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Figure S1. A tristellateia seed. Optical images of a tristellateia seed from top and front views.
The terminal velocity is ~100 cm/s.
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Flier Designs Meso- (d~2 mm) Micro- (d~0.5 mm)
[2,R,0.2] 4.82 µg 0.301 µg
[2,H,0.6] 9.63 µg 0.602 µg
[2,H,1.2] 20.5 µg 1.28 µg
[3,H,0.6] 13.9 µg 0.872 µg

[3,H,0.75] 9.49 µg 0.593 µg
[3,M,0.4] 12.2 µg 0.763 µg

[3,PM,0.4] 9.16 µg 0.573 µg
[3,M,0.33] 11.5 µg 0.718 µg
[3,R,0.5] 6.73 µg 0.421 µg

Table S1. Mass of fliers at meso- and microscales.



Figure S2. Interaction forces between two mesofliers [3,M,0.4] falling in
parallel at their terminal velocities (𝑅𝑅𝑅𝑅~41). (a) Schematic diagram of the
falling mesofliers, with center-to-center distance Δ. (b) Normalized interaction
force 𝐶𝐶𝐼𝐼 = 𝐹𝐹𝐼𝐼/(0.5𝜌𝜌𝑣𝑣𝑇𝑇2𝐴𝐴) versus the normalized distance Δ/2𝑟𝑟, with 𝐹𝐹𝐼𝐼 denotes
the interaction force.
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Figure S3. Relation between flier weight and terminal falling velocity. (a) Plot that indicates a
nearly linear relationship between weight and terminal velocity for a mesoflier with small Reynolds
number (Re~40). (b) Plot that indicates an approximately parabolic relationship between weight and
terminal velocity for a macroflier with large Reynolds number (Re~3000).
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Figure S4. Effect of air properties. Dependence of terminal velocity on (a) the density 
and (b) the dynamic viscosity of air for multi-scale fliers. The behavior of the macrofliers
depend mainly on the density; the behaviors of the meso- and microfliers depend mainly 
on the dynamic viscosity. 
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Figure S5. Amended dependence of the vertical-direction drag force of a 3D mesoflier on the fill
factor at small Reynolds number (Re~40). (a) Schematic diagram of the simplified mesoflier model
with various fill factors. (b) Weight to terminal velocity ratio versus fill factor for a mesoflier at small
Reynolds number. The results follow from the fitting law 𝐹𝐹𝑧𝑧 ∝ 𝜂𝜂.
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Figure S6. Aerodynamic properties of 2D flat airfoil (cross-section of blade) for various
attack angles. (a) Drag coefficient of the 2D airfoil versus the Reynolds number. CFD results are
fitted by 𝐶𝐶𝐷𝐷 𝑏𝑏 ≈ 𝐺𝐺0 𝑏𝑏 + 𝐺𝐺1 𝑏𝑏
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(1.15,10) for 𝛼𝛼 = 60°. (b) Stream and quiver plot for the flow field around a flat airfoil of attack
angle 𝛼𝛼 = 60𝑜𝑜, for Re ∼ 1 and 1000, respectively. CFD results of (c) 𝐺𝐺0 𝑏𝑏 and (d) 𝐺𝐺1 𝑏𝑏 of the 2D
airfoil versus the attack angle, as analytically fitted by 𝐺𝐺0 𝑏𝑏 ≈ 0.435 sin 𝛼𝛼 + 1.02 sin2 𝛼𝛼 and
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Figure S7. Velocity fields for airfoil with 3 different porosities (p=0, 0.5 and 0.9). (a) low Re and (b)
high Re. The boundary layers at low Re are shown by velocity contours at 𝑢𝑢 /𝑣𝑣2 = 0.1. At low Re, the
boundary layer surrounding the airfoil, which can be seen as a virtual airfoil, is not affected by the porosity
on the flat airfoil. The drag force acting on the airfoil is therefore not significantly decreased.



Figure S8. Terminal velocity versus porosity (p) for micro- and macrofliers. The terminal
velocity for the microflier is validated by experimental falling tests (Fig. 3b). Porosity design is more
effective on microfliers than on macrofliers.
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Figure S9. Effect of airfoil curvature for fliers at high Reynolds numbers. (a) Scheme for
airfoils (cross section of a blade) with different curvatures. (b) 𝜔𝜔/𝑣𝑣𝑇𝑇 and (c) 𝐺𝐺0 versus blade tilt
angle with different airfoil curvatures (from flat to curved), at high Re ~3000. With curvature 𝑐𝑐/𝑟𝑟0 =
0.5, 𝐺𝐺0 can be increased by ~35% compared to the flat blade.
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Figure S10. Effect of tilt angles of blades on 𝑮𝑮𝟎𝟎 and 𝑮𝑮𝟏𝟏. (a) Scheme of the simplified flier model
with different tilt angles (𝛽𝛽). The effect of tilt angle on (b) 𝐺𝐺0 and (c) 𝐺𝐺1. Optimizing the tilt angle
(rotational behavior) will slightly increase 𝐺𝐺0, but decrease 𝐺𝐺1.
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Figure S11. Effect of air properties. Air properties (density and
dynamic viscosity) of US standard atmosphere at altitudes ranging
from 0 to 80,000 m.
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Figure S12. Effect of air properties. Effect of air temperature on terminal
velocity. The terminal velocity of macro- and microfliers follow from different
dependence on the air temperature, because 𝜇𝜇 increases but 𝜌𝜌 decreases
with temperature increasing.
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Figure S13. Effect of molecular makeup. CFD simulations for small and large fliers falling in
different gases. The different 𝜇𝜇 and 𝜌𝜌 indicate macro- and microfliers show a different dependence
on molecular makeup of the gas. For example, In He, the microflier has the smallest 𝑣𝑣𝑇𝑇 among all
gases, but macroflier falls quickly in this same environment.
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Figure S14. Scaling law for the terminal rotating speed of a flier. The rotating speed
𝜔𝜔𝑇𝑇 versus 𝑣𝑣𝑇𝑇/𝑟𝑟, and the CFD results show a linear relationship, consistent with the
analytic model 𝜔𝜔𝑇𝑇𝑟𝑟
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Figure S15. Maximum perturbed angle. The maximum perturbed angle
max 1

𝛬𝛬0
𝛬𝛬12 + 𝛬𝛬22 versus 𝜔𝜔0/𝛽𝛽0 and 4𝛾𝛾/𝛽𝛽02, where 𝛽𝛽0 = 𝜋𝜋

8
𝜇𝜇𝑟𝑟2

𝜂𝜂
⋅ Re 2𝐺𝐺0 + 𝐺𝐺1
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, 𝜔𝜔0 =
𝐼𝐼3−𝐼𝐼2
𝐼𝐼1

𝜔𝜔𝑇𝑇, 𝛾𝛾 = 𝑊𝑊𝑊𝑊
𝐼𝐼1

, 𝐼𝐼1,2,3 are the moment of inertias for directions 1, 2 and 3, and 𝑑𝑑 is the
distance between the center of gravity and the center of pressure. Rotation with higher
𝜔𝜔0 ∝ 𝜔𝜔𝑇𝑇 will lead to lower max 1

𝛬𝛬0
𝛬𝛬12 + 𝛬𝛬22 , indicating the rotational stability.



