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I. DETAILS OF EXPERIMENTAL SETUP

We operate in an externally applied magnetic field

| ~B0| = 21.3 mT, where the qubit transition |↓〉 ↔ |↑〉 has
a magnetic field sensitivity of ∂ω0

∂B /2π = −19.7 MHz/mT.

The value of | ~B0| was chosen to provide a first-
order magnetic-field-insensitive qubit transition between
the states |↓′〉 ≡ 2S1/2 |F = 3,mF = 1〉 and |↑′〉 ≡
2S1/2 |F = 2,mF = 1〉, with a frequency of 1.686 GHz.
Such field-insensitive qubits can have measured coher-
ence times of many seconds8 or even minutes56. When
not performing entangling gates, we could map the pop-
ulations in |↓〉 and |↑〉 into the states |↓′〉 and |↑′〉 using
microwave control pulses, allowing the qubit state to be
stored coherently for much longer times than is possible
in the {|↓〉 , |↑〉} qubit.

We prepare the |↓〉 state by optical pumping on the
2S1/2 ↔ 2P3/2 transitions at 280 nm with σ+ polarized
light. During and after sideband cooling, further op-
tical pumping pulses on these transitions are applied
to repump population into |↓〉. Qubit readout is per-
formed by detecting fluorescence from the laser-driven
|↓〉 ↔ |2P3/2, F = 4,mF = 4〉 cycling transition. To re-
duce readout errors, we use microwave pulses to “shelve”
the |↑〉 state to the |2S1/2, F = 2,mF = −1〉 state, de-
tuned by ≈ 1.6 GHz from |↓〉, before applying the read-
out laser beam. Our readout can only distinguish the
total number of ions fluorescing (0, 1, or 2), not the state
of each individual ion. We produce an oscillating mag-
netic field gradient at ωg = 2π × 5 MHz with an ampli-
tude of 152(15) T/m at the ion by applying currents of
0.8(1), 1.1(1), and 1.1(1) A on qubit control electrodes 1,
2, and 3 respectively, shown in Fig. 1. The relative am-
plitudes and phases of these currents are chosen to mini-
mize residual magnetic fields at ωg at the ion position43;
in practice, this means that the current in electrode 2
is driven approximately 180 degrees out of phase with
the currents in electrodes 1 and 3. These currents dissi-

pate ≈ 100 mW total in the trap from resistive losses.
The weaker currents used to generate the microwave-
frequency magnetic fields dissipate ≈ 6 mW in the trap.
Currents in qubit control electrode 1 on resonance with
the qubit frequency are used for global single-qubit op-
erations. Based on sequences of 200 repeated π pulses
on the |↓〉 ↔ |↑〉 transition using a single ion, the error
per π pulse has an upper bound of approximately 10−4.
We generate the radiofrequency and microwave currents
with high-speed digital-to-analog converters followed by
commercially available amplifiers and filters, as described
in Section II A.

To achieve the highest entangled state fidelities, the
out-of-phase radial mode used for entangling operations
is first cooled near its ground state with sideband tran-
sitions driven by the radiofrequency gradient and mi-
crowave tones, interleaved with optical repumping31,57.
This motional mode is coupled weakly to the out-of-phase
axial mode; thermal phonon occupation in the out-of-
phase axial mode will cause dephasing of the motional
mode used for entanglement58,59. To reduce this dephas-
ing, we also cool the out-of-phase axial mode near its
ground state. For this mode, we use laser-based Raman
sideband transitions, as the trap geometry prevents di-
rect laser-free sideband cooling of the axial modes.

II. FIELDS AND GRADIENTS FOR
ENTANGLING INTERACTION

The entangling interaction relies on the gradient of a

magnetic field ~Bg oscillating at ωg, as well as a microwave

magnetic field ~Bµ with frequency components at ω̃0 ± δ
(see Fig. 1A). This latter field can be equivalently de-
scribed as a microwave field at ω̃0 whose amplitude varies
sinusoidally with time t as cos(δt). A full derivation of
how the entangling interaction arises from these fields is
given in Ref. 41. As shown in Eq. 1, the slowly-rotating
terms generate the interaction
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ĤI(t) = ~ΩgJ2

(
4Ωµ
δ

)
(σ̂z1 − σ̂z2)(âei∆t + â†e−i∆t).

(S1)

The quantity Ωg characterizes the strength of the gradi-
ent at ωg used in the entangling interaction and is given
by

Ωg ≡
r0[∇( ~Bg · r̂q) · r̂]

4

∂ω0

∂B

∣∣∣
B=| ~B0|

, (S2)

where r̂ is a unit vector along the motional mode, r̂q is a
unit vector along the quantization axis defined by an ex-

ternal static bias magnetic field ~B0, and ∂ω0

∂B is the mag-
netic field sensitivity of the qubit transition frequency.

