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Referee #1 (Remarks to the Author): 

In this work, Wright et al propose to train physical systems to do tasks, using backpropagation 

with a new “physics-aware training”. The main idea is, in this training, to use the actual 

experimental system for the forward pass and an approximate model of the system for the 

backward pass (which cannot be realized experimentally). This is a luminous idea that has the 

potential to inspire many. The paper does have some limitations -- I would have loved some more 

advanced tasks -- but the idea is verified experimentally in several experimental systems, the 

results are impressive, convincing, and well-controlled. The paper is written in a very thinking-

forward way, which makes the reader think. I was very enthusiastic when reading the papers, and 

it gave me many ideas of variations of this approach to try in my own research. I feel that the 

paper is appropriate for publication in Nature, and I can see people trying physics-aware training 

to train systems even in other fields (chemistry, bioengineering…). 

Mismatching the forward pass and the backward pass, and the fact that the backward pass does 

not need to match the trained system perfectly is a modern idea in deep learning, used especially 

for training low precision neural networks. So, the fact that the approach of the paper works will 

not surprise deep learning practitioners who have worked on this particular topic. On the other 

hand, it will be highly surprising for physicists and other machine learning experts, and I consider 

the paper very significant. 

The paper gives plenty of technical details in Methods and Supplementary Information. The code is 

available open-source on github, allowing the reader to reproduce the approach. 

Comments: 

--------- 

- In the discussion, I think that too much emphasis is put on the "self-simulation advantage". I 

think that the valid comparison is the advantage over the implementation of a similar task on 

conventional hardware (CPU, GPU, TPU...), which, in many situations, will be a lot less than the 

self-simulation advantage. For example, for MNIST, in a conventional implementation, you will use 

MLP to solve MNIST, which is simpler than the ordinary differential equations you would use to 

simulate the physical system. 

- Overall, it took me too much effort to understand how the output is extracted from the PNN 

experiments. It became really clear when I reviewed the "comparison to reservoir computer" 

supplementary note (which is useful). The manuscript should be improved with regard to this. 

I am still confused by this sentence: "This choice was made to avoid causing confusion for readers 

familiar with reservoir computing, not necessarily because performance without an output layer is 

superior. " This needs more explanation. 

- Why does the vowel example require that many epochs? This is confusing, as the MNIST 



examples require more reasonable numbers of epochs. 

- I appreciate the experimental examples on MNIST. Some suggestions, e.g. by simulation, on how 

PAT scales to more difficult tasks would have been appreciated, but I don't think that it is required 

for this paper. 

- Some experiments use MNIST and some use downscaled MNIST, and the paper makes some 

comparison between the recognition rates of both approaches ("Since it is nonlinear, the electronic 

PNN outperforms the mechanical PNN"). Did you control that the downscaling could not explain 

what you are seeing? 

- The paper should include a discussion of the limitations of the approach -- things that cannot 

work. 

- I very much appreciated the comment that the best impact of PAT is not necessarily for 

accelerating deep learning, but for processing data in the natural physics of the devices (smart 

sensor). Showing an example of this would be an exciting addition to the paper. 

- The formatting of the Supplementary Information is very uncomfortable to read (small font with 

tiny line spacing). 

- I very much appreciated the open-source availability of the code on GitHub. This can very 

significantly enhance the impact of the paper. (I had no time to try the code myself). 

Referee #2 (Remarks to the Author): 

Wright et al. propose to use physical hardware to perform the inference phase of the neural 

networks. Any physical system can be considered a computation engine that performs a series of 

computations (like a neural network) according to the laws of physics and some controllable 

parameters inputted to the system externally. However, to perform the desired task at hand, the 

controllable (or tunable) parameters of physical hardware must be adequately trained before it is 

deployed as inference hardware. Furthermore, the details of the physical system may not be 

known to the full extent; hence, training these physical systems on a conventional digital system 

(so-called in silico by the authors) is a challenge. 

The authors propose to use “physics-aware training” (PAT) to overcome this challenge. PAT uses 

the physical hardware (so-called in situ by authors) to perform the forward propagation of the 

signals and use the approximate model of the physical hardware to backpropagate the error 

signals and calculate gradients on a conventional digital system (so-called in silico by the authors). 

The authors claim that using the physical hardware for the forward propagation provides better 

convergence (trained results) than fully digital (in silico) training using the approximate model. 

PAT may be an original idea, but I believe the paper misses some major articles related to 1) 

adequately training physical systems completely in-site without backpropagation and 2) 

adequately training physical systems completely in silico. You can find my detailed comments 



below, but I think the current manuscript is partial and at most complementary given these 

alternative approaches. Therefore, the manuscript needs to introduce these alternatives properly 

and justify their PAT approach (at least as an alternative) before it can be published in Nature. 

Assuming authors can discuss their approach comparatively (pros and cons) in the view of these 

alternative approaches, I believe PAT is an original idea worth publishing in Nature. 

Detailed Comments 

- In-situ training using equilibrium propagation. 

The backpropagation algorithm is a way to calculate the gradients efficiently, whereas SGD, Adam, 

or any other gradient-based optimizer is used to train the neural networks. Therefore, assuming 

there are other ways to compute the gradients efficiently, the backpropagation algorithm is not 

necessarily required (in contrast to what the authors claim). Indeed, equilibrium propagation 

originally published by Scellier and Bengio does exactly this gradient computation step without 

using the backpropagation algorithm. A few references related to equilibrium propagation are 

listed below. 

- https://www.frontiersin.org/articles/10.3389/fncom.2017.00024/full 

- https://arxiv.org/abs/2005.04168 

- https://www.frontiersin.org/articles/10.3389/fnins.2021.633674/full 

In the above references, equilibrium propagation claimed to train physical systems completely in-

situ with only performing the forward propagation in two phases (without using the 

backpropagation). Therefore, this work is very relevant and needs to be mentioned properly. 

- There has been significant progress using analog resistive (memristor) crossbar arrays for the 

inference phase of the neural networks. Memristor arrays are only very briefly mention by authors. 

Below are some important papers that address several important concerns raised by the authors, 

such as the scalability, tolerance to noise processes, and successful in-silico training of these 

analog crossbar arrays before their deployment as inference hardware. 

Successful in silico training related papers 

-https://ieeexplore.ieee.org/abstract/document/8993573, ‘The marriage of training and inference 

for scaled deep learning analog hardware’ 

-https://ieeexplore.ieee.org/abstract/document/9472868, ‘Noise-Resilient DNN: Tolerating Noise 

in PCM-Based AI Accelerators via Noise-Aware Training’ 

-https://www.frontiersin.org/articles/10.3389/fncom.2021.675741/full, ‘Toward Software-

Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices’ 

In the above references, the so-called “hardware-aware-training” and “noise-aware-training” seem 

to be successful in training scaled networks deployed on physical analog hardware for inference 

workloads. Below two papers are the successful hardware demonstration of analog crossbar 

running inference task after trained in silico. 

