) which is new and has not appeared in any form 
in prior literature. Then we show that a certain type of phase transition across a domain wall 
is always accompanied with band inversions within certain band gaps, and use Jackiw-Rebbi 
approach to relate the closing/re-opening of the bulk bandgap to the appearance of 
edge/domain-wall states. Our non-Abelian bulk-edge correspondence indeed predicts 
something that has never been discussed before, such as the domain-wall states between 
charges ൅݅ and െ݅, which are confirmed by theoretical argument, tight-binding simulation 
and the experimental result. 

 

Comment 1.4: Before I explain the problems with the “proof”, let me emphasize that this 
deficiency does not in any way spoil the value of the experimental efforts and data presented 
by this work. However, misleading advertisements and false claims in abstract would have 
adverse implications on the overall understanding of the authors’ results by the community, 
as well as for the interpretation of any follow-up studies. Therefore, I must insist that a milder 
formulation, such as “Furthermore, we experimentally observe the manifestation of the non-
Abelian topological charges [at domain walls…]” would be far more appropriate in the 
abstract/intro. 

Reply 1.4: We thank the reviewer for suggesting another way to state our findings. 

It is a very nice suggestion to state our finding as a manifestation of the domain wall non-
Abelian topological charges. We note that ܳ௅ and ܳோ are bulk topological quantities, and so 
if we label ܳ߂ as a domain wall non-Abelian topological charge (following the referee's 
opinion), the formula is then relating bulk topological characters (ܳ௅	ܽ݊݀	ܳோ) to a domain 
wall character ܳ߂. We then do not see why this relationship is not a form of bulk-edge 
correspondence. If the term “edge” and “domain-wall” should not be used interchangeably 
(in our view, an edge is a domain-wall between a material and vacuum), we will use the 
“domain-wall” in appropriate places in the manuscript. In addition, for conventional Chern 
insulators, the literature does not call the difference of the bulk Chern numbers (ܥ߂ ൌ ௅ܥ െܥோ, which is the Abelian counterpart of our ܳ߂ ൌ ܳ௅/ܳோ) the “Chern number of the domain-
wall”. Hence, calling ܳ߂ ൌ ܳ௅/ܳோ the non-Abelian topological charges at domain-wall in 



 

the abstract may make our paper look a bit unusual, which is the reason why we are reluctant 
to do so although we have no objection to this viewpoint. That said, we now removed the 
statement “propose a non-Abelian bulk-edge correspondence”. We now state that “the 
numerical and experimental results suggest that a non-Abelian bulk-edge correspondence 
exists”. 

 

Comment 1.5: Let me explain why the authors’ proof and statement on this issue are very 
misleading. Due to the technicality and the various aspects of the “proof”, I have divided my 
critique into three parts: 

1.) 

When focusing on the case of conjugacy classes of “i/j/k”, one is considering topological 
bands that are readily distinguished by the quantized Berry-Zak phases. The bulk-edge 
correspondence for non-trivial Berry-Zak phase is well understood: in general, it does not 
lead to in-gap edge state, because by shifting the energy of the edge state it can disappear 
inside the bulk energy band. When that happens, the edge develops a quantized (e/2) edge 
charge of the valence/conduction bands, which is taken as the universal signature of the non-
trivial Berry-Zak phase. Equivalently, the filling anomaly is developed, and also taken to be a 
universal signature of the non-trivial Berry-Zak phase irrespective of the presence/absence of 
the topological edge mode [see e.g. the discussion in Sec. III of PRB 99, 245151 (2019)]. 

The signatures of the non-trivial Berry-Zak phase as summarized by the previous paragraph 
are at present well established. By applying this known correspondence to any selected 
energy gap (one gap at a time) of multi-gapped models, one readily deduces the completely 
analogous signatures of the conjugacy classes i/j/k beyond the discussion of the present work. 

In a sharp contrast, as the authors’ analysis in the present work focuses too much on band 
structures close to a topological phase transition (i.e., near a gap closing), cf. Figs. S14-S19, 
their “proof” completely overlooks the possible absence of the edge mode in generic models 
with more complicated dispersion. In particular, it should in principle be possible for the 
topological edge states of the “+/-i” phase to drop all the way from the upper energy gap to 
the lower energy gap. (This is compatible with the known bulk-boundary correspondence for 
non-trivial Berry-Zak phase, and is not refuted by the authors’ present analysis.) 

Note also that the conjectured bulk-boundary correspondence for these classes does not go 
beyond the one readily conjectured by Ref. [19]. 

Reply 1.5: 

We first focus on the key critical comment: 

“In a sharp contrast, as the authors’ analysis in the present work focuses too much on band 
structures close to a topological phase transition (i.e., near a gap closing), cf. Figs. S14-S19, 



 

their “proof” completely overlooks the possible absence of the edge mode in generic models 
with more complicated dispersion.” 

As long as there is no gap closing/re-opening during the parameter tuning process, the 
topology of the system remains the same and so it is sufficient to examine the topological 
phase transition near gap closing/re-opening point. Furthermore, the edge/domain-wall states 
around gap-closing can explicitly exhibit the topological properties of the corresponding bulk 
bands. Although they may merge into bulk bands with more complicated dispersions, their 
topological arguments remain the same as stated above by the referee. 