For these experiments | ~B0| ≈ 21.3 mT, and ~B0 is in the
plane of the trap electrodes at an angle of 67.5◦ to the
trap axis. The ground state extent of the ions’ motional
mode in the trap is r0 =

√
~/2Mωr, where ωr is the mo-

tional mode frequency and M is the total mass of both
ions. We use the expression in Eq. S2 to determine the
strength of the magnetic field gradient from the entan-
gling operation duration. For these experiments, we tune
the mode alignment to be along the gradient by maximiz-
ing Ωg experimentally57; the mode angles are similar to
those specified in Ref. 60.

The microwave fields are characterized by the corre-
sponding resonant Rabi frequency

Ωµ ≡
Bx
2~
〈↓| µ̂x |↑〉 , (S3)

where Bx is the component of the oscillating microwave

magnetic field ~Bµ perpendicular to the quantization axis
and µ̂x is the magnetic moment of the ion in the same
direction.

We can decompose ~Bg into ~Bg,‖ + ~Bg,⊥, where ~Bg,‖ ≡
( ~Bg · r̂q)r̂q is the component of ~Bg along the quantiza-

tion axis and ~Bg,⊥ is the component perpendicular to
the quantization axis. To maximize the entangling inter-
action strength and reduce the modulation of the qubit

frequency43, we null ~Bg,‖ at the ion positions by adjust-
ing the relative phases and amplitudes of the currents
at ωg in all three qubit control electrodes. However,
~Bg,⊥ is not simultaneously nulled and gives rise to an
ac Zeeman shift ∆ac on the qubit frequency 43. We have
∆ac/2π ≈ −400 kHz for the configuration of currents at
ωg used in the entangling operation. The qubit frequency
in the absence of any control fields at ωg is ω0. With the
control fields at ωg, the qubit frequency is shifted to ω̃0,
where ω̃0 = ω0 + ∆ac.

Like ~Bg,‖, ~Bg,⊥ has a spatial gradient, which means
∆ac likewise has a spatial gradient. If the ion crystal is
rotated relative to the trap axis, the two ions will experi-

ence different values of ~Bg,⊥ and thus different ac Zeeman

shifts, which we describe in terms of the average shift ∆ac

on both ions and the differential shift δac between the two
ions. We use this differential shift δac for individual ad-
dressing in frequency space. In practice, we can achieve
δac/2π ≈ 20 kHz, with ∆ac/2π ≈ 2.5 MHz, by driving a
current at ωg through only electrode 1. In this single-

electrode driving configuration, ~Bg,‖ is not nulled, but
this is not necessary during the individual addressing op-

eration. Choosing not to null ~Bg,‖ allows higher values
of δac to be achieved.

A. Radiofrequency and microwave drive electronics

A schematic of the radiofrequency and microwave elec-
tronics used to generate the control fields is shown in
Fig. S1. The signals at ωg/2π = 5 MHz in the qubit
control electrodes are generated by three independent
16-bit digital-to-analog converters (DACs), one per elec-
trode, operating at 100 MS/s. The waveform frequen-
cies, phases, and time-dependent amplitude envelopes
are defined digitally, and then the waveforms are di-
rectly synthesized without subsequent analog modula-
tion components. The DAC chips are on a common
circuit board and have a shared clock to ensure a de-
terministic phase relationship between the signals in all
three qubit control electrodes61. The DAC outputs are
each low-pass-filtered, amplified to roughly 2 W per elec-
trode, band-pass-filtered to remove harmonics and low-
frequency noise, and sent to the low-frequency port of
a custom resonant diplexer circuit (one per qubit con-
trol electrode) shown in Fig. S1b. The diplexers provide
narrowband impedance transformation for the tones at
ωg, increasing the current in the trap electrodes for a
given drive power by roughly a factor of 3 while reducing
back-reflection to the amplifiers and providing additional
bandpass filtering. The diplexers also serve to combine
the tones at ωg with the microwave tones near ω0 onto
the same trap electrodes. In practice, while tones at ωg
are used on all three electrodes, the microwave tones are
only applied to one electrode (see Section II B for de-
tails). Most of the drive power at ωg is dissipated in
the resistive parts of the diplexer circuits; only about
100 mW of the ≈ 6 W of total drive power among all
three electrodes is dissipated in the trap, due to resistive
losses. Improvements to the resonant diplexer circuit de-
sign could provide increased currents at ωg in the trap,
and thus faster entangling interactions, with the same
or smaller drive power. The qubit control electrodes are
shorted to ground at the far end of the trap, approx-
imately 3 mm away from where the ions are confined,
producing a standing wave with a current antinode near
the ion location. This doubles the current in the qubit
control electrodes for a given drive power relative to us-
ing a 50 Ω termination and shifts most dissipation of the
control signals to the impedance matching circuits and
circulator terminations outside the vacuum system.

