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Supplementary Note S1: Fabrication procedures for the metasurface 

Sacrificial layer 

1. Clean silicon wafers with acetone and methanol.

2. Spin coat PMMA to produce a sacrificial layer (3000 rpm, 30 s; bake at 180 °C, 30 s)

Bottom PI layer 

3. Spin coat PI2545 (1500 rpm, 30 s; bake at 110 °C, 180 s; bake at 150 °C, 180 s; vacuum bake at 260 °C,

45 min; fully cure) 

Metal layer  

4. Deposit Ti/Au (10 nm/300 nm in thickness) using electron-beam evaporation.

5. Define metal pattern using photoresist (S1813, 3000 rpm) and wet etching (Au/Ti etchant).

Top PI layer 

6. Spin coat PI2545 (1500 rpm, 30s; bake at 110 °C, 180 s; bake at 150°C, 180 s; vacuum bake at 260 °C,

45 min) 

7. Deposit Cu (50 nm) using electron beam evaporation.

8. Define Cu pattern as hard mask using photoresist (S1813, 3000 rpm) and wet etching (Cu etchant).

9. Dry etch of PI in reactive ion etcher (RIE) with CF3 and CF4.

10. Remove the Cu hard mask using wet etching (Cu etchant).

Transfer printing 

11. Undercut PMMA sacrificial layer in acetone.

12. Transfer sample from silicon wafer to water soluble tape.

13. Dissolve water soluble tape with warm water to make sample freestanding.
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Supplementary Note S2: Finite element analysis (FEA) 

S2.1 Deformation actuated by the Lorentz force 

FEA was performed to simulate the deformation of the serpentine-shaped mesh structures actuated by 

Lorentz force. A home-made python script was combined with the commercial software ABAQUS to model 

the coupling of electrical current, magnetic field and structural deformation, which was not directly available 

in ABAQUS[S1]. The detailed process was reported in the supplementary note of a previous paper of our 

group[S2]. In brief, given the port voltages as boundary conditions, the distribution of electric current density 

was simulated by ABAQUS, transferred to the python script to calculate the distribution of the Lorentz force 

per unit volume, and then the force was transferred back to ABAQUS to simulate the deformation. The 

simulation was divided into several loading steps (typically K = 10~20), with a small portion (1/K) of the total 

voltages added in each step. Refined mesh with feature size smaller than 1/10 of the ribbon width (bPI) 

ensured the accuracy. The elastic modulus (E) and Poisson’s ratio (ν) were EPI = 2.5 GPa and νPI = 0.34, 

respectively for PI, and EAu = 78 GPa and νAu = 0.42, respectively for Au. The electrical resistivity of Au was 

ρAu = 2.43×10-8 mΩ.  

The non-uniform magnetic field generated by the cuboidal magnet (length 2amag, magnetization M along 

'z  - direction in the local ' ' 'x y z   coordinate system, see Supplementary Fig.29a) was calculated by the 

formula below[S3] 
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, (S2) 

and where μ0 is the magnetic permeability of free space. The magnetization was M = 1.1×106 A/m such that the 

magnetic field at the surface ( x ' = y ' = 0, z ' = amag ) was ~400 mT. 

S2.2 Temperature change due to Joule heating 

The temperature change due to Joule heating of a single serpentine was simulated by the structure-

electricity-heat coupling module of ABAQUS. The geometry was imported from the deformed shape simulated 

by the process in Supplementary Note S2.1. The Joule heat per unit volume was calculated by ABAQUS 

according to the simulated electric current density. Convective heat transfer with air was applied to all external 

surfaces of the structure. Steady-state heat transfer analysis then gave the balanced temperature distribution. 

The baseline values of parameters were I = 10 mA, ρAu = 2.43×10-8 mΩ, bPI = 100 μm, bAu/bPI = 0.95, a= 0.3 

μm, and the convective heat transfer coefficient with air HAir = 50 W/(m2K). 

Supplementary Note S3: Analytical model and scaling law for the deformation 

S3.1 Analytical model of a single serpentine structure 

Supplementary Fig. 2a shows the 2D precursor of a single serpentine structure of total length L  , with 

two fixed ends. It consists of N  semi-circular rings, connected by N-1 straight ribbons with length H. The 

distance between the two adjacent straight ribbons is 𝜆 = L/N (measured from the central axis, 𝜆<<L, H). The 

semi-circular rings at the two ends of the serpentine structure are also connected by straight ribbons (length 

H/2) to the bonding sites. The nth semi-circular ring is located at Y = Yn = –L/2 + (n–1)λ. The cross-sectional 
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)Z n

width (bPI) and thickness (ℎPI) of the semi-circular rings and straight ribbons are uniform, with the Au thickness 

being much smaller than PI thickness.  

The serpentine structure deforms into 3D when it is placed in uniform magnetic field B (along negative X-

direction in Supplementary Fig. 2a) and actuated by electric current I. For the level of deformation studied in 

this manuscript (i.e., maximum out-of-plane displacement u/𝐿𝐿 on the order of 10%), the following 

simplifications can be made. The semi-circular ring undergoes only out-of-plane (Z-direction) rigid-body 

displacement u ( Y  with no rotation such that it remains horizontal. The straight ribbon undergoes out-of-

plane displacement (denoted by n∆  for the straight ribbon that connects the semi-circular ring n to n–1) and 

bending. The boundary conditions are ( ) ( )11
2

n
n Z n

L u Y− ∆ − =  
 , ( ) ( )11

2
n

n Z n
L u Y −

 ∆ − =  
and d 0

d 2
n L
X
∆  ± = 

 
 , 

and following force balance the internal force in Z- direction is n nP BIY= − . Based on beam theory, 

( ) ( )
3 3

1 3 3
PI PI PI PI PI PI

n
Z n Z n n

P H BIHu Y u Y Y
E b h E b h−− = = − , (S3) 

where 3
PI PI PIE b h  is the bending rigidity with the contribution of Au layer neglected, as Au thickness (0.3 μm) is 

much smaller than PI thickness (~10 μm). Considering that 𝜆𝜆<<𝐿𝐿 and the serpentine structure is fixed at two 

ends, the maximum out-of-plane displacement is 

( )
3 3 3 2/2 0

3 3 3/2
1PI PI PI PI PI PI PI PI PI

0 d
8

N

Z n L
n

BIH BIH BIH Lu u Y Y Y Y
E b h E b h E b hλ λ−

=

= = = − ≈ − =∑ ∫ . (S4) 

In Eq. (S4), BIL is the effective Lorentz force and 
3

PI PI PI
3

E b h
H L

λ
 may be defined as the effective rigidity of the 

serpentine structure, such that the displacement is proportional to the effective force divided by the effective 

rigidity. This analytical solution (Eq. (S4)) matches well with FEA (see Supplementary Note S2 for details), as 

shown in Supplementary Fig. 2b. In the FEA validation, the dots are for FEA with the baseline values of 

parameters being 𝐵𝐵 = 150 mT, 𝐼𝐼 = 10 mA, 𝐻𝐻 = 2 mm, 𝐿𝐿 = 5 mm, EPI = 2.5 GPa, 𝑏𝑏PI = 100 μm, ℎPI = 7.8 μm 

and λ = 200 μm, and each of these 8 parameters varies independently in its representative range; the straight 

line corresponds to the analytical solution (Eq. (S4)) with slope being 0.125. As suggested by Eq. (S4), 
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increasing the total serpentine width 𝐻𝐻 or decreasing the PI thickness hPI increases the deformation (𝑢𝑢∝𝐻𝐻3, 

1/ℎPI3 ), thereby providing a design guideline for a tunable electromagnetic response in a broad range of 

magnetic field strengths. For example, increasing 𝐻𝐻  by 33% and decreasing ℎPI  by 33% enables the 

serpentine structure to exhibit approximately the same deformation for magnetic field strengths reduced by 

one order of magnitude, as shown in Extended Data Fig. 2. 

