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SUPPLEMENTARY MATERIAL:
THE SIGNATURE AND CUSP SHAPE
OF HYPERBOLIC KNOTS

1. INTRODUCTION

The fundamental objects of topology are manifolds — spaces that locally look
like n-dimensional coordinate space. Dimensions 3 and 4 are the most relevant
from a physical point of view, and turn out to be the most difficult to understand
mathematically. This is the subject of low-dimensional topology.

The theory of 3-manifolds is governed by geometry due to Thurston’s celebrated
Geometrisation Conjecture [9], which states that every 3-manifold can be obtained
by gluing pieces that each have one of eight standard geometric structures, of which
hyperbolic is the most common. This was proven by Perelman — a result named
“breakthrough of the year” by Science in 2006.

Much of the complication in the study of 3- and 4-manifolds comes from the
phenomenon of knotting, where a knot is an embedding of the circle in 3-space.
A hyperbolic knot is one whose complement carries a hyperbolic geometry, and is
hence a common building block of 3-manifolds. On the other hand, the classification
of topological 4-manifolds is mostly determined by their algebraic invariants due to
the work of Freedman [4], which earned him a Fields medal.

One of the most fundamental 4-manifold invariants is the signature. Signature
can also be defined for a knot, which gives information on the complexity of sur-
faces that the knot can bound in the four-ball. The geometric theory of 3-manifolds
and the algebraic theory of four-manifolds have so far developed with very little
interaction with each other. To bridge this gap, we used techniques from machine
learning combined with mathematical insights, and found that a completely un-
expected relationship exists between the geometric world of 3-manifolds and the
algebraic theory of 4-manifolds. We showed that a new geometric quantity called
the natural slope, which describes the shape of the boundary of a hyperbolic knot
complement, differs from twice the knot signature by at most a constant times the
hyperbolic volume divided by the cube of the injectivity radius. This could lead to
further links between two currently orthogonal areas.

2. BACKGROUND ON KNOT THEORY

As outlined in the introduction, knot theory plays a fundamental role in low-
dimensional topology. Some of knot theory’s main goals are to classify knots, to
understand their properties, and to establish connections with other fields. One of
the principal ways that this is done is to define invariants, which are geometric,
algebraic, or numerical quantities that are the same for any two equivalent knots.

Hyperbolic invariants are those derived from hyperbolic geometry, and relate
to the complement of the knot, in other words, the manifold that one obtains by
removing the knot K from 3-dimensional space. One of the major milestones in the
field was Thurston’s introduction of the Geometrisation Conjecture and his proof
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of this for knot complements [9]. This established that the complement of every
knot (with an explicit list of exceptions) has a unique hyperbolic structure. In other
words, this complement has a complete Riemannian metric of constant curvature
—1. Associated with this metric are various natural geometric quantities, such
as volume, which we denote by vol(K). See Figure 1 for a visualisation of the
hyperbolic metric on the complement of the knot 85.

FI1GURE 1. Left: The knot 85. Right: A fundamental domain for
its hyperbolic structure, viewed as a subset of the Poincaré ball
model, as created by the program SnapPy [3].

Algebraic invariants include some of the oldest invariants in knot theory, such as
the Alexander polynomial defined by Alexander [1] in 1928, the fundamental group,
first studied by Poincaré [8] in the late 19th century, and the signature, defined by
Trotter [10] in 1962. It is the signature o(K) of a knot K that we will focus on
here. It is a basic invariant that is extracted from a matrix associated with K,
known as its Seifert matrix. It is just the number of positive eigenvalues of this
matrix minus the number of negative eigenvalues. It controls many key properties
of the knot, including its 4-dimensional behaviour. One particularly fruitful area of
research in knot theory is to consider R3 as being the boundary of upper half space
Ri = {(x1,22,23,24) : ¢4 > 0} and then to investigate the surfaces that a knot
K can bound in Ri. Surprisingly, a non-trivial knot K can bound a (topologically
locally-flat) embedded disc in Ri; it is then known as ‘slice.” The use of slice knots
is one of the main tools in 4-dimensional topology, notably in Freedman’s proof of
the 4-dimensional Poincaré conjecture [4]. One of the many uses of knot signature
is that it provides an obstruction to a knot being slice: any slice knot must have
zero signature [7].

These two types of invariants, hyperbolic and algebraic, are derived from quite
different mathematical disciplines, and so it is of considerable interest to establish
connections between them. A notable example of such a potential connection is
the Volume Conjecture [6], which proposes that the hyperbolic volume of a knot
(a geometric invariant) should be encoded within the asymptotic behaviour of its
coloured Jones polynomials (which are algebraic invariants).