Figure S16. A fixed 3D macroflier above a wind tunnel. (a) Schematic diagram of a fixed
macroflier, (b) video of comparing 2D (non-rotating) and 3D (rotating) macrofliers with r = 1.7 mm.
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Figure S17. Free-falling 2D precursor and 3D mesoflier. (a) Free-falling 2D precursor, (b) Free-
falling 3D mesoflier. Instantaneous 3D flow velocity fields induced by free-falling (c) 2D precursor and
(b) 3D mesoflier measured via 3D-PTV. The color denotes the in-plane 2D vertical velocity along the
flier’s center plane. Red and blue-sio-surfaces demonstrate iso-values of 15 and -5 mm/s, respectively.
The rotational dynamics of the 3D mesofliers minimize flow separation and induce large momentum
deficits, resulting in stable and slow falling behaviors.
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Figure S18. CFD simulated vertical flow field. (a) A 2D precursor and
(b) 3D mesoflier [3,M,0.4] (Size scale 2r ~ 2 mm). The simulation agrees
well with the experimentally measured flow field.
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Figure S19. Experimental results for mesoflier. Instantaneous velocity fields
induced by a fixed (a) 2D precursor and (b) 3D mesoflier via PIV above the wind
tunnel. Flow fields induced by the 3D mesoflier exhibit a larger momentum deficit
than the 2D precursor.



Types and # of 
possible electronic 

components 
integrated on 
3D mesoflier

Silicon CMOS
5 x 109

transistors

Solid-State 
Memory
1011 bits

Solar Cell
4 units

Miniature 
Lasers

106 units

mm-scale 
Computer

4 units

Types of possible 
wireless systems 

integrated on 
3D IoT macroflier

Near-Field 
Communication 

(NFC)

Bluetooth Low 
Energy (BLE)

Radio-Frequency 
Identification (RFID)

Optical Technology 
(colorimetric readout)

Effective Distance ~ 1 m ~100 m 

~2 m (chipless tag)
~5 m (passive tag)

~ 100 m (active tag)
~10 km (very high 

frequency tag)

A range of tens of 
km’s

The Size of 
Miniaturized 

Antenna
5-10 mm 1-2 mm 10~50 mm N/A

Table S2. Types of possible electronic components and wireless systems integrated on 3D meso- and macro-fliers.
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Figure S20. Simulations for 3D mesoflier design I [3,M,0.4]. FEA showing (a) 2D
precursor and (b) 3D configuration for the mesoflier. (c) Deflection of the 3D mesoflier
during free-fall at the terminal velocity. The deflection is magnified by 1000 times. (d)
CFD results for the terminal velocity as a function of the mass of the mesoflier. The
deflection of the mesoflier during free fall at the terminal velocity has only a slight effect
on its 3D configuration.
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Figure S21. Simulations for 3D mesofliers with design II [3,H,0.75]. FEA showing (a)
2D precursor and (b) 3D configuration for the mesoflier. (c) Deflection of during free-falling
at the terminal velocity. The deflection is magnified by 1000 times. (d) CFD results for the
terminal velocity as a function of the mass of the mesoflier.
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Figure S22. 3D electronic mesofliers. a, optical micrographs of 2D precursors for 3D
electronic mesofliers [3,M,0.4] and [3,H,0.75] with Si NM nMOS transistors and diodes as
payloads. b, 3D surface profile of a 3D mesoflier [3,M,0.4].
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Figure S23. A 3D IoT macroflier with another design. (a) Mechanical simulation results
and (b) photographs with a circuit to measure fine dust pollution through the light dosimetry
method. The mechanical simulation guides the design and well predicts the fabricated
configuration of the IoT macroflier. The weight of this flier is 14.6 mg (d~4cm), with payload
75.4mg.
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Figure S24. Effect of thickness on the deflection of 3D IoT macrofliers
during falling. 3D IoT macrofliers with (a) IoT design I and (b) IoT design II,
respectively. A thick SMP layer >12 µm can limit the deflection of the structure to
<2 mm for IoT fliers (2r ~ 20 mm) during falling.
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Figure S25. Electromagnetic simulations. Inductance and Q-factor for 3D IoT
macrofliers with (a) IoT design I and (b) IoT design II for 2D/3D configuration,
respectively. Electromagnetic simulations guide the designs of the antennas and
prove the feasibility.
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Figure S26. Circuit schematic of a battery-free, 3-channel dosimeter for fine dust
monitoring. (a) A 3D IoT macroflier and its wireless interface to a drone. (b) Each detection
channel consists of a photodiode (PD), a supercapacitor (SC), and a MOSFET (MOS). Upon
light exposure, PD continuously generates photocurrent and SC passively stores the
accumulated charge. The voltage bias of the SC read via ADC is proportional to the total
exposure dose. Simultaneous dosimetry at up to three different wavelengths are possible by
PD selection. An Near Field Communication System on Chip (NFC SoC) allows for a battery-
free and wireless data transfer and power transmission. Wirelessly activated GPIO supplies
1.5V to the gate of the MOS and triggers SC discharge.