- https://vlsisymposium.org/files/press_kit/2021_VLSI_tip_sheet_EN_v6.pdf, two relevant papers 

below demonstrating near software eqivalent accuracy on MNIST and CIFAR10 problems 

- Narayanan, P., Burr, G. W., et al. "Fully on-chip MAC at 14nm enabled by accurate row-wise 

programming of PCM-based weights and parallel vector-transport in duration-format". 2021 

Symposium on VLSI Technology, Digest of Technical Papers, T13-3 

- Khaddam-Aljameh, R., Eleftheriou, E., et al. "A 14nm CMOS and PCM-based In-Memory Compute 

Core using an array of 300ps/LSB Linearized CCO-based ADCs and local digital processing". 2021 

Symposium on VLSI Technology, Digest of Technical Papers, JFS2-5 

A few other relevant work 

-https://ieeexplore.ieee.org/abstract/document/9458494, ‘A Flexible and Fast PyTorch Toolkit for 

Simulating Training and Inference on Analog Crossbar Arrays’ 



-https://ieeexplore.ieee.org/abstract/document/9371973, ‘Unassisted True Analog Neural Network 

Training Chip’ 

In the view of these above papers (and in contrast to what authors argue), it seems there has 

been significant progress that minimizes the simulation-reality gap and mitigates device-to-device 

imperfections and various noise sources. Therefore, I believe PAT has to be discussed while taking 

these studies into consideration. 

Other comments: 

- PNN (compared to digital emulation) may provide speed and power benefits only for the 

inference workloads. Whereas PAT uses PNN only for the inference (forward) path, and the 

remaining error backpropagation and gradient computation is done on a conventional digital 

system using an approximate model of the PNN. It is very well known that 1) forward propagation, 

2) the error backpropagation, and 3) gradient computation steps require roughly the same 

computation resources. Therefore PAT can only deliver about 1/3 improvement in speed and 

energy compared to fully digital (in silico) training. I think this is not clear from the statements 

made by the authors. PAT only delivers good training results in terms of accuracy. (PAT does not 

provide significant speed and energy savings). 

- I understand why PAT may provide better training accuracy than fully in-silico training due to the 

discrepancy between the approximate model and the ground truth computation performed by the 

physical system. However, suppose PAT is really required for good training accuracy. In that case, 

each physical hardware (even though they may look identical to an external user) must require 

retraining independently due to the possible slight discrepancy in their physical parameters (or any 

other hardware variability). Therefore, if PAT is strictly needed, it is a significant (but also 

negative) conclusion that each PNN will require its own training. This is clearly not the case for 

reduced precision (quantized) digital hardware used for inference workloads. The training can be 

performed using the quantized model in the forward pass (as mentioned by the authors). Once the 

training is complete, the model can be deployed on all sorts of digital hardware, since for reduced 

precision hardware, there is no gap between the model and reality.

Author Rebuttals to Initial Comments: 

We thank both referees for their comments and suggestions. Several of the suggestions 

allowed us to see the manuscript (and the scientific concepts) in new ways, and we are 

genuinely excited by how much the manuscript has improved, especially for the broad 

readership of Nature.  

Before addressing each referee’s comments point-by-point, we would first like to summarize 

the main changes that have been made to the manuscript and supplementary material.  

Summary of changes:  

1. The introduction and main results sections have been improved to help differentiate 
the PNNs discussed in this work from existing approaches to deep neural network 
accelerators, and from techniques like reservoir computing. The introduction now 
also better reflects the state-of-the-art results achieved in analog electronic DNN 
accelerators, including those using in silico training, which is important context for 
consideration of when and where PNNs of the kind described in this work could have 
real impact in the future.  

2. To demonstrate deep PNNs and PAT scaling to a more complex task, we performed 
new simulations with a network of coupled oscillators for the Fashion-MNIST task, 
which is known to be substantially more challenging than the traditional digit-MNIST 
task.  

3. We have completely rewritten the discussion section to: 



a. Clearly discuss the limitations and challenges facing unconventional PNNs 
and PAT, including the fact that PAT requires a digital processor and 
therefore provides no potential speed-up or energy-efficiency improvements 
for training, only for inference.  

b. Comment on the trade-offs and relationship between PAT, existing in situ
learning algorithms, in particular equilibrium propagation, and in silico training.  

c. Examine application areas where we expect PAT-related approaches to be 
useful in the near- and far-future.  

In addition to the revised manuscript and supplementary material, we have included a 

version of the manuscript where the major changes made are highlighted in red text. For the 

sake of making this document readable, this changes-in-red version only shows the major 

text changes in response to referees below, not reference-renumbering, changes in the 

acknowledgements, etc.  

Point-by-point response 

Referee #1

R1.1 

In this work, Wright et al propose to train physical systems to do tasks, using 

backpropagation with a new “physics-aware training”. The main idea is, in this training, to 

use the actual experimental system for the forward pass and an approximate model of the 

system for the backward pass (which cannot be realized experimentally). This is a luminous 

idea that has the potential to inspire many. The paper does have some limitations -- I would 

have loved some more advanced tasks -- but the idea is verified experimentally in several 

experimental systems, the results are impressive, convincing, and well-controlled. The paper 

is written in a very thinking-forward way, which makes the reader think. I was very 

enthusiastic when reading the papers, and it gave me many ideas of variations of this 

approach to try in my own research. I feel that the paper is appropriate for publication in 

Nature, and I can see people trying physics-aware training to train systems even in other 

fields 

(chemistry, bioengineering…). 

Mismatching the forward pass and the backward pass, and the fact that the backward pass 

does not need to match the trained system perfectly is a modern idea in deep learning, used 

especially for training low precision neural networks. So, the fact that the approach of the 

paper works will not surprise deep learning practitioners who have worked on this particular 

topic. On the other hand, it will be highly surprising for physicists and other machine learning 

experts, and I consider the paper very significant. 

The paper gives plenty of technical details in Methods and Supplementary Information. The 

code is available open-source on github, allowing the reader to reproduce the approach. 

R1.1: We greatly appreciate this warm, encouraging response.  



The comment on how mismatching the forward and backward pass is well-known to 

machine learning practitioners, but not to most other readers, also helped us to make sense 

of some trends we have observed with readers of the original manuscript. In short (see 

Other Changes section for more details), we had been implicitly assuming readers had a 

rather specialized set of background knowledge, when in fact the work’s interdisciplinarity 

(and Nature’s broad readership) requires more conservative background knowledge 

assumptions.  

R1.2  

- In the discussion, I think that too much emphasis is put on the "self-simulation advantage". 

I think that the valid comparison is the advantage over the implementation of a similar task 

on conventional hardware (CPU, GPU, TPU...), which, in many situations, will be a lot less 

than the self-simulation advantage. For example, for MNIST, in a conventional 

implementation, you will use MLP to solve MNIST, which is simpler than the ordinary 

differential equations you would use to simulate the physical system. 

R1.2: This is absolutely true, and we thank the referee for being so understanding about a 

section that, when we’ve read it after a couple months, could easily have been misleading. 

As a result, we have chosen to completely remove any discussion of self-simulation 

advantage from the main article. 

The “self-simulation advantage” is a potentially misleading quantity, but we have found 

simulation analysis to be very insightful in understanding how different physical systems can 

be used for computation, since it reveals which types of calculations they may excel at, and 

how to do engineer them to do so efficiently. (This logic was partly inspired by the study of 

self-simulation advantage, or quantum supremacy, in the quantum computing literature). We 

expect it will be part of a design methodology that any researchers who wish to design their 

own PNNs will also find useful.  

As a result, we have chosen to keep some of the material on simulation analysis in the 

supplementary material, as part of a section meant to help readers who intend to design 

their own PNNs based on unconventional physical systems. In that text, the quantity formerly 

called ‘self-simulation advantage’ is now called a ‘self-simulation quotient’, since we think 

calling it an ‘advantage’ invites overly-optimistic interpretations, while ‘quotient’ makes it 

clear it is only an engineering figure-of-merit.  