3. THE NATURAL SLOPE OF A HYPERBOLIC KNOT

In our work, we have found a new and surprising connection between a hyperbolic
invariant, which we call ‘natural slope,” and the signature. The natural slope is a
quantity extracted from the maximal cusp, which is the part of the knot complement
near the knot itself. Specifically, the hyperbolic structure specifies a Euclidean
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metric on the torus that encloses the knot. From this metric, the meridian and
longitude of the knot determine translations of the Euclidean plane, which can be
specified by complex numbers A and u. These numbers are readily computed using
the program SnapPy [3]. See Figures 3 and 4 for illustrations for the figure eight
knot and the knot 12a52.

Our analysis using machine learning strongly suggested that there is a relation-
ship between meridional translation u, the longitudinal translation A and signature
o(K). This relationship is best understood by means of the following new quantity.
The ‘natural slope’ is defined to be slope(K) = Re(\/u), where Re denotes the real
part. It has the following geometric interpretation. One can realise the meridian
curve as a geodesic v on the Euclidean torus. If one fires off a geodesic 4+ from
this orthogonally, it is will eventually return and hit + at some point. In doing so,
it will have travelled along a longitude minus some multiple of the meridian. This
multiple is the natural slope. It need not be an integer, because the endpoint of =+
might not be the same as its starting point. See Figure 2 for an illustration.

=

FIGURE 2. A schematic picture of the cusp torus. A geodesic is
shown running in the direction v+ that is perpendicular to the
meridian y. By the time it returns to -, it has travelled one lon-
gitude minus some multiple s of the meridian. This real number s
is the natural slope of K.

®

FI1GURE 3. Left: The figure-eight knot 4;. Right: A picture of its
cusp torus, which is obtained by identifying opposite sides of the
rectangle. The horizontal and vertical sides of this rectangle give
A = 3.4641 and p = i. The natural slope is 0 and the signature is
0. The diagram of the cusp torus was produced using SnapPy [3].

Our initial conjecture relating natural slope and signature was as follows.

Conjecture 3.1. There exist constants c1 and co such that, for every hyperbolic
knot K,
|20(K) — slope(K)| < ¢1 vol(K) + co.
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FIGURE 4. Left: The knot 12a52. Right: Its cusp torus. The
longitude and meridian are 27.7228 and —1.2838 + 0.51457. Its
natural slope is —18.6064 and its signature is —8. Note how far
the parallelogram is from being right-angled; this is the defining
feature of having very positive or very negative slope.

This conjecture was strongly supported by an analysis of large datasets, in-
cluding the knots up to 16 crossings in the Regina dataset [2] and a dataset of
knot constructed using random_link in SnapPy, having 10 to 80 crossings in their
SnapPy-simplified form (see Figure 5).
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FIGURE 5. Scatter plots of signature o(K) against slope(K). Left:
The knots up to 16 crossings in the Regina dataset. Right: Knots
randomly sampled using the command random_link in SnapPy,
having 10 to 80 crossings in their SnapPy-simplified form.

However, counterexamples to this conjecture were eventually found using braids.
Specifically, we considered a sequence of knots K,,, which are obtained as closures of
the braid 105 ' (0109)%" (see Figure 6). Their signatures are equal to —4n. Their
slopes satisfy slope(K,)/(—9n) — 1 as n tends to infinity. Therefore, the quantity
|20 (K,,) —slope(K,,)| is unbounded as n tends to infinity. On the other hand, their
volumes are bounded above by 4.0598. Hence, there cannot be constants ¢; and co
as in the conjecture.

4. MAIN THEOREM

Even though our conjecture turned out to be false in the form initially stated,
we were able to establish a relationship between slope(K), signature o(K), volume
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FiGURE 6. The knot K, in the case n = 2. It has signature —8
and slope —18.2151. Its volume is 2.828]1.

vol(K') and another important geometric invariant, the injectivity radius inj(K),
which is defined as follows.

For a Riemannian manifold M, its injectivity radius at a point p is defined to be
the supremal value of r with the property that the exponential map based at p is
injective when restricted to a ball of radius r. It is denoted inj,(M). The injectivity
radius of M is defined to the infimum of inj, (M), over all points p in M. When
the manifold is closed and hyperbolic, this is just half the length of the shortest
geodesic. However, the manifolds we are considering are knot complements, and so
are not closed, and their injectivity radius, with its usual definition, is zero. In our
case, we instead define inj(/) to be the infimal value of inj,(M), over all points p
outside of the maximal cusp. This can readily be computed using SnapPy, as it is a
simple function of the length of the shortest geodesic and the length of the shortest
slope on the boundary of the maximal cusp.