 

We thank the reviewer for bringing to our notice the interesting reference. We agree with 
referee that for the ݅/݆/݇ configurations, the edge state formation can be explained using the 
Abelian approach (i.e., Berry-Zak phase) when we consider the band gaps one by one. But 
even for the ݅/݆/݇ cases, it has an advantage to use the concept of non-Abelian charge to 
characterize the bulk-edge correspondence, since the non-Abelian charge formula reveals that 
the edge/domain-wall states in ALL the bandgaps can be labelled with a single element as a 
whole which respects the rule of element quotient Δܳ ൌ ܳ௅ ܳோ⁄  in the quaternion group. For 
example, the domain-wall states between charges ൅݅ and ൅݆ can be globally described by 
charge െ݇. We also note that our non-Abelian charge formula is entirely consistent with the 
Abelian Zak phase approach, as already mentioned explicitly in the text and in Fig. 4. In 
addition, we would like to point out that not all of edge/domain-wall states in non-Abelian 
systems can be explained using the Abelian approach. For example, the domain-wall states 

between charges of ൅݅ and – ݅ can be explained/predicted by our formula, but not the Abelian 
approach. 

In our argument, we explicitly relate the appearance of edge/domain-wall states with the 
transition of non-Abelian topological phases across the edge/domain-wall, and also the 
distribution of the obstructions that have to encounter during the phase transition. 

 

Comment 1.6: 

2.) 

The topological class “-1” is the only one here that really goes beyond the characterization 
with Berry- Zak phases. Therefore, here there is a possibility to discover some truly novel 
aspect of the bulk- boundary correspondence. However, as the authors themselves admit in 
their reply: 

“As the charge −1 is "richer in details" than charges ±i, ±j, ±k, the formation of edge modes is 
more subtle, we hence say in the original text that "edge states emerging from charge -1 are 
fickle”” 



 

The authors present an argument based on an analogy with the Jackiw-Rebbi model, which 
suggests that the -1 charge should exhibit a pair of edge modes. Nevertheless, as visible in 
Fig. S11, this charge is found to be associated with three (rather than two) edge state in the 
studied models, unless the model parameters are fine-tuned to specific values (namely ones 
that correspond to a complete decoupling of the third band – cases which I find analyzed 
below Eq. (69) of Ref.19). 

The authors’ simplistic analysis has troubles interpreting these features, and it also does not 
predict any actually robust signature (such as the bulk polarization and filling anomaly for the 
non-trivial Berry-Zak phase) which would characterize the -1 charge. Once again, there is 
simply not enough ground for the claim “we propose the non-Abelian bulk-edge 
correspondence” in the abstract and introduction. 

Reply 1.6: We respectfully disagree with the comment. 

First, as admitted by the reviewer the charge െ1 is the only one that really goes beyond the 
characterization with Berry-Zak phases. Therefore, the previous Abelian argument fails and 
so does the associated bulk polarization. 

Without any topological phase transition, the edge states of charge െ1 can be parametrized 
and evolve with an extra parameter (i.e. ߠ௜ in Fig. S11). It is obviously a signature that 
belongs to the same topological phase. In other words, the all possible evolution of edge state 
globally characterizes the charge െ1. 

However, the evolution of edge states in charge െ1 does not break our non-Abelian bulk-
edge correspondence ሺܳ௅ ܳோ⁄ ൌ Δܳ ൅1⁄ ሻ. The domain-wall states between charge pairs of ሺ൅݅, െ݅ሻ, ሺ൅݆, െ݆ሻ and ሺ൅݇,െ݇ሻ may locate in different bandgaps, which is consistent with 
what we see from edge states at the hard boundaries of a chain with charge െ1. 

 

Moreover, we have provided a prediction with extending the Hamiltonian onto a 2D space in 
the supplementary materials (Sec. VII). Wherein, we have also analysed the variation of edge 
states during the evolution. As the quadratic-double (linear-triple) degeneracy can split into 
two single Dirac cones with each supporting one edge state, therefore there are only two 
topological edge states even away from the mentioned completely decoupling cases. In the 
flat-band model, the third edge state plays an auxiliary role during the edge state evolution of 
charge െ1. 

As mentioned by the reviewer (Comment 1.5), generally, with shifting the energy of the edge 
state, it may merge into the bulk energy bands. However, the edge/domain-wall states around 
gap-closing can explicitly exhibit the topological properties of the corresponding bulk bands. 

We take the following case as an example. Without loss of generality, we select ߠ௭ ൌ గସ (Fig. 

R1a) and extend the 1D Hamiltonian onto a 2D plane (Eq. S5) as shown in Figs. R1b and c. 
We then consider two different loops. The one in Fig. R1b encircles the singularity (quadratic 
double degeneracy) and thus carries charge െ1, while the other one in Fig. R1c is trivially 



 

contractible. Finally we calculate the domain-wall states between them two and find only two 
topological states locating on each domain wall as shown in Fig. R1d (there are two domain-
walls there and thus four topological states in total). Thus, this example shows that the 
number of topological edge/domain-wall states can be rigorously determined by the non-
Abelian bulk edge correspondence. 

 

Fig. R1. Only two topological edge states supported by charge െ1. a, The edge state 

evolution of flat-band model with charge െ1 when ߠ௭ ൌ 0 → గଶ as defined in Fig. S11. b/c, At ߠ௭ ൌ గସ as indicated by the vertical dashed line in (a), we extend the 1D Hamiltonian onto a 

2D plane (Eq. S5). We then consider two loops, where one (b) encircles the singularity 
(quadratic-double degeneracy) and thus carries charge െ1, while the other (c) is trivial. d, On 
each domain-wall between the two cases (b and c) there are only two topological domain-
wall states (In the simulation there are two domain-walls and thus four topological states in 

total). The circle-loops in (b) and (c) are defined as ሺ݇ଵ, ݇ଶሻ ൌ ቀହ଼ cos ߙ ൅ ଷ଼ , ହ଼ sin ቁ and ቀଷ଼ߙ cos ߙ ൅ ହ଼ , ଷ଼ sin ߙ ቁ, respectively. The two sets of bulk bands are overlapped forߙ ൌ 0  .ߨ2→



 

 

It is worth emphasizing that while the Abelian bulk edge correspondence can in general 
predict the number of edge states as there is only one single bandgap and the topological 
charge is a number, the non-Abelian bulk-edge correspondence provides a global perspective. 
One cannot simply move the Abelian arguments onto non-Abelian system without changing 
the concept. Certainly, the non-Abelian argument is more general and compatible with 
Abelian argument. 