The microwave signals near ω0/2π ≈ 1.326 GHz are
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FIG. S1. Drive electronics for qubit control fields. a,
Schematic of the microwave signal generation chain for a sin-
gle frequency. Two such chains are used, one operating at
ω̃0 + δ and the other at ω̃0 − δ, and their outputs are com-
bined using a microwave hybrid. b, Schematic of the circuit
used for generating radiofrequency control signals at ωg, com-
bining them with the microwave signals, and delivering both
to the trap. The circuit shown is for a single trap electrode;
two duplicate circuits drive the other two qubit control trap
electrodes, each with a different phase and amplitude of the
drive at ωg. However, microwave signals are only sent to the
trap on one of the three electrodes. Abbreviations: LPF low-
pass filter, BPF band-pass filter, FD frequency doubler, Pout

amplifier output power.

generated by a pair of high-speed direct digital synthe-
sizer (DDS) chips clocked at 2.4 GS/s. The DDS chips
have a shared clock and are phase-synchronized to each
other as well as to the DACs that generate the signals
at ωg. We filter, frequency-double, and amplify the DDS
outputs, then use an IQ modulator on each channel to
shape the amplitude envelope in time. The I and Q ports
of the modulator are driven by low-pass-filtered DACs
of the same design as those used to generate the sig-
nals at ωg. The microwave signals then pass through a
microwave switch to provide increased on/off ratio com-
pared to the modulator alone, after which they are am-
plified to ∼ 100 mW. The two tones are combined using
a microwave hybrid and sent to one of the trap electrodes
via the diplexer circuit described above, which combines
them with the strong tone at ωg for that electrode. A
similar microwave chain, but without the IQ modulator,
is used to generate rectangular microwave pulses at ω0 for
performing global single-qubit rotations, which are cou-
pled onto the qubit control electrodes using a directional
coupler between the hybrid coupler and the diplexer.

B. Entanglement pulse sequence

We show the pulse sequences used for the gradient and
microwave fields used to generate our symmetric and an-
tisymmetric entangled states in Fig. S2. The currents at
ωg and ω̃0 ± δ are ramped up and down smoothly over 5

µs, with rising and falling edges following an approximate
sine-squared envelope. Due to the size of the ac Zeeman
shift ∆ac, the drive at ωg is ramped up completely before
the microwave currents at ω̃0± δ are ramped up, and the
downward ramps are carried out in reverse order. The
π/2 and π pulses at ω0 are carried out when all the other
currents are turned off, so the qubit frequency is not ac-
Zeeman-shifted and the qubit is not driven off-resonantly.
The phases of these pulses, denoted with subscripts x
and y, where y indicates a 90◦ phase shift with respect
to x, are chosen to provide robustness to miscalibrations
(overrotation or underrotation) in the π pulses.

The total duration of the entangling operation is
740µs, of which the up and down ramps (during which
relatively little entanglement is generated) consume
160µs. Increased currents at ωg would increase Ωg and
thus reduce the overall gate duration. Decreasing the du-
rations of the ramps must be done with care, as shorter
ramp durations can lead to increased off-resonant qubit
transitions that reduce the fidelity of the entangling oper-
ation41. We tried both higher and lower orders of Walsh
modulation, with the highest fidelity entangling opera-
tions obtained using the Walsh 7 sequence57.

III. FIDELITY ANALYSIS

In this section, we describe the methods used for Bell
state fidelity analysis, including the correction of state
preparation and measurement (SPAM) errors.

A. Estimating SPAM errors

We use reference data to determine our state prepa-
ration and measurement (SPAM) errors. We repeatedly
prepare the ions approximately in the |↓↓〉 state and mea-
sure the ion fluorescence, building a histogram of the
number of photon counts observed during the detection
period. We also perform the same experiment but with
a microwave π pulse at ω0 applied to the ions prior to
measurement, taking multiple sets of about 18,500 mea-
surements per state. These experiments give reference
count histograms for two or zero ions fluorescing, respec-
tively (two “bright” ions or two “dark” ions). These are
approximately Poissonian-distributed but contain addi-
tional corrections due to off-resonant pumping of dark
ions into the bright state (“repumping”), optical pump-
ing of bright ions into the dark state due to imperfect
closure of the cycling transition (“depumping”), and im-
perfect optical pumping in the state preparation process
that leaves an ion in a state outside the {|↓〉 , |↑〉} man-
ifold (“leakage”)57. We use maximum likelihood (ML)
to estimate the Poissonian mean count rates from bright
and dark ions, as well as depumping, repumping and leak-
age rates. We use these rates to construct calculated ref-
erence distributions for the case of zero, one, and two
ions fluorescing.
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FIG. S2. Pulse sequences for entangled state genera-
tion. a, Pulse sequence for entangling interaction. We plot
the amplitude of the control signals schematically versus time.
The gradient oscillating at ωg (green), as well as the two mi-
crowave fields symmetrically detuned by δ from the ac Zeeman
shifted qubit frequency ω̃0 (red and blue), are ramped up and
down eight times. Each of these eight sets of pulses nominally
corresponds to a single closed loop in motional phase space;
deviations from perfect loop closure are mitigated by Walsh
modulation42. Additional π/2 and π pulses (gray) correct for
qubit frequency offsets and drifts and perform the Walsh 7
modulation. These pulses are at ω0, the qubit frequency un-
shifted by the ac Zeeman shift from the oscillating magnetic
field at ωg. The total duration of our entangling interaction
is 740µs. b, Pulse sequence for single ion addressing. This
sequence is appended to the sequence in a to create the anti-
symmetric Bell state. We perform a spin-echo sequence, using
the gradient oscillating at ωg in only the first arm. The ac
Zeeman shift from the magnetic field at ωg imparts a phase
rotation of π on the second qubit relative to the first. The
phase of the global qubit rotation pulses in this sequence,
here denoted by φ, must be calibrated relative to the entan-
gling interaction in a to create the desired state |Ψ−〉. The π
pulse and second π/2 pulse have no effect on the state |Ψ−〉;
however, for a general initial state, the second π/2 pulse is
necessary to perform the individually addressed spin flip, and
the π pulse implements a spin echo to undo the effects of
common-mode qubit frequency offsets.