Our main theorem is as follows.

Theorem 4.1. There exists a constant cs3 such that, for any hyperbolic knot K,
20(K) — slope(K)| < ¢3 vol(K) inj(K) >,

It turns out that injectivity radius tends not to get very small, even for manifolds
of large volume (see Figure 7). Hence, the term inj(K)~2 tends not to get too large
in practice. However, it would clearly be desirable to have a theorem that avoided
the dependence on inj(K)~3. We give such a result in the next section.

Number of crossings distribution in the dataset

I %
FIGURE 7. Left: A scatter plot of volume and injectivity radius
for a random sample of knots. This sample was created by ran-
domly selecting a knot diagram with at most 80 crossings, using
the command random_link in SnapPy. Right: The distribution of
crossings in the knot diagrams in this dataset.
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5. A REFINED THEOREM

Although Conjecture 3.1 turned out not to be true, it is natural to wonder
whether the signature o(K) can be estimated in terms of geometric invariants,
with an error bound depending only on the volume, and not depending on the
injectivity radius. We were able to establish such a bound. It is sharper than
Theorem 4.1, although not as simply stated.

Our estimate for o(K) is stated as slope(K)/2 plus a correction term. This
correction term involves all the ‘short’ geodesics. For the sake of being definite, we
consider all the geodesics with length less than 1. Let OddGeo be the collection
of all such geodesics that have odd linking number with the knot. For each such
geodesic, we will define a ‘correction term’ x(twy (), twq(7)). Our theorem is then
as follows.

Theorem 5.1. There is a constant cq such that for any hyperbolic knot K, the
quantities o(K) and

slope(K)/2 — Z K(twp(7), twg(7))
v€0ddGeo

differ by at most cq vol(K).

The details of the correction term are somewhat technical, but we state them
here for the sake of completeness.

Definition 5.2. Let v be a geodesic with complex length cl(v). Here, cl(v) is
chosen so that its imaginary part lies in (—m,7]. The twisting parameter tw(vy) is
the pair (p, q) of coprime integers satisfying the following:
(1) pis even, and ¢ is odd and non-negative;
(2) subject to this condition, the quantity |cl(vy)p + 27ig| is minimised;
(3) if there are several values of (p, ¢) for which this quantity is minimised, then
choose the one that is minimal with respect to lexicographical ordering.

We denote tw(y) by (tw,(7), twg(7))-

Once one has the integers twy(y) and tw,(y), the correction term is computed
as follows.

Definition 5.3. For any pair of positive integers (p,q), we define the signature
correction k(p,q) recursively as follows.

(1) If p > 2q and q is odd, then k(p,q) = k(p — 2¢,q) — 1.

(2) If p > 2q and q is even, then x(p, q) = k(p — 2q, q).

(3) If p = 2¢q, then k(p,q) = —1.

(4) If ¢ < p < 2q and q is odd, then x(p,q) = —k(q,2q9 — p) — 1.

(5) If ¢ <p < 2qand g is even, then x(p,q) = —k(g,2q — p) — 2.

(6) If p < g, then x(p, q) = k(g, p)-
We extend this definition to non-zero integers p and ¢ by defining x(—p,q) =
k(p, —q) = —k(p,q). When one of p or ¢ is zero, then x(p,q) = 0.

It is reasonably clear that this gives a well-defined value of k(p,q). This is
because it defines x(p, ¢) uniquely when p = ¢, and when p # ¢, it defines x(p, q)
in terms of some k(p’, ¢') where either ¢’ < ¢, or ¢ = ¢ and p’ < p.

Thus, Theorem 5.1 asserts that the signature of a hyperbolic knot can be com-
puted in terms of purely hyperbolic quantities, with an error that is at most linear
in the volume.
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6. APPLICATIONS

The relationship between the natural slope and the signature of a hyperbolic
knot given in Theorems 4.1 and 5.1 has various interesting applications. On the
one hand, the natural slope turns out to control the non-hyperbolic Dehn surgeries
on the knot. In the other direction, the signature is known to control the genus of
surfaces in Ri that the knot can bound. We now briefly describe these applications.