GPIO3

ADC3

SC

MOS3

PD3

SC
GPIO2

MOS2

NFC SoC

GPIO1

ADC1 ADC 

GPIO 

x3

x3

PD2

ADC2

PD1 SC

MOS RF 
antenna

Detection Channel 1

Detection Channel 2

Detection Channel 3

GPIO

MOS

NFC SoC

ADC

Drone

NFC
Reader

Circular
Buffer

Data
Detection Channel

PD SC

Integrated CircuitSun

Ground

A Free Falling
3D IoT Flier
w/o Power

Th
e 

D
is

ta
nc

e 
in

 
K

ilo
m

et
er

s

GND
Power

b

a



Figure S27. CAD design. Electronic components and metal interconnectors for a
3D IoT macroflier.



Item Manufacturer Catalog
Number Description

NFC Chip Texas 
Instruments

RF430FRL152HC
RGER

RFID Transponders Sensor 
Transponder

Photodiode Advanced 
Photonix PDB-CD160SM Photodiode 850nm 20ns 120°

2-SMD, Gull Wing

MOSFET Texas 
Instruments CSD17381F4 MOSFET N-CH 30V 3.1A 0402

Super-
Capacitor

Seiko 
Instruments CPH3225A CAP 11MF 3.3V SURFACE MOUNT

Capacitor 1
Murata 

Electronics 
North America

GRM033R60J22
5ME47D CAP CER 2.2UF 6.3V X5R 0201

Capacitor 2 TDK Corporation C0603X7R1A103
K030BA CAP CER 10000PF 10V X7R 0201

Capacitor 3 TDK Corporation C0603X5R1A104
K030BC CAP CER 0.1UF 10V X5R 0201

Table S3. Electronic components. The list of a detailed information of electronic circuits for
a battery-free, 3-channel dosimeter for fine dust monitoring.
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Figure S28. High-speed PIV measurements for 3D macrofliers. (a) turbulent Kinetic energy

𝑇𝑇𝑇𝑇𝑇𝑇 = 1
2

𝑢𝑢′ 2 + 𝑣𝑣′ 2 /𝑈𝑈2 . (b) turbulence intensity 𝑇𝑇𝐼𝐼 = �𝑢𝑢′ 2 + 𝑣𝑣′ 2 �𝑢𝑢2 + �̅�𝑣2 . (c) drag
coefficient, 𝐶𝐶𝑊𝑊, calculated from velocity profiles vs diameters, 𝑑𝑑.



Figure S29. CFD results for a 3D IoT macroflier. (a) Instantaneous velocity
field. (b) Mean velocity field in the streamwise direction 𝑢𝑢/𝑈𝑈. The CFD simulation
agrees well with the PIV results.
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Figure S30. PIV results for 3D IoT macrofliers. Mean velocity field of (a) 1 cm, (b) 2 cm, (c) 3 cm, (d) 4
cm, and (e) 5 cm-diameter 3D IoT macrofliers at an incoming velocity U = 1.2 m/s. Velocity profiles along
the (f) center-axis and (g) spanwise direction at a position corresponding to 12 flier diameters downstream.
The results show characteristics of self-similarity.
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Figure S31. High-speed PIV flow measurements for 3D IoT macrofliers. (a) raw image
sequence, (b) vertical velocity field, and (c) horizontal velocity field.

3D IoT Macroflier
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Supplementary Note 1: Analytic Model for 3D Rotational Falling Fliers  

 

The aerodynamic behavior of a flier of the sort considered in this paper represents a complex 
structure-fluid interaction problem. As a simplification, we consider the system in a stable 
flying state, i.e., with a constant terminal velocity 𝑣𝑣𝑇𝑇 and a constant rotating speed 𝜔𝜔𝑇𝑇. These 
two key parameters that describe the falling behavior of fliers depend strongly on both the 
properties of the air (e.g., air density 𝜌𝜌, dynamic viscosity 𝜇𝜇, etc.) and the geometry of flier 
(e.g., 3D configuration, tilted angle of blades, area, etc.): 

(𝑣𝑣𝑇𝑇 ,𝜔𝜔𝑇𝑇) = 𝑓𝑓 �
air properties
flier geometry�,                                         (S1.1) 

Herein, we use a representative simplified model to parametrically characterize the geometry 
of the flier, which has several blades (number of 𝑛𝑛) evenly located at a radius 𝑟𝑟 from the center 
point (Fig. 2a). Each blade is tilted by an angle 𝛽𝛽, and has a chord length 𝑐𝑐, in-plane width 𝑏𝑏 
and thickness 𝑡𝑡𝑚𝑚. The density of the flier material is 𝜌𝜌𝑚𝑚. We assume that the blade width 𝑏𝑏 is 
small comparing to the radius 𝑟𝑟 (𝑏𝑏 ≪ 𝑟𝑟).  

Focusing on the side view of a single blade (Fig. 2a, bottom enlarged subplot), the air flow is 
of velocity 𝑈𝑈 , which can be decomposed into a vertical component 𝑣𝑣𝑇𝑇  and a horizontal 
component 𝜔𝜔𝑇𝑇𝑟𝑟. This problem now corresponds to a 2D airfoil (side cross-section of blade) 
with a coming air flow of velocity 𝑈𝑈 and attack angle 𝛼𝛼, where 

𝑈𝑈 = �𝑣𝑣𝑇𝑇2 + (𝜔𝜔𝑇𝑇𝑟𝑟)2,                                                      (S1.2) 

𝛼𝛼 = 90𝑜𝑜 − 𝛽𝛽 − arctan �𝜔𝜔𝑇𝑇𝑟𝑟
𝑣𝑣𝑇𝑇
�.                                            (S1.3) 

The drag force 𝐹𝐹𝐷𝐷 along the direction of airflow and lift force 𝐹𝐹𝐿𝐿 perpendicular to the direction 
of airflow can be expressed as 

𝐹𝐹𝐷𝐷 = 𝑏𝑏𝑐𝑐 ⋅ 𝐶𝐶𝐷𝐷(𝑏𝑏) ⋅
1
2
𝜌𝜌𝑈𝑈2,                                                  (S1.4) 

𝐹𝐹𝐿𝐿 = 𝑏𝑏𝑐𝑐 ⋅ 𝐶𝐶𝐿𝐿(𝑏𝑏) ⋅
1
2
𝜌𝜌𝑈𝑈2,                                                   (S1.5) 

where 𝐶𝐶𝐷𝐷(𝑏𝑏) and 𝐶𝐶𝐿𝐿(𝑏𝑏) are the drag coefficient and lift coefficient of the airfoil, respectively, 
which can be obtained by 2D CFD simulations of airfoils (Fig. S3). Decomposing the drag 
force and the lift force into the rotational and vertical directional forces (𝐹𝐹𝜃𝜃 and 𝐹𝐹𝑧𝑧) yields 