Changes:  

- Removed all discussion of self-simulation advantage in the main article. 

Changes to the supplementary material: 

- Reworked the supplementary section on simulation analysis into a section on 
‘Considerations for useful physical neural networks based on unconventional 
physical substrates’, and there introduced the self-simulation quotient with the proper 
caveats/caution. 



R1.3 

- Overall, it took me too much effort to understand how the output is extracted from the PNN 

experiments. It became really clear when I reviewed the "comparison to reservoir computer" 

supplementary note (which is useful). The manuscript should be improved with regard to 

this. 

I am still confused by this sentence: "This choice was made to avoid causing confusion for 

readers familiar with reservoir computing, not necessarily because performance without an 

output layer is superior. " This needs more explanation. 

R1.3  

To help improve the clarity of the explanation of how the outputs are obtained from the PNN, 

we edited the text in the section where the first PNN for vowel classification is introduced.  

Given that Physical Reservoir Computing (PRC) is a major inspiration for our work, but 

differs from it in crucial ways, we decided to add a short paragraph after introducing the first 

PNN example to directly explain the difference between the two techniques, and to refer 

readers to the supplementary section comparing PRC and PNNs. Since many readers will 

already be familiar with PRC, we expect this direct comparison to be helpful for them to 

understand PNNs. We hope that this paragraph captures the essence that made the 

“Comparison to reservoir computer” supplementary note clear.  

Changes:  

- Modified the text explaining how the first example PNN works, including how the 
output is obtained. 

- Added a paragraph in the main article directly contrasting physical reservoir 
computing and PNNs, and explaining our choice to not include trained digital output 
layers in this work. 

- Since the point about including output layers in PNNs is now clarified earlier in the 
main text, we deleted the relevant lines from the methods section.  

R1.4 

- Why does the vowel example require that many epochs? This is confusing, as the MNIST 

examples require more reasonable numbers of epochs. 

R1.4 

The dataset used for the vowel classification task is very small: it only includes 273 

examples (pairs of formant-frequency vector and true vowel labels), whereas MNIST 

includes 60,000 examples (pairs of images and digit labels).  

If one considers how many examples the network has seen during training (that is, one 

multiplies #epoch * examples in the training set), it turns out the number is within an order of 

magnitude: 546,000 for vowel classification, versus around 3,000,000 for MNIST, and vowel 

classification is an easier task.  



Given that this is confusing and might suggest to readers that PAT is incredibly inefficient, 

we decided to address this point in the main text.  

Changes:  

- Added a line in the paragraph introducing the vowel classification task to explain this. 

R1.5 

- I appreciate the experimental examples on MNIST. Some suggestions, e.g. by simulation, 

on how PAT scales to more difficult tasks would have been appreciated, but I don't think that 

it is required for this paper. 

R1.5 

To address this, we decided to perform new simulations, as suggested by the Referee, for a 

PNN based on a network of oscillators, on the Fashion-MNIST task. Fashion MNIST is an 

established benchmark which is known to be significantly harder than conventional MNIST 

(see reference points below).  

We chose to do simulations for this in part because we realized this would be an excellent 

example for our open-source demo code, and would allow us to demonstrate a PNN based 

on a system that should be familiar to a broader set of readers (in contrast, we have found 

the SHG system is intuitive to readers with an optics background, but is sometimes 

confusing for other readers).  

To summarize the new simulations and results: 

- We simulated a PNN based on a network of nonlinearly-coupled nonlinear 

oscillators. We included realistic physical noise and mismatch (i.e., simulation-
reality gap) between the model used for PAT’s backward pass and the (simulated) 
physical device.  

- Using PAT, we train a PNN based on 2 physical layers of oscillator networks to 
perform the Fashion MNIST task with 90% accuracy. The Fashion MNIST task is 
known to be significantly more challenging than the original MNIST task; this 
performance is comparable to convolutional neural networks requiring several million 
multiplication operations per inference.   

- Using PAT, we can train the same 2-layer PNN to perform the original MNIST 
task with nearly state-of-the-art 99.1% accuracy. 

- For both tasks, PAT trains the PNN to achieve the accuracy stated above even 
when the mismatch between the backward-pass model and physical device is 
roughly 20%.  

- PAT results in significantly improved accuracy compared to in silico training.
With the same 20% model mismatch, in silico training results in much worse 
performance, similar to a linear digital model (which requires about 104 operations 
per inference). 

Additional details and figures are provided below. For a complete description, see Section 4 

of the revised Supplementary Material.  



The system: 

The network of oscillators is described by the following equations of motion: 

����

���
= − sin( ��) + ∑ ���[�

��� sin( ��) − sin( ��)] + ��        (Eqn. 1) 

where �� are the oscillator amplitudes, ��� are the (symmetric) coupling coefficients, and ��
are the external drives for each oscillator.  

These equations of motion are frequently approximated to derive the Frenkel-Kontorova 

model, which is a standard model in condensed-matter and nonlinear physics, with well-

known applications to phonon physics and nonlinear wave propagation. Similar equations 

describe coupled lasers or pendula.  

In training, the coupling coefficients ��� are the trainable parameters. These coupling 

coefficients are not time-dependent. The input data is encoded as the initial oscillator 

amplitudes at � = 0, and the output is read from the oscillator amplitudes at a later time, � =

�. 

In order to simulate the effect of the mismatch between model and experiment that is 

addressed by physics-aware training, we add noise to the nonlinearity coefficient, and the 

coupling coefficients ���. Thus, while the model remains described by the equation above, 

the physical system is described by: 

����

���
= − sin( [1 + �]��) + ∑ [��� + ���

�����][�
��� sin( [1 + �]��) − sin( [1 + �]��)] + ��    (Eqn. 2) 

Finally, we consider physical noise in the device by randomly perturbing the initial 

amplitudes of the oscillators every time the equations are simulations. For all tests 

considered here, this noise is around 2% of the observed mean initial-time oscillator 

amplitude, |��(� = 0)|��������������, which is around unity. Thus, the physical system consists of 

simulating the system Eqn. 2 with this additive initial noise.

When in silico training is performed, the model consists of Eqn. 1, and the noise is modelled 

by initial-condition fluctuations identical to those described in the above paragraph.  

Fashion MNIST results: 

The Fashion MNIST task is significantly more challenging than the original MNIST 

task. As reference points: 

- Models that achieve 90% performance on Fashion MNIST typically can achieve 
~99% on the original MNIST task. For a full comparison table, see 
https://github.com/zalandoresearch/fashion-mnist.  

- A typical multilayer convolutional neural network (CNN) that achieves 90.3% test 
accuracy takes about 3 million multiplication operations (approximately 6 million total 
operations). This is roughly 10 times as many operations are required for LeNet-4, a 
multilayer CNN which achieves 99% test accuracy on the original MNIST digit task.  

- The absolute maximum accuracy any classifier achieves on Fashion MNIST is 
95.3%.  