The topological 4-ball genus g5°°(K) is the minimal possible genus of a locally-
flat topologically embedded compact orientable surface in Ri with boundary equal
to K. The following result provides a lower bound on gZOP(K ) in terms of purely
hyperbolic data. This follows immediately from Theorem 4.1 together with the
well-known inequality ¢5°P(K) > |o(K)|/2 due to Murasugi [7].

Corollary 6.1. The topological 4-ball genus gflOp(K) of a hyperbolic knot K satisfies
gZOp(K) > |slope(K)|/4 — (c3/4) vol(K)inj(K) 3.

A significant theme in low-dimensional topology is the study of Dehn surgery.
Specifically, given a knot K and fraction ¢/p, there is a recipe for building a 3-
manifold K(p/q), by drilling out a regular neighbourhood N(K) of K from the
3-sphere, and then attaching a solid torus, so that the meridian of the solid torus
is attached to the slope on ON(K) that winds p times around the longitude and
q times around the meridian. A major challenge in the field is to control the
values of ¢/p for which the manifold K (g/p) does not admit a hyperbolic structure
[5]. The natural slope can be shown to control these values of ¢/p. Hence, using
Theorem 4.1, the signature also constrains these values of ¢/p, as follows.

Corollary 6.2. If K is a hyperbolic knot and q/p is a slope satisfying
la/p + 20 (K)| > (6 + c3 vol(K) inj(K)°) /lpl ~ or  |p| > 8,
then the manifold K (q/p) obtained by q/p Dehn surgery along K is hyperbolic.

Experimentally, the slopes ¢/p for which K(q/p) is non-hyperbolic tend to be
clustered near —20(K), as the above corollary predicts. An interesting case is the
(—2,3,7)-pretzel knot 12n242. This has signature —8 and slope approximately
—18.215. There are 7 slopes ¢/p for which K(g/p) is not hyperbolic: 16, 17, 18,
37/2, 19 and 20. It is interesting to observe that these slopes are concentrated in a
short interval [16,20] that contains both —slope(K’) and —20(K).

We expect that this newly discovered relationship between natural slope and
signature will have many other applications in low-dimensional topology.
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SUPPLEMENTARY MATERIAL: A NEW FORMULA FOR
KAZHDAN-LUSZTIG POLYNOMIALS

ABSTRACT. Kazhdan-Lusztig polynomials are important and mysterious ob-
jects in representation theory. Here we present a new formula for their com-
putation for symmetric groups based on the Bruhat graph. Our approach
suggests a solution to the combinatorial invariance conjecture for symmetric
groups, a well-known conjecture formulated by Lusztig and Dyer in the 1980s.

1. KAZHDAN-LUSZTIG POLYNOMIALS AND COMBINATORIAL INVARIANCE

In this background section, we give some background on Coxeter groups, Bruhat
graphs, Kazhdan-Lusztig polynomials and the combinatorial invariance conjecture.
Excellent references for the following include [Hum90, Bre04, BB05, Soe97, EMTW].

1.1. Coxeter groups and Kazhdan-Lusztig polynomials. Cozeter groups are
an important class of groups, which arose out of H. S. M. Coxeter’s study of finite
reflection groups in the 1930s. They are characterised by a presentation via gen-
erators and relations. In this presentation the generating set are called the simple
reflections. An important example of a Coxeter group is the symmetric group S,
consisting of all permutations of 0,1,...,n— 1, with simple reflections consisting of
the set S = {(4,7 + 1)} of adjacent transpositions.

In a seminal paper [KL79], Kazhdan and Lusztig associated to any pair of ele-
ments x,y in a Coxeter group a polynomial with integer coefficients

z,ye W P, € Z[q]

known as the Kazhdan-Lusztig polynomial. All that we say here concerning their
definition is that it is highly inductive; one works one’s way “out” in the group,
starting at the identity and applying generators from S. At each step in the calcu-
lation one might need any of the previously computed polynomials. Thus, they are
rather cumbersome to calculate by hand, but it is not difficult to compute billions
of them on a computer with enough memory. (This is useful for machine learning,
as one often needs access to large data sets.)