For modest current such that the temperature change due to Joule heating is small and therefore the 

change in the electrical resistivity (ρAu) can be neglected, the current I is linearly proportional to the applied 

voltage V via Au Au

Au

V b hI
HL

λ
ρ

≈  (noticing that 𝜆𝜆<<𝐻𝐻, 𝐿𝐿). Therefore, the out-of-plane displacement is related to the 

voltage via 

2
Au Au
3

PI PI PI Au8
BVH Lb hu
E b h ρ

= . (S5) 

S3.2 Scaling law for the deformation of the array of N serpentine beams structure 

Supplementary Fig. 8 shows an array of N serpentine beams (along Y-direction, labeled as SY1, SY2,…, 

SYN, SYN+1,…, SY2N) connected by N+1 serpentines along X-direction (labeled as SX0, SX1,…, SXN). There is 

no metal layer in serpentine SXi (i = 0,1,…,N) such that the electric currents in serpentine SYj and SYN+j are 

the same (denoted as Ij), and each of Ij can be applied independently via port voltages. Applying voltage Vj 

to induce electric current Ij in only two serpentines (SYj and SYN+j), dimensional analysis suggests that the 

effective Lorentz force is BIjL and the effective rigidity of the serpentine structure is proportional to 
3

PI PI PI
3

E b h
H L

λ , 

such that the displacement of node j (intersection of serpentine SYj and SYN+j), proportional to the effective 

force divided by the effective rigidity, follows the same scaling as in Eq. (S4) and Eq. (S5), with a revised 

slope to account for the mechanical coupling among the serpentines, i.e., 
3 2

3
PI PI PI

j
n

BI H L
u

E b h λ
∝  and 

2
Au Au
3

PI PI PI Au
n j

BH Lb hu V
E b h ρ

∝ . When all the port voltages Vj are applied simultaneously, under the linear assumption 
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such that the principle of linear superposition applies, the displacements un are still linearly dependent on 

port voltages Vj and the coefficients in the linear relationship scale with 
2

Au Au
3

PI PI PI Au

BH Lb h
E b h ρ

. 

S3.3 Scaling law for the deformation of the N×N structures 

Supplementary Fig. 9 shows a serpentine-shaped mesh structure consisting of N × (N+1) serpentines 

along X- direction (labeled as S1, S2,…, SN(N+1), length 𝐿𝐿S) connected by (𝑁𝑁+1) × 𝑁𝑁 serpentines along Y- 

direction (labeled as SN(N+1)+1, S N(N+1)+2,…, S2N(N+1) , length 𝐿𝐿S). The geometries of all the serpentines are the 

same. Port voltages Vj (j = 1,2,…,4N) are applied at the peripheries of the structure to induce electric currents 

Ii (i = 1,2,…,2𝑁𝑁(𝑁𝑁+1)) in the serpentines. The resistance of each serpentine is Au S

Au Au

L HR
b h

ρ
λ

≈  (noticing that 

𝜆𝜆<<𝐻𝐻, LS). Given 𝑁𝑁, 𝐿𝐿S is linearly proportional to the overall size 𝐿𝐿 of the structure, such that Au

Au Au

LHR
b h
ρ
λ

∝ .

Therefore, dimensional analysis suggests that the electric currents are linearly dependent on the port 

voltages via  

, (S6) 

with the dimensionless coefficients ijD  depending on the geometry. Dimensional analysis also suggests that 

the displacements induced by current Ii follows the same scaling as in Eq. (S4) with a revised slope to account 

for the mechanical coupling among the serpentines, i.e., 
3 2 3 2

S
3 3

PI PI PI PI PI PI
n i i

BH L BH Lu I I
E b h E b hλ λ

∝ ∝  (given N). Therefore, 

under the linear assumption, the principle of linear superposition in combination with Eq. (S6), suggests that 

the displacements nu are linearly dependent on the port voltages Vj and the coefficients in the linear

relationship scale with 
2

Au Au
3

PI PI PI Au

BH Lb h
E b h ρ

. 

Supplementary Note S4: Theoretical model of the temperature change due to Joule heating 

For a segment of Au (length δL) encapsulated in PI (temperature T; see Supplementary Fig. 2a for the 

4
Au Au

1Au

N

i ij j
j

b hI D V
HL

λ
ρ =

= ∑ 
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cross-sectional view), the heat generated by Joule heating per unit time (power) is 
2

Au
Generate

Au Au

I LW
b h
ρ δ

= . The 

convective heat transfer per unit time with air (HAir—convective heat transfer coefficient, TAir—air temperature) 

is ( ) ( )Loss PI Air Air2W b L H T Tδ= − . Energy balance Generate LossW W=  leads to 

2
Au

Air
PI Au Au Air2
IT T T

b b h H
ρ

∆ = − = . (S7) 

As before applying the electric current, temperature of the structure is the same as the air temperature, 

ΔT is also the temperature change due to Joule heating. This analytical solution (Eq. (S7)) is quite accurate 

to predict the temperature change of a single serpentine structure, as shown in Supplementary Fig. 2c. In the 

FEA validation, the dots are for FEA of the maximum temperature change in the serpentine, with the baseline 

values of parameters being 𝐼𝐼 = 10 mA, ρAu = 2.43×10-8 mΩ, 𝑏𝑏PI = 100 μm, 𝑏𝑏Au/𝑏𝑏PI = 0.95,  ℎAu = 0.3 μm, and 

HAir = 50 W/(m2K), and each of these 6 parameters varies independently in its representative range; the 

straight line corresponds to the analytical solution (Eq. (S7)) with slope being 0.5. 

For the temperature change ΔT to be smaller than a threshold ΔTUpper (i.e., the upper limit of the 

temperature that the material can tolerate or allowed in biomedical application), the upper limit of the electric 

current is 

PI Au Au Air Upper
Upper

Au

2b b h H T
I I

ρ
∆

≤ = . (S8) 

Eq. (S8), combined with Eq. (S4), gives the upper limit of the deformation of the single serpentine structure 

as 

3 2
Au Au Air Upper

Upper 3
PI PI PI Au

2
8

b h H TBH Lu
E h bλ ρ

∆
≤ . (S9) 

Supplementary Note S5: Experimental characterizations of a single serpentine beam 

S5.1 Mechanical behaviors under electromagnetic actuation 
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Supplementary Fig. 3a shows a schematic illustration of the experimental configuration. The static 

magnetic field is generated by two parallel disks of Neodymium magnets spaced apart, each with a surface 

magnetic field of ~264 mT. A customized 3D printed magnet mounting stage can adjust the spacing between 

the magnets. The magnetic setup presented in the main text takes a default 55-mm spacing. 

Supplementary Fig. 3b shows the magnetic flux density measured by a gaussmeter (GMHT201, Apex 

Magnets) across the center (O) along X-axis and Y-axis in the setup. The field strength in the X-

direction, BX, is 224 ± 16 mT, around the center (O). A movable and rotatable sample stage has a fixed 

height that levels with the center of the magnets. The model-driven process takes the average field strength 

around the center and ignores any spatial variance.  

Extended Data Fig. 1c shows that a serpentine beam carrying a current density J (along Y-axis) 

deforms locally under the electromagnetic force, FEM = J × B. The serpentine beam (𝜆 << H) exhibits a 

linear, spring-like behavior when deformed out of the sample plane under the electromagnetic actuation 

(Supplementary Note S2.1). A side camera (Webcams, ELP, 3840×2160-pixel resolution, 30 fps) monitors 

the out-of-plane deformation (u) and any irreversible deformation (u’) of the beam (Extended Data Fig. 1d). 

An imaging process via ImageJ 1.x pipeline produces displacement measurements with a resolution of 

0.006 mm and an uncertainty of ±0.055 mm (Supplementary Fig. S30). The measured displacement u 

increases linearly with the actuation current I in the elastic regime, within which the electro-magneto-

mechanical behavior of the beam agrees with both analytical solution and finite element analysis study 

(Extended Data Fig. 1e). When the actuation current exceeds 27.5 mA, the measured u deviates from the 

elastic behavior, and a sub-mm irreversible deformation (u ’) is observed subsequently when unloaded 

(Extended Data Fig. 1f). Based on the experimental observations, the single-beam sample can deform to a 

maximum of 4.2 ± 0.1 mm (u/L ≈ 38%) while remaining fully reversible, under a maximum current of 27.5 mA 

(J < 7 × 108 A/m2; the cross-section area of Au is 3.9 × 10−11 m2).  
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Extended Data Fig. 2a shows serpentine beam structures of the same length (L = 11.0 mm) but different 

widths (H = 0.84 mm, 1.20 mm, 1.56 mm). In a magnetic field of 224 mT, the current-controlled mechanical 

responses of the beams with various thicknesses (hPI = 5.0 μm, 7.5 μm, and 12.0 μm) agree with the 

analytical predictions (Eq. (S4)). The metasurface presented in the main text adopts the serpentine-beam 

design with H = 1.20 mm and hPI= 7.5 μm and deforms in a magnetic field of 224 mT. Following the scaling 

law (Eq. (S4), Extended Data Fig. 1b), a beam with H increased by a factor of gH, bdecreased by a factor 

gh can maintain the same Lorentz-driven mechanical response in a magnetic field with strength 

reduced to a factor of (1 + gH)-3(1 - gh)3. Extended Data Fig. 2c shows that a beam with H = 1.56 mm 

(increased by 30%) and hPI = 5.0 μm (decreased by 33%) performs approximately the same level of 

deformation (u ~2.25 mm) under the same current (I = 15 mA) in a smaller magnetic field of 25 mT (reduced 

by ~90% by spacing the magnets apart from 55 mm to 175 mm). The reduced field strength is comparable 

to that generated by a commercial Helmholtz coil (SpinCoil-7-X, customized, Micro Magnetics, Inc.; coil 

radius Rc = 18 mm, number of turns n = 2500, coil current I = 2 A) over a large distance (~160 mm). Based 

on the physics of the response, by reducing the PI thickness or replacing it with a low-modulus 

encapsulation material such that its contribution to the bending rigidity is negligible, the magnetic field may 

be reduced to an extreme of ~0.2 mT for the redesigned structure to maintain the same Lorentz-driven 

response, given the limit on the electric current and overall structure size. 