For the Fashion-MNIST task, we considered a small oscillator network in which all-to-all 

coupling is possible. We note that such all-to-all connectivity is not possible in every physical 

system, but for networks of oscillators connected by a bus, optical or RF electronic networks, 

or electronic circuit crossbar systems, such connectivity is achievable. We also made this 

choice to keep the example simple, since imposing connectivity constraints in a physically-

accurate way requires significantly more complicated code than a first example should 

ideally include. Our PNN consists of a small 100-oscillator network that is intended to crudely 

mimic a convolutional layer, and a larger, 1610-oscillator network that serves as a kind of 

output layer.  

We find that we can train a PNN based on two physical layers of coupled oscillators to 

perform the Fashion MNIST task with 90% test accuracy. This same PNN can also be 

trained to perform the original MNIST task with 99.1% accuracy, which is nearly state-

of-the-art performance. To simulate the effect of a model mismatch that would occur when 

using physics-aware training, we assumed that the oscillator nonlinear rate and coupling 

strengths in the ‘physical system’ differed relative to the model used for backpropagation by 

20% and roughly 30% respectively. Specifically, in Eqn. 2 � = 0.2, and ���
����� drawn from a 

normal distribution with standard deviation 0.3. Typical trained values of ��� are about 0.25 

(mean) or 1.0 (RMS), so this corresponds to a model mismatch of at least 20% overall. 

Even with this large model mismatch, physics-aware training still trains the system 

adequately (Figure 1a). When in silico training is used instead, the PNN achieves 84% 

accuracy. While this may seem close to 90% accuracy in absolute terms, 84% is comparable 

performance to a single-layer perceptron requiring 784x10 ~ 104 multiplications to execute. 

Meanwhile, achieving the 90% accuracy is roughly equivalent to CNNs requiring ~106 

operations to execute, so the difference in performance is significant.  

When the model mismatch is increased further, to roughly 30% (� = 0.3 and ���
����� drawn 

from a normal distribution with standard deviation 0.5), PAT still performs relatively well, 

while in silico training degrades further (Figure 1b). With even larger model mismatch (about 

40%, � = 0.4 and ���
����� drawn from a normal distribution with standard deviation 0.7), PAT’s 

performance degrades slightly, but much less than the performance degradation that occurs 

for in silico training. 

To summarize: PAT can train the PNN to perform this relatively complex task accurately 

even in the high model mismatch regime. The difference in performance between PAT and 

in silico training is large. When we increase the model mismatch further, we find that even as 

the performance of in silico training degrades, PAT still results in relatively good 

performance.  



Figure 1: Physics-aware training compared to in silico training of a PNN based on a 

network of coupled nonlinear oscillators for the Fashion MNIST task. a. Validation 

accuracy during training for a model mismatch about 20%. b. Same, for a model mismatch 

of about 30%. c. Same, for a model mismatch of about 40%.  

Although our new simulations are just one example, there are additional simulation 

results in the literature that give us confidence that PNNs will be able to perform 

complex machine learning tasks. For example, in Ref. 14 (Hughes et al., Science 

Advances (2019)), the authors use a very different system, nonlinear optical wave 

propagation in a structured waveguide, to perform the audio-domain version of the vowel 

classification task (which is also much harder than the original MNIST task) with over 90% 

accuracy. Of course, these results were obtained only in simulation, but this shows that the 

physical evolution is at least capable of performing a difficult machine learning task. We 

expect that if a similar experiment was performed with a reconfigurable device, it could be 

trained using PAT to achieve similar performance.  

Overall, there is more to explore and understand regarding which physical systems make 

good PNNs for different tasks, as well as what is required for scalable PNNs, but we hope 

that we have shown strong evidence that unconventional PNNs and PAT do indeed have the 

potential to scale to more difficult tasks.  

Changes:  

- In the main article, we added a short paragraph prior to the discussion to introduce 
these results and refer readers to the Supplementary Section 4 where they are 
discussed.  

Changes to the supplementary: 

- Added a new section, Section 4, to the supplementary material describing these 
simulations.  



R1.5 

- Some experiments use MNIST and some use downscaled MNIST, and the paper makes 

some comparison between the recognition rates of both approaches ("Since it is nonlinear, 

the electronic PNN outperforms the mechanical PNN"). Did you control that the downscaling 

could not explain what you are seeing? 

R1.5 

This is a good point, since the task’s difficulty does depend on the degree of downsampling. 

Fortunately, this hardness actually implies the difference between the two in this case PNNs 

is probably larger, rather than smaller. 

The PNNs based on ultrafast second harmonic generation and nonlinear analog electronics 

both performed the MNIST task with downsampled images, which is indeed harder. In 

contrast, the mechanical PNN performed the MNIST task with full-resolution images, which 

is easier.  

When we perform the MNIST task with the mechanical PNN with downsampled images, it 

performs significantly worse – test accuracy lower by 4% compared to the result with full-

resolution images, reflecting the higher difficulty of the downsampled task.  

That said, there are numerous differences between the mechanical PNN and electronic PNN 

besides nonlinearity, so we can see how this line probably encourages readers to wonder 

why analog electronics is better than mechanics, when in fact the comparison is not one-to-

one in our work.  

Changes: 

- Removed the line in question, and replaced it with one that simply states the 
performance.  

R1.6 

- The paper should include a discussion of the limitations of the approach -- things that 

cannot work. 

R1.6 

This is an excellent suggestion, and we found it very easy to rewrite the Discussion section 

around it. We feel the new Discussion is still forward-thinking and cautiously optimistic, but 

hope it is equally open about the limitations and challenges of PAT and unconventional 

PNNs as it is about their potential positive impacts.   

Briefly, the big limitations are: 

1. PAT, at least in its current form, still requires a digital computer during 

training. To obtain a benefit, one needs to use the trained device in inference mode 
many times. In the future, it might be possible to train a second PNN to implement 
the part of PAT that is presently done with a digital computer.  



2. Even though PAT allows many new systems to be used for deep neural 
network calculations, most physical systems will provide large speed-
ups/energy benefits only for a subclass of operations (e.g., if the physical 
system has some constraint or symmetry, the operations it can do efficiently 
will have a corresponding constraint). This means that, in order to solve practical 
tasks, one will usually either needs to combine different physical systems together or 
augment the physical systems with some digital or otherwise flexible hardware. 

3. PAT relies on having a model for the system, and the model needs to be able to 
predict the system at least approximately. Future improvements to PAT might be 
able to simplify this, such as training a neural network to predict the physical 
system’s gradients, but for now, PAT is not model-free.  

In order to also manage the length of the Discussion section, we have partly combined this 

discussion of limitations (and their possible improvements) with the discussion on how PAT 

relates to in-hardware learning techniques like equilibrium propagation, and in silico training 

methods, as suggested by Referee 2.   

We now discuss limitations 1-2 in the first two paragraphs of the discussion, and limitation 3 

in the third. 

Last, we have also combined previous supplementary Sections 4 and 5 into a new section 

which is meant to help facilitate the design of new PNNs. This section includes a systematic 

discussion on the limitations of unconventional PNNs, and general guidelines that we expect 

will be necessary for PNNs to be useful.  

Changes: 

- Focused the discussion section, especially paragraphs 1 and 3, on pointing out 
limitations of our approach. 

Changes to the Supplementary: 

- Reworked the Supplementary Sections 4 and 5 as a set of rough guidelines and 
principles for PNNs that could become useful.  

R1.7 

- I very much appreciated the comment that the best impact of PAT is not necessarily for 

accelerating deep learning, but for processing data in the natural physics of the devices 

(smart sensor). Showing an example of this would be an exciting addition to the paper. 