1.2. The Bruhat graph. To any Coxeter group one may associate its Bruhat
graph. For the symmetric group, this is the graph with vertices corresponding
to all elements of S,,, and an edge joining = and y if and only if they differ by
multiplication by a transposition. (In other words, 2 and y are connected in the
Bruhat graph if they agree on all but two elements of 0, 1,...,n—1.) The symmetric
group has a natural length function given by the number of inversions:

U(z) = #{i < j [ =(i) > z(j)}-

1



(2,1,0)

(1,0

(2,0,1) (1,2,0)

and

(1,0,2) (0,2,1)

(0,1)

(0,1,2)

FI1GURE 1. Ordered Bruhat graphs for n = 2,3

(3.2,1,0)
(3,2,0,1) (3,120 (2,3,1,0)
(3,1,02) (3,0,2,1) (2,3,0,1) (2,1,3,0) (1,3,2,0
(3,0,12) (2,1,0,3) (2,0,3.1) (1,3,0,2) (1,2,3,0) 0,3,2,1)
(2,0,1,3) (1,2,0,3) (1,0,3,2) 0.3,1,2) 0,2,3,1)
(1,0,2,3) 0,2,1,3) (0,1,3,2)
0,1,2,3)

FIGURE 2. Ordered Bruhat graph for n =4

We regard the length function as giving us a notion of “height” on the Bruhat graph.
This allows us to orient the edges of the Bruhat graph via decreasing length. Figures
1 and 2 give pictures of the Bruhat graph for n = 2,3 and 4.!



1.3. Bruhat order. The Bruhat graph allows us to define the Bruhat order, which
is a partial order on W. It is defined as follows:

(1) r<y there exists a downward path
= from y to x in the Bruhat graph.

(We include paths of length zero, so z < z always holds.) For example, in the
symmetric group the minimal element is always the identity permutation, and the
maximal element is the permutation wy which interchanges 0 and n—1, 1 and n—2
etc.

The Bruhat order is remarkably complex, and it has long been suspected that
Kazhdan-Lusztig polynomials reflect subtle properties of the Bruhat order. An
elementary manifestation of this phenomenon (easy to prove) is that:

P,#0sx<y.

Less elementary connections tend to involve the interval [z, y] consisting of the full
subgraph of the Bruhat graph between z and y. (That is, this consists of all edges
and vertices which may be reached from y on the way to z, whilst progressing
downwards.) For example, a much less obvious fact [Car94, Dye93] is that

the graph obtained from [z, y]
P, , =1« by forgetting edge orientations is regular
(i.e. all vertices have the same degree).

(It is easy to see that the full Bruhat graph is regular, and in particular Pq ., = 1.)

1.4. First examples. In S5 all proper intervals are isomorphic to the following
posets? (as the reader may check easily, using Figure 1):

All these graphs are regular (after forgetting edge orientations), and thus all Kazhdan-
Lusztig polynomials are 1.

In S4, almost all intervals [x,y] are regular, and hence almost all Kazhdan-
Lusztig polynomials P, , are 1. There are four intervals which are not regular.
Here we depict two intervals which are not: those between 0213 and 2301, and

1Throughout this paper we use string notation for permutations. Thus (2,0,3,1) (or often
simply 2031) denotes the permutation of 0,1,2 and 3 that sends 0 +— 2,1+ 0,2 — 3 and 3 — 1.
2poset = partially ordered set



between 1032 and 3120:

(6.2,1,0 (3.2.1,0

(3,2.0,1) (3.1,2,0 2.3.1.0

(3,1,0.2) (3,0,2,1) @, (2,1,3,0) (1,3,2,0

(3,0,1,2) 0,3,2,1)

(2,0,1,3) 1,2,0,3) 72) 0,3,1,2) 0,2,3,1)

(1,0,2.3) 0,2.1,3) ©0.1,3.2

0.1,2,3) (0,1,2,3)

In both cases, the interval is isomorphic to the following directed graph, known as
the “4 crown™

(2)

In both these cases the Kazhdan-Lusztig polynomials are equal:
(3) Po213 2301 = P1o32,3120 = 1 + ¢.

1.5. The combinatorial invariance conjecture. The following conjecture, for-
mulated independently by Lusztig and Dyer in the 1980s, was a major motivation
for our work on Kazhdan-Lusztig polynomials:

Conjecture 1.1. The Kazhdan-Lusztig polynomial P, depends only on the iso-
morphism type of Bruhat graph of the interval [z,y].

For example, given only the ordered graph (2) (and not the labelling of its
vertices) we should be able to predict the Kazhdan-Lusztig polynomial 1 + gq. The
fact that (2) occurs in two diffferent ways in the Bruhat graph of S; with equal
Kazhdan-Lusztig polynomials, can be seen as an instance of this conjecture. Figures
3 and 4 shows two more examples of the assignment of Kazhdan-Lusztig polynomial
to Bruhat intervals.