We determine the probabilities P0, P1, and P2 of zero,
one, or two ions fluorescing, respectively, after an entan-
gling operation using ML estimation based on the con-
structed reference distributions. According to tests using
simulated count histogram data, the resulting state mea-
surement error is at the ≈ 10−4 level or better for refer-
ence datasets of the size used in our fidelity analysis.

Using this technique, we determine the rate of state
initialization errors due to leakage (note that this leak-
age occurs during preparation of the initial |↓↓〉 state, not
during the entangling operation itself). Our reported fi-
delities are all corrected for this imperfection in state ini-
tialization, as described below. For the symmetric Bell
state data, we determined a state initialization error rate
per qubit due to leakage of 3.5(2) × 10−3, while for the

antisymmetric Bell state data, taken several weeks later,
this rate was 1.7(2) × 10−3. It is not possible using our
analysis to distinguish between an ion incorrectly initial-
ized in the |↑〉 state and an error in the microwave π pulse;
however, the data bound the combined rate of these two
errors to be at or below ≈ 10−4 per qubit. We do not
attempt to correct for either of these two types of errors,
both of which would decrease the fidelity of the final en-
tangled state.

B. Parity and population calculation

Each dataset consists of 40 sets each containing 200
repetitions of the entangling operation followed by pop-
ulation measurement (“population” trials) and 52 sets
each containing 200 repetitions of the entangling opera-
tion followed by parity analysis pulses, with a different
analysis phase for each set (“parity” trials). For the an-
tisymmetric Bell states, we use 42 sets of 200 repetitions
each as parity trials, composed of 7 sets at each of 6
evenly spaced phase values. We divide each dataset into
“trigger” and “analysis” halves by assigning half of the
population trials from each set (and for the antisymmet-
ric Bell state, half of the parity trials from each set),
chosen at random, to the “trigger” subset. For the sym-
metric Bell state, we assign every other set of 200 par-
ity trials (versus analysis phase) to the “trigger” subset,
rather than splitting each set of 200 in half. This choice
improved the parity estimation based on analysis of sim-
ulated data. The random assignment algorithm is seeded
by a hash of the unique dataset identifying number.

The fidelity of the final Bell state is determined from
the populations and parity (P0 + P2 − P1) as described
below. The populations are determined by combining all
population trials into a single histogram and estimating
P0, P1, and P2 using maximum likelihood based on the
reference distributions described above. The population
measurements correspond to P0 +P2 and P1 for the sym-
metric and antisymmetric states respectively.

To determine the amplitude of parity oscillations for
the symmetric Bell state |Φ〉 ≡ 1√

2
(|↓↓〉+ i |↑↑〉), we max-

imize the joint likelihood over the count histograms for
all the different analysis pulse phases, assuming a param-
eterized model of a sinusoidal parity oscillation versus
phase and employing the reference count distributions
described above. The ideal state |Φ〉 will have a par-
ity oscillation with amplitude 1. The symmetric state
fidelity is the average of the population and parity oscil-
lation amplitude.

For the antisymmetric Bell state |Ψ−〉 = 1√
2
(|↓↑〉 −

|↑↓〉), the parity is determined by combining all parity
trials into a single histogram and estimating P0, P1, and
P2 in the same way as described above. The parity for an
ideal antisymmetric Bell state is -1, and is independent
of the analysis π/2 pulse phase. The values of the parity
analysis phases in this instance were chosen as multiples
of π/3, such that the extracted parity using this method
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would average over the amplitude of any parity oscil-
lations due to residual population in a symmetric Bell
state. The antisymmetric state fidelity is the average of
the population and the negative of the parity. For both
states, we then correct for the state initialization error as
detailed in the next section.