R1.7

Thank you for this – we agree. We have begun developing PNN smart sensors, and have 

quickly realized that this endeavor will require its own systematic paper. Currently, we have 

two projects underway to realize PNN smart sensors: 

1. An on-chip phononic circuit PNN that will natively process microwave electronic 
signals (and possibly ultrasound signals) and, 

2. An optical PNN smart sensor based on nonlinear optics in free space.  



Since PNN sensors are themselves a vast new topic, and because this future paper will 

include several different authors from the present one, we feel it is best to leave out such an 

example in the current work. 

We agree that applications like smart sensing are likely the most promising beneficiaries of 

PAT and unconventional PNNs in the near future, whereas the application of PNNs as 

machine-learning accelerators will probably take more time (in part because current analog 

electronic accelerators will likely need to reach fundamental limits before the benefit of PNNs 

would be significant). We think that, by including the discussion of these applications of 

PNNs in the very last paragraph of the article, it places appropriate emphasis on them and 

will, we hope, inspire readers to think of diverse applications of smart-sensor PNNs.  

R1.8 

- The formatting of the Supplementary Information is very uncomfortable to read (small font 

with tiny line spacing). 

R1.8 

Thank you for this feedback. 

Changes: 

- Increased the font size and line spacing in the supplementary material.  

R1.9 

- I very much appreciated the open-source availability of the code on GitHub. This can very 

significantly enhance the impact of the paper. (I had no time to try the code myself). 

R1.9 

Thank you for the encouragement – this comment also motivated us to develop the 

simulation described in R1.2 as an example for the demo code on Github, and we think it will 

be the most useful example included there.  

Referee #2

Wright et al. propose to use physical hardware to perform the inference phase of the neural 

networks. Any physical system can be considered a computation engine that performs a 



series of computations (like a neural network) according to the laws of physics and some 

controllable parameters inputted to the system externally. However, to perform the desired 

task at hand, the controllable (or tunable) parameters of physical hardware must be 

adequately trained before it is deployed as inference hardware. Furthermore, the details of 

the physical system may not be known to the full extent; hence, training these physical 

systems on a conventional digital system (so-called in silico by the authors) is a challenge. 

The authors propose to use “physics-aware training” (PAT) to overcome this challenge. PAT 

uses the physical hardware (so-called in situ by authors) to perform the forward propagation 

of the signals and use the approximate model of the physical hardware to backpropagate the 

error signals and calculate gradients on a conventional digital system (so-called in silico by 

the authors). The authors claim that using the physical hardware for the forward propagation 

provides better convergence (trained results) than fully digital (in silico) training using the 

approximate model.

R2.1 

PAT may be an original idea, but I believe the paper misses some major articles related to 1) 

adequately training physical systems completely in-site without backpropagation and 2) 

adequately training physical systems completely in silico. You can find my detailed 

comments below, but I think the current manuscript is partial and at most complementary 

given these alternative approaches. Therefore, the manuscript needs to introduce these 

alternatives properly and justify their PAT approach (at least as an alternative) before it can 

be published in Nature. Assuming authors can discuss their approach comparatively (pros 

and cons) in the view of these alternative approaches, I believe PAT is an original idea worth 

publishing in Nature. 

R2.1 

We agree the literature pointed out by the Referee is very relevant. We have incorporated 

the Referee’s suggestions in the Introduction and Discussion sections, and we believe with 

these additions PAT and the unconventional deep PNNs we consider are better framed in 

the full context of existing techniques.  

We will describe more specific changes in our responses below. 

R2.2 

- In-situ training using equilibrium propagation. 

The backpropagation algorithm is a way to calculate the gradients efficiently, whereas SGD, 

Adam, or any other gradient-based optimizer is used to train the neural networks. Therefore, 

assuming there are other ways to compute the gradients efficiently, the backpropagation 

algorithm is not necessarily required (in contrast to what the authors claim). Indeed, 

equilibrium propagation originally published by Scellier and Bengio does exactly this gradient 

computation step without using the backpropagation algorithm. A few references related to 

equilibrium propagation are listed below. 

- https://www.frontiersin.org/articles/10.3389/fncom.2017.00024/full 

- https://arxiv.org/abs/2005.04168 

- https://www.frontiersin.org/articles/10.3389/fnins.2021.633674/full 



In the above references, equilibrium propagation claimed to train physical systems 

completely in-situ with only performing the forward propagation in two phases (without using 

the backpropagation). Therefore, this work is very relevant and needs to be mentioned 

properly. 

R2.2  

We agree that devices based on equilibrium propagation should be mentioned, especially 

because we find their pros/cons nicely complement those of devices based on physics-

aware training, as well as those of devices trained in silico.  

The Referee also noted an important point that backpropagation isn’t required to perform 

gradient descent, and rather that only a method to infer gradients, or gradient-based 

updates, is required. In addition to being important, we appreciate this point because 

thinking about this comment inspired some suggestions we’ve made in the new discussion 

section for possible future improvements or alternatives to PAT, which we are excited about 

(see second-last paragraph of Discussion).   

We have chosen to mainly address equilibrium propagation in the Discussion section, which 

we have completely rewritten. The Discussion section now focuses on the relative strengths 

and weaknesses of PAT compared to in situ learning techniques like equilibrium 

propagation, and to in silico training methods like the ones mentioned by the Referee in the 

next comment (R2.3). Overall, we believe the methods can work together quite 

synergistically, with each one’s strengths and weaknesses complemented nicely by the 

others’.  

In addition, we have now integrated a discussion of equilibrium propagation into the 

introduction. We have cited the references suggested by the Referee, along with a few 

others on the same topic we found helpful.    

Changes:  

- Modified the introduction and added lines contextualizing equilibrium propagation. 
- Modified the introduction to note that physical learning with performance similar to 

backpropagation doesn’t need the exact backpropagation algorithm per se, only the 
ability to estimate local physical gradients (and, of course, to update the parameters).  

- Inspired by this comment, in the discussion section, added comments on how PAT 
might be improved on with methods to estimate (possibly physically) gradient-based 
updates.  

- In the discussion section, we now contrast the limitations and plausible future of 
devices trained by PAT with those trained using equilibrium propagation and in silico
training methods.  

R2.3 

- There has been significant progress using analog resistive (memristor) crossbar arrays for 

the inference phase of the neural networks. Memristor arrays are only very briefly mention 

by authors. Below are some important papers that address several important concerns 

raised by the authors, such as the scalability, tolerance to noise processes, and successful 

in-silico training of these analog crossbar arrays before their deployment as inference 



hardware. 

Successful in silico training related papers 

-https://ieeexplore.ieee.org/abstract/document/8993573, ‘The marriage of training and 

inference for scaled deep learning analog hardware’ 

-https://ieeexplore.ieee.org/abstract/document/9472868, ‘Noise-Resilient DNN: Tolerating 

Noise in PCM-Based AI Accelerators via Noise-Aware Training’ 

-https://www.frontiersin.org/articles/10.3389/fncom.2021.675741/full, ‘Toward Software-

Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory 

Devices’ 

In the above references, the so-called “hardware-aware-training” and “noise-aware-training” 

seem to be successful in training scaled networks deployed on physical analog hardware for 

inference workloads. Below two papers are the successful hardware demonstration of 

analog crossbar running inference task after trained in silico. 

