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A. Balanced trap depths of symmetrically prepared ensembles

To verify that the ensemble pairs are symmetrically prepared relative to the lattice beam waist
and have consistent atomic temperatures, we perform motional sideband spectroscopy on the
1S0 ↔ 3P0 (denoted as |g⟩ ↔ |e⟩ below) transition with 150 ms pulse at 689 nm. (Fig.S1).
The red (blue) detuned sideband corresponds to the transition from |g, ng⟩ ↔ |e, ne = ng − 1⟩
(|g, ng⟩ ↔ |e, ne = ng + 1⟩), where ng/e is the vibrational quantum number in the ground/excited
state. The lattice trap depth is determined by the cut-off frequency of the sidebands [1] and
the axial temperature is extracted using the ratio of the area under the blue and red detuned
sidebands. The lattice alignment is optimized such that the trapping frequencies between the
two ensembles agree to within the 1-kHz sampling interval, equivalent to a differential lattice
trap depth below 1 Erec. The temperatures of the two ensembles agree to within 0.1 µK, inferred
by the axial temperature (0.7 µK and mean quantum occupation number of 0.15) extracted from
the motional sidebands. The radial temperature (0.6 µK) is determined by probing the Doppler
broadened profile with a separate clock beam path perpendicular to the optical lattice.
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FIG. S 1. Motional sideband spectroscopy for two ensembles separated by 1 cm with trap
depth of 20 Erec. This is taken with a 150 ms pulse on the 1S0 ↔ 3P0 clock transition. The fitted
sidebands give the mean vibrational quantum state occupation number and axial temperature,
and are consistent for both ensembles within the 1-kHz resolution. The excitation fractions of
ensemble 2 (blue) is shifted up by +0.05 along the y-axis for clarity.

B. Raman scattering, lifetime and lattice trap depth dependent con-
trast

To reduce the off-resonant lattice photon induced Raman scattering [2], we would prefer to
operate at shallower lattice trap depths. However, while gravity creates an energy difference
between adjacent lattice sites and suppresses tunneling for vertical one-dimensional lattices, we
observe reduced lifetimes for both the ground and excited state atoms at shallow trap depths
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(< 15 Erec), likely due to residual parametric heating from the lattice. At deeper trap depths
(> 30 Erec), the lifetimes for atoms in the excited state are reduced to below 15 seconds, likely
limited by Raman scattering from the lattice light. Furthermore, we also observe decreased
lifetimes in the ground state atoms at much deeper lattice trap depths, suggesting lattice-
intensity-dependent heating.

The measured contrasts for synchronous Ramsey interrogation for both ensembles prepared
with approximately 2400 atoms drops from 0.6 to 0.2 as the lattice trap depth is increased
from 20 Erec to 45 Erec (Fig.S2). This is likely due to a combination of Raman scattering,
which scales linearly to lattice trap depth U , and p-wave collision induced density shift, which
scales as U5/4 [3]. The competition between reduced lifetime, reduced atom number as well as
increased contrast when lowering the lattice trap depth leads to lattice trap depths between 15
to 20 Erec for optimal interrogation sensitivity under our current operating conditions. For all
data taken in this paper, we operate at a lattice depth of 20 Erec during clock interrogation,
unless otherwise specified. For a synchronous Ramsey interrogation time of 8 s, approximately
the same interrogation time as the data shown in Fig.3b in the main text, we measure a contrast
of 0.65 at the operational trap depth of 20 Erec.
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FIG. S 2. Top: Measurement of ground (red) and excited (blue) state atom lifetimes as a
function of lattice trap depth. Bottom: Measurement of synchronous Ramsey contrast at 8 s
interrogation time and approximately 2400 atoms per ensemble at different lattice trap depths.
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C. Operational magic wavelength

The ac Stark shift at a particular lattice trap depth U0 for π-transition (∆mF = 0) starting
from the ground state |g,mF ⟩ can be expressed as [4, 5]

∆νac =

(
∆κS +∆κVmF ξϵ̂k · ϵ̂B +∆κT (3cos2θ − 1)

[
3m2

F − F (F + 1)
])

U0, (1)

where ∆κS,V,T are the differential scalar, vector, and tensor shift coefficients between excited
and ground states, respectively; ξ is the lattice light ellipticity; ϵ̂k,B are units vectors along
the lattice beam wave vector and magnetic field quantization axis, respectively; θ is the angle
between the (nearly) linear lattice polarization and ϵ̂B.