C. Effects of initialization error

The density matrix describing the state of each ion ρ0,1

after initialization is

ρ0,1 = (1− ε) |↓〉 〈↓|+ ε |a〉 〈a| , (S4)

where ε is the probability of producing the leaked state
|a〉. The state |a〉 is outside of the qubit manifold and
does not participate in the gate dynamics. This initial-
ization error most likely occurs due to photon scattering
from our Raman beams into the |F = 3,mF = 1〉 state.
This state does not fluoresce and is detected as dark
through our detection process. We ignore any initial-
ization in the |↑〉 state, since our reference data indicate
that this process is at least an order of magnitude less
likely than producing the state |a〉. Furthermore, our
reference data cannot distinguish preparation in the |↑〉
state from an imperfect π pulse on the |↓〉 → |↑〉 transi-
tion. As any population in |↑〉 state would only reduce
the fidelity of the entangled state we measure, we do not
correct for this error. For two ions, the initial density
matrix is

ρ0,2 = (1− ε)2 |↓↓〉 〈↓↓|+ ε(1− ε)
(
|↓ a〉 〈↓ a|

+ |a ↓〉 〈a ↓|
)

+ ε2 |aa〉 〈aa| . (S5)

We now analyze the effect of this initialization error on
both the symmetric and antisymmetric entangled state
fidelities.

1. Symmetric entangled state fidelity

Our entangling operation acts on a perfect |↓↓〉 in-
put state to produce a symmetric entangled state
|Φ〉 ≡ 1√

2
(|↓↓〉+ i |↑↑〉) with a fidelity F . The same op-

eration acting on |↓ a〉 and |a ↓〉 instead flips the spin of
the ion within the qubit manifold, resulting in |↑ a〉 and
|a ↑〉 respectively, to first order. There will be higher-
order terms that scale as (1−F )ε, which we ignore. The
entangling operation has no effect on the |aa〉 state. To
determine the entangling operation fidelity F from the
measured fidelity Fm, we must correct for the initializa-
tion error caused by leakage. We determine the fidelity
Fm of our entangled state by measuring the ion popula-
tions after our entangling operation and the parity with
an additional π/2 pulse with a variable phase44. The

leaked states have no effect on the parity measurement,
but will increase the measured populations as the leaked
states are indistinguishable from |↑↑〉. Thus, Fm is

Fm = (1− ε)2F + ε(1− ε) +
ε2

2

= F − ε(2F − 1) + ε2(F − 1

2
)

≈ F − ε,

(S6)

for (1− F ), ε� 1.

2. Antisymmetric entangled state fidelity

As with the symmetric state, we estimate the
initialization-corrected fidelity F by making measure-
ments of the populations after (ideally) generating the
antisymmetric state |Ψ−〉 = 1√

2
(|↓↑〉− |↑↓〉) and the par-

ity with an additional π/2 pulse. Unlike the symmetric
state, the ideal antisymmetric state has parity -1 for all
phases. The parity for all other states is greater than
-1. Thus, instead of trying to fit a low amplitude oscil-
lation, we instead take the average parity from measure-
ments with six different phases57 of the π/2 pulse equally
spaced in [0, 2π). The symmetric state has 0 parity av-
eraged over these phases..

For the leaked state, the single-ion addressing se-
quence, to first order, will transform |↑ a〉 → |↓ a〉 while
leaving the |a ↑〉 state unchanged. The parity of these
states after applying an additional π/2 pulse is 0, but
these states will contribute to the population measure-
ments. For the antisymmetric state, the measured fi-
delity Fm is related to F by

Fm = (1− ε)2F +
ε

2
(1− ε)

= F − ε(2F − 1

2
) + ε2(F − 1

2
)

≈ F − 3

2
ε,

(S7)

again for (1− F ), ε� 1.

D. Bootstrap analysis

To generate the confidence intervals on our entan-
gled state fidelities, we generate 5,000 synthetic (“boot-
strapped”) data sets by resampling the experimental pho-
ton count data for the entangled state analysis with re-
placement62. We also resample the corresponding ref-
erence data 5,000 times, each bootstrap having corre-
sponding estimates of Poissonian means, depumping, re-
pumping, and leakage. We construct the corresponding
reference count distributions using additional variation
of the Poissonian means, based on the magnitude of slow



6

0.9950 0.9975 1.0000 1.0025
Symmetric state fidelity

0

50

100

150

200

250
N

um
be

r o
f b

oo
ts

tra
ps

a
Original data = 1.0017
Median = 1.0006
Mean = 1.0004
68% confidence interval
[0.9983, 1.0025]

0.9950 0.9975 1.0000 1.0025
Antisymmetric state fidelity

0

100

200

300

400

N
um

be
r o

f b
oo

ts
tra

ps

b
Original data = 0.9977
Median = 0.9976
Mean = 0.9976
68% confidence interval
[0.9964, 0.9987]

FIG. S3. Distribution of bootstrapped fidelities. We
plot the distribution of bootstrapped fidelities for our sym-
metric (a) and antisymmetric entangled state data (b), which
we use to determine the confidence intervals of Bell-state
fidelities, corrected for state initialization errors. For each
state, we resample the counts of the data with replacement
5000 times and reanalyze the data. For the means and 68%
confidence intervals reported in the text, we truncate all fi-
delities at 1.

variations in these means seen experimentally over the
course of a day. We then analyze each bootstrapped
data set using a bootstrapped reference count distribu-
tion. The distributions of the resulting fidelities, cor-
rected for preparation errors, for the triggered symmetric
and antisymmetric Bell states are shown in Fig. S3a and
b, respectively.