- https://vlsisymposium.org/files/press_kit/2021_VLSI_tip_sheet_EN_v6.pdf, two relevant 

papers below demonstrating near software eqivalent accuracy on MNIST and CIFAR10 

problems 

- Narayanan, P., Burr, G. W., et al. "Fully on-chip MAC at 14nm enabled by accurate row-

wise programming of PCM-based weights and parallel vector-transport in duration-format". 

2021 Symposium on VLSI Technology, Digest of Technical Papers, T13-3 

- Khaddam-Aljameh, R., Eleftheriou, E., et al. "A 14nm CMOS and PCM-based In-Memory 

Compute Core using an array of 300ps/LSB Linearized CCO-based ADCs and local digital 

processing". 2021 Symposium on VLSI Technology, Digest of Technical Papers, JFS2-5 

A few other relevant work 

-https://ieeexplore.ieee.org/abstract/document/9458494, ‘A Flexible and Fast PyTorch 

Toolkit for Simulating Training and Inference on Analog Crossbar Arrays’ 

-https://ieeexplore.ieee.org/abstract/document/9371973, ‘Unassisted True Analog Neural 

Network Training Chip’ 

In the view of these above papers (and in contrast to what authors argue), it seems there 

has been significant progress that minimizes the simulation-reality gap and mitigates device-

to-device imperfections and various noise sources. Therefore, I believe PAT has to be 

discussed while taking these studies into consideration. 

R2.3  

Yes, this is a great point.  

It is important context that in silico training can be made to work with novel devices and 

large-scale neural network models. The systems described in these papers are however 

based on relatively mature technologies, for which very detailed, accurate simulations exist, 

and for which fabrication and operation can be relatively precisely controlled.  

We believe that PAT will be invaluable for scientific research and development of novel 

machine-learning hardware, but that its role in mature machine-learning hardware is, while 

promising, less certain. Regardless, we think that PAT will be valuable for the scientific 

community since alternative platforms like photonics and spintronics hold potential for 



performing beyond the limits of conventional electronics. Alternatively, it is also possible that, 

in order to push any platform towards its physical limits, it may be beneficial to operate 

devices in regimes where fabrication is less controllable, and/or where the device physics is 

no longer accurately simulable with ab initio models. In such contexts, PAT may be helpful 

even if it is used only once, after device fabrication, to correct for the simulation-reality gap 

and recover the performance expected from simulations. 

We have modified the introduction and discussion section to present the context of devices 

based on analog crossbar arrays and successful in silico training, and to contrast them with 

unconventional PNNs and PAT. In the discussion section, we have further addressed this 

point, where we comment on the relationship between in silico training, PAT, and in situ

learning algorithms. We have cited the references suggested by the Referee, along with a 

few others on the same topic we found helpful.    

Changes: 

- The achievements of devices based on crossbar array analog electronics are now 
mentioned in the introduction where DNN accelerators are first introduced. We now 
contrast with these devices in the second paragraph by delineating between DNN 
accelerators based on a strict, or direct mathematical analogy to conventional DNNs, 

and those based on open, or more loose analogies, and also between DNN 
accelerators based on relatively-mature platforms like analog electronics with those 
based on much more unconventional systems like nonlinear photonics.  

- We now comment on the successful achievements of in silico training in these 
platforms in the introduction paragraph where in silico training is first introduced. 
Here, we make the points above about why this may be challenging to achieve in 
other, less mature platforms.  

R2.4 

- PNN (compared to digital emulation) may provide speed and power benefits only for the 

inference workloads. Whereas PAT uses PNN only for the inference (forward) path, and the 

remaining error backpropagation and gradient computation is done on a conventional digital 

system using an approximate model of the PNN. It is very well known that 1) forward 

propagation, 2) the error backpropagation, and 3) gradient computation steps require 

roughly the same computation resources. Therefore PAT can only deliver about 1/3 

improvement in speed and energy compared to fully digital (in silico) training. I think this is 

not clear from the statements made by the authors. PAT only delivers good training results in 

terms of accuracy. (PAT does not provide significant speed and energy savings). 

R2.4 

We agree that it is absolutely true that PAT does not provide any significant energy or speed 

benefit for training. The aspect of neural networks that PNNs trained using PAT can deliver 

speed or energy benefits to is in inference. For many applications (although certainly not all), 

a model is trained once and then used in inference mode a vast number of times, and in 

these applications the inference cost dominates. As some specific examples we could find: 

Ref. 1 reports that inference is responsible for 90% of energy consumption of machine 

learning at Amazon, and NVIDIA estimates a similar fraction, between 80 and 90%. We are 



also optimistic that future neuromorphic devices could consist of ‘frozen’ parts that have 

been pretrained, much like the pretrained Transformer models that are gaining popularity in 

the deep-learning community today. In this case, hardware would absolutely need to be able 

to retrain itself to learn new tasks or adapt to new data, but some parts of the hardware 

could be left fixed all or most of the time. But regardless, even though solving the inference 

problem is important, we agree it is still only part of the larger problem. Training will always 

be essential, and the costs of training are already limiting research in the field of machine 

learning. We therefore strongly agree that an important accomplishment will be the 

acceleration of training by physics-based algorithms and specially-designed hardware.  

We also think PAT will also be very useful for developing physical machine learning devices 

that operate directly on, or produce, data in the physical domain, such as smart sensors. For 

these applications, the cost to train could be well-worth paying, since these sensors would 

be able to process information in ways that traditional sensors cannot, and might enable 

scientific experiments that would otherwise be impossible. In many plausible settings, it will 

be beneficial to design smart sensors with relatively-unconventional physical substrates, 

such as nonlinear optical, microfluidic or mechanical devices, so PAT may be the only 

technique that is viable.  

Changes: 

- In the Discussion section, we explicitly point out that PAT does not offer a speed or 
energy benefit during training, and contrast this with methods like equilibrium 
propagation.  

- In the Discussion section, we propose settings where devices trained with PAT will 
make sense given this limitation, as mentioned above.  

- In the Discussion section, we suggest possible routes to improving PAT that might 
overcome this limitation, inspired by the Referee’s previous comments about 
estimating gradient updates.  

R2.5  

- I understand why PAT may provide better training accuracy than fully in-silico training due 

to the discrepancy between the approximate model and the ground truth computation 

performed by the physical system. However, suppose PAT is really required for good 

training accuracy. In that case, each physical hardware (even though they may look identical 

to an external user) must require retraining independently due to the possible slight 

discrepancy in their physical parameters (or any other hardware variability). Therefore, if 

PAT is strictly needed, it is a significant (but also negative) conclusion that each PNN will 

require its own training. This is clearly not the case for reduced precision (quantized) digital 

hardware used for inference workloads. The training can be performed using the quantized 

model in the forward pass (as mentioned by the authors). Once the training is complete, the 

model can be deployed on all sorts of digital hardware, since for reduced precision 

hardware, there is no gap between the model and reality. 

R2.5 

Yes, this is true, and the Referee is absolutely correct that this restricts where we expect 

PNNs trained with PAT to be useful, and motivates future improvements to PAT that could 



facilitate more physics-based learning, as well as large-scale experimental demonstrations 

of physics-based learning algorithms in general.  