𝐹𝐹𝜃𝜃/𝑛𝑛 = 𝐹𝐹𝐷𝐷 ⋅
𝜔𝜔𝑇𝑇𝑟𝑟
𝑈𝑈
− 𝐹𝐹𝐿𝐿 ⋅

𝑣𝑣𝑇𝑇
𝑈𝑈

,                                                   (S1.6) 

𝐹𝐹𝑧𝑧/𝑛𝑛 = 𝐹𝐹𝐷𝐷 ⋅
𝑣𝑣𝑇𝑇
𝑈𝑈

+ 𝐹𝐹𝐿𝐿 ⋅
𝜔𝜔𝑇𝑇𝑟𝑟
𝑈𝑈

.                                                   (S1.7) 

The force equilibrium condition is given by 

𝐹𝐹𝜃𝜃 = 0,                                                                  (S1.8) 

𝐹𝐹𝑧𝑧 = 𝑊𝑊,                                                                 (S1.9) 

under the assumption 𝑏𝑏 ≪ 𝑟𝑟, where 𝑊𝑊 is the weight of flier.  
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1. Rotating speed 

With the horizontal equilibrium condition 𝐹𝐹𝜃𝜃 = 0, Eq. (S1.6) yields  
𝜔𝜔𝑇𝑇𝑟𝑟
𝑣𝑣𝑇𝑇

= 𝐶𝐶𝐿𝐿(𝑏𝑏)

𝐶𝐶𝐷𝐷(𝑏𝑏)
= 𝐿𝐿𝐷𝐷,                                                        (S1.10) 

where 𝐿𝐿𝐷𝐷 is the lift-to-drag coefficient of the airfoil, which depends on the airfoil geometry, 
Reynolds’ number (Re) and the attack angle (𝛼𝛼) of the coming air flow (see Supplementary 
Figure S5b). For a given airfoil geometry under a certain Reynolds’ number, Eq. (S1.10) yields 

𝜔𝜔𝑇𝑇𝑟𝑟
𝑣𝑣𝑇𝑇

= 𝐿𝐿𝐷𝐷 �90° − 𝛽𝛽 − atan �𝜔𝜔𝑇𝑇𝑟𝑟
𝑣𝑣𝑇𝑇
��.                                      (S1.11) 

The value of 𝜔𝜔𝑇𝑇𝑟𝑟
𝑣𝑣𝑇𝑇

 can be solved by this implicit equation (S1.11) for a given tilt angle 𝛽𝛽 . 

Moreover, this suggests the scaling law 

𝜔𝜔𝑇𝑇 ∝
𝑣𝑣𝑇𝑇
𝑟𝑟

,                                                            (S1.12) 

that the rotating speed of flier is proportional to its terminal falling velocity over radius.  

2. Terminal velocity 

Equation (S1.7) yields 

𝐹𝐹𝑧𝑧 = 1
2
𝜌𝜌𝑣𝑣𝑇𝑇2 ⋅ [𝑛𝑛𝑏𝑏𝑐𝑐] ⋅ 𝐶𝐶𝐷𝐷(𝑏𝑏) ⋅ (1 + 𝐿𝐿𝐷𝐷2 )

3
2.                                     (S1.13) 

Rewriting Eq. (S1.13) with the drag coefficient of flier 𝐶𝐶𝐷𝐷 yields 

𝐹𝐹𝑧𝑧 = 1
2
𝜌𝜌𝑣𝑣𝑇𝑇2 ⋅ 𝐴𝐴 ⋅ 𝐶𝐶𝐷𝐷,                                                      (S1.14) 

where 𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐷𝐷,𝑏𝑏 ⋅ (1 + 𝐿𝐿𝑏𝑏2 )
3
2 , and 𝐴𝐴 = 𝑛𝑛𝑏𝑏𝑐𝑐  is the total membrane area of flier. The drag 

coefficient of the flier is affected by both the drag coefficient and lift-to-drag ratio of its blade.  

3. Considering the effect of Reynolds’ number on drag coefficient 

The drag coefficient of blade (𝐶𝐶𝐷𝐷(𝑏𝑏) ) saturates at high Re, but at small Re it is nearly 
proportional to 1

Re
. The simulation results of drag coefficient of a flat airfoil versus Reynolds’ 

number are presented in Fig. S7a. The CFD simulation results can be fitted by the function 

𝐶𝐶𝐷𝐷(𝑏𝑏) ≈ 𝐺𝐺0(𝑏𝑏) + 𝐺𝐺1(𝑏𝑏)

Re
,                                                   (S1.15) 

where (𝐺𝐺0(𝑏𝑏),𝐺𝐺1(𝑏𝑏)) = (0.50,  8.3)  for 𝛼𝛼 = 30° and (𝐺𝐺0(𝑏𝑏),𝐺𝐺1(𝑏𝑏)) = (1.15,10)  for 𝛼𝛼 = 60°. 
Substitution of Eq. (S1.15) into Eq. (S1.13) gives 

𝐹𝐹𝑧𝑧 = 1
2
𝜌𝜌𝑣𝑣𝑇𝑇2 ⋅ [𝑛𝑛𝑏𝑏𝑐𝑐] ⋅ �𝐺𝐺0(𝑏𝑏) + 𝐺𝐺1(𝑏𝑏)

Re
� ⋅ (1 + 𝐿𝐿𝐷𝐷2 )

3
2.                            (S1.16) 

We define 𝜂𝜂 as the area fill factor of flier, according to 

𝜂𝜂 = 𝐴𝐴
𝜋𝜋𝑟𝑟2

= 𝑛𝑛𝑏𝑏𝑛𝑛
𝜋𝜋𝑟𝑟2

.                                                      (S1.17) 

With Eq. (S1.17), the Eq. (S1.16) can be rewritten as 
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𝐹𝐹𝑧𝑧 = 1
2
𝜌𝜌𝑣𝑣𝑇𝑇2 ⋅ 𝜋𝜋𝑟𝑟2𝜂𝜂 ⋅ �𝐺𝐺0(𝑏𝑏) + 𝐺𝐺1(𝑏𝑏)

Re
� ⋅ (1 + 𝐿𝐿𝐷𝐷2 )