Due to statistical uncertainty in both the estimate of
the uncorrected fidelity and the initialization error, our
fidelity analysis method can give corrected fidelity esti-
mates that exceed 1, which are nonphysical. When re-
porting fidelities, we therefore truncate any estimated fi-
delities greater than 1 at a value of 1. The lower and up-
per endpoints of our confidence intervals are the 16th and
84th percentile points of the distribution of bootstrapped
fidelities, truncated to 1 as necessary. Note that the con-
fidence interval for the symmetric state fidelity has both
median and 84th percentile values of 1.

For the symmetric Bell state data, the estimated
population is 1+0

−0.0011 and the parity amplitude is

0.9966+0.0019
−0.0064, with the uncertainties (68% confidence)

determined from bootstrapping. The Bell state fidelity is
0.9983+0.0008

−0.0035 before correcting for the state initialization
error described above. Correcting for the initialization
error of 3.5(2) × 10−3, whose uncertainty is determined
by bootstrapping the reference data, yields a corrected

Bell state fidelity of 1+0
−0.0017. For the antisymmetric Bell

state data, the population is 0.9967+0.0009
−0.0013 and the par-

ity is −0.9937+0.0020
−0.0019, giving an uncorrected Bell state

fidelity of 0.9952+0.0010
−0.0013. Correcting for the state initial-

ization error of 1.7(2) × 10−3, we obtain a Bell state fi-
delity of 0.9977+0.0010

−0.0013.

E. Dataset selection

The data were taken before the detailed fidelity anal-
ysis tools presented in this manuscript were developed,
so the experimental parameters were adjusted using less
accurate fidelity estimation techniques to guide the opti-
mization. Because of the inability to characterize and
compensate for very small infidelities on the fly, the
data were taken while sweeping experimental parame-
ters (pulse durations and amplitudes/frequencies of con-
trol signals) through a range of values near the predicted
optimum. As a result, some of the datasets were taken
with nonoptimal parameters and should have lower-than-
optimal underlying Bell state fidelity, but there is not an
a priori method of knowing which datasets are which.
Furthermore, drifts in both the motional frequency and
the qubit frequency can cause nonmonotonic variation in
the underlying Bell state fidelity due to effects related
to the specific parameters of the shaped pulse rise and
fall profiles57. There may also be other uncharacterized
system parameters whose drifts cause fluctuations in the
underlying Bell state fidelity, despite performing the en-
tangling interaction with nominally identical parameters.
In addition to any variation in underlying Bell state fi-
delity, there is statistical uncertainty (and thus dataset-
to-dataset variation) in estimating the underlying Bell
state fidelity. Each set of entanglement data took roughly
7 minutes to acquire.

As a result, we cannot a priori determine a single
dataset or set of datasets that are anticipated to rep-
resent the best underlying Bell state fidelity. In order
to avoid selection bias in determining which datasets to
report as our best dataset, we use independent “trigger”
data. We divide every set of experimental data, which
includes both the parity and population measurements,
in half, as described in Section III B. We use one half of
the data as the “trigger,” and report the fidelity of the
other “analysis” half of the dataset with the highest “trig-
ger” fidelity. Crucially, the “trigger” data are only used
to select which dataset’s “analysis” half to report; they
are not used when calculating the fidelity of the “anal-
ysis” half. The “trigger” and “analysis” fidelities from
the datasets, for both the symmetric and antisymmetric
entangled states, are shown in Fig. S4.



7

0.9925 0.9950 0.9975 1.0000 1.0025
Symmetric state

trigger fidelity

0.9925

0.9950

0.9975

1.0000

1.0025
Sy

m
m

et
ric

 s
ta

te
an

al
ys

is
 fi

de
lit

y

a

0.9925 0.9950 0.9975 1.0000 1.0025
Antisymmetric state

trigger fidelity

0.9925

0.9950

0.9975

1.0000

1.0025

An
tis

ym
m

et
ric

 s
ta

te
an

al
ys

is
 fi

de
lit

y

b

FIG. S4. “Trigger” fidelities. We use a “trigger” to se-
lect both the symmetric (a) and antisymmetric (b) entangled
state data to report. For each set of data, we split each of our
datasets into two. We use half to compute a “trigger” fidelity,
and the other half to analyze the fidelity of the created state.
We use the dataset with the highest trigger fidelity. The data
used to determine the trigger fidelity are subsequently dis-
carded and are not used to compute the gate fidelity. This
process avoids relevant selection bias in choosing which fi-
delity to report. The red square denotes the dataset with the
highest trigger value which we report in the main text. The
error bars are determined by nonparametric bootstrapping,
indicating the 68% confidence interval. Dashed lines indicate
a slope of 1. Some datasets with lower trigger and/or analysis
fidelities are not visible in these figures.