S5.2 Thermal behaviors under electromagnetic actuation 

Thermal imaging of a single-beam sample heated by a temperature-controlled hot plate calibrates the 

infrared camera (FLIR E60) in the temperature range (20–80 °C). The calibrated camera measures the 

equilibrium temperature of the sample under a current ranging from 0 to 40 mA (at room temperature of 

25 °C). Extended Data Fig. 1g shows the measured temperature versus applied current, which is consistent 
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with the analytical prediction validated by FEA (Supplementary Note S4). The temperature change (∆𝑇𝑇  ) 

induced by Joule heating under a current of 27 mA is ~35 °C upon equilibrium (at room temperature of 25 °C). 

S5.3 Response time under electromagnetic actuation 

The single-beam sample is actuated by an applied current I (I = 10 mA, u/L ~14%). The dynamic response 

of the single beam is monitored by a side camera (Canon EOS R, 60 fps). Supplementary Fig. 5 shows that 

the sample goes through vibrations before reaching a steady state where no displacement deviation can be 

identified in sequential frames in the recorded video. The experimental observation shows that the single-

beam sample reaches a steady state within 0.07 s (Supplementary Fig. 5). 

S5.4 Cycling test under electromagnetic actuation 

The single-beam sample undergoes a current-controlled high-cycle test. The sample deforms bi-

directionally over 1000 cycles at a frequency of 1 Hz with a displacement amplitude u monitored by a 

side camera for both small deformation (u/L ~14%, I = 10 mA) and large deformation (u/L ~28%, I = 20 

mA). Supplementary Fig. 6a, b shows that the single-beam sample under the current cycles of ±10 mA 

exhibits a fully-reversible deformation behavior over 1,000 cycles with a constant displacement amplitude, u 

= 1.55 ± 0.02 mm (u/L ~14%). Supplementary Fig. 6c, d shows the results of the cycling test under the 

current amplitude of ±20 mA. The single-beam sample maintains a fully-reversible deformation behavior 

over the first 500 cycles with a constant displacement amplitude, u = 3.08 ± 0.06 mm (u/L ~28%). 

Upon the remaining 500 cycles, both the mean value and the standard deviation of the displacement 

amplitude increase with the cycles, yielding an average amplitude, u = 3.18 ± 0.18 mm (u/L ~29%), for 

the last 100 cycles. Overall, the single-beam sample deforms with an amplitude, u = 3.10 ± 0.12 mm (u/L  

~28%) under the cycling current of ±20 mA over 1,000 cycles at the frequency of 1 Hz. 



Supplementary Note S6: Optimization algorithm of the experiment-driven process 

S6.1 Loss function and optimization   

     In the experiment-driven process, the real-time imaging evaluates the difference between the current 

shape (ui) and the target shape (u*), providing an in-situ nodal displacement error analysis. Changes in the 

actuation, V = {Vj}, will update the loss function, f(V) = ∑iei
2,  defined as the sum of squared error 

(normalized by system size as ei = (ui - ui*)/L). Sequential Least Squares Programming (SLSQP), a 

gradient-descent based algorithm, computes the Jacobian matrix to minimize the loss function. For each 

update on Vj (the voltage input at the jth port), a 3-point method requires two function evaluations to 

calculate the numerical approximation of the Jacobian matrix. Each iteration requires 4×(N+M) function 

evaluations for the Jacobian calculation and an additional 2 function evaluations for the step-size calculation 

to check on the constraints. 

       Extended Data Fig. 4a–c shows three representative optimization processes for a 4×4 sample to morph 

into Shape I, III, IV (see Extended Data Fig. 5 and Supplementary Note S8), with the loss function f(V) 

monitored over 15 iterations. According to the experimental observation, f(V) (with an initial value, f(V = 0), 

in the range of 0.05–0.35) drops by ~99.5% and reaches a steady state in 5–15 iterations. A maximum final 

loss, 0 ≤ 0.005f(V = 0), and a maximum of 15 iterations set the stopping criteria for the optimization process. 

S6.2 Limitations in experiment-driven optimization 

For the 4×4 and 8×8 morphing structures presented in the manuscript, the optimization problems are 

theoretically convex as the objective functions (displacement vs. voltage) and constraints (current vs. voltage) 

are all approximately linear. In the experiment, discreteness in digitization and measurement uncertainties 

add complexity to the error surface. Experimental noise and constraints impose limitations on the 

performance of the gradient-based optimization process. The major limiting factors in the current setup are 

11 
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the discrete actuation voltages, the maximum actuation allowed for reversible deformation, and the 3D 

imaging noise (δu = 0.016 mm, Supplementary Note S14). The discrete actuation comes from the 12-bit 

pulse-width modulation (PWM) drivers followed by the voltage amplifier circuits, which provide actuation 

voltages in the range of 0–6 V in a discrete step of ~0.0015 V. The mechanical and thermal 

characterizations (Supplementary Note S5) suggest the maximum allowed current for reversible 

deformation to be 27 mA. FEA simulation provides a linear relation between the current flow (I) in each 

serpentine beam and the portal voltages (V) as I = CIV. This model prediction of I based on applied V 

serves as a virtual current monitor to set voltage constraints to ensure that the current is below the 

maximum allowed value (27 mA) everywhere in the sample. 

Extended Data Fig. 6a shows a simulation result of the impact of the experimental noise and constraints 

on the optimization. The simulation takes the linear model (Eq. 1) with noises and constraints characterized 

from the experiment and evaluates the final loss f0 of a 4×4 sample morphing target shape (Fig. 3b) post 15 

iterations. The distribution of f0 from the simulation (1,000 trials) agrees with that from the experiment (97 trials) 

given 3D imaging noise δu = 0.016 mm,12-bit PWM output, and a maximum current Imax = 27 mA. Extended 

Data Fig. 6b shows the impact of the discrete voltage on the optimization process without imaging noise. 

The final loss can reach 4.96×10-5 in the case of 12-bit PWM signal. A 20-bit resolution gives a final loss of 

3.30×10-5 that is comparable to that resulted from continuous, analog signal. Extended Data Fig. 6c–f 

shows the distribution of f0 from the simulation (1,000 trials) with decreasing imaging noise (δu = 0.024, 

0.016, 0.008, 0.004 mm). The result indicates that the distribution broadens with a higher mode and a 

heavier tail as the noise increases. When δu = 0.016 mm, f0 reaches a value less than 3×10-4 around 70% 

of the time, which indicates that the yielding rate of the experiment-driven process within 15 iterations is 

around 70%.

As a result of the stochasticity and noise in the experiment, for example, when targeting Shape IV 
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(Extended Data Fig. 5), the gradient-descent search algorithm occasionally fails to reach the desired loss 

value of 0.005f(V = 0) within 15 iterations. While gradient-based solvers are more efficient for a convex 

problem with minimal noise, global solvers help avoid becoming trapped in a local solution when noise is 

pronounced, or when the problem is clearly non-convex. Extended Data Fig. 4d–f provides an investigation 

of a typical global solver, the pattern search algorithm (Matlab, Global Optimization Toolbox, Pattern Search 

Options), in comparison with the gradient-descent algorithm, using the model-driven simulation of a 4×4 

sample morphing into Shape IV. Extended Data Fig. 4d shows the simulation results with the objective 

function subjected to typical experimental noise and constraints (δu = 0.016 mm, 12-bit PWM output, and a 

maximum current Imax = 27 mA). The pattern search algorithm requires around six times more function 

evaluations than the gradient-based method to reach a loss value of 0.005f(V = 0). When releasing the 

limitation on the maximum number of iterations, both algorithms can find a minimum loss of 0.0006f(V = 0) 

within 20,000 function evaluations (Extended Data Fig. 4e). Extended Data Fig. 4f compares the algorithms 

in the case with 10 times higher 3D imaging noise (δu = 0.16 mm). While gradient descent method gets 

trapped in a local solution with a loss of 0.08f(V = 0), pattern search method can find the same minimum 

(0.0006f(V = 0)) as the case with lower noise. 