3
2.                            (S1.18) 

when 𝜂𝜂 ≪ 1. Recall that Re = 𝜌𝜌𝑣𝑣 ⋅ 2𝑟𝑟/𝜇𝜇, Eq. (S1.18) yields 

𝐹𝐹𝑧𝑧 = 1
2
𝜌𝜌𝑣𝑣𝑇𝑇2 ⋅ 𝜋𝜋𝑟𝑟2𝜂𝜂 ⋅ 𝐺𝐺0                                               (S1.19) 

for large Re, where 𝐺𝐺0 = 𝐺𝐺0(𝑏𝑏)(1 + 𝐿𝐿𝐷𝐷2 )3/2. Likewisely, for small Re, Eq. (S1.18) yields 

𝐹𝐹𝑧𝑧 = 1
4
𝜇𝜇𝑣𝑣𝑇𝑇 ⋅ 𝜋𝜋𝑟𝑟𝜂𝜂 ⋅ 𝐺𝐺1,                                               (S1.20) 

where 𝐺𝐺1 = 𝐺𝐺1(𝑏𝑏)(1 + 𝐿𝐿𝐷𝐷2 )3/2. Again, Eqs. (S1.19) and (S1.20) requires the assumption that 
𝜂𝜂 ≪ 1. 

4. Modification of theory by the extension of fill factor 𝛈𝛈 

The above analysis is based on the assumption that the fill factor 𝜂𝜂 is small (𝜂𝜂 ≪ 1). To extend 
the model to practical cases where the fill factor can be larger (e.g., close to 1 in the range of 
[0,1]), we simulated the simplified flier model with various fill factors (Fig. S5). It was shown 
that the linear relation between 𝐹𝐹𝑧𝑧 and 𝜂𝜂 is true only for 𝜂𝜂 < 0.2. For larger 𝜂𝜂 the theory must 
be amended by changing the fitting law to 𝐹𝐹𝑧𝑧 ∝ �𝜂𝜂. Therefore, the amended model is given by 

𝐹𝐹𝑧𝑧 = 1
2
𝜌𝜌𝑣𝑣𝑇𝑇2 ⋅ 𝜋𝜋𝑟𝑟2�𝜂𝜂 ⋅ 𝐶𝐶𝐷𝐷.                                                (S1.21) 

 

5. Effect of self-weight and load on terminal falling velocity 

The weight of flier consists of two parts, i.e., self-weight (𝑊𝑊self) and load (𝑊𝑊load), as given by 

𝑊𝑊 = 𝑊𝑊self + 𝑊𝑊load = 𝜌𝜌𝑚𝑚𝑡𝑡𝑚𝑚𝑔𝑔𝜋𝜋𝑟𝑟2𝜂𝜂 + 𝑊𝑊load,                             (S1.22) 

where 𝜌𝜌𝑚𝑚  is the density of the structural material, 𝑡𝑡𝑚𝑚  is the thickness, and 𝑔𝑔 is the gravity 
acceleration. Substitution of Eqs. (S1.9) and (S1.22) into (S1.21) yields 

𝜌𝜌𝑚𝑚𝑡𝑡𝑚𝑚𝑔𝑔𝜋𝜋𝑟𝑟2𝜂𝜂 + 𝑊𝑊load = 1
2
𝜌𝜌𝑣𝑣𝑇𝑇2 ⋅ 𝜋𝜋𝑟𝑟2�𝜂𝜂 ⋅ 𝐶𝐶𝐷𝐷.                                 (S1.23) 

For macrofliers, the terminal velocity is given by 

𝑣𝑣𝑇𝑇 = � 2
𝜌𝜌𝐺𝐺0

�𝜌𝜌𝑚𝑚𝑡𝑡𝑚𝑚𝑔𝑔�𝜂𝜂 + 𝑊𝑊load
𝜋𝜋𝑟𝑟2�𝜂𝜂

��
1
2
.                                         (S1.24) 

For microfliers, the terminal falling velocity is 

𝑣𝑣𝑇𝑇 = 4
𝜇𝜇𝐺𝐺1

�𝜌𝜌𝑚𝑚𝑡𝑡𝑔𝑔𝑟𝑟�𝜂𝜂 + 𝑊𝑊load
𝜋𝜋𝑟𝑟�𝜂𝜂

�.                                           (S1.25) 

This equation indicates the existence of an optimal fill factor, i.e., 𝜂𝜂optimal = 𝑊𝑊𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙/

𝜋𝜋𝑟𝑟2𝜌𝜌𝑚𝑚𝑡𝑡𝑚𝑚𝑔𝑔, that minimizes the terminal velocity for a given 𝑊𝑊load. 
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Supplementary Note 2: Effect of Porosity on Terminal Velocity 

 

The idea of utilizing porosity to reduce the terminal falling velocity arises from structures in 
nature (Fig. S8a). For example, feathers consist of micro-fibers, between which there are void 
spaces. The aerodynamic properties of feathers are still very good even with these void spaces.  
The benefits of the void spaces are in significant reductions in the overall weight. Another 
example is dandelion seeds, with similar micro-fiber structures but even more void spaces, with 
capabilities for exceptionally low terminal velocities. Here, we explored the possibility of 
adding porosity into the fliers (Fig. S8b&c) to reduce these velocities. The porosity (i.e., 𝑝𝑝) is 
defined by  

𝑝𝑝 = 𝐴𝐴void/𝐴𝐴0,                                                        (S2.1) 

where 𝐴𝐴void is the area of voids and 𝐴𝐴0 is the area of a void-free flier. The area with voids 
present is 

 𝐴𝐴 = 𝐴𝐴0 − 𝐴𝐴void = 𝐴𝐴0(1 − 𝑝𝑝),                                          (S2.2) 

We consider a representative 2D flat airfoil, for which the CFD simulations reveal that the 
porosity leads to an increase in the drag coefficient 𝐶𝐶𝐷𝐷(𝑏𝑏) by increasing 𝐺𝐺0(𝑏𝑏) and 𝐺𝐺1(𝑏𝑏), recall 
Eq. (S1.2), as shown in Fig. Sd&e, and can be fitted analytically by 

𝐺𝐺0(𝑏𝑏)(𝑝𝑝)
𝐺𝐺0(𝑏𝑏)(𝑝𝑝=0) ≈

1−0.95𝑝𝑝2

1−𝑝𝑝
,                                              (S2.3) 

𝐺𝐺1(𝑏𝑏)(𝑝𝑝)
𝐺𝐺1(𝑏𝑏)(𝑝𝑝=0) ≈

1−0.3𝑝𝑝
1−𝑝𝑝

.                                                 (S2.4) 

Eqs. (S2.3) and (S2.4) indicate that 𝐺𝐺1(𝑏𝑏)  increases faster than 𝐺𝐺0(𝑏𝑏)  with porosity. This 
behavior can be explained by the flow fields near the porous airfoil, as shown in Fig. S9. At 
low Re, the boundary layer surrounding the airfoil, which can be seen as a virtual airfoil, is not 
affected by the porosity on the flat airfoil. The drag force acting on the airfoil, is therefore not 
significantly decreased. However, at large Re, the thickness of boundary layer is comparable 
to the size of void, such that the drag force decreases similarly to the area as porosity increases.  