Similarly, the ac Stark shift for σ±-transition (∆mF = ±1) starting from |g,mF ⟩ has the
form

∆νac =

(
∆κS +

(
κV
e (mF ± 1)− κV

g mF

)
ξϵ̂k · ϵ̂B

+∆κT (3cos2θ − 1)
[
− F (F + 1)

]
+ (3cos2θ − 1)

[
κT
e (3mF ± 1)2 − κT

g 3m
2
F

])
U0,

(2)

where κV,T
g (κV,T

e ) are vector, tensor coefficients for ground (excited) states, respectively. We
note that the multi-polarizability and hyperpolarizability are neglected in this model [3, 6, 7].

An operational magic wavelength corresponds to the lattice frequency where the scalar and
tensor Stark shifts cancel, and the remaining vector Stark shift can be eliminated by both using
a linearly polarized lattice beam (ξ ≈ 0) and averaging between the |±mF ⟩ state manifolds.

In this work, the operational magic wavelength is chosen to be 368 554.4849(1) GHz for
|g,±9/2⟩ ↔ |e,±9/2⟩ (π transition) as given by the previous work [8]. However, the above
wavelength no longer works for the |g,±5/2⟩ ↔ |e,±3/2⟩ transition because of mF dependence
in the tensor Stark shift. In the limit where the lattice frequency is near the magic wavelength,
we have ∆κT = κT

e −κT
g ≃ κT

e = −0.0058(23) mHz/Erec [5]. We then would expect a differential
shift of −117 ∆κTU0 for the |g,±5/2⟩ ↔ |e,±3/2⟩ transition using the above operational magic
wavelength and assuming θ ≈ 0. At a typical lattice trap depth of U0 = 20 Erec, this corresponds
to a shift of about +13.5 mHz.

To find the operational magic wavelength for the |g,±5/2⟩ ↔ |e,±3/2⟩ transition, the lattice
frequency is scanned across a range of ±800 MHz and the contrasts of synchronous Ramsey
interrogation are measured at each lattice detuning (main text Fig.2e). The optimal contrast
is found at lattice frequency of 368 554.810(30) GHz, which is blue shifted by +325(30) MHz
compared to the operational magic wavelength for the |g,±9/2⟩ ↔ |e,±9/2⟩ transition.

D. Differential Zeeman shifts and magnetic field sensitivities

For the 1S0 ↔ 3P0 clock transition, the linear Zeeman shift at a magnetic field B for the
π-transition starting from ground state |g,mF ⟩ can be written as [9]

∆νL,π = −δgmFµ0B, (3)

where δg is the differential Landé g-factor between the ground and excited states, µ0 = µB/h,
where µB is the Bohr magneton and h is the Planck constant.

Similarly, we can express the linear Zeeman shift for σ± transition from the ground state
|g,mF ⟩ as

∆νL,σ± = −(±gI + δg(mF ± 1))µ0B, (4)
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where gI is the nuclear Landé g-factor.
With δgµ0 = −108.4 Hz/G and gIµ0 = −185 Hz/G as input [9], we would expect the linear

Zeeman shift coefficient for the |g,±9/2⟩ ↔ |e,±9/2⟩ π-transition to be

µ
±9/2↔±9/2,π
L = ±487.8 Hz/G (5)

Similarly for the |g,∓5/2⟩ ↔ |e,∓3/2⟩ σ±-transition

µ
∓5/2↔∓3/2,σ±

L = ±22.4 Hz/G, (6)

which is a factor of 22 smaller in the magnetic field sensitivity compared to the |g,±9/2⟩ ↔
|e,±9/2⟩ transition.

The quadratic Zeeman shift has negligible mF dependence and can be written as

∆νQ = δ
(2)
B µ0B

2, (7)

where δ
(2)
B µ0 = −0.233(5) Hz/G2 is the quadratic Zeeman shift coefficient.

Under a typical bias magnetic field of 2 G and a magnetic field gradient of 15 mG/cm, the
differential linear Zeeman shift (for the |g,+5/2⟩ ↔ |e,+3/2⟩ transition) between two ensembles
separated by 1 cm is approximately 350 mHz, and the differential quadratic Zeeman shift is
approximately 14 mHz.