That said, we feel PAT is still a major step for several reasons. Some of our reasoning 

overlaps with comments made above, in responses R2.3 and R2.4. In short: models 

derived using PAT seem to transfer very well between physical devices, even when 

there are large differences in physical parameters. Thus, we expect in many scenarios 

PAT will not need to be used on each device individually, or will just be needed to perform a 

quick fine-tuning. But even if there are scenarios where each unique device needs to be 

individually trained, we expect that this individual device training will often be a worthy trade-

off given the benefits and unique capabilities of PAT and devices trained with it. These 

scenarios include, for example: 

- Early-stage research and development of new computing platforms (where the 
number of devices is ~1). 

- Devices in which signal processing needs to take place in a physical domain that isn’t 
normally used for computation, such as optical, microfluidic, or chemical ‘smart 
sensors’. In some cases, PAT may be the only viable technique to train these 
devices, and many such scientific instruments could be one-of-a-kind.  

- Execution (inference-only) of frozen parts of large machine learning models that 
exhibit good transfer learning, such as large-scale language models. PAT would be 
used to make frozen parts of the model very efficient, while other hardware capable 
of efficient learning would be used to implement retrainable parts, e.g., the last few 
layers of a deep network. Since the trained PNN would be used many times over the 
device’s lifetime to execute inference of those frozen layers, using PAT to fine-tune 
after fabrication could be justified given the net performance gain. 

- Inference on hardware that uses low-cost materials and fabrication methods, or that 
is otherwise designed at the limits of fabrication tolerances to maximize performance. 
Again, assuming the trained model is used many times after training, a one-time PAT 
fine-tuning could often be justified by the improvement in overall device cost, energy 
efficiency and speed.  

Our investigations suggest that, in some contexts, it is not required to retrain devices from 

scratch, since we observe good transfer learning of models obtained with PAT on one device 

to a different, similar device. To illustrate this transfer learning, we have taken the Fashion-

MNIST PNN described in R1.5, and considered what happens when the physical parameters 

learned by applying PAT to one physical device are transferred to a second physical device 

which has artificial ‘fabrication errors’ relative to the first device.

Here is a summary of these new simulations and the results: 

- We simulated a PNN based on networks of nonlinearly-coupled nonlinear 
oscillators. We considered realistic physical noise and a 20% mismatch (i.e., 
simulation-reality gap) between the model used for PAT’s backward pass and the 
(simulated) physical device. 

- We first use PAT to train a PNN based on 2 layers of oscillator networks to 
perform Fashion MNIST 90% accuracy. 

- We create a second device with simulated fabrication errors by taking the first 
device and randomly perturbing its physical parameters by 6%.  

- We then take the parameters learned using PAT on the original device, and 
directly transfer them to the second device. We find that the model transfers 



well: for 6% device-device variation, the second device still achieves 89.1% 
accuracy. 

- If we apply PAT to train the second device after this parameter transfer, the original 
device’s 90% accuracy is re-obtained (and much less training time is required than if 
the device was trained without this initialization).   

More detailed description (See Supplementary Section 4 for complete details, and 

note that this description overlaps with R1.5): 

Our simulated PNN is modelled by the following system of equations: 

����

���
= − sin( ��) + ∑ ���[�

��� sin( ��) − sin( ��)] + ��          (Eqn. 1) 

where �� are the oscillator amplitudes, ��� are the (symmetric) coupling coefficients, and ��

are external drives for each oscillator. 

In training, the coupling coefficients ��� are the trainable parameters. These coupling 

coefficients are not time-dependent. The input data is encoded as the initial oscillator 

amplitudes at � = 0, and the output is read from the oscillator amplitudes at a later time, � =

�. 

To model the mismatch (i.e., simulation-reality gap) between model and physical 

device that PAT compensates for, we use the system of equations above as the digital 

model, and a simulation of a modified set of equations to stand in for a physical device being 

used as a PNN. Specifically, we modify the nonlinear coefficients and add offset noise to the 

coupling coefficients from Eqn. 1: 

����

���
= − sin( [1 + �]��) + ∑ [��� + ���

�����][�
��� sin( [1+ �]��) − sin( [1+ �]��)] + ��      (Eqn. 2) 

where ���
����� are drawn from a mean-zero normal distribution with standard deviation σ.  

We first use PAT to train this first device to perform the Fashion MNIST task. We then 

transfer the ��� parameters learned by PAT to a second device with additional artificial 

physical variation.

To model the variation between the first device and second device, we use a further-

modified system of equations to describe the second device. For the second device, we 

modify the physical parameters by 30% of the model-device mismatch, beyond those in Eqn. 

2. Concretely, the physical parameters are modified from the first device as: �� = 	� + 0.3�

and ���
������ = ���

����� + ���
�����,���, where ���

�����,��� are drawn from a mean-zero normal 

distribution with standard deviation 0.3σ. The second device is thus described by:  

����

���
= − sin( [1 + �′]��) + ∑ [��� + ���

������][�
��� sin( [1 + �′]��) − sin( [1 + �′]��)] + ��      (Eqn. 3) 

As an example, if the model mismatch is 20%, the device-device variation we consider is 

about 6% (i.e., 30% of 20%). 



We also consider physical noise by randomly perturbing the initial conditions of the 

oscillators each time Eqn. 1, 2, or 3 is simulated, by about 2% of the mean initial-time 

oscillator amplitude. 

Results of transfer of PAT-derived parameters between different devices: 

Below, in Figure 2, the first confusion matrix (a) shows the performance of the first PNN 

when trained using in silico training, and the second confusion matrix (b) shows the 

performance of the PNN when trained using PAT. Finally, (c) shows the performance of the 

second PNN with the parameters ��� transferred from PAT on the first PNN. The second 

PNN achieves 89.1% accuracy with these parameters, which suggests that the parameters 

derived using PAT are resilient to fabrication errors between devices.  

Figure 2d-f shows the same sequence, but for increased device-model mismatch and 

device-device variation.  

We note that the results shown in Figure 2 are without any retraining of the second device – 

if we initialize the second device with the model learned using PAT on the first device, and 

then apply PAT from that starting point, we can recover the performance of the first device, 

but with a much shorter training time than would have been required without the initialization.  

To summarize: We find models obtained with PAT directly transfer well between devices 

with moderate variations in physical parameters (up to 9%). Though this is just a numerical 

model, we are overall optimistic that PAT could be used to train one device, once, and then 

the learned physical parameters could be used on many other devices of the same kind (but 

with uncontrolled variations), either directly, or as a starting point for a short PAT-based fine-

tuning.  



Figure 2: Confusion matrices showing the classified label predicted by the oscillator PNN 

versus the correct result for the Fashion MNIST task, for different training strategies and 

after transferring learned parameters between different devices. a,b, Confusions matrices for 

in silico training and physics aware training for a 20% mismatch between model and physical 

device. c, Confusion matrix when the parameters derived from PAT on a first device are 

transferred over to a second oscillator PNN with variations of about 6% from the first device. 

d-f. The same as a-c, but for 30% mismatch between model and device and 9% variation 

between devices.  

Changes: 

- Included in the Discussion section a paragraph addressing the contexts in which PAT 
may be useful relative to in silico training and in situ physical learning hardware. In 
short, we’ve emphasized that PAT is for inference-only applications, and also 



emphasized the scientific applications of PAT to smart sensors and other settings 
where one needs to process data in an unconventional physical domain.  

Changes to the supplementary material: 

- We reworked previous sections to create a section (Section 5) discussing guidelines 
for PNNs and PAT, where some of these trade-offs are discussed in more detail.  