Therefore, per Eqs. (2) and (3), the knock-down factor of porosity on 𝑣𝑣𝑇𝑇 for a microflier is 
given by 

𝑣𝑣𝑇𝑇(𝑝𝑝)
𝑣𝑣𝑇𝑇(𝑝𝑝=0) = 1−𝑝𝑝

1−0.3𝑝𝑝
,                                                 (S2.5) 

and for a macroflier, the terminal velocity knock-down factor is 

𝑣𝑣𝑇𝑇(𝑝𝑝)
𝑣𝑣𝑇𝑇(𝑝𝑝=0) = � 1−𝑝𝑝

1−0.95𝑝𝑝2
,                                                 (S2.6) 

as validated by the falling tests as shown in Fig. S10.  
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Supplementary Note 3: Effect of Attack Angle on the Drag Coefficient of 2D Flat Airfoil 

 

The tilt angle 𝛽𝛽 affects the terminal velocity through the attack angle (𝛼𝛼). A larger 𝛽𝛽 indicates 
a smaller 𝐺𝐺0 and 𝐺𝐺1 (Fig. S7) due to its smaller attack angle (𝛼𝛼 = 90° − 𝛽𝛽 − atan𝜔𝜔𝑇𝑇𝜉𝜉

𝑣𝑣𝑇𝑇
, for the 

point on the flier at radius 𝜉𝜉 ∈ [0, 𝑟𝑟]), and therefore leads to a larger 𝑣𝑣𝑇𝑇. For a large flier, the 
lift-to-drag ratio (𝐿𝐿𝐷𝐷 ) of the blade can also increase significantly with small attack angle.  
Therefore, a small tilt angle can increase the flier drag coefficient through 𝐿𝐿𝐷𝐷, per Eq. (1.13), 

that 𝐶𝐶𝐷𝐷 = 𝐶𝐶𝐷𝐷(𝑏𝑏) ⋅ (1 + 𝐿𝐿𝐷𝐷)
3
2. However, the lift-to-drag coefficient for a microflier is very small 

such that only the drag coefficient of blade plays an important role.  Therefore, optimizing the 
tilt angle is not helpful for microscale fliers.  

The 2D (two-dimensional) airfoil is the cross section of a blade for a 3D flier. Figure S7a shows 
the CFD simulated (see details in Methods and Fig. S3b) drag coefficient of a 2D flat airfoil 
(i.e., 𝐶𝐶𝐷𝐷(𝑏𝑏)) versus Reynolds number, where the subscript ‘(b)’ denotes the ‘blade’. The drag 
coefficient of the airfoil, as defined by  

𝐶𝐶𝐷𝐷(𝑏𝑏) = 𝐹𝐹𝐷𝐷
𝐴𝐴⋅12𝜌𝜌𝑣𝑣

2,                                                        (S3.1)                                               

where A is the area of the airfoil (per unit depth). 𝐶𝐶𝐷𝐷(𝑏𝑏) can be empirically given by 

𝐶𝐶𝐷𝐷(𝑏𝑏) ≈ 𝐺𝐺0(𝑏𝑏) + 𝐺𝐺1(𝑏𝑏)

Re
,                                                   (S3.2) 

where 𝐺𝐺0(𝑏𝑏) and 𝐺𝐺1(𝑏𝑏)  are the fitting parameters. Notably, Eq. (S1.2) indicates that 𝐶𝐶𝐷𝐷(𝑏𝑏) is 
dominated by 𝐺𝐺0(𝑏𝑏) at high Re, but is dominated by 𝐺𝐺1(𝑏𝑏) at low Re. In other words, 𝐺𝐺0(𝑏𝑏) and 
𝐺𝐺1(𝑏𝑏) stand for the viscous and inertia effects of the flow, respectively (Fig. S7b). To investigate 
the effect of attack angle (𝛼𝛼) on 𝐶𝐶𝐷𝐷(𝑏𝑏), we first study the effect on 𝐺𝐺0(𝑏𝑏) and 𝐺𝐺1(𝑏𝑏), as presented 
in Fig. S7c&d, which can be analytically fitted by 

𝐺𝐺0(𝑏𝑏) ≈ 0.435 sin𝛼𝛼 + 1.02 sin2 𝛼𝛼,                                   (S3.3) 

𝐺𝐺1(𝑏𝑏) ≈ 7.38 + 3.50 sin2 𝛼𝛼 .                                       (S3.4) 

Substitution of Eqs. (S1.3) and (S1.4) into Eq. (S1.2) gives the drag coefficient as a function 
of 𝛼𝛼 

𝐶𝐶𝐷𝐷(𝑏𝑏) ≈ 0.435 sin𝛼𝛼 + 1.02 sin2 𝛼𝛼 + 1
Re

(7.38 + 3.50 sin2 𝛼𝛼).              (S3.5) 
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Supplementary Note 4: Stability analysis of rotating-falling fliers (spinners) 

  

The stability of the rotating-falling state of the flier is analyzed by simplifying the flier as a 
rigid body and considering the influence of air flow. Generally, the rotational movement for a 
rigid body can be described as  

𝝎𝝎 = 𝜔𝜔1𝒆𝒆𝟏𝟏 + 𝜔𝜔2𝒆𝒆𝟐𝟐 + 𝜔𝜔3𝒆𝒆𝟑𝟑,                                              (S4.1) 

where 𝝎𝝎 is the rotating velocity of the rigid body, 𝒆𝒆𝟏𝟏, 𝒆𝒆𝟐𝟐 and 𝒆𝒆𝟑𝟑 are the three-dimensional unit 
vectors of the rotating coordinate along with the rigid body, and 𝜔𝜔1, 𝜔𝜔2 and 𝜔𝜔3 are the rotating 
speed components. Euler’s rotation equations take the general form: 