E. Ellipse fitting

In order to extract the differential frequency detuning between the two ensembles we interrogate,
we follow the procedure demonstrated by [10, 11]. After a Ramsey interrogation time T , the
excitation fraction of each ensemble can be expressed as

P1 =
1

2

(
1 + C1

[
cos(ω1 − ωl)T

])
, (8)

P2 =
1

2

(
1 + C2cos

[
(ω1 + ωd − ωl)T

])
, (9)

where Ci is the contrast for ensemble i, ω1 is the clock transition frequency of ensemble 1, ωl is
the frequency of the laser, and ωd is the clock transition frequency difference between ensemble
2 and 1. We can then re-express these excitation fractions as functions of angles θ and ϕ, where
θ is the atom-laser phase, (ω1 − ωl)T , and ϕ is the differential phase between the ensembles,
ωdT .

P1 =
1

2

(
1 + C1cos(θ)

)
, (10)

P2 =
1

2

(
1 + C2cos(θ + ϕ)

)
. (11)

Since we are operating at Ramsey interrogation times well beyond the laser coherence time,
θ is effectively random and uniformly distributed from 0 to 2π, while ϕ should stay constant
across experimental shots with the same Ramsey interrogation time.

In order to extract ϕ from our data, we plot the excitation fraction in each ensemble for a
given experimental shot as a single point on a parametric plot, with ensemble 2 on the vertical
axis and ensemble 1 on the horizontal axis. As shots build up, an ellipse is traced out, with
points randomly sampling the perimeter of the ellipse due to the random distribution of θ. We
then fit to this ellipse using least-squares approach [12] and extract ϕ = 2arctan(b/a), where a
and b are the fitted semi-major and semi-minor axis, respectively.
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1. Phase extraction variance and biased error

In order to accurately determine our uncertainty in extracting ϕ, we calculate the variance of
ϕ through the variance in P1 and P2 due to QPN. For convenience, we can define (assuming
C1 = C2 = C)

x =
C

2
cos(θ), (12)

y =
C

2
cos(θ + ϕ), (13)

such that we can express the variance of ϕ as

σ2(ϕ) =

∣∣∣∣∂ϕ∂x
∣∣∣∣2σ2(x) +

∣∣∣∣∂ϕ∂y
∣∣∣∣2σ2(y), (14)

The partial derivatives can be evaluated through Jacobian matrix inversion, and the variance
in x and y due to quantum projection noise (QPN) can be expressed as

σ2(x) =
1

N1

P1(1− P1), (15)

σ2(y) =
1

N2

P2(1− P2), (16)

which gives a expression for the variance of ϕ

σ2(ϕ) =
4

C2

(
csc2(θ)σ2(x) + csc2(θ + ϕ)σ2(y)

)
(17)

Finally, since we take repeated measurements of ϕ for a random θ, we average over a uniform θ
distribution to get an average variance in ϕ as the following.

⟨σ2(ϕ)⟩ = 4

C2

(∫ 2π

0

dθ

2π

1

csc2(θ)σ2(x) + csc2(θ + ϕ)σ2(y)

)−1

(18)

In the case where C = 1, QPN results in a variance of ⟨σ2(ϕ)⟩ = 2/(NC2), which is the
familiar result for QPN-limited Ramsey spectroscopy. For C < 1, Var(ϕ) is scaled by a factor
depending on the phase and contrast (Fig.S3). Counterintuitively, the QPN limit is minimized
at ϕ ≈ 0 or π (a line) where the fits are most biased and the QPN limit is maximized at
π/2 (a circle) where the fits are least biased. This would suggest operating at a ϕ closer to 0
or π to push the QPN limit lower, while ensuring accurate characterization and correction of
fitting errors due to higher bias at that operational ϕ. This can be accomplished by running
Monte-Carlo simulations with known phases and experimental parameters as input, allowing us
to bound the biased error in ellipse fitting below 3% at ϕ ≈ 0.44 rad with 2400 atoms in each
ensemble (Fig.S4).