Remark 1.2. The combinatorial invariance conjecture is a central conjecture in the
study of Bruhat intervals. The reader is referred to [Bre04] for more detail on
known cases. We do not discuss the various partial results towards the conjecture
here, except to mention that it is known to hold for intervals starting at the identity
[BCMOG].



FIGURE 3. Interval and Kazhdan-Lusztig polynomial for z =

03214 and 34201
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2. THE NEW FORMULA

In this section we describe our new formula. Before going into detail, let us give
a rough idea of what the formula looks like. Recall that our goal is to compute
the Kazhdan-Lusztig polynomial starting from the Bruhat graph. By induction,
we can assume that we can do this for any smaller graph. In particular, we can
assume that all intermediate polynomials P, , are known, for all u,v € [z,y] with
(u,v) # (2,1):

Our formula depends on the choice of an auxilliary structure on our graph, called
a hypercube decomposition. Such a decomposition amounts to the choice of a subin-
terval J c [x,y] satisfying certain concrete combinatorial conditions. (The reader
is encouraged to skip ahead a few pages to Figure 6, where a typical hypercube
decomposition is illustrated.) There always exists at least one hypercube decompo-
sition, but in general there will be many. Any choice of hypercube decomposition
determines two polynomials in ¢, the inductive piece and hypercube piece. Our
formula is:

4) 0P, , = inductive piece + hypercube piece.

The left hand side is the ¢-derivative of the Kazhdan-Lusztig polynomial, from
which the Kazhdan-Lusztig polynomial can be recovered. The calculation of the
inductive piece (resp. hypercube piece) uses only the part of the graph which lies
(resp. does not lie) in J. (Again, the reader is encouraged to glance at Figure 6.
The nodes necessary for the computation of the hypercube and inductive piece are
in blue (resp. red).)

2.1. The g-derivative of Kazhdan-Lusztig polynomials. We now introduce
a new polynomial, whose knowledge is equivalent to knowledge of the Kazhdan-
Lusztig polynomial, but which is easier to handle. Define

P, y(q) — ¢"W=4@p, (q7h)

an,y(Q) = 1—¢

(One checks easily that the denominator always divides the numerator, so 0P, 4 is
always an integer valued polynomial.) We refer to 0P, , as the g-derivative of the
Kazhdan-Lusztig polynomial.® Defining properties of Kazhdan-Luztig polynomials®
ensure that 0P, , determines P, ,.

Example 2.1. We give three examples of Kazhdan-Lusztig polynomials, and their
corresponding g-derivatives:

(1) Pac,y = 1a E(y)—f(m) :37 an,y = 1+Q+q27 Djj .
(2) Poy=1+q,ly) —l(z)=3,0P,,, =1+2q+¢°, d}j )
(3) Poy = 1+ ¢% Ly) —L(x) = 6, 0Py = 14+ q+2¢° +2¢° + ¢* + ¢°,

(We leave it up to the reader to determine the meaning of the box diagrams, as
well as how to recover the Kazhdan-Lusztig polynomial from them.)

3In the related theory of Kazhdan-Lusztig-Stanley polynomials, this polynomial is often called
the “H-polynomial”.
4more precisely, the fact that their degree is bounded above by (£(y) — £(z) — 1)/2
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2.2. Hypercube clusters. We work in the setting of directed acyclic graphs. Any
such graph is a poset in natural way, where we declare z < y if there exists a directed
path from y to x.

For any finite set F, the E-hypercube Hg is the directed acyclic graph with:

(1) vertices consisting of subsets of E}
(2) an edge I — J if J is obtained from I by removing one element.

Example 2.2. E-hypercubes Hg for E = {0}, {0,1} and {0, 1, 2}:

{0,1,2}
{0,1} b
{0} Z N {0,1} {0,2} {1,2}
| {0} {1} Lo <, <4
& N {0} {1} {2}
6] l
6]

Now suppose given a directed acyclic graph X (in our applications X will be a
Bruhat graph) and a node z € X. We say that a subset E of edges with target
x spans a hypercube if there exists a unique embedding (i.e. injection) of directed
graphs

Y:Hg —> X

sending the edge ({a} — &) in Hg to «, for all edges « in E. If E spans a
hypercube, its crown is ¥(E).

Example 2.3. Consider the following directed graph (isomorphic to the Bruhat
graph of S3):

./ \.

!

Lo

In the following we show some pairs of edges with common target with a colour.
The pairs of red marked edges do not span hypercubes, whereas the blue edges do:

> > >

It should be clear that the first pair of red edges do not span a hypercube. In the
second example, the issue is that there is not a unique way to map in a hypercube,
with these specified base vertices.



