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I. DEVICE PROPERTIES

This supplementary material includes device data from ibm kyiv, a 127 qubit processor, and ibm ithaca, a 65
qubit processor. Although the two devices differ in their qubit numbers and readout properties, other attributes such
as coherence times and gate error rates are comparable. While we produce the data for main-text experiments on
ibm kyiv, we used ibm ithaca to develop calibration and data-processing strategy and investigate the impact of device
non-idealities on error mitigation outcomes.

Our device consists of qubits arranged with a heavy-hexagonal lattice topology [S1]. Single qubit gates are calibrated
to have 49.78 ns wide Gaussian envelope pulse with DRAG correction [S2]. The device properties are summarized in
Table 1. Two qubit gates were defined using the echoed cross-resonant (CR) pulse sequence [S3–S6]. As no qubit has
more than three neighbors, the two qubit gates can be separated into three depth-1 layers, see Fig. S1(a) for ibm kyiv
and Fig. S1(b) for ibm ithaca. Each layer was set to have a uniform two qubit length of 611.56 ns for ibm kyiv
and 512 ns for ibm ithaca. The two qubit gates were calibrated simultaneously and Fig. S1(c, d) summarizes the
distribution of two qubit randomized benchmarking results that are performed simultaneously per layer. We use
the identical randomized benchmarking sequences within each layer to mimic the situation where the same length
of two qubit gates are applied in parallel within each layer. We emphasize that the gate error is in general worse
than benchmark results from isolated two qubit pairs, as (i) most of the gates are slower compared to the case
when each individual gates are optimized separately, as we choose to use a uniform gate length for each layer, and
(ii) benchmarking isolated pairs cannot capture spectator associated errors where driving a nearest-neighbor qubit
(spectator) could induce errors on the cross-resonant gate operation [S7].

The readout length for ibm kyiv is 782 ns for average χ/2π = 1.11 ± 0.20 MHz and κ/2π = 3.80 ± 1.09 MHz.
Meanwhile, ibm ithaca has average χ/2π = 1.46 ± 0.51 MHz and κ/2π = 0.28 ± 0.04 MHz, which is lower than the
value in ibm kyiv. Therefore, the readout length is tuned up to be longer as 4.55 µs. To initialize each qubit, we first
measure the qubit state, then apply a π pulse conditioned on |1⟩. We repeat this conditional reset procedure twice as
an initialization protocol. The resultant readout fidelity is illustrated in Fig. S1(e, f).

ibm kyiv (127Q) ibm ithaca (65Q)
median mean min max median mean min max

f01 (GHz) 4.61 4.62 ± 0.11 4.34 4.96 4.73 4.74 ± 0.10 4.54 4.93
f01 − f12 (MHz) 311.07 310.77 ± 11.48 280.56 356.92 333.36 333.99 ± 5.61 316.04 355.56

T1 (µs) 287.87 293.39 ± 84.78 85.30 567.55 183.54 180.52 ± 43.44 77.92 278.08
T2 (µs) 127.49 156.73 ± 109.47 16.18 456.02 183.70 182.88 ± 91.05 19.27 407.15

TABLE S1. Summary of single qubit properties on ibm kyiv and ibm ithaca. Reported T1, T2 were obtained from
mean values of daily measurements over a 7-day period.

II. CLASSICAL PROCESSING PROCEDURES

In this section, we discuss the detailed protocol of the error mitigation procedure.

A. Circuit randomization

The idea behind ZNE is to evaluate observable expectation values for circuits with different noise-gain levels and
extrapolate from these values the desired zero-noise error-mitigated observable. In our approach, the circuits are
assumed to consist of layers of noisy two-qubit gates, interleaved with noise-free or low-noise single-qubit gates. The
noise of each layer ℓ is shaped using Pauli twirls and modeled as sparse Pauli-Lindblad noise channels Λℓ. We
amplify the noise to the desired noise-gain level G ≥ 1 by applying the scaled noise channel ΛG−1

ℓ before each layer
ℓ. Moreover, to enable readout-error mitigation, we apply Pauli-X twirling of the measurements at the end of the
circuit [S8]. The implementation of the twirls and noise amplification channels leverages linearity of the expectation
value and amounts to sampling circuits from a distribution that implements the desired operations in expectation.
The sampling of a single circuit instance proceeds as follows. First, note that each of the noise amplification channels

ΛG1

ℓ represent a (highly structured) n-qubit Pauli channel
∑4n−1

i=0 piPi ·P †
i . The coefficients {pi} of any Pauli channel

form a probability distribution, and we therefore replace the channel by a single Pauli Pi operator sampled according
to this distribution, using the efficient sampling procedure described in Methods section. Second, we implement the
Pauli-twirled version of the noisy layer by applying a Pauli Pi operator, sampled uniformly at random, followed by
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FIG. S1. Summary of single/two qubit gate and readout fidelity distribution on ibm kyiv and ibm ithaca. All the
two qubit gates are batched into three layers for (a) ibm kyiv and (b