 

Comment 1.7: 

3.) 

The authors seem to distinguish between the bulk-edge (two different band structures meeting 
at a domain wall?) and the bulk-boundary (vacuum on the other side of the edge?). I didn’t 
find the distinction explicitly clarified in the text, and it thus took me a while to decipher in 
their reply the intended meaning of “Furthermore, we also propose non-Abelian bulk-edge 
correspondence for the first time, and as the reviewer stated, our work directly generalizes 
“the previously introduced bulk-boundary correspondence for the non-Abelian topological 
charge””. Perhaps “bulk-domain wall” would be a less confusing formulation. 

In either case, there is a subtle but important issue here that closely relates to one of my 
earlier questions. 

Namely, in my previous reply, I have asked how does one distinguish phases “+i” and “-i", 
which are related to each other by a gauge transformation. I respectfully disagree with the 
authors statement that “In the non-Abelian topological phases one cannot continuously 
transform charge +i to −i without gap closing” and with the paragraphs that follow this 
statement. 

To see the problem, consider the explicit (flat-band) model encoded with the SO(3) 
eigenframe 

ܴሺ݇ሻ ൌ ۈۉ
ۇ cos 2݇ sin 2݇ 0െ sin 2݇ cos 2݇ 00 0 ۋی1

ۊ
 

which the authors take to corresponds to charge “+i”. By flipping in this expression the sign k 
→ -k, one obtains the inverse matrix which encodes a Hamiltonian with charge “-i”. 

Now, imagine a system with a domain wall, and a band structure initially characterized by the 
R(k) given above on both sides of the domain wall (thus, initially, the domain wall is not 
“really” there as the system remains translationally invariant). Then, as a function of a tuning 
parameter p, one changes the flat-band Hamiltonian on the right side of the domain wall to 



 

ܳሺ݇; ሻ݌ ൌ ൭1 0 00 cos ݌ sin 0݌ െ sin ݌ cos ۈۉ൱݌
ۇ cos 2݇ sin 2݇ 0െ sin 2݇ cos 2݇ 00 0 ۋی1

൭1ۊ 0 00 cos ݌ െ sin 0݌ ൅ sin ݌ cos ݌ ൱ 

while keeping the system on the left side of the domain wall unchanged. This is a continuous 
deformation that keeps the energy bands on both sides flat (and both energy gaps open), and 
which interpolates between what the authors would call “charge +i" at p=0 and “charge -i" at 
p=Pi [note that Q(k,Pi) = R(-k)]. The authors claim to investigate the domain wall between 
band structures with charges “+i" and “-i" (which is found to resemble end modes of charge 
“-1”). However, as the above example explicitly illustrates, this domain wall is continuously 
removable without closing the bulk energy gaps and while keeping the PT symmetry of each 
band structure. 

Reply 1.7: We thank the reviewer for suggesting an interesting transformation that can 

transform between different quaternion elements (൅݅ and – ݅) in the same conjugacy class 
without gap-closing and re-opening. However, we notice that the proposed ܳሺ݇;  ሻ matrix is݌
not applicable to crystalline systems because it generally leads to a Hamiltonian that is not 

periodic in the momentum ݇ (except for a few special values of p at 0, π/2, and π), with 
details shown below. In addition, the rotation matrix ܴሺ݇ሻ given above corresponds to 
charges േ݇ rather than േ݅. 
If we construct the Hamiltonian following the reviewer’s transformation, and at each k and p,  ܪሺ݇; ሻ݌ ൌ ܳሺ݇; ;ଵ,ଶ,ଷ்ܳሺ݇ܫሻ݌  ሻ݌
where ܫଵ,ଶ,ଷ ൌ ݀݅ܽ݃ሺ1,2,3ሻ, we note that ܪሺ݇;  ሻ contains explicitly݌

௞ଶ term which cannot 

satisfy the periodic boundary condition. For example, ܪ ቀ݇ ൌ െߨ, ݌ ൌ గସቁ ് ܪ ቀ݇ ൌ ,ߨ ݌ ൌగସቁ with, 

ܪ ቀ݇ ൌ െߨ, ݌ ൌ 4ቁߨ ൌ ۈۉ
ۇۈۈ

52 12√2 12√212√2 74 3412√2 34 74 ۋی
 ۊۋۋ

ܪ ቀ݇ ൌ ,ߨ ݌ ൌ 4ቁߨ ൌ ۈۉ
ۇۈۈ

52 െ 12√2 െ 12√2െ 12√2 74 34െ 12√2 34 74 ۋی
 ۊۋۋ



 

The Hamiltonians at a general value of p does not have a band structure. And hence the above 
rotation cannot be used to realize the transformation between two elements in one conjugacy 
class. 