We now come to a key definition. Suppose that E is a set of arrows with target
as above. We say that E spans a hypercube cluster if every subset E' € F consisting
of arrows with pairwise incomparable sources spans a hypercube.’

Example 2.4. Continuing the previous example, the pairs of blue arrows span
hypercube clusters, whereas the red arrows do not:

> > >

In the first diagram, the sources of the blue arrows are comparable in X, so the con-
dition to span a hypercube cluster reduces to each singleton spanning a hypercube,
which is trivially the case.

If F spans a hypercube, and F' < FE is any subset of edges, then there is a
maximal subset Fi,.x < F such that all arrows in F},,x have incomparable sources.
(The set F' is a poset in a natural way, and Fy,ax simply consists of its maximal
elements.) Define the hypercube map

0 : F' — crown of the hypercube spanned by Fiax.

2.3. Diamonds. Given a directed graph X, a diamond in X is a subgraph isomor-
phic to

N
N

A full subgraph J c X is diamond complete® if whenever it contains two edges
sharing a node, it contains the entire diamond. In other words, for all diamonds in
X, if J contains the red edges in any of the diagrams below, it necessarily contains
the black edges as well:

./\. ./'\. ./'\.

NS 7 NS ’ NS

2.4. Hypercube decompositions. Recall that X = [z,y] denotes the Bruhat
graph of the interval between z and y. The following is the most important defini-
tion of this work. We say that a full subgraph J < X is a hypercube decomposition
if

(1) J={ve X |v <z} for some y # z € X, and J is diamond complete;
(2) for all ve J, the set E = {a:u— v |ué¢ J} spans a hypercube cluster.

5Elements a and b in a poset are incompable if neither a < b nor b < a holds.
6This notion is due to Patimo [Pat21].
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Example 2.5. Continuing Example 2.3, here are some possible choices of J (indi-
cated by red):

> 1>

Only the middle choice of J constitutes a hypercube decomposition. In the example
on the left, the edges arriving at the base vertex do not span a hypercube cluster.
In the example on the right, J is not diamond complete. Here is the incomplete
diamond:

.\./.

2.5. The hypercube piece. We are now ready to define the hypercube piece and
inductive piece in our formula. We assume that X is the Bruhat graph correspond-
ing to the interval [z, y] and that we have fixed a hypercube decomposition J < X.
The set

E={a:v-ozxz|v¢J}
spans a hypercube cluster by definition. In particular we have a hypercube map:

0 : subsets of £ — X

We consider the polynomial:
Quys = . (q= D Pypy , € Z[q].
G#ICE

(Note that we may assume that all terms on the right hand side are known by
induction.) We define the hypercube piece as follows:

Quys = 4"V D71Q0 (7).

2.6. The inductive piece. Let J — X and consider the free Z[g]-module:
My = @ Z[q]av

x#veJ
This has a standard basis {3, | v € J}. If we define
bv = 2 Pw,v : 574)
rF#weJ

then {b, | z # v € J} is also a basis for M, which we call the Kazhdan-Lusztig basis.
This basis is known by induction.
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We may now define the inductive piece. Recall that X is a Bruhat interval, with
top node y. Define
Toys = . Poy-d,€M.
r#veJ
(In other words we consider all inductively computed Kazhdan-Lusztig and “re-
strict” to J.) Now expand r in the Kazhdan-Lusztig basis:

Tey,J = 2 Yo - bv-
z#ved

The inductive piece is defined as follows:

Ix,y,J = 2 Yo - apx,v-
x#veJ

2.7. A theorem and a conjecture. As above, X = [z,y] denotes the Bruhat
graph of the interval between x and y.

Suppose for a moment that we know the labelling of the nodes of X by permu-
tations. (Note that this is forbidden information in the combinatorial invariance
conjecture.) In this case, consider the full subgraph

L={veX|v'0)=2"0)} cX.

Remark 2.6. For any node v € L, the “hypercube edges” (i.e. those edges with
targed v and source ¢ L) are those edges corresponding to swapping 0 and 7 in v.
These are precisely the edges which saliency analysis tell us are most important in
our machine learning models (see Figure 3(a) in the main paper). This was our
initial motivation for considering L.