The 2×2 mesh structure shown in Fig. 4a and the optical function shown in Fig. 5d exhibit nonlinear input-

output relationships, such that convexity cannot be guaranteed. However, given the objective functions and 

constraints prescribed, the experiment-driven process does not run into any local solutions. 

S6.3 Speed of the feedback control and optimization 

Supplementary Table 1 lists the detailed, representative time budget of each step to complete one 

function evaluation for the experiment-driven optimization of a 4×4 sample. A remote computer takes an 

average of 0.06 s to send the updated values to the peripheral Raspberry Pi to update the voltage output of 

16 PWM channels. The algorithm pauses 0.1 s to wait for the sample to settle to its steady state upon 
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actuation. The 3D imaging process consists of three consecutive steps: taking images of the sample 

from the stereo cameras (0.08 s), detecting locations of the nodes in the two images using OpenCV-

Python matchTemplate function (0.11 s), calculating the 3D-recontructed nodal displacements using 

OpenCV-Python reprojectImageTo3D function (0.00 s). It takes a total of 0.19 s to get one feedback from 

3D imaging. The remote computer runs the optimization algorithm (0.00 s). Overall, the time expenditure for 

each loss function evaluation cycle is ~0.35 s. Based on the experimental observation, a 4×4 sample takes 

an average of ~2.5 min to morph a shape from the zero-actuation initial state. 

Supplementary Note S7: Approaches to increase the number of voltage inputs

S7.1 Scalability of the square-lattice N×N sample 

In principle, the number of voltage inputs 4N of a N×N metasurface with a fixed size can increase by 

reducing the unit-cell size LN. A single-conductive-layer structure with an overall size of L ultimately 

accommodates a maximum of 4L/LN ports at its 1-dimensional boundary. Given L, increasing N will provide 

higher spatial resolution (Nyquist-Shannon sampling theorem). Advanced manufacturing techniques allow 

feature sizes (e.g., ribbon widths) of the serpentine beams to be reduced by 1~2 orders of magnitude[S4], 

such that LN can be scaled down to ~100 μm. Meanwhile, the overall size L can scale up easily as the 

fabrication process is compatible with the well-developed, wafer-based thin-film manufacturing technology. 

For example, a design with L = 100 mm (on a 6’ wafer) and LN  = 100 μm can support 4×103 voltage inputs 

(N = 103). 

S7.2 Hexagonal lattice 

      A more space-efficient design of the serpentine network can increase the number of controls, without 

changing the overall size L or the unit cell size LN. Supplementary Fig. 28a, b shows that a hexagonal-
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lattice structure of approximately the same overall/unit-cell sizes as the 4×4 square-lattice 

structure, can accommodate a factor of two increase in number of voltage inputs (34 vs. 16 ports). The 

additional number of voltage inputs enhance the range of target shapes that can be morphed with 

sufficiently small error (<2%), as exemplified in Supplementary Fig. 28c, d for a representative targeting 

subspace of 3D surfaces. 

S7.3 Multilayer electrodes and hierarchical structures 

Multilayer electrodes can further increase the maximum number of voltage inputs. Integrating 

hierarchical metasurface structures (l×l patches, with l<L) to increase the length of the control boundaries 

(from 4L to 4L2/l) will also boost the number of available input ports. 

Supplementary Note S8: The abstract target curves and surfaces

The target curve in Supplementary Fig. 14c is a segment of arc, with the following expression

( )
2 2

2 2 4Z ,  
8

L cr X r c r
c
+

= − − − = . (S10)

c = 0.1𝐿𝐿 leads to the particular shape in Supplementary Fig. 14c. The target curve in Supplementary Fig. 14d 

is a sinusoidal function 2sin XZ c
L
π = −  

 
. 𝑐𝑐 = 0.15 𝐿𝐿 leads to the particular shape in Supplementary Fig. 14d.

The target shapes in the dynamic process in Fig. 1d, and the shapes studied in Fig. 3 and Extended Data 

Fig. 5 are defined by the following functions, with Z denoting the out-of-plane coordinate, and X and Y 

denoting the in-plane coordinates.  
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The ‘rising up’ process is simulated by a = 0.5L and c increasing from 0 to 0.3L. Shape I in Extended 

Data Fig. 5 is defined by a = 0.5L and c = 0.2L.

Function 2 

( ) ( )2 2
c c

2exp
X X Y Y

Z c
a

 − + −
= − 

  
. (S12) 

The ‘moving around’ process in Fig. 1d is simulated by c = 0.2𝐿𝐿, a = 0.4𝐿𝐿, and changing Xc and Yc such that 

the point with the maximum Z- coordinate moves along a path in the XY plane. The prescribed path in Fig. 

1d starts at (Xc, Yc) = (0, 0), moves to ( 0.2 2 𝐿𝐿, 0), moves circularly with 2 2
c c 0.2 2X Y L+ = , and then back 

to (0, 0). Shape II in Extended Data Fig. 5 is defined by Xc = Yc = 0.2𝐿𝐿, a = 0.4𝐿𝐿, and c = 0.2𝐿𝐿. The target 

shapes in Supplementary Fig. 29b are defined by Xc = Yc = 0 and varying parameters a and c. 

Function 3 
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The first a few shapes of the ‘splitting up’ process in Fig. 1d is simulated by c1 = c2 = 0.2𝐿𝐿, a = 0.32𝐿𝐿, and Xc 

and Yc changing from 0 to 0.2𝐿𝐿, with the last one denoted by shape A. Each shape is scaled such that the 

maximum Z coordinate is 0.2𝐿𝐿. The last shape of the ‘splitting up’ process (shape B) is simulated by c1 = -c2 

= 0.1𝐿𝐿, a = 0.4𝐿𝐿, and Xc = Yc = 0.25𝐿𝐿. A few shapes are added between shape A and B by interpolating the 

two shapes to make the process continuous. The ‘oscillating’ process in Fig. 1d is simulated by Xc = Yc = 

0.25𝐿𝐿, a = 0.4𝐿𝐿, c1 = -c2, and c1 changing periodically between -0.1𝐿𝐿 and 0.1𝐿𝐿. The target shape in Fig. 3, the 

same as Shape III in Extended Data Fig. 5, is defined by Xc = Yc = 0.2𝐿𝐿, a = 0.4𝐿𝐿, and c1 = –c2 = 0.1𝐿𝐿. 
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Shape IV in Extended Data Fig. 5 is defined by Xc = Yc = 0.25𝐿𝐿, a = 0.4𝐿𝐿, and c = 0.1𝐿𝐿. 
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Function 5 
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Shape V in Extended Data Fig. 5 is defined by a = 0.5𝐿𝐿 and c = 0.2𝐿𝐿. 

Function 6 
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Shape VI in Extended Data Fig. 5 is defined by a = 0.5𝐿𝐿 and c = 0.1𝐿𝐿 . 

In addition to those shapes presented in the manuscript, the serpentine-shaped mesh 

structures may also be deformed to form a number of surfaces represented by the general forms of 

Functions 1–6, as studied in Supplementary Note S11.2. 

Supplementary Note S9: Experimental characterization of an array of serpentine beams 

Supplementary Fig. 14a shows a typical sample consisting of an array of N (N = 8) serpentine 

beams (sample length L = 10.4 mm, sample width W = 20.6 mm, column/vertical serpentine beam length 

LN = 5.2 mm, row/horizontal serpentine beam length LM = 2.52 mm). The horizontal serpentine beams are 

polyimide (PI) beams and are non-conductive. As a result, the sample has eight electrically 

controlled and mechanically coupled serpentine beams. A voltage vector (V) of size 16, applied to the 

peripheral ports (8 pairs of ports), controls the current density (J) in each beam. The 

displacements (u) of the intersections of adjacent serpentine beams (the nodes) define the outline 

of the deformed 2D shape. The displacement of the ith node, ui, is approximately linearly related to 

the response of the ith node to each jth portal voltage, Vj, as follows:

𝑢𝑢𝑖𝑖 = ∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑉𝑉𝑗𝑗,2𝑁𝑁
𝑗𝑗=1  for 𝑖𝑖 = 1, …𝑁𝑁.         (S17) 
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The coupling matrix C fully describes this approximately linear mechanical system driven by 

electromagnetic force. Supplementary Fig. 14b shows FEA and experimental characterization of the electro-

magneto-mechanical behavior for representative nodes of the array sample provided voltages in the range of 

0~2.5 V. A regression analysis on the FEA results (R2~0.95) provides the coupling coefficients for a linear-

system characterization. This linear approximation enables a model-driven approach that optimizes the 

portal voltages for the precursor array to deform to a mathematically-defined target shape. Supplementary 

Fig. 14c, d shows the morphing results of the sample targeting spherical and sinusoidal shapes. 