2. Determination of Ramsey contrast

We determine the Ramsey contrast independently for each ensemble, rather than extracting
it from the fitted ellipse. To do so, we plot the histogram of the excitation fractions of each
ensemble, revealing a bimodal distribution. The contrast is then straightforwardly extracted
by taking the difference of the two local maxima. This is then corrected for by adding a small
offset based on the Monte-Carlo simulations with known contrasts and QPN as input. Fig.S5a

6



0.0 0.2 0.4 0.6 0.8 1.0
Contrast

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Va
r(

) s
ca

le
 fa

ct
or

 = /2
 = 0.44 rad
 = 0

FIG. S 3. Additional scale factor for the variance of differential phase ϕ. The red star
corresponds to the measurement of relative stability taken in the main text (Fig.3a) with ϕ =
0.44 rad and C = .65.
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FIG. S 4. Monte-Carlo simulations of fractional biased error in ellipse fitting for 2400 atoms
in each ensemble. The grey box corresponds to ϕ = 0.44 rad, at which the biased error can be
bound below 3%.

shows a simulated ellipse and its fitting at ϕ = 0 rad with 500 atoms, 100 measurement runs
and 0.65 contrast for each ensemble. The corresponding histograms for excitation fractions are
shown on the top and right axes. Fig.S5b is the Monte-Carlo simulation at different contrasts
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with the above parameters as input. The extracted contrast is slightly below the true contrast,
and is accounted for by adding a small offset, typically below 0.02. We note that this approach
depends on the sampling of ellipse, a typical number of 100 to 200 measurement runs is required
to ensure the accuracy of the extracted contrast. For measurements with long interrogation time
that don’t have enough data points due to short total averaging time, i.e., Fig.2d (iii) in the
main text, the difference between the maximum and minimum in excitation fractions is used to
extract the contrast.

a b

FIG. S 5. Contrast Monte-Carlo simulation. (a) Parametric and histogram plots showing
contrast subtraction for simulated data at 0 rad offset phase with a contrast of 0.65, 500 atoms
and 100 measurement runs as input. (b) Monte-Carlo simulation with an offset phase at 0 rad
by varying the input contrast. The dashed line represents the case when the extracted contrast
equals the true contrast, indicating that the subtracted contrast is slightly underestimated. The
offset will then be used to correct the subtracted contrast.

F. Loading dual isotopes into the lattice

The experimental sequence for loading dual isotopes into the lattice is shown in Fig.S6. We
first load 87Sr into the lattice, and move the ensemble 1 cm away from the lattice beam waist.
Unlike loading multiple ensembles of the same isotope, here we must perform a second round of
cooling in the 461-nm and 689-nm MOTs to address the second bosonic isotope (88Sr, 86Sr or
84Sr) due to isotope-dependent shifts in their energy levels. This requires shifting the frequencies
of the 461-nm lasers, including the 2D-MOT, Zeeman slower, 3D-MOT and probe lasers, by
as much as 270 MHz. The frequency gap is bridged by double-passing the master 461-nm
laser through two AOMs [13] operating at 350 MHz with a bandwidth of about 150 MHz, and
then subsequently used to injection lock three laser diodes which are sent to the experiment
table. A simultaneous frequency tuning of up to 270 MHz within 100 ms can be achieved
while maintaining the injection locking. To efficiently cycle the 461-nm MOT for all 4 isotopes,
the two repumping lasers, operating at 679 nm (3P0 ↔ 3S1) and 707 nm (3P2 ↔ 3S1), are
frequency modulated at 1 kHz with 1.5 GHz and 4 GHz amplitudes, respectively. For the 689
nm lasers, the frequencies need to be shifted by about 1.5 GHz. This is done by jumping the
radio-frequency signal that is used to reference the optical offset phase lock. (We thank Vescent
Photonics for offering us a discount on the Offset Phase Lock Servo D2-135 used to accomplish
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this.) To avoid heating the 87Sr samples out of the lattice during the loading of the second
isotope, 87Sr is coherently transferred and shelved in the 3P0 state via a π-pulse and the 679 nm
repump laser is disabled during the 461-nm MOT stage for the second isotope. A final lattice
movement brings the two isotopes back to balanced separations from the lattice center, where
two sets of imaging pulses with varying frequencies are used to image both isotopes separately.
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FIG. S 6. Loading dual isotopes. (a) Isotope shifts on the 461 nm 1S0 ↔ 1P1 transition for
producing the first stage MOT. The isotope shifts are relative to resonance of 88Sr. Note that
for 87Sr, the F = 11/2 transition is chosen to optimize the MOT. (b) Isotope shifts on the 689
nm 1S0 ↔ 3P1 transition for making the second stage MOT. For 87Sr, both the F = 9/2 and
F = 11/2 transitions addressed. (c) Timing diagram for loading dual isotopes into the lattice.