We have:
Theorem 2.7. L < X is a hypercube decomposition, and we have:
apz,y = Im,y,L + Qz,y,L-

This is a powerful new formula for Kazhdan-Lusztig polynomials for symmet-
ric groups, and should have other applications. However, it does not solve the
combinatorial invariance conjecture, as the node labellings are needed to define L.

Theorem 2.7 motivated us to consider more general hypercube decompositions.
Remarkably, it seems that this combinatorial notion is exactly what is needed to
make the above theorem hold:

Conjecture 2.8. For any hypercube decomposition J < X we have
aPz,y = I.r,y,J + Qz,y,J-

Some remarks on this conjecture:

(1) We have just seen that any interval admits a hypercube decomposition,
and thus the conjecture implies the combinatorial invariance conjecture for
symmetric groups.

(2) The conjecture is equivalent to the statement that I, y + Qg s is inde-
pendent of the choice of hypercube decomposition.

(3) We have considerable computational evidence for this conjecture. It has
been checked for all hypercube decompositions of all Bruhat intervals up to
S7, and over a million non-isomorphic intervals in Sg and Sy.
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Positivity plays an important role in Kazhdan-Lusztig theory. Remarkably, both
pieces I . and @y, in our formula should have positive coefficients:

(1) The polynomials @, s have positive coefficients. (This can be shown
directly, using the “unimodality of Kazhdan-Lusztig polynomials” [Irv88,
BMO1].)

(2) Conjecturally, the polynomials +, involved in the computation of the in-
ductive piece have positive coefficients. This has also been checked in all
the cases mentioned above, and is true for the hypercube decomposition L
discussed above.

Remark 2.9. It is interesting to ask whether our formula might solve the combi-
natorial invariance conjecture for Coxeter groups other than symmetric goups. It
does not, as one can see by inspecting the 5-crown:

TN
i><.><.><.><‘.

This occurs as a Bruhat graph of an interval in the group Hs of symmetries of the
icosahedron (see [BBO5, §2.8]). One can check directly that it does not admit a
hypercube decomposition.

2.8. Two worked examples. We give the reader two examples of our formula in
action. These examples are illustrated in Figures 5 and 6.

(2,3,0,1)

(o, 1)

(0, 3)

FIGURE 5. The Bruhat graph for the interval between z =
(0,2,1,3) and y = (2,3,0,1). The image of the hypercube map
at x is shaded blue, and the inductive piece is shaded red. All
Kazhdan-Lusztig polynomials P, , for z # x are 1. All hypercube
decompositions of this interval are isomorphic to this one.
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2.8.1. The interval between x = (0,2,1,3) and y = (2,3,0,1). This is the first non-
trivial example of a Kazhdan-Lusztig polynomial. In several respects this example
is “too simple”, but we discuss it anyway. The interval together with a choice of
hypercube decomposition is illustrated in Figure 5. (The reader may check that in

this example all hypercube decompositions are isomorphic.)
We have

P,y=1+q and 0P, =1+2q+¢".
In this case the polynomial @acy J is
1+1+(¢g—1)=1+¢
and hence the hypercube piece is
Cl+q ) =g+
The inductive piece is
1+g¢q

and we indeed we have
0Py = (149q) + (¢+ ).

4,1,2,3,0)

FIGURE 6. The Bruhat graph for the interval between z =
(1,0,2,4,3) and y = (4,1,2,3,0) with a choice of hypercube de-
composition. The image of the hypercube map at x is shaded
blue, and the inductive piece is shaded red. All Kazhdan-Lusztig
polynomials P, , for z # = are 1 unless indicated.
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2.8.2. The interval between x = (1,0,2,4,3) and y = (4,1,2,3,0). This is a more

interesting case, and illustrates several features of the general case. The interval

together with a choice of hypercube decomposition J is illustrated in Figure 6.
The reader may check with a little work that we have

Quys =1+2¢+¢°
and hence
Quys = (1+2¢7" +¢72) = +2¢° + ¢*.
We now turn to the inductive piece. We have

Tzy,J = b14230 + ¢ - b1o432.

(In Figure 6, 10432 is the only node of length ¢(z) + 2 in the inductive piece with
non-trivial Kazhdan-Lusztig polynomial.) In particular,

Ioyg = 0P 14230 + ¢ 0Py ioaza = 1 +2¢ +2¢° + ¢* + q(1 + q)
=1+3¢+3¢2+¢
and we deduce correctly that
0Py = (1+3¢+3¢ +¢*) + (¢* +2¢° + ¢*) = 1 + 3¢ + 4¢> + 3¢° + ¢*.

Or in other words
Py, =1+2q+ ¢
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