Supplementary Note S10: Definition of the error between deformed and target shapes 

For the deformed array of N serpentine structures, a continuous 2D curve DeformZ X( ) can be constructed 

from the nodal positions 𝑢𝑢n (n = 0~𝑁𝑁+1, 𝑢𝑢0 = 𝑢𝑢N+1 = 0) via interpolation. The error between this deformed 2D 

curve and the target curve (Z X ) is then defined as 

(X ) (Z X )
2/2 Deform

/2
Error = 1 1 L

L
Z − d X

L L −∫  . (S18) 

Similarly, for the deformed N × N mesh structure, a continuous 3D surface Z Deform ( ，X Y )  can be 

constructed from the nodal displacements m
nu (m = 0~𝑁𝑁 +1, n = 0~𝑁𝑁 +1, 0

nu = N +1
nu = u0

m  = +1
m
Nu = 0) via

interpolation. The error between this deformed 3D surface and the target surface (Z X，Y ) is then defined 

as 

( ) Z ( ， )
2/2 /2 Deform

/2 /2
Error = 1 1 L L

LL
Z ，X Y − X Y  dXdY

L 2L −∫ ∫−  . (S19) 

Supplementary Note S11: A numerical study on the feasible range of target shapes 

To illustrate that the same mesh structure can be deformed to form abundant target shapes, a numerical 

study is presented in this Supplementary Note on the error (see Supplementary Note 10 for the definition) of 
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the deformed shape for a few classes of target shapes in general form. 

S11.1 Target 2D curves 

For functions defined in the range / 2 / 2L X L− ≤ ≤  and taking the form 

1 2
2 4cos 1 cos 1X XZ A A
L L
π π      = + + −            

, changing the parameters A1 and A2 leads to various target 2D 

curves. The model-driven approach can be applied for the same precursor structure to form many of these 

2D curves. The error of the shapes formed by the array of 8 serpentine beams presented in Supplementary 

Fig. 14 is shown in the contour plot of Supplementary Fig. 20a. When the parameters A1/L and A2/L are in a 

wide range, the error is less than 2%, indicating that a number of target curves can be approximated by the 

deformed structure quite accurately. This error mainly comes from the limitation on the electric current to 

avoid temperature change from Joule heating (𝐼𝐼 < 27.5mA), which limits the ability to form target shapes that 

require large deformation.  

The above target curves are symmetric with respect to the vertical axis at X = 0. Similarly, the asymmetric 

target 2D curves defined in the range / 2 / 2L X L− ≤ ≤  and taking the form 1 2
2π 4πsin sinX XZ B B
L L

   = +   
   

 

can also be formed by the mesh structure quite accurately when B1/𝐿𝐿  and B2/𝐿𝐿  are in a wide range 

(Supplementary Fig. 20b).  

In a more general case, a target 2D curve ( )Z X   defined in the range / 2 / 2L X L− ≤ ≤   with 

 may be expressed by the Fourier series as 

( ) 1

1 1

2 2cos 1 sin
Q Q
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k k
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L L
π π−

= =

    = + − +        
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The prior study applies to the curves that are symmetric (Bk = 0) or asymmetric (Ak = 0) with respect to the 

vertical axis at X = 0 and are dominated by the first two terms (Ak>2 ≈ 0 and Bk>2 ≈ 0). The curves that involve 

higher order terms may be formed by the structure with more serpentines (i.e., larger 𝑁𝑁). Supplementary Fig. 

( )/ 2 0Z L± =
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21 shows that the array of 16 serpentine beams may form target curves in a wide range with order Q = 4 in 

the Fourier series.  

S11.2 Target 3D surfaces 

For functions defined in the range / 2 ,  / 2L X Y L− ≤ ≤  and taking the form defined by Function 1 (Eq. 

(S11)) in Supplementary Note S8, changing the parameters a and c leads to various target 3D surfaces. The 

model-driven approach can be applied for the same precursor structure to form many of these 3D surface. 

The error of the shapes formed by the 4 × 4 mesh structure presented in the main text is shown in the contour 

plot of Supplementary Fig. 22. When the parameters a/L and c/L are in a wide range, the error is less than 

2%, indicating that a number of target surfaces can be approximated by the deformed mesh structure quite 

accurately. Similar analysis is performed to the target 3D surfaces defined by Function 2~6 (Eqs. (S12)-(S16)) 

in Supplementary Note S8, showing that the same mesh structure can be deformed to various target shapes 

accurately (Supplementary Figs. 23-27).  

Supplementary Note S12: Shape morphing in time-varying, non-uniform magnetic fields 

S12.1 Spatiotemporal control of the shape of a serpentine beam 

A time-dependent, non-uniform magnetic field enables precise spatiotemporal control of the local 

deformation within a serpentine beam. Extended Data Fig. 3a-c shows refined shape-morphing of a single 

serpentine beam (𝐻𝐻 = 1.2 mm, ℎPI = 7.5 μm) conducting a current of 20 mA and placed in a non-uniform, 

time-varying magnetic field produced by a small, moving magnet. The small disk-shaped magnet (diameter 

𝐷𝐷 = 11.0 mm, thickness ℎ = 5.0 mm, surface field 𝐵𝐵 = 481.6 mT; D73-N52, K&J Magnetics, Inc.), placed 3.0 

mm below the center of the beam (ΔZ = -3 mm), generates a localized magnetic field around its instant 

position. By varying the position of the magnet along the X-axis, the deformed structure is dragged in the 
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opposite direction of ΔX, as illustrated in Extended Data Fig. 3b. Extended Data Fig. 3c shows a skewed 

shape of the beam with the peak Z-axis displacement (Zmax) shifting along the Y-axis while moving the magnet 

in the same direction. In a uniform magnetic field, asymmetric shape morphing of a single beam structure is 

impossible as the beam always conducts a uniform current. 

S12.2 4×4 sample morphing into a donut-like shape in a non-uniform magnetic field 

A changing field and field gradient can provide extra degrees of spatiotemporal control of the 

electromagnetic response. Extended Data Fig. 3d shows a design for a non-uniform magnetic field generated 

by adding a small magnet 3.0-mm below the center of the 4×4 sample in the existing setup. Measurements 

of the magnetic flux density using a gaussmeter (GMHT201, Apex Magnets) shows a superposition of a 

magnetic field to the original field in the center, ~5.0 mm-diameter area (Extended Data Fig. 3e). Intuitively, 

the additional, localized magnetic field facilitates morphing of the metasurface into target shapes with 

localized deformation around the center of this additional field. Extended Data Fig. 3f shows experimental 

results of the 4×4 sample morphing into a donut-like target shape via experiment-driven self-evolving process 

in both uniform and non-uniform magnetic field. Both experiment and noise-free simulation show that the 

metasurface cannot morph into the donut-like shape with sufficiently small error (𝑒𝑒  < 2%) in a uniform 

magnetic field. In contrast, the non-uniform field environment allows this shape by enhancing negative out-

of-plane deformation close to the center while maintaining the positive displacements far from the center.  

S12.3 FEA and numerical studies on the shape morphing in a non-uniform magnetic field 

FEA and numerical studies investigate the accessible range in subspaces of 3D surfaces and 

demonstrates an enhanced morphing capability due to an alterable, non-uniform magnetic field. 
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Supplementary Fig. 29a shows a design of a non-uniform magnetic field, Blocal + Bfar, where Blocal is generated 

by a small magnet (M=1.1×106 A/m, magnetization along the diagonal direction in XY plane, see Supplementary 

Note S2.1) 2 mm below the center of the 4×4 structure and Bfar is a uniform magnetic field. To simulate a time-

varying magnetic field, Blocal and Bfar can be independently turned on or off. Local magnetic field Blocal 

facilitates morphing of the metasurface into target shapes with localized deformation around the center of the 

small magnet. Examples are the Gaussian shapes in the form, 𝑍𝑍 = 𝑐𝑐 exp �−𝑋𝑋2+𝑌𝑌2

𝑎𝑎2
�, when 𝑎𝑎 is much smaller

than the overall size L. Supplementary Fig. 29b shows that in a localized magnetic field Blocal (Bfar = 0), the 

range of the above Gaussian shapes that can be morphed into with sufficient accuracy is wider than that in 

a uniform magnetic field Bfar (Blocal = 0). Supplementary Fig. 29c shows a similar investigation but on another 

targeting subspace, with the targeting shapes in the form, 𝑍𝑍 = 𝑎𝑎 �cos �2𝜋𝜋(√𝑋𝑋2+𝑌𝑌2)
𝐿𝐿

� + 1� + 𝑐𝑐 �cos�4𝜋𝜋�√𝑋𝑋
2+𝑌𝑌2�
𝐿𝐿

� −

1�. Compared to the case in a uniform magnetic field Bfar, the range of producible shapes reshapes upon the 

introduction of a non-uniform magnetic field Blocal + Bfar, rather than simply expands. 