𝑇𝑇1 = 𝐼𝐼1�̇�𝜔1 − (𝐼𝐼2 − 𝐼𝐼3)𝜔𝜔2𝜔𝜔3 

𝑇𝑇2 = 𝐼𝐼2�̇�𝜔2 − (𝐼𝐼3 − 𝐼𝐼1)𝜔𝜔3𝜔𝜔1,                                          (S4.2) 

𝑇𝑇3 = 𝐼𝐼3�̇�𝜔3 − (𝐼𝐼1 − 𝐼𝐼2)𝜔𝜔1𝜔𝜔2 

where 𝐼𝐼1, 𝐼𝐼2 and 𝐼𝐼3 are assumed to be the principal moments of inertia, and 𝑻𝑻 = (𝑇𝑇1,𝑇𝑇2,𝑇𝑇3) is 
the torque on the body. Consider the flier as a rigid body free falling in the air (air density 𝜌𝜌, 
dynamic viscosity 𝜇𝜇) at a terminal velocity 𝑣𝑣𝑇𝑇, and rotating with an angular speed 𝜔𝜔𝑇𝑇 along 
the z direction, where the rotational movement is given as 

𝝎𝝎 = 𝜔𝜔𝑇𝑇𝒆𝒆𝟑𝟑.                                                            (S4.3) 

If a perturbation is applied on the flier and causes a slight tilt angle on 1 and 2 directions (Fig. 
2f) as Λ1 and Λ2, respectively, then the angular velocity becomes 

𝝎𝝎 = Λ̇1𝒆𝒆𝟏𝟏 + Λ̇2𝒆𝒆𝟐𝟐 + 𝜔𝜔3𝒆𝒆𝟑𝟑,                                              (S4.4) 

where Λ1 and Λ2 are both assumed to be small. Euler’s equations (S4.2) take the form 

𝑇𝑇1 = 𝐼𝐼1Λ̈1 − (𝐼𝐼2 − 𝐼𝐼3)Λ̇2𝜔𝜔3 

𝑇𝑇2 = 𝐼𝐼2Λ̈2 − (𝐼𝐼3 − 𝐼𝐼1)𝜔𝜔3Λ̇1.                                          (S4.5) 

𝑇𝑇3 = 𝐼𝐼3�̇�𝜔𝑇𝑇 − (𝐼𝐼1 − 𝐼𝐼2)Λ̇1Λ̇2 

Consider the torque of the air flow on the flier body as 

𝑻𝑻 = 𝑻𝑻(Λ, Λ̇).                                                            (S4.6) 

For small perturbations off the balanced state as 

𝛿𝛿𝑻𝑻 = 𝜕𝜕𝑻𝑻
𝜕𝜕Λ
𝛿𝛿Λ + 𝜕𝜕𝑻𝑻

𝜕𝜕Λ̇
𝛿𝛿Λ̇.                                                      (S4.7) 

The dependence of torque 𝑇𝑇 on angle perturbation 𝛿𝛿Λ is given by 
𝜕𝜕𝑻𝑻
𝜕𝜕Λ
𝛿𝛿Λ = −𝑊𝑊𝑊𝑊 ⋅ 𝛿𝛿Λ,                                                      (S4.8) 

where 𝑊𝑊 is the distance between the center of pressure and center of gravity. The dependence 
of torque on angular speed perturbation is 
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𝜕𝜕𝑻𝑻
𝜕𝜕Λ̇
𝛿𝛿Λ̇ = −∬ 𝑙𝑙𝑓𝑓𝐷𝐷

𝑙𝑙𝑣𝑣
𝛿𝛿𝑣𝑣 ⋅ 𝜉𝜉𝑊𝑊𝜉𝜉𝑆𝑆 ,                                                (S4.9) 

in which 𝑊𝑊𝜉𝜉 is the unit area of the flier locates at radius 𝜉𝜉, and 𝑓𝑓𝐷𝐷 is the drag force per unit area 
acting on the flier as given by 

𝑓𝑓𝐷𝐷(𝑣𝑣) = 1
2
𝜌𝜌𝑣𝑣2 ⋅ 1

�𝜂𝜂
⋅ �𝐺𝐺0 + 𝐺𝐺1

Re
�,                                              (S4.10) 

The velocity perturbation 𝛿𝛿𝑣𝑣 is  

𝛿𝛿𝑣𝑣 = 𝜉𝜉
𝑟𝑟
𝛿𝛿Λ.                                                          (S4.11) 

Substitution of Eq. (S4.10) and (S4.11) into equation (S4.9) gives 

𝜕𝜕𝑻𝑻
𝜕𝜕Λ̇
𝛿𝛿Λ̇ = −∬ 𝑙𝑙

𝑙𝑙𝑣𝑣
�1
2
𝜌𝜌𝑣𝑣2 ⋅ 1

�𝜂𝜂
⋅ �𝐺𝐺0 + 𝐺𝐺1

Re
�� 𝜉𝜉

𝑟𝑟
𝛿𝛿Λ ⋅ 𝜉𝜉𝑊𝑊𝜉𝜉𝑆𝑆 .                              (S4.12) 

Under the assumption that the area distribution of microflier is uniform at radius 𝑟𝑟, Eq. (S4.12) 
yields 

𝜕𝜕𝑻𝑻
𝜕𝜕Λ̇
𝛿𝛿Λ̇ = −𝜋𝜋

8
𝜇𝜇𝑟𝑟2

�𝜂𝜂
Re �2𝐺𝐺0 + 𝐺𝐺1

Re
� 𝛿𝛿Λ̇ ,                                      (S4.13) 

Substitution of equations (S4.8) and (S4.13) into (S4.5) and (S4.7), yields the control equations 

𝐼𝐼1Λ̈1 − (𝐼𝐼2 − 𝐼𝐼3)Λ̇2𝜔𝜔𝑇𝑇 + 𝜋𝜋
8
𝜇𝜇𝑟𝑟2

�𝜂𝜂
⋅ Re �2𝐺𝐺0 + 𝐺𝐺1

Re
� Λ̇1 + 𝑊𝑊𝑊𝑊Λ1 = 0,              (S4.14) 