In order to address the referee’s concern, we can define transformations that can satisfy 

periodic boundary conditions by considering the rotation matrix such as, ෨ܳሺ݇; ሻ݌ ൌܲሺ݌ሻܴሺ݇ሻ with, 

ܲሺ݌ሻ ൌ ൭1 0 00 cos ݌ sin 0݌ െ sin ݌ cos  ൱݌

and construct the Hamiltonian for a general value of p as, ܪ෩ሺ݇; ሻ݌ ൌ ෨ܳሺ݇; ଵ,ଶ,ଷܫሻ݌ ෨்ܳሺ݇;  ሻ݌
then the Hamiltonian is periodic for any value of ݌ ∈ ሾ0, ݌ ሿ. And atߨ ൌ ;෩ሺ݇ܪ ,0  ሻ has݌

charge െ݇ while at ݌ ൌ ;෩ሺ݇ܪ ,ߨ  ሻ has charge ൅݇. In Fig. R2 we show the three eigenvectors݌

calculated as ܪ෩ሺ݇; |ሻ݌ ௡ܸۧ ൌ ݊| ௡ܸۧ with ݊ ൌ 1,2,3. 

However, during the mapping ሺ࢖: ૙ → ࣊ሻ there exists no common basepoint. Basepoint 
is the point that the Hamiltonian keeps invariant when ݌ takes different values, i.e., ܪ෩ሺ݇଴, ݌ ൌ 0ሻ ൌ ,෩ሺ݇଴ܪ ݌ ∈ ሾ0,  ሿሻ. For two loops to be homotopic they must share the sameߨ
basepoint. Without the basepoint, even the fundamental homotopy group cannot be defined 
because there is no loop product (product of the fundamental homotopy group). Going back 
to our question, two conjugate elements in the same class cannot be continuously transformed 
into each other when there is a fixed basepoint. 

We should emphasize that for all the cases of ൅݅/െ݅ investigated in the paper, the two sides 

share a fixed basepoint (otherwise the ൅ and – cannot be defined in the first place), so the 
domain-wall charge is always well defined in the paper. It is also worth noting that between 
two different classes, the basepoint can always be found. In general, the basepoint is implied 
when discussing homotopy group. 

It is useful to note that all of the braiding features proposed in Ref. 19 depend on the presence 
of a basepoint; without the basepoint, all of related arguments would fail. Actually, the 
supplementary materials of Ref. 19 (although not in the main text) repeatedly mentioned 
basepoint. 

We thank the reviewer’s nice suggestion on the phrase of “bulk-domain wall”. In the revised 
main text (on page 8) we have added following sentence to make the phrase clear, 

“The term “bulk-edge” can be generalized to be “bulk-domain-wall” when considering both 
two charges ܳ௅ ് 1 and ܳோ ് 1 (instead, an edge is a domain-wall between a material and 
vacuum).” 

We also stressed basepoint in the revised main text (on page 4) as following, 



 

“It is worth emphasizing that two conjugate elements (i.e. േ݅) can only be well-defined when 
they share a common basepoint19”. 

 

Fig. R2. Eigenvectors of ܪ෩ሺ݇; ݇ ሻ for݌ ∈ ሾെߨ, ݌ ሿ andߨ ∈ ሾ0, :݌ሿ. During the mapping ሺߨ 0 →  ሻ there is no common basepoint. Basepoint is the point that the Hamiltonian keepsߨ

identical when ݌ taking different values, i.e., ܪ෩ሺ݇଴, ݌ ൌ 0ሻ ൌ ,෩ሺ݇଴ܪ ݌ ∈ ሾ0,  ሿሻ. The threeߨ

eigenvectors are calculated as ܪ෩ሺ݇; |ሻ݌ ௡ܸۧ ൌ ݊| ௡ܸۧ with ݊ ൌ 1,2,3. 

 

Comment 1.8: [An analogous issue stemming from the related non-Abelian properties of the 
Euler class in 2D PT- symmetric systems is discussed in Appendix D of PRB 102, 115135 
(2020).] 

Reply 1.8: The Hamiltonian order-parameter space discussed in Appendix D of PRB 102, 
115135 (2020) is Թܲଶ (as explicitly shown in the section title: “APPENDIX D: EULER 
CLASS REVERSAL IN Թܲଶ”). The corresponding fundamental homotopy group ߨଵ ቀԹܲଶ ൌ ைሺଷሻைሺଵሻൈைሺଶሻቁ ൌ Ժଶ, which is an Abelian group and has two elements 0 and േߨ. It is 



 

well known that ൅ߨ and െߨ are the same phases in the Abelian description and thus can be 
continuously transformed. 

However, our order space is ܯଷ ൌ ைሺଷሻைሺଵሻൈைሺଵሻൈைሺଵሻ, which is different from Թܲଶ, and the 

fundamental homotopy group is ߨଵሺܯଷሻ ൌ ℚ, the non-Abelian quaternion charge. 

 

Comment 1.9: Therefore, when comparing two different band structures, one can only tell 
whether they are in the same or different conjugacy class. In contrast, the “absolute” charge 
difference Δܳ ൌ ܳ௅/ܳோ (the quantity purported to govern the “generalized bulk-edge 
correspondence”) seems to be meaningful only if the two models are relatable through a 
small (gap-closing) tuning of parameters, but not in general. 

Reply 1.9: We respectfully disagree with the comment. We reiterate that the non-Abelian 
charges are characterized using based homotopy, not free homotopy. Our formula refers to 
quaternion group elements defined with respect to a basepoint (based homotopy), not 
conjugacy classes. 

As already mentioned in Reply 1.5, the proposed formula Δܳ ൌ ܳ௅ ܳோ⁄  is good for 
describing the non-Abelian bulk-edge correspondence is general. If the reviewer agrees that 
the formula “seems to be meaningful only if the two models are relatable through a small 
(gap-closing) tuning of parameters”, then continuous topological phase transitions without 
any gap closing will make it general. 

 

Comment 1.10: [In particular, the explicit models considered by the authors’ simplistic 
analysis all produce the same matrix H(k=0). This choice misguides one to think that a 
canonical gauge/base point can always be found that leads to a unique element of the 
quaternion group, but it really is just a consequence of the overly simple form of the models 
considered by the authors.] 