F. Linear estimator

We also use an unbiased linear estimator of Bell-state
fidelity as a consistency check, implementing techniques
similar to the linear estimation of process fidelity in
Ref. 63 and the linear state tomography described in

Ref. 64 that have been adapted for this analysis.
For an abstract experiment consisting of j differ-

ent positive operator-valued measure (POVM) measure-

ments {Π(j)
i } of an unknown state ρ, a linear estimator

of the fidelity of ρ with a target state |ψ〉 〈ψ| can be con-
structed from any decomposition of |ψ〉 〈ψ| into a linear

combination of the POVM elements {Π(j)
i }. Such a de-

composition is described by a set of real coefficients α
(j)
i

that satisfy

|ψ〉 〈ψ| =
∑
i

∑
j

α
(j)
i Π

(j)
i . (S8)

In this specific experiment, the different POVM measure-
ments indexed by j correspond to the different collective
rotations applied to the state before measurement. For
each fixed j, the ith POVM element represents the mea-
surement outcome associated to the observation of i pho-
tons during the measurement. The POVMs satisfy the

standard normalization
∑
i Π

(j)
i = 1 for each j.

If all the probabilities p
(j)
i = Tr[ρ · Π(j)

i ] of observing
each POVM outcome were known exactly, the fidelity
F = Tr[ρ · |ψ〉 〈ψ|] could be computed using the decom-
position in Eq. S8 according to

F =
∑
i

∑
j

α
(j)
i p

(j)
i . (S9)

This observation motivates the construction of the linear
estimator

F̂ =
∑
i

∑
j

α
(j)
i

C
(j)
i

n(j)
, (S10)

where n(j) is the number of times the jth POVM mea-

surement is made during the experiment and C
(j)
i is the

random variable for the number of times the ith outcome
is observed during those measurements.

For each j, the C
(j)
i are distributed multinomially with

n(j) trials and probabilities p
(j)
i = Tr[ρ · Π

(j)
i ], so the

expected value of F̂ is

〈F̂ 〉 =
∑
i

∑
j

α
(j)
i

n(j)

n(j)
Tr[ρ ·Π(j)

i ] = Tr[ρ · |ψ〉 〈ψ|], (S11)

which shows F̂ is an unbiased estimator of fidelity. The
j runs are independent given ρ, so the variance of F̂ is

Var(F̂ ) =
∑
j

∑
i,i′

α
(j)
i α

(j)
i′

(n(j))2
Cov(Ci, Ci′)

=
∑
j

∑
i,i′

α
(j)
i α

(j)
i′

(n(j))2
n(j)

(
p

(j)
i δii′ − p(j)

i p
(j)
i′

)
,

(S12)
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again using the fact the Ci are multinomially distributed

according to probabilities p
(j)
i .

Because the only constraints on the coefficients α
(j)
i are

that they satisfy Eq. S8, an optimal choice of coefficients
can be made that minimizes the variance of F̂ . After
choosing to optimize near the reference state |ψ〉 〈ψ| and

plugging in p
(j)
i = Tr[Π

(j)
i · |ψ〉 〈ψ|], the optimal coeffi-

cients can be found by solving a quadratic program.
In this experiment, the state space is modeled as a

two-qutrit space where each ion has a computational-
qubit subspace and a leaked state. The POVM elements
are computed numerically assuming particular values of
the Poissonian means and depumping and repumping
rates calibrated from the reference data. For the pur-
poses of the linear estimator, the fidelity is defined to be
Tr[ρ · |ψ〉 〈ψ|] where all the operators are on the full two-
qutrit state space. The initialization-corrected fidelity is
computed afterward by assuming a known leakage pa-
rameter.

Because of the assumptions about leakage, the con-

straints on the α
(j)
i in Eq. S8 become

∑
α

(j)
i Π

(j)
i = |ψ〉 〈ψ|

+A
(
|↑ a〉 〈↑ a|+ |a ↑〉 〈a ↑|

)
+B

(
|↓ a〉 〈↓ a|+ |a ↓〉 〈a ↓|

)
+ C

(
|aa〉 〈aa|

)
, (S13)

for real coefficients A,B,C that are left as free parameters
during the optimization. Now, the associated estimator
has an expectation value

Tr[ρ · |ψ〉 〈ψ|]
+ATr[ρ · (|↑ a〉 〈↑ a|+ |a ↑〉 〈a ↑|)]
+BTr[ρ · (|↓ a〉 〈↓ a|+ |a ↓〉 〈a ↓|)]
+ CTr[ρ · (|aa〉 〈aa|)], (S14)

which is shifted from the fidelity by the last three terms.
Using the assumptions about leakage and the values of
A,B,C returned by the numerical optimization, those
terms can be evaluated and subtracted off to recover an
unbiased estimate of fidelity. For example, the symmetric
entangled state is assumed to satisfy

Tr[ρ · (|↑ a〉 〈↑ a|+ |a ↑〉 〈a ↑|)] = 2ε(1− ε), (S15)

Tr[ρ · (|↓ a〉 〈↓ a|+ |a ↓〉 〈a ↓|)] = 0, (S16)

Tr[ρ · (|aa〉 〈aa|)] = ε2, (S17)

where ε is the leakage parameter.
Using this method as a crosscheck, we compare the

corrected fidelities we obtain to those reported in the
main text using the standard parity analysis method44 in
Table I and find good agreement between the methods.
We use the same bootstrapping procedure to obtain the
68 % confidence intervals.