𝐼𝐼2Λ̈2 − (𝐼𝐼3 − 𝐼𝐼1)Λ̇1𝜔𝜔𝑇𝑇 + 𝜋𝜋
8
𝜇𝜇𝑟𝑟2

�𝜂𝜂
⋅ Re �2𝐺𝐺0 + 𝐺𝐺1

Re
� Λ̇2 + 𝑊𝑊𝑊𝑊Λ2 = 0,              (S4.15) 

Rewriting them in matrix form and normalized as 

�Λ̈1
Λ̈2
� + � 𝛽𝛽0 𝜔𝜔1

−𝜔𝜔2 𝑎𝑎𝛽𝛽0
� �Λ̇1
Λ̇2
� + �𝛾𝛾 0

0 𝑎𝑎𝛾𝛾� �
Λ1
Λ2
� = 0,                           (S4.16) 

where 𝛽𝛽0 = 𝜋𝜋
8
𝜇𝜇𝑟𝑟2

�𝜂𝜂
⋅ Re �2𝐺𝐺0 + 𝐺𝐺1

Re
� 1
𝐼𝐼1

, 𝜔𝜔1 = 𝐼𝐼3−𝐼𝐼2
𝐼𝐼1

𝜔𝜔𝑡𝑡 , 𝜔𝜔2 = 𝐼𝐼3−𝐼𝐼1
𝐼𝐼2

𝜔𝜔𝑇𝑇 , 𝑎𝑎 = 𝐼𝐼1
𝐼𝐼2

 and 𝛾𝛾 = 𝑊𝑊𝑙𝑙
𝐼𝐼1

. For 

the extreme case that the flier is highly symmetric and 𝑎𝑎 = 1, Eq. (S4.16) becomes  

�Λ̈1
Λ̈2
� + � 𝛽𝛽0 𝜔𝜔0

−𝜔𝜔0 𝛽𝛽0
� �Λ̇1
Λ̇2
� + �𝛾𝛾 0

0 𝛾𝛾� �
Λ1
Λ2
� = 0,                           (S4.17) 

where ω0 = 𝜔𝜔1 = 𝜔𝜔2. Equation (S3.17) can by diagonalized by the transformation  

�
𝛼𝛼1
𝛼𝛼2� = �𝑖𝑖 −𝑖𝑖

1 1 � �
Λ1
Λ2
�,                                                     (S4.18) 

that  

��̈�𝛼1�̈�𝛼2
� + �𝛽𝛽0 − 𝜔𝜔0𝑖𝑖 0

0 𝛽𝛽0 + 𝜔𝜔0𝑖𝑖
� ��̇�𝛼1�̇�𝛼2

� + �𝛾𝛾 0
0 𝛾𝛾� �

𝛼𝛼1
𝛼𝛼2� = 0.                      (S4.19) 

This is a decoupled oscillation equation with damping, of which the 4 eigenvalues are  
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𝜆𝜆1,2 = −1
2

(𝛽𝛽0 − 𝜔𝜔0𝑖𝑖) ± ��𝛽𝛽0−𝜔𝜔0𝑖𝑖
2

�
2
− 𝛾𝛾 ,                                     (S4.20) 

𝜆𝜆3,4 = −1
2

(𝛽𝛽0 + 𝜔𝜔0𝑖𝑖) ± ��𝛽𝛽0+𝜔𝜔0𝑖𝑖
2

�
2
− 𝛾𝛾 ,                                     (S4.21) 

which can be normalized as 

𝜆𝜆1,2 = −𝛽𝛽0
2
��1 − 𝜔𝜔0

𝛽𝛽0
𝑖𝑖� ± ��1 − 𝜔𝜔0

𝛽𝛽0
𝑖𝑖�
2
− 4𝛾𝛾

𝛽𝛽02
 �,                               (S4.22) 

𝜆𝜆3,4 = −𝛽𝛽0
2
��1 + 𝜔𝜔0

𝛽𝛽0
𝑖𝑖� ± ��1 + 𝜔𝜔0

𝛽𝛽0
𝑖𝑖�
2
− 4𝛾𝛾

𝛽𝛽02
 �.                               (S4.23) 

The stability of the solution (i.e., Λ → 0  when 𝑡𝑡 → +∞) requires that all real part of the 
eigenvalues are negative. Define Γ as the stability factor as  

Γ ≡ min �− 2Real�𝜆𝜆1,2,3,4�
𝛽𝛽0

� = min �Real��1 ± 𝜔𝜔0
𝛽𝛽0
𝑖𝑖� ± ��1 ± 𝜔𝜔0

𝛽𝛽0
𝑖𝑖�
2
− 4𝛾𝛾

𝛽𝛽02
 ��.     (S4.24) 

The stability condition requires Γ > 0.  

 

The solution of Eq. (S4.17) is expressed as 

Λ(𝑡𝑡) = ∑ 𝐶𝐶𝑖𝑖𝑒𝑒𝜆𝜆𝑖𝑖𝑡𝑡4
𝑖𝑖=1 .                                               (S4.25) 

The amplitude of oscillation (Λamp) decays with time as 

Λamp ∝ Λ0 exp �− 𝛽𝛽0
2
Γ𝑡𝑡�,                                               (S4.26) 

where Λ0 is the amplitude of the initial perturbation. Therefore, a larger Γ means the amplitude 
decays faster that the flier can recover to its balanced stable state faster. 

Substitution of 𝑣𝑣𝑇𝑇 = − 𝜇𝜇𝐺𝐺1
4𝑟𝑟𝜌𝜌𝐺𝐺0

+ �� 𝜇𝜇𝐺𝐺1
4𝑟𝑟𝜌𝜌𝐺𝐺0

�
2

+ 2𝑊𝑊
𝜌𝜌𝐴𝐴𝐺𝐺0

 into 𝜔𝜔𝑇𝑇 ∝ 𝑣𝑣𝑇𝑇/𝑟𝑟  suggests that reducing 𝑟𝑟 

increases 𝜔𝜔𝑇𝑇. Therefore, increasing 𝑊𝑊 (distance between the center of gravity and the center of 
pressure) and/or decreasing 𝑟𝑟 (size) can improve the stability through increases in 4𝛾𝛾/𝛽𝛽02 and 
𝜔𝜔0/𝛽𝛽0, respectively. 
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