Reply 1.10: As explained in our Reply 1.7, basepoint is the basic condition to define the 
fundamental homotopy group. Otherwise, the conjugate elements (i.e. േ݅,േ݆	ݎ݋	 േ ݇) cannot 
be defined. Our simple construction automatically satisfies the condition. In addition, 
basepoint is a topologically necessary condition, not a special “consequence” of our simple 
model. 

 

Comment 1.11: These simple observations thus further undermine the authors’ claim that 
their work “generalizes “the previously introduced bulk-boundary correspondence for the 
non-Abelian topological charge””. I don’t find in this work any new and rigorous theoretical 
analysis concerning the non-Abelian bulk-boundary correspondence. 

Reply 1.11: We respectfully disagree with the comment. 



 

As replied above, the non-Abelian bulk-edge correspondence is for the first time proposed by 
us. And it has been verified by theoretical arguments, tight-binding simulations and practical 
experiments. Our theoretical argument starting from homotopy theory is rigorous and 
general. 

 

Comment 1.12: For all these reasons, I have to urge the authors to relax their statement in 
the abstract and in the introduction (as well as at the appropriate places in the main text) by 
the weaker, but more appropriate, formulation such as the one I have explicitly suggested in 
blue earlier in my report. I cannot recommend this work for publication unless this serious 
issue is properly resolved by the authors. 

Reply 1.12: As we mentioned in Reply 1.4, for the first time we proposed the non-Abelian 
bulk-edge correspondence, which is not only compatible with the Abelian argument, but also 
implies domain-wall states that cannot be explained by Abelian topological phases, i.e., 
domain-wall states between charges ൅݅ and െ݅. Upon the insistence of the referee, we do 
remove the statement “propose a non-Abelian bulk-edge correspondence”. We now state that 
“the numerical and experimental results suggest that a non-Abelian bulk-edge 
correspondence exists”. 

 

Comment 1.13: I have no further major comments on the manuscript – the authors have 
improved its quality and readability significantly following the various suggestions of myself 
and of the other referees. I have thought, however, that it might be appropriate to cite in this 
context the very recent theoretical work by Kang and Vafek “PRB 102, 035161 (2020)” 
which shows how non-Abelian braiding could be at the heart of certain strongly-correlated 
phases of twisted bilayer graphene at the magic angle. 

Reply 1.13: We thank the reviewer for all above comments and suggestions. 

We thank the reviewer for bringing us the interesting paper, in the revised main text we have 
properly cited it (on page 2 as Ref. 24). 

 

Reviewer Reports on the Second Revision: 

Ref #1 

I hope this is the last round of the reviewing process, as the communication with the authors is 
becoming growingly tiresome. The whole experience can be summed up with the old joke about 
there being "some new and correct things" (but what is new is not correct, and what is correct is 
not new...) 
 
But to give this whole report a constructive spin: 
 
As explained in my report, I condition the acceptance of the manuscript by the authors dropping 
the phrase "bulk-edge correspondence" from the title as well as generally from the manuscript 



 

text. If this is thoroughly implemented, I will go along with the other two referees and recommend 
acceptance to Nature. 
 
To explain the problem with this phrase: The first part of their theoretical considerations 
concerning the hard boundary is not new, but closely follows Sec. V.C of Ref.[19] -- I have now 
added to my report references to concrete equations and figures such that the equivalence of their 
analysis with this older work is completely transparent. 
 
The second part of their theoretical considerations concerns domain walls between two topological 
insulators. As the authors admitted in their reply, their formula is meaningful only if the two 
insulators share a base point. In practice this means that the two Hamiltonians coincide at 
momentum k=0. But that is an unnatural condition of a very limited applicability. 
(For another jovial comparison -- imagine that someone claims to prove the Riemann hypothesis, 
but then adds that "only by checking the first billion roots". That is not a good type of 
mathematical proof. Similarly, the authors' assumption on coinciding Hamiltonians at k=0 is 
unnatural in the context of topological band theory.) 
 
In contrast, the experimental data obtained by the authors are interesting and can be 
disseminated in journal Nature. The limited heuristics with $\Delta Q$ that the authors develop 
appears sufficient for the particular simple insulators emulated in their experiment, and can be 
kept as such. So the bulk of the manuscript can remain unchanged. However, for reasons as 
outlined (and detailed in the report), this heuristic method cannot be called bulk-edge 
correspondence. 

Ref  #2 

N/A 

Ref #3 

The authors successfully address all my comments. In addition, I’m happy to see their statement 
about the “proof of non-Abelian bulk-edge correspondence” is modified appropriately throughout 
the manuscript with respect to the criticism from other Reviewers. Therefore, I recommend its 
publication on Nature. 

Author Rebuttals to Second Revision: 

Referee #3 (Remarks to the Author): 

Comment 3.1: The authors successfully address all my comments. In addition, I’m happy to 
see their statement about the “proof of non-Abelian bulk-edge correspondence” is modified 
appropriately throughout the manuscript with respect to the criticism from other Reviewers. 
Therefore, I recommend its publication on Nature. 

Reply 3.1: We thank the referee for his/her positive assessments and for the recommendation 
of our work to publish on Nature. 

 

 

Referee #1 (Remarks to the Author): 

Comment 1.1: I thank the authors for their detailed reply to my report. 



 

It is clear from the other referee reports that there seems to be enough interest in publishing 
these experimental data in some form. At this stage I am not going to further argue whether 
the very high-profile journal Nature is an appropriate platform to disseminate these results. 
(With all respect, my opinion on this did not change since my previous communication.) 