Supplementary Note S13: Computational cost for the model-driven approach 

S13.1 Linear system 

For the N×N array of serpentine structures presented in the main text, there are 4N-1 independently 

controlled port voltages V1, V2, …, V4N-1 (one port is connected to ground and always has zero voltage). FEA 

can be performed to establish the relationship between node displacements and port voltages. Applying 

voltage Vj at port j and keeping the voltages of other ports being zero, FEA predicts the deformation and an 

approximate linear fitting of the nodal displacements gives i ij ju C V=  . To obtain the coefficient ijC   for all 

voltages, FEA is performed 4𝑁𝑁–1 times, each time for j=1, 2, …, 4𝑁𝑁–1. When all the port voltages are applied 

simultaneously, the nodal displacements are the superposition of those when the voltage is applied 

individually due to linearity, i.e., 
4 1

1

N

i ij j
j

u C V
−

=

= ∑ , such that the nodal displacements can be evaluated rapidly 
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without additional FEA. Therefore, the total number of FEA scales linearly with the system size 𝑁𝑁, which is 

acceptable. 

S13.2 Nonlinear system 

For a nonlinear system, the above linear superposition approach is no longer valid and the nodal 

displacements are nonlinear functions of the port voltages, i.e., ( )1 2 4 1, ,...i i Nu G V V V −= . Taking P values for

each voltage, 4 1NP −  times of FEA is needed to obtain the nonlinear function iG , which is astronomical (e.g., 

P = 5 and N = 2 lead to 4 1 47.8 10NP − ≈ × ). For the 2×2 array (𝑁𝑁 = 2) presented in the manuscript, each FEA 

takes about 1 hour using a workstation (twenty-core, 2.4GHz processor, 64GB memory). This difficulty in the 

model-driven strategy based on computation is common for nonlinear systems.  

Supplementary Note S14: Characterization of the resolution and uncertainty of 3D imaging 

Supplementary Fig. 30a is a schematic illustration of the experimental setup for characterization of the 

resolution and uncertainty of the 3D imaging method. In the setup, a side camera (Webcams, ELP, 

3840×2160-pixel resolution, 30 fps) provides direct imaging of the out-of-plane deformation. Analyzing the 

images via ImageJ 1.x pipeline gives the ground-truth measurement of the nodal displacement (𝑢𝑢m). Two 

cameras (Webcams, ELP, 3840×2160-pixel resolution, 30 fps) are placed symmetrically side-by-side above 

the sample to take top-view images. A calibration algorithm (OpenCV-Python calibrateCamera function) is 

applied to a collection of checkerboard images (custom-made, 7×8 squares, 2×2 mm per square) to correct 

lens distortion[S5]. The sample nodes provide distinctive cross geometry for image registration. A customized 

template matching algorithm (based on OpenCV-Python matchTemplate function) returns the nodal 

coordinates ([𝑥𝑥1, 𝑦𝑦1] and [𝑥𝑥2, 𝑦𝑦2]) from the pair imaging in units of pixels (px). A perspective projection matrix[S6] 

transforms the disparity (𝐷𝐷(𝑥𝑥,𝑦𝑦) = �(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2) at the estimated location ([𝑥𝑥 = (𝑥𝑥1 + 𝑥𝑥2)/2, 𝑦𝑦 =

(𝑦𝑦1 + 𝑦𝑦2)/2]), to the relative depth between the camera plane and the node, 𝑍𝑍(𝑋𝑋, 𝑌𝑌), as, 



�
𝑋𝑋
𝑌𝑌
𝑍𝑍
1

� = �

1 0
0 1

0 0
0 0

0 0
0 0

𝑏𝑏𝑏𝑏′ 0
0 1

� �

𝑥𝑥
𝑦𝑦

1/𝐷𝐷(𝑥𝑥,𝑦𝑦)
1

� ,  (S21) 

where f'= 35 mm is the focal length of the cameras, b = 85 mm is the distance between the two cameras. A 

transformation algorithm (based on OpenCV-Python reprojectImageTo3D function) implements this 2D-

to-3D projection and predicts the nodal depth in a unit of pixels (px) as up = Z(X, Y).

A cycling test on a 4×4 sample (200 actuation cycles of Shape IV in Extended Data Fig. 5, at a 

frequency of 1 Hz) provides a statistical analysis of the 3D-reconstructed depth measurement (up). The 

results show the mean values and standard errors of up from 200-cycle measurement for the 16 nodes.  

The distribution of the measured depth (up) at node 1 of the actuated/unactuated state follow a Gaussian 

distribution with a standard deviation of ~0.25. A statistical analysis of up measured from all 16 nodes yields 

a standard deviation, δup = 0.25 px (Supplementary Fig. 30b).  The side camera measurement (um) has an 

uncertainty, δum ≈ ±0.015 mm. Supplementary Fig. 30c shows a linear relation between up and um predicted 

by a Deming regression on the experimental data as um = aup + b, where a = -0.0664 ± 2.543×10-4, b = 

12.05 ± 0.038 (R2 ~0.997). The regression model defines the 3D-reconstructed nodal displacement, The 

regression model defines the 3D-reconstructed nodal displacement, u(up) = um(up). Given aup (resolution of 

up = 0.1 px) refers to resolution and aδup + δb evaluates the uncertainty, the uncertainty nodal displacement 

(u) measured by 3D imaging method has a resolution of ~0.006 mm and an uncertainty of ±0.055 mm.

The pixel form measurement of the X-Y coordinates can be converted to physical values given

a reference scale bar. Renka-Cline gridding matrix method produces an interpolated 3D surfaces from 

the reconstructed nodal displacement u(X, Y) at three inserted query points between the two nearest nodes. 

Supplementary Note S15: Self-evolving of a nonlinear system 

       A 2×2 sample (L = W = 25.0 mm, LN = LM = 10.25 mm), consisting of serpentine beams without straight 

segments connecting the semi-circle parts, represents a metasurface that exhibits an amplified non-linear 
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mechanical behavior in response to the voltage inputs. Compared to that in the 4×4 and 8×8 sample, the arc 

length (distance between two ends along the section of the curve) of each serpentine beam is largely 

reduced. Extended Data Fig. 7 a–d shows the side-view images of the sample deforming out-of-plane 

given an increasing voltage to port 1 (Fig. 4d). Centered in the same magnetic setup, with the increase of 

the voltage input, the out-of-plane bending initially dominates the structure deformation but saturates 

at a small displacement due to reduced arc length, such that the serpentine beams need to overcome the 

tensile rigidity much larger than the bending rigidity for further deformation. The goodness of fit (R2) of a 

linear regression on this response (for model-driven approach) is ~0.8. In the experiment-driven 

approach, the optimization takes a loss function and stopping criteria of the same form as the 4×4 sample.  

Supplementary Note S16: Self-evolving towards multifunctionality 

Fig. 5c shows the illustration of a 3×3 sample (L = W = 14.8 mm, LN = LM = 4.06 mm) with 9 reflective 

gold patches (Au, 2 mm × 2 mm in size, 300 nm in thickness) mounted on the nodes. The receiving screen 

(white printer paper, 55 mm × 80 mm) is placed 40 mm above the sample in parallel to the XY-plane. A red 

laser beam (~650 nm in wavelength and ~1 mm in beam diameter) and a green laser beam (~520 nm 

in wavelength and ~1 mm in beam diameter) hit the center of two patches separately and got 

reflected. A top camera (Webcams, ELP, 3840×2160-pixel resolution, 30 fps) monitors the reflected 

laser spots on the receiving screen. The target optical function is to overlap two laser spots on the 

receiving screen. A customized imaging analysis method detects the centroid coordinates of the red/green 

laser spots as their current locations on the screen ([x r/g, y r/g], Extended Data Fig. 9a). The target 

structural function is to keep central nodal displacement at -0.5 mm (u5
∗ = -0.5 mm). A linear model for the 

sample (provided by FEA) virtually monitors u5 given the applied voltages. A post analysis via ex-situ 3D 

imaging shows an agreement between the model prediction and the experimental results. 