G. Fidelity analysis bias estimation

We created simulated data using QuTip65 to validate
our fidelity analysis for both the symmetric and antisym-
metric entangled states57. We varied both the underlying
fidelity of the states created due to gate errors as well as
leakage errors. We used the simulations to verify that our
analysis is either unbiased or underestimates the fidelity
of the states we create as shown in Fig. S5. We find that
the parity analysis method is in general more negatively
biased (towards a lower fidelity than the true fidelity)
compared to the linear estimator. More details of these
simulations and their fidelity analysis can be found in
Ref. 57.

IV. ESTIMATES FOR LEADING SOURCES OF
ERROR

In this section, we discuss the main sources of error
in our entangling operation, which are estimated using
QuTip simulations. More details can be found in Ref. 57.

A. Motional dephasing

Frequency fluctuations of the motional frequency ωr
during the entangling operation will cause dephasing of
the ion motion and give rise to an error in the resulting
state. This dephasing can usually be measured by imple-
menting a Ramsey experiment on the ion motion. How-
ever, this measurement is challenging given our motional
frequency drifts and the limited two-ion trap lifetime.
We instead use an analysis of the squeezing of the ion
motion66 to estimate this dephasing, giving a motional
coherence time of about 64 ms. This dephasing results in
an error of 5.8× 10−4 in the entangled state fidelity.

B. Motional frequency drifts

The motional frequency ωr can drift by several kHz
over approximately 7 minutes, the time required to take
an entangling operation dataset. This effect appears to
be related to charging of the trap surface from the 280
nm light used for laser cooling. The motional frequency
drift needs to be carefully tracked to achieve the highest
fidelities. We perform calibration measurements of the
motional frequency every few seconds, interleaved with
sets of entangling operation trials, and implement a sim-
ple linear feedforward to track and predict the drifts in
ωr. The feedforward prediction, which is used to adjust
the frequencies of the qubit control signals for the entan-
gling operation experiment, can be compared after the
fact with the record of measured motional frequencies.
The mean of the difference between the prediction and
the actual frequency is 3.4 Hz, with a standard deviation
of ≈ 50 Hz. These motional frequency fluctuations give
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State Fidelity analysis method Original data 68 % confidence interval Mean Median

|↓↓〉+ i |↑↑〉 Parity 1 [0.9983, 1] 1 1

|↓↓〉+ i |↑↑〉 Linear estimator 1 [0.9989, 1] 1 1

|↓↑〉 − |↑↓〉 Parity 0.9977 [0.9964, 0.9987] 0.9976 0.9976

|↓↑〉 − |↑↓〉 Linear estimator 0.9985 [0.9968, 1] 0.9985 0.9985

TABLE I. Comparison of different fidelity analysis methods. The confidence interval, means and medians are based on
the bootstrap distribution. Values above 1 are truncated.

rise to an estimated infidelity of approximately 3× 10−5

in the final Bell state. In our experiment, the feedfor-
ward adjusts the value of δ and keeps ωg fixed. This may
cause some additional reduction in fidelity at specific δ
values based on their relation to the duration and shape
of the rising and falling microwave pulse edges41.

C. Motional heating

Finally, we analyze the effect of heating. The motional
heating rate of the out-of-phase mode used for the gate

is so low that we are unable to measure it precisely; how-
ever 1 quanta/s is a conservative upper limit based on
measurements. This heating rate will result in an error
of 3× 10−5 in the entangled state fidelity.
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FIG. S5. Bias in fidelity estimation. We generate sim-
ulated data with identical statistics to the experiment, with
different underlying fidelities for both the symmetric (a) and
antisymmetric (b) entangled states. We plot the bias in es-
timated fidelity, the difference between the estimated fidelity
and the simulated fidelity, for varying simulated fidelities. A
negative bias corresponds to an estimated fidelity that is lower
than the simulated fidelity. For each simulated fidelity, we
generate 1000 sets of simulated data, including the effects of
leakage with similar parameters to what was observed exper-
imentally. For both symmetric and antisymmetric states, the
simulated data were generated from a calculated density ma-
trix for the final state at the end of the entangling operation.
This density matrix was derived assuming that motional de-
phasing was the source of entangling gate infidelity. We see
an overall negative bias in our estimated fidelity, whose mag-
nitude increases as the underlying fidelity approaches 1.
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