More importantly, (1) I still don’t see any substantial theoretical or mathematical result in this 
work on top of those already presented by Ref. [19], and (2) I find several claims concerning 
the purported generalization of bulk-edge correspondence too misleading. In this spirit, the 
comments appended below are organized into two parts following, addressing in sequence 
the issues (1) and (2). 

At the end of the report I try to be constructive and propose some concrete changes that 
should be implemented to make this work appropriate for publication. 

Reply 1.1: We thank the referee for the constructive and concrete suggestions. In the revised 
manuscripts, we have accepted them all. 

 

Comment 1.2: (1) The novelty compared to Ref. [19]. 

The authors write in their reply “we also generalize the bulk-edge correspondence for the 
non-Abelian topological charges. We note that in Ref. 19 (both main text and supplementary 
materials), there has been no mention of the “bulk edge correspondence”.” I find this 
statement unreasonable. 

While it is true that the concrete formulation “bulk-edge correspondence” is not used by the 
cited work, that precise discussion is contained in Sec. V.C of its supplemental material, titled 
“Topological edge modes in 1D systems”. The cited work presents elementary flat-band 
Hamiltonians in Eqs. (66—70) which represent the 8 possible elements of the quaternion 
group. Their corresponding edge states are plotted in Fig. S-16 and S-17 therein. 

I remark that the Hamiltonians defined through R(k) on line 90 resp. 106 of the work by Guo 
et al. are exactly the flat-band Hamiltonians in Eq. (67) resp. (69) from the work by Wu et al. 
(with an unimportant shift of momentum by pi). 

The present work adopts these flat-band Hamiltonians, and explicitly expands the matrices 
(with coefficients of expansion tabulated in Table S1). In the main text the authors “choose 
parameters (Tab. S1) that can mimic the flat-band cases”, but this translates to simply 
adopting the models of Ref. [19]. Thus the analysis of “hard boundaries” in Fig. 2, which is 
used by the present authors to motivate or illustrate the bulk-boundary correspondence, does 
really not convey any novel information beyond the “topological edge modes” analysis of 
these same models in Figs. S16-17 from Ref. [19]. 

[For the experimental realization the authors opt to implement a different version of the 1D 
Hamiltonians. I didn’t find the computation of topological invariants of these models in 
neither the main text nor the supplement. – See comment in square brackets further below.] 



 

In the second part of their work, the authors claim to generalize the result of Ref. [19] from 
“hard edges” to “domain walls”. While the presented experiment is valuable, interesting and 
should be published in some form, I argue below that the presented theoretical analysis is 
mathematically problematic and cannot be claimed as a new mathematical/theoretical result. 

Reply 1.2: (Note: Ref. [19] has been re-ordered to be Ref. [16] during the revision) 

Our Hamiltonians are indeed similar to those in Ref. [19], and it is purposely chosen so 
because this class of models is much easier to comprehend and appreciate the non-Abelian 
topological properties. As the first experimental realization of the non-Abelian topological 
charges, it is important to choose systems that are experimentally feasible to characterize and 
the models in Ref. [19] have all these nice properties. 

We note that the authors of Ref. [19] analyzed edge states using the usual Zak phase 
argument, which is an Abelian approach. Our work (using ܳ߂ ൌ ܳ௅/ܳோ) shows a non-
Abelian way, which had not been mentioned in Ref. [19]. 

Thus, the main novelty compared with Ref. [19] includes: 1. First time experimental 
characterization of non-Abelian topological charges and edge/domain-wall states; 2. Analysis 
of edge/domain-wall states from a non-Abelian perspective. 

The computation of the non-Abelian topological invariants has been added in the revised 
Supplementary Information (Section I, page 6). Furthermore, the corresponding codes will be 
uploaded onto a public data repository. 

 

Comment 1.3: (2) validity and practical value of the proposed bulk-to-domain-wall 
correspondence. 

The authors write in the paper “The well-known Abelian bulk-edge correspondence, given by 

the difference of two integers (Fig. 4a, ܰ߂ ൌ ௅ܰ– ோܰ ∈ Ժ) becomes inadequate for describing 
the global edge state configuration in non-Abelian topological systems.” The same could be 
said about Z2-classified topological insulators, where one has to “generalize” the displayed 
formula by taking the difference mod 2. Generally, one needs to combine group elements 
following the group composition law – which in the case of the quaternion group is 
multiplication. Therefore the authors do nothing particularly special when, as they write, they 
“propose a non-Abelian bulk-edge correspondence [..] which states that the topology of the 
domain-wall is characterized by the relation of ܳ߂ ൌ ܳ௅/ܳோ.” 

To restate from my previous report, the problem is that this naive “generalization” does not 
work, because the 1D phases are not characterized by a unique element of the quaternion 
group but by a conjugacy class of elements. Put plainly, one cannot distinguish +i from -i; 
they together belong to topological phase {±i}. Per the theory proposed by the referees, the 
domain wall is characterized by ΔQ ={±i}/{±i} = +1 or -1, i.e. the “trivial” (+1) domain-wall 
configuration can be continuously evolved into the “non-trivial” (-1) configuration. The 



 

quantity that the authors propose to describe the domain wall states is mathematically not 
well defined. 

As for the continuous deformation from +i to -i, I sincerely apologize for the typo in my 
previous report, where I wrote one matrix too much in the relevant formula. The authors 
correctly “notice that the proposed ܳሺ݇;  ሻ matrix is not applicable to crystalline systems݌
because it generally leads to a Hamiltonian that is not periodic in the momentum ݇”, and 

properly undo my mistake by considering matrix ෨ܳሺ݇; ሻ݌ ൌ ܲሺ݌ሻܴሺ݇ሻ. The authors then 
confirm my statement that the sign of the invariants i/j/k can be flipped by such continuous 
deformations of the Hamiltonian. 