A loss function 𝑓multi(V)  (Entended Data Fig. 9b), tailored for the target multifunctionality, is a linear 
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combination of two parts, 

𝑓𝑓multi(𝑽𝑽) =  𝑎𝑎𝑓𝑓opt(𝑽𝑽) +  𝑏𝑏𝑓𝑓struct(𝑽𝑽),       (S22) 

where 𝑓𝑓opt(𝑽𝑽)  evaluates the distance between the two reflected laser spots, and 𝑓𝑓struct(𝑽𝑽)  evaluates the 

central nodal error, both normalized to have an initial value of 1 following, 

𝑓𝑓opt(𝑽𝑽) = (𝑥𝑥𝑟𝑟−𝑥𝑥𝑔𝑔)2+(𝑦𝑦𝑟𝑟−𝑦𝑦𝑔𝑔)2 

�𝑥𝑥0𝑟𝑟−𝑥𝑥0
𝑔𝑔�

2
+�𝑦𝑦0𝑟𝑟−𝑦𝑦0

𝑔𝑔�
2 , (S23) 

𝑓𝑓struct(𝑽𝑽) = (𝑢𝑢5−𝑢𝑢5
∗

𝑢𝑢5∗
)2, (S24) 

where [𝑥𝑥0
𝑟𝑟/𝑔𝑔,𝑦𝑦0

𝑟𝑟/𝑔𝑔] is the initial location of red/green spots on the screen. The two target functions are equally

weighted with 𝑎𝑎 = 𝑏𝑏 = 0.5. The experiment-driven self-optimization takes the same algorithm and stopping 

criteria as the ones applied to the 4×4 sample. 
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Supplementary Fig. 1 | Schematic illustration of the fabrication process. a, Prepare a sacrificial layer (PMMA) on a silicon wafer. b, 

Spin coat a bottom polyimide (PI) layer. c, Define the gold (Au) pattern. d, Spin coat the top PI layer. e, Define the PI pattern. f, Undercut 

sacrificial layer to release the sample from the silicon wafer. 
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Supplementary Fig. 2 | An analytical model and FEA study of the mechanical and thermal behaviors of a single serpentine beam 

in response to electromagnetic actuation. a, Schematic illustration (top and cross-sectional views) of the initial state (top) and actuated 

state (bottom) of a serpentine beam. b, Analytical model and FEA study of the relationship of the maximum out-of-plane displacement 𝑢𝑢 

vs. the combination of electric current 𝐼𝐼, magnetic field 𝐵𝐵, material and geometry parameters. c, An analytical model of the temperature 

change due to Joule heating, compared with FEA study of the temperature change of the single serpentine beam. 
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Supplementary Fig. 3 | Magnetic setup for Lorentz force actuation. a, Schematic illustration of the magnetic setup consisting of two 

parallel disks of Neodymium magnets (surface field ~264.0 mT) fixed on a 3D-printed mounting stage and spaced 55 mm apart. The 

setup generates a relatively uniform magnetic field of ~224 ± 16 mT in the center (O) and perpendicular to the disk plane (X-direction). b, 

The magnetic flux density in X-direction (𝐵𝐵X) measured by a gaussmeter (GMHT201, Apex Magnets) across the center (O) along X-axis 

and Y-axis. The model-driven process considers the magnetic field to be uniform with B = 224 mT and neglects the spatial variation. 
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Supplementary Fig. 4 | FEA strain study on the deformed single serpentine beam. a, b, Distribution of the equivalent strain in Au 

(a) and the maximum principal strain in PI (b) when applied current 𝐼𝐼 = 30 mA. c, The relationship of the maximum equivalent strain in Au 

and the maximum principal strain in PI vs. applied current 𝐼𝐼.
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Supplementary Fig. 5 | Characterization of the response time of a single-beam sample. A single beam settles to steady state within 

~0.07 s upon a step current actuation (applied current 𝐼𝐼 = 10 mA). The dynamic process is monitored by a side camera (Canon EOS R, 

60 fps). Scale bars, 1 mm.  
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Supplementary Fig. 6 | Cyclic mechanical behavior of a single-beam sample. The displacement of the beam is monitored by a side 

camera (Canon EOS R, 60 fps) during 1000 actuation cycles at 1 Hz with current amplitude of ±10 mA (a, b) and ± 20 mA (c, d). Under 

large deformation (±20 mA) the displacement amplitude increases by ~4% post 1,000 cycles. 
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Supplementary Fig. 7 | Control and amplification circuits. A resistor of 50 Ω represents the impedance of the sample between two 

ports. Each PWM output signal is amplified by a MOSFET (Infineon Tech, IRF510N) provided by an external power supply (Vex = 6 V). 
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Supplementary Fig. 8 | Schematic illustration of an array of 𝑵𝑵 serpentine beams. 
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Supplementary Fig. 11 | FEA of the 4×4 sample in Fig. 1d 
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Supplementary Fig. 12 | Distribution of current density for the shapes presented in Fig. 1d. a, 4×4 sample. b, 8×8 sample. 
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Supplementary Fig. 13 | Distribution of the equivalent strain in Au and the maximum principal strain in PI for the shapes presented 

in Fig. 1d. a, 4×4 sample. b, 8×8 sample.  
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Supplementary Fig. 14 |  Modeling and experimental investigations of an array of 8 serpentine beams. a, Schematic illustration of 

an array of 8 serpentine beams with detailed geometries (𝐿𝐿 = 10.4 mm, 𝑊𝑊 = 20.6 mm, 𝐿𝐿𝑁𝑁 = 0.8 mm, 𝐿𝐿𝑀𝑀 = 5.0 mm) specified in the exploded 

views of the sample and a single serpentine unit. b, FEA and experimental investigations confirm an approximately linear relationship 

between representative nodal displacements and portal voltages for the array sample. c, d, FEA and experimental results of the array 

sample (side view) morphing into a spherical shape (c) and sinusoidal shape (d). See Supplementary Note S8 for the target shape functions. 

Scale bars, 2 mm.   
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Supplementary Fig. 15 | a, b, Distribution of the current (a), and the equivalent strain in Au and the maximum principal strain in PI 

(b) for the 5 shapes of the dynamic process presented in Fig. 2a.
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Supplementary Fig. 16 | Distribution of current density for the 5 shapes of the falling droplet imitated by the 4x4 sample in Fig. 2b. 
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Supplementary Fig. 17 | Distribution of the equivalent strain in Au and the maximum principal strain in PI for the 5 shapes of the 

falling droplet imitated by the 4x4 sample in Fig. 2b. 
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Supplementary Fig. 18 | Distribution of current density for the 5 shapes of the falling droplet imitated by the 8×8 sample in Fig. 

2b. 
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Supplementary Fig. 19 | Distribution of the equivalent strain in Au and the maximum principal strain in PI for the 5 shapes of the 

falling droplet imitated by the 8×8 sample in Fig. 2b. 
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Supplementary Fig. 20 | Error between the deformed an array of 8 serpentine beams and target shapes defined as the Fourier 

series with the first two terms. a, b,  symmetric (a) and asymmetric (b)  shapes with respect to the vertical axis at X = 0. With parameters 

in the region enclosed by the white dashed lines, the normalized error is smaller than 2%. 
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Supplementary Fig. 21 | Error between the deformed an array of 16 serpentine beams and target shapes defined as the Fourier 

series with the first four terms. a, b, Symmetric (a) and asymmetric (b) shapes with respect to the vertical axis at X = 0. With parameters 

in the region enclosed by the white dashed lines, the normalized error is smaller than 2%. 
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Supplementary Fig. 22 | Error between the deformed 4×4 sample and target shapes defined by a spherical cap. With 

parameters in the region enclosed by the white dashed lines, the normalized error is smaller than 2%. 



49 

0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5
Target surface 

Top view Side view 

L 

(Xc, Yc, c) 

𝑍𝑍 = 𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒 �−
(𝑋𝑋 − 𝑋𝑋𝑐𝑐)2 + (𝑌𝑌 − 𝑌𝑌𝑐𝑐)2

𝑎𝑎2
� 

0  c 

Y 

X 
Y 

X 
Z 

Z 

a/𝐿𝐿 

𝑐𝑐/
𝐿𝐿 

Error < 2% 

𝑎𝑎/𝐿𝐿 

𝑐𝑐/
𝐿𝐿 

Error < 2% 

0 

6% 
Error 

0 

6% 
Error 

Xc  = Yc = 0 

Xc = 0.2𝐿𝐿, Yc = 0 

0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

𝑎𝑎/𝐿𝐿 

𝑐𝑐/
𝐿𝐿 

0 

10% 
Error 

Error < 2% 

Xc = Yc = 0.2𝐿𝐿 
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Supplementary Fig. 24 | Error between the deformed 4×4 sample and target shapes defined by a Gaussian function with two terms. 