G. Six ensembles differential clock comparisons

1. Experimental sequence

To load 6 ensembles, we modify the loading sequence for one ensemble such that the maximal
detuning of the retro-reflected lattice light is 2 MHz with 1 ms ramp time, corresponding to
a maximal velocity of ∼0.8 m/s and acceleration of ∼81 g. This loading sequence is repeated
5 times, such that 5 subsets of the atomic ensembles can be separated from the original cloud
with equal separations of 0.2 cm. The imaging pulse duration is kept below 250 µs to reduce
cross-talk due to smaller separation between nearby ensembles.
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FIG. S 7. Timing diagram for loading 6 ensembles into the lattice.

2. Determination of differential frequencies

To determine the differential frequencies between each clock comparison, we run at different
Ramsey times ranging from 2.5 to 8.5 s, and map out the differential frequency through the
accumulated phase evolution, which follows

ϕacc,ij(T ) = 2πδfijT, (19)

where T is the Ramsey interrogation time, and δfji = fj−fi is the differential frequency between
ensemble j and ensemble i. Note that δfij = −δfji. While this is not entirely correct due to the
bias error from ellipse fitting, we perform Monte-Carlo simulations for each resulting pairwise
ellipse using the contrasts and atom numbers extracted from each ensemble independently, and
correct for the bias errors before mapping out the differential frequencies.

3. “Closed-loop” analysis

To verify that the 15 pairwise comparisons are self-consistent, we perform a “closed-loop” anal-
ysis in which each loop contains 3 or more “clocks”. While the result of an individual pairwise
comparison contains both differential frequencies and measurement noises, the sum of the dif-
ferenial frequencies around a “closed-loop” should always be zero, leaving only measurement
noise regardless of any spatial gradients or systematic shifts.

Since the sum frequencies after clockwise and anti-clockwise rotations are equivalent, the
number of ways to arrange n “clocks” in a loop is (n− 1)!/2. For example, consider a loop that
has 6 “clocks”, compared in the order (1, 2, 3, 4, 5, 6). The resulting sum frequency can then be
calculated as

f = δf21 + δf32 + δf43 + δf54 + δf65 − δf61. (20)

Note that this is equivalent to the sum frequencies of (2, 3, 4, 5, 6, 1), (3, 4, 5, 6, 1, 2), (4, 5, 6, 1, 2, 3),
(5, 6, 1, 2, 3, 4) and (6, 1, 2, 3, 4, 5, 6). Therefore, we have 5!/2 = 60 unique combinations for loops
of 6 “clocks”. For loops of 5 “clocks”, there are 6 choose 5 (6C5) combinations to choose 5 en-
sembles, and 4!/2 = 12 ways to arrange the “clocks”, resulting in a total of 72 combinations.
Similarly, there are 6C4 × 3!/2 = 45 combinations for loops of 4 “clocks”, and 6C3 × 2!/2 = 20
combinations for loops of 3 “clocks”. Finally, this gives 60 + 72 + 45 + 20 = 197 unique combi-
nations for simultaneous clock comparisons of 6 ensembles.
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H. Calibration of spatial gradient in fluorescence imaging

In order to ensure fidelity in our simultaneous measurements of excitation fractions in each
region, we must calibrate the spatial gradient of our fluorescence imaging efficiency along the
lattice. This gradient mainly arises from the spatial inhomogeneity of fluorescence collection and
the imaging beam intensity gradient, as well as pixel by pixel variation of quantum efficiency
across the camera’s electron multiplying charge-coupled device (EMCCD). To calibrate our
spatial imaging efficiency, an ensemble of atoms is loaded into the lattice and moved at a constant
velocity of 1.5 m/s and is imaged along the lattice over 500 camera pixels, corresponding to a
distance of approximately 1.5 cm. This is carried out within 100 ms, with a moving velocity
chosen to ensure atom loss is negligible over this time scale, which is much smaller than the
ground state atom lifetime (> 20 s). A Gaussian fit to the trace of the atomic cloud gives the
amplitude and center of the cloud in units of pixel index number. An average of 10 repeated
measurements are taken to map out the imaging gradient. A Savitzky-Golay filter is then applied
to smooth out the normalized imaging efficiency curve [14], which is used to post-calibrate our
data from a raw EMCCD fluorescence image. A typical calibration curve with 10 averages is
shown in Fig.S8.

FIG. S 8. Calibration of fluorescence imaging gradient along the lattice. The black line is the
averaged normalized imaging efficiency, the red area indicates the corresponding 1σ standard
error. The blue dashed lines represent the pixel indices (along the gravitational axis, ẑ) at which
two ensembles are separated by 1 cm.
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