The way the authors resolve the problem is by adding to the introductory part of the 
manuscript “It is worth emphasizing that two conjugate elements (i.e. ±i) can only be well-
defined when they share a common basepoint.” 

While adopting this simplifying assumption appears sufficient for the analysis of the 
particular models that the authors implement in their experimental setup (and I would like to 
urge the authors to restate this assumption in the context of Fig. 4), such an assumption is 
simply not true for a generic model in this symmetry class. (The authors effectively limit their 
attention to Hamiltonians that all coincide at momentum k=0, which is a very artificial 
assumption.) Since the notion of bulk-boundary correspondence is reserved for topologically 
robust features – ones that are invariant unless there is a topological phase transition – the 
characterization by the mathematically ambiguous quantity ܳ߂ ൌ ܳ௅/ܳோ cannot be 
designated as such. 

Reply 1.3: With a fixed basepoint, charge +i cannot be continuously changed to be -i. We 
think the referee agrees with us on this issue. This is a necessary condition for defining all the 
non-Abelian topological charges in a quaternion group (c.f. Ref. [16]). Thus, the relation of ܳ߂ ൌ ܳ௅/ܳோ always works with the condition there is a fixed basepoint. In the revised 
manuscript, we have restated this in the context of Fig. 4 (on page 7). 

All of the (non-interaction) topological classifications originate from homotopy group. For 
Abelian topological charges, each element constitutes a class by itself. Arbitrary two 
elements cannot share a common conjugate class. Therefore, when identifying the homotopy 
element for a Hamiltonian, fixing a basepoint is not a necessary condition. In other words, 
based homotopy and free homotopy will give the same topological classification for Abelian 
cases. 

However, the basepoint is crucial for non-Abelian topological charges, where two mutually 
conjugate elements belong to the same class. The basepoint serves to distinguish them from 
each other. Otherwise, the non-Abelian topological charges cannot construct a group.  

Different from the Abelian cases, the based homotopy and free homotopy lead to two 
different ways to classify the non-Abelian topological phases, both of which we think are 
interesting and deserve in-depth studies.  



 

 

Comment 1.4: [Concerning the sign ambiguity, the sign also crucially depends on the choice 
of gauge beyond just the existence of the base point. For example, in Fig.1(b) the authors 
characterize phase +i (-i) as encoding a rotation of green-and-blue eigenstates by pi in the 
positive (negative) direction around the red eigenstate. But eigenstates have an overall sign 
ambiguity (the gauge degree of freedom) – by inverting the orientation of the red eigenstates 
for an initial point k in BZ, the rotation in positive direction becomes a rotation in the 
negative direction, and vice versa (thus flipping the sign of +/-i). If the authors worry about 
flipping the handedness of the frame, one could flip the orientation of both red and blue 
eigenstates simultaneously, which also changes the direction of the rotation while preserving 
the handedness. To remove this ambiguity, the authors should comment on the choice of the 
gauge for the models analyzed in Fig.4.] 

Reply 1.4: We thank the referee for raising this interesting question. 

Given a common basepoint, one cannot continuously change charge +i to be -i by applying 
different gauges. 

The order-parameter space of Hamiltonian of the three-band model can be written as ܯଷ ൌ ைሺଷሻைሺଵሻయ ≅ ௌைሺଷሻ஽మ , where the first equality is obtained by an ܱሺ3ሻ rotation of the eigenstate 

frame. As flipping the sign of each eigenstates |ݑ௞௡ۧ → െ|ݑ௞௡ۧ	ሺ݊ ൌ 1,2,3ሻ leaves the 
Hamiltonian ܪሺ݇ሻ ൌ ∑ ௞௡|ே௡ୀଵݑۦ௞௡ۧݑ|௡ߣ  invariant, one then imposes the ܱሺ1ሻଷ quotient, where ܱሺ1ሻଷ ≅ ଶ௛ܦ ≅ Ժଶଷ is generated by three mutually perpendicular mirror symmetries. In the 
second equality, both groups have been replaced by their proper subgroups, i.e., ܱሺ3ሻ →ܱܵሺ3ሻ and ܦଶ௛ →  ߨ ଶ consists of the identity and threeܦ ଶ, where the dihedral point groupܦ
rotations around three mutually perpendicular axes. 

Note that when ܯଷ ൌ ைሺଷሻைሺଵሻయ, one can operate a ܱሺ3ሻ rotation on the eigenstate frame, then the ܱሺ1ሻଷ quotient means that flipping the sign of each eigenstate |ݑ௞௡ۧ → െ|ݑ௞௡ۧ	ሺ݊ ൌ 1,2,3ሻ 
leaves the Hamiltonian invariant. The eigenstate frame does not have handedness. 

On the other hand, when ܯଷ ൌ ௌைሺଷሻ஽మ , one can operates a ܱܵሺ3ሻ rotation operator on the 

eigenstate frame, then ܦଶ quotient means that rotating the eigenstate frame with ߨ around one 
axis leaves the Hamiltonian invariant. Now the eigenstate frame does have handedness (either 
right or left). And since ܦଶ rotation is proper, it leaves the handedness of frame intact. 

The two different order-parameter spaces are isomorphic. In the calculation of non-Abelian 
topological charges we used the later one (c.f. Ref. [16]), which conveniently enables the 
lifting of ܱܵሺ3ሻ onto its double cover ܵ݊݅݌ሺ3ሻ ≅ ܷܵሺ2ሻ (see details in the Supplementary 
Information Section I). In Fig. 1b we plot the eigenstate frame with right-handedness [i.e. ሺ|1ۧ ൈ |2ۧሻ ∙ |3ۧ ൐ 0]. The eigenstate frame with further ܦଶ gauge freedom keeps the 
handedness unchanged as mentioned above. The other ܦଶ gauge choices are given in Fig. 
S1a. 