With parameters in the region enclosed by the white dashed lines, the normalized error is smaller than 2%. 
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Supplementary Fig. 25 | Error between the deformed 4×4 sample and target shapes defined by a Gaussian function with four 

terms. With parameters in the region enclosed by the white dashed lines, the normalized error is smaller than 2%. 
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Supplementary Fig. 26 | Error between the deformed 4×4 sample and target shapes defined by a sinusoidal function. With 

parameters in the region enclosed by the white dashed lines, the normalized error is smaller than 2%. 
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Supplementary Fig. 28 | A hexagonal-lattice structure to increase the number of voltage inputs. a, Schematic illustration of a 

hexagonal-lattice structure with 34 voltage-input ports, in comparison with b, a square-lattice structure of approximately the same overall 

and unit-cell sizes, 𝐿𝐿 and 𝐿𝐿c. c, Error map of the hexagonal structure morphing into a subset of target shapes. A cap of 2% error defines 

the accessible range of producible shapes. d, Error map of the square-lattice structure targeting the same subspace as in (b).  
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Supplementary Fig. 29 | FEA investigation of a 4×4 sample morphing into example targeting subspaces in uniform and non-

uniform magnetic fields. a, Schematic illustration of a 4×4 mesh structure in a uniform magnetic field 𝑩𝑩far  (magnitude 224 mT) and a 

non-uniform magnetic field 𝑩𝑩far + 𝑩𝑩local, where 𝑩𝑩local is generated by a small magnet (magnetization M = 1.1×10
6
 A/m, see Supplementary

Note S2.1) 2 mm below the center of the structure. b and c, Numerical results of the error between the deformed structure target shapes. 

In the left panels of b and c, 𝑩𝑩local is set to be zero such that the magnetic field is uniform. In the right panel of b, 𝑩𝑩far is set to be zero such 

that the magnetic field is localized around the center.  
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Supplementary Fig. 30 | Characterization of the resolution and uncertainty of 3D imaging. a, The illustration of the characterization 

experiment. A side camera (Webcams, ELP, 3840 x 2160-pixel resolution, 30 fps) provides the measurement of nodal displacement 

(𝑢𝑢m) as the ground truth for 3D imaging calibration. Two cameras (Webcams, ELP, 3840x2160-pixel resolution, 30 fps) are placed 

symmetrically above the sample. Stereo-imaging method provides a measurement of depth (𝑢𝑢p) of each node below the camera plane 

in a unit of pixels (px). b, The depths (𝑢𝑢p) of the 16 nodes of a 4×4 sample under a cyclic actuation (200 cycles of shape IV in Extended 

Data Fig. 5a) are monitored by the stereo-imaging method. The measured depth (𝑢𝑢p) in either actuated or unactuated state follows a 

Gaussian distribution. Analysis of the distribution of 𝑢𝑢p reveals a mean standard deviation of 0.25 px. c, Applying Deming regression 

on 𝑢𝑢m vs. 𝑢𝑢p provides a linear model for the 3D reconstruction, 𝑢𝑢(𝑢𝑢p).  
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Supplementary Fig. 31 | Schematic illustration and formula of 6 classes of target shapes. 
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Supplementary Fig. 32 | Distribution of current density for the 6 target shapes presented in Extended data Fig. 5a. 
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Supplementary Fig. 33 | Distribution of the equivalent strain in Au and the maximum principal strain in PI for the 6 abstract shapes 

presented in Extended data Fig. 5a. 

0  0.019% 0  0.40% 0  0.026% 0  0.60% 

Shape I Shape II 

0  0.016% 0  0.40% 0  0.026% 0  0.40% 

Shape III Shape IV 

0  0.026% 0  0.60% 0  0.013% 0  0.30% 

Shape V Shape VI 

εeq(Au) εmax (PI) 

εeq(Au) εmax (PI) 

εeq(Au) εmax (PI) εeq(Au) εmax (PI) 

εeq(Au) εmax (PI) 

εeq(Au) εmax (PI) 



60 

Supplementary Fig. 34 | Illustration of appreciable in-plane deformations. a, Schematic illustration of a mesh structure with 

sufficiently small in-plane stiffness (~0.02 N). b, FEA result of an in-plane tension deformation of a one-end fixed sample, with the Y-

component of the current density (JY) overlaid (X-component JX ~ 0). Applying uniform electric current (0.5 A) in the Y-direction and a 

uniform magnetic field (B = 200 mT) perpendicular to the OXY plane induces Lorentz forces on the mesh in the X-direction. c, FEA result 

of the shear deformation of a one-end fixed sample induced by a uniform electric current (0.25 A) in the X-direction. d, Complex spatial 

varying in-plane deformations of an all-side fixed sample (left) achieved by a non-uniform electric current distribution (middle and right). 

e, contour map of the strain in (d), constructed from the nodal displacements.  
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Update 

Actuation 

Wait for 
Steady 
State 

3D imaging 

Optimization Sum 

Stereo 
Imaging 

Template 
Matching 

Projection and 
Reconstruction 

0.06±0.01 s 0.1±0.05 s 0.08±0.04 s 0.11±0.05 s 0.00±0.00 s 0.00±0.00 s 0.35±0.15 s 

Supplementary Table 1 | Function evaluation time budget. Experimentally measured time expenditure of each step to complete one 

function evaluation for the experiment-driven optimization of a 4×4 sample is presented. Each function evaluation costs an average of 

0.35 s. 
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Supplementary Video legends 

Supplementary Video 1. A 4×4 and an 8×8 sample morphing into a dynamic shape-shifting process. 

A 4×4 and an 8×8 sample morphs into four target shape-shifting processes with uniform velocities and 

constant frequency: growing up, moving around, splitting, and oscillating. A 4×4 sample morphs into the same 

processes with control on instantaneous velocity and acceleration of the dynamics. The actuation voltages 

(designed via model-driven approach) are updated at a rate of 10 fps.  

Supplementary Video 2. A 4×4 sample morphing into the dynamic process of a droplet hitting a 

solid surface. 

A 4×4 sample morphs into a bouncing water droplet captured in slow motion by a high-speed camera (10,000 

fps). The dynamic shape-shifting process consists of five stages: falling onto the surface, spreading out, 

bouncing back, vibrating and stabilizing. The 3D shapes of the droplet extracted from the video frames are 

normalized by the sample size. The actuation voltages (designed via model-driven approach) are updated at 

a rate of 10 fps.  

1997b
Cross-Out
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Supplementary Video 3. A 4×4 sample morphing into target abstract shapes via the experiment-

driven process. 

A 4×4 sample starts from a zero-actuation state and self-evolves into target explicit shapes (Shape I, III, IV in 

Extended Data Fig. 5a). An optical camera captures the evolving sample during the experiment-driven 

process. The in-time 3D-reconstructed surface and the evaluation of the loss function 𝑓(V = 0)  over the 

number of function evaluations are synced with the video with a 10× playback speed. In all cases, the loss 

function 𝑓 (V  = 0) reaches a value below 0.005𝑓(V = 0) (stopping criterion) within 15 iterations.

Supplementary Video 4. A 4×4 sample dynamically morphing six abstract shapes. 

A 4×4 sample dynamically morphing six abstract shapes (Shape I–VI in Extended Data Fig. 5a) with the 

actuation voltages (designed via model-driven approach) updated at a rate of 10 fps. An in-situ 3D 

imaging provides a time-aligned 3D reconstruction of the morphing surface.  

Supplementary Video 5. A 4×4 sample morphing into a target abstract shape against 

extrinsic mechanical disturbance via the experiment-driven process. 

A 4×4 sample self-evolving into a target shape (Shape III in Fig. 3b) demonstrates an ability to self-adjust 

against mechanical disturbance. The first column shows the video recording of an undisturbed self-

evolving process, time-synced with the 3D-reconstructed surface and the corresponding error map. 

The second column shows a situation where an external load (~0.1 g) is applied on a serpentine beam. 

In the third column, the sample continues to self-evolve to adapt to the additional loading.  
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Supplementary Video 6. A 4×4 sample demonstrating a semi-real-time morphing scheme 

via experiment-driven approach to learn the continuously evolving surface of a palm in-time. 

The experiment-driven approach delivers a semi-real-time morphing scheme to learn the continuously 

evolving surface of a real object in-time. A duplicated stereo-imaging setup reconstructs the shapes of the 

palm surface using a 4×4 array of markers. The optimization acts directly to minimize the normalized 

displacement difference between the 16 markers and their corresponding nodes of a 4×4 sample. The hand 

movement is captured by Optical cameras captures the hand movement and the evolving sample. The videos 

are shown with a frame-to-frame alignment.  

Supplementary Video 7. A 3×3 sample self-evolving toward multifunctionality. 

A 3×3 sample with 9 reflective gold patches self-evolves via an experiment-driven process to perform an 

optical function and a structural function simultaneously. The optical function is to reflect and overlap two 

laser spots on a receiving screen. The structural function is to control the deformation of the central node of 

the sample to achieve the target displacement (-0.5 mm). The video combines and aligns the videos of the 

receiving screen, the evolving sample, and the ex-situ 3D reconstruction of the shape-shifting process, along 

with the loss functions over the number of function evaluations.  
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