- Added a figure in the new supplementary section, Section 4, showing simulations for 
the fashion MNIST task, where we demonstrate transfer learning of PAT models 
between different devices. 

Other changes: 

Since submitting the original manuscript, we have had colleagues read the manuscript and 

offer feedback, and we have noticed some room for improvement ourselves.  

These changes are well-aligned with those suggested by the Referees, but in some cases 

do not overlap perfectly with any one comment. Rather than trying to shoehorn these 

changes into the direct responses above, we describe them here.  

O1.1 

First, while both reviewers understood this distinction very clearly, we noticed some readers 

found the original manuscript confusing regarding the distinction between physical DNN 

accelerators based on a direct, precise analogy, and those mainly discussed in this paper 

based on a much looser, more open analogy.  

O1.1  

To help improve this, we have introduced a delineation in the introduction between ‘strict 

analogy’ DNN accelerators, and the ‘more open analogy’ behind DNN accelerators we are 

discussing here. We have also tried to delineate between relatively mature platforms like 

analog electronics and unconventional platforms.  

O1.2 

Second, some of our colleagues were either completely unaware of methods in machine 

learning that utilize different forward and backward passes in backpropagation, or they knew 

a lot about these methods and felt that we did not sufficiently point out how well-known this 

basic trick is.  

O1.2 

In part inspired by Reviewer 1’s framing that the key insight behind PAT should not surprise 

modern ML researchers (which we completely agree with and had naively assumed readers 

would recognize), we added a few sentences after introducing PAT to contextualize it, both 



for readers from machine learning who will recognize that the basic idea of mismatched 

forward and backward passes is well-known, and for readers from other fields like physics 

who may not have ever heard of techniques like quantization-aware training or direct 

feedback alignment.  

O1.3 

Last, and probably most critically, we found that many test readers were confused about 

precisely how deep physical neural networks differ from reservoir computers (which they 

were mostly familiar with).  

Reviewer 1 also commented that the section directly comparing RC and PNNs was helpful.  

O1.3 

To address this, we have included a paragraph after introducing the first PNN for vowel 

classification, in which we explicitly compare PRC to PNNs trained with PAT, and refer the 

reader to the supplementary material section on this for more details.  

Other small changes: 

- We now cite PyTorch Lightning and Weights and Biases, which are software used in 
our experiments and simulations.  

Reviewer Reports on the First Revision: 

Referee #1 (Remarks to the Author): 

The authors have very well taken into account my comments as well as those of the second 

reviewer. The new manuscript feels very solid. The new Discussion is deeper and overall vastly 

superior to the first version. I am enthusiastic to recommend the publication of the manuscript! 

The new comparison of PNNs with reservoir computers (L216) makes me a little uncomfortable, as 

it ignores the recurrent and dynamical nature of reservoir computers, which allows them to deal 

with time-dependent tasks. This paragraph needs to be reworked. This ambivalence is also present 

in Supplementary Note 3, although it had not shocked me on my first read. 

Also, I do not think that PNNs and reservoir computers have a "nature-as-computer philosophy." 

PNNs and reservoir computers are still artificial systems, they are not more natural than 

conventional computers. 

In the new Discussion, I would replace the expression "unconventional physical systems" with 

something more precise. 

Damien Querlioz 



Referee #2 (Remarks to the Author): 

The authors addressed all the issues raised by myself in the first review. Now they properly 

reference and discuss approaches that are alternatives to PAT. These changes make the paper 

much more solid and balanced. I mentioned in my first review that PAT is a unique idea worth 

publishing in Nature, and with these changes in place, I have no hesitation in endorsing the paper 

for its publication in Nature. 

A minor suggestion in case the authors feel it is relevant. In lines 55 and 56, where the authors 

mention training innovations, I believe the following two papers might be appropriate to add along 

with Ref. 7 

1) "Enabling Training of Neural Networks on Noisy Hardware" 

"https://www.frontiersin.org/articles/10.3389/frai.2021.699148/full 

2) "Algorithm for Training Neural Networks on Resistive Device Arrays" 

https://www.frontiersin.org/articles/10.3389/fnins.2020.00103/full

Author Rebuttals to First Revision: 

Referee #1

R1.1 

The new comparison of PNNs with reservoir computers (L216) makes me a little 

uncomfortable, as it ignores the recurrent and dynamical nature of reservoir computers, 

which allows them to deal with time-dependent tasks. This paragraph needs to be reworked. 

This ambivalence is also present in Supplementary Note 3, although it had not shocked me 

on my first read. 

Also, I do not think that PNNs and reservoir computers have a "nature-as-computer 

philosophy." PNNs and reservoir computers are still artificial systems, they are not more 

natural than conventional computers. 

R1.1: We appreciate this comment and have reworked the paragraph to include that PRC 

often utilizes recurrent dynamics. We also agree that the term “nature-as-computer” does not 

carry the right connotations. 

Changes: 

We have modified the text to make clear that PRCs typically involve recurrent dynamics, and 

have removed the phrasing “nature-as-computer”.  

Modified Text: 

Deep physical neural networks essentially combine the computational philosophy of 

techniques like physical reservoir computing (PRC)20-21 with the trained hierarchical 

computations and gradient-based training of deep learning. In PRC, a physical system, often 

with recurrent dynamics, is used as an untrained feature map and a trained linear output 

layer (typically on a digital computer) combines these features to approximate desired 

functions. In PNNs, the backpropagation algorithm is used to adjust physical parameters so 

that a sequence of physical evolutions performs desired computations physically, without 

need for an output layer. For additional details, see Supplementary Section 3.  



R1.2 

In the new Discussion, I would replace the expression "unconventional physical systems" 

with something more precise.

R1.2: Yes, this is not as precise as it should be. We have modified the text to qualify what 

“unconventional” refers to.  

Changes: 

In the Discussion, we rephrased this to make it clear we mean systems that are not 

conventionally used for computation. 

Modified Text: 

Our results show that controllable physical systems can be trained to execute deep-neural-

network calculations. Many systems that are not conventionally used for computation appear 

to offer, in principle, the capacity to perform parts of machine-learning-inference calculations 

orders of magnitude faster, and more energy-efficiently than conventional hardware 

(Supplementary Section 5). However, there are two caveats to note. First, due to underlying 

symmetries and other constraints, some systems may be well-suited only to accelerating a 

restricted class of computations that share the same constraints. Second, PNNs trained 

using PAT can only provide significant benefits during inference, since PAT uses a digital 

model. Thus, as in the hybrid network presented in Fig. 4i-l, we expect such PNNs to serve 

as a resource, rather than a complete replacement, for conventional general-purpose 

hardware (see Supplementary Section 5). 

Referee #2

R2.1 

A minor suggestion in case the authors feel it is relevant. In lines 55 and 56, where the 

authors mention training innovations, I believe the following two papers might be appropriate 

to add along with Ref. 7 

1) "Enabling Training of Neural Networks on Noisy Hardware" 

"https://www.frontiersin.org/articles/10.3389/frai.2021.699148/full 

2) "Algorithm for Training Neural Networks on Resistive Device 

Arrays" https://www.frontiersin.org/articles/10.3389/fnins.2020.00103/full

R2.1: We appreciate the suggestions as these references also show algorithms that may be 

used by analog crossbar array hardware to learn in situ, and they are different from any of 

the other algorithms already cited.  

Changes: 



Due to the reference limits in the main text, we added these references to the 

Supplementary Material.  