 

The charges +i and -i depend on the sign convention, just like the left/right circular 
polarizations of light depends on whether we look into or away from the source. However, as 
long as we have agreed on what is +i, it is impossible to continuously change it to -i under a 
gauge transformation. No matter how one applies the gauge of ܦଶ, the chirality of rotation of 
eigenstate frame from ݇ ൌ 0 to ݇ ൌ  will keep invariant. For example, we consider the ߨ2
gauge transformation proposed by the referee. If one flips the orientations of both red and 
blue eigenstates simultaneously, the right handedness of the eigenstate frame still preserves 
(see Fig. R1b) [Note that the red-green-blue vectors form a right-handed triad in both the left 
and right panels]. The sense of rotation remains unchanged as well (see Fig. R1b). In other 
words, both cases correspond to the rotation of expሺܮߠ௫ሻ with ߠ ൌ 0 →  .ߨ

In summary, the non-Abelian topological charges cannot be changed with applying different 
gauges provided that a common basepoint is fixed. 

 

Fig. R1. (a) The copy of Fig. 1b. (b) One flips the orientations of both red and blue 
eigenstates simultaneously. The right handedness of the eigenstate frame still preserves. 
Obviously, the rotation direction of eigenstate frame for ݇ ൌ 0 →  remains unchanged as ߨ2
well. Both (a) and (b) correspond to charge +i. 

 

Comment 1.5: 

Given the mature stage of the refereeing process, let me try to wrap up with a few suggestions 
how to bring the manuscript into a form not containing misleading statements that could be 
misinterpreted by the community. Only if these suggestions are thoroughly implemented I 
can consider recommending this work for publication in Nature. 

First, the authors should altogether avoid using the phrase “bulk-<<something>> 
correspondence” (whether with “edge”, or “boundary”, or “domain wall”, etc.) for the 
presented discussion, because such wording suggest a robust one-to-one relation between 
topological phases and edge states. The authors do not find such a relation; and the stipulated 



 

assumption “which only holds for models that share a common base point” is plainly 
unnatural in the context of topological phases. Furthermore, as it is possible that an actual and 
robust one-to-one correspondence will be discovered for these topological phases in the 
future, the terminology of the current work just contributes to confusion. 

I thus suggest the authors explicitly reveal the non-uniqueness of the topological invariant in 
the main text, pointing out that a domain-wall can be characterized by Δܳ in the presented 
models only thanks to the existence of a joint base point – the existence of which is not 
guaranteed in general. Then it is appropriate to discuss the role of Δܳ in the interpretation of 
the experimental data. However, instead of speaking about “correspondence” between Δܳ 
and edge/domain-wall states, weaker formulation should be found; for example, that “the 
value of quotient Δܳ ൌ 1 suggests/indicates such and such edge modes”. For consistency, 
make sure the modified terminology is implemented both in the main text and in the 
supplement. 

Let me add that multiple researchers in the community might have wrong intuition about the 
non-Abelian invariant, thus I believe there is an inherent value if the authors explicitly add to 
the main text a comment along the discussed lines, i.e. why the phrase “bulk-edge 
correspondence” should be avoided in the context. They may also comment in the conclusion 
that a robust bulk-edge correspondence which remains meaningful in the absence of base 
point remains an open question for the future theoretical work. This all would help 
misinterpretation of the authors’ results, and alert others to try to find one. 

Finally, the proposed changes in terminology culminate in a problem with the manuscript 
title, in which the phrase “bulk-edge correspondence” is featured prominently. I have to urge 
the authors to propose a more appropriate title where the word “correspondence” is dropped. 
One straightforward option that comes to my mind would be “Experimental observation of 
edge/boundary states/modes in non-Abelian topological insulators”. Of course, the authors 
have the freedom to come with other ideas. 

I apologize if the authors find my requests too demanding, but as they thrive to have their 
results published in journal Nature which receives an especially wide attention, I find it 
particularly important to have their results reported scientifically accurately. If my comments 
are thoroughly implemented, I will find no reason to further extend the refereeing process and 
the work would be suitable for publication. 

Reply 1.5: We thank the referee for these suggestions. We have made the following 
revisions. 

1. In the revised manuscripts (including both the main text and Supplementary Information), 
we have completely avoided using the phrase of “non-Abelian bulk-<<something>> 
correspondence”. 

2. When discussing the role of ܳ߂ in the interpretation of the experimental data, we added 
the following sentence on page 7, 
“Here we would like to emphasize that a domain-wall can be characterized by ΔQ in the 
presented models only thanks to the existence of a joint basepoint.” 



 

3. We have adopted the referee’s suggestion and used the sentence “the topology of the 
domain-wall is indicated by ܳ߂…” on page 7. 

4. We have also accepted the referee’s suggestion and added the following sentences in the 
discussion section, 
“In this work we avoid using the phrase of “non-Abelian bulk-edge correspondence” 
because the non-Abelian quotient relation ΔQ=QL/QR inherently depends on the existence 
of a basepoint. A robust bulk-edge correspondence which is meaningful even in the 
absence of basepoint remains an open question for the future investigations, such as only 
considering the conjugacy classes in the fundamental homotopy group or equivalently 
free homotopy classes of free loops.” 

5. We have changed the title to be “Experimental observation of non-Abelian topological 
charges and edge states”. 

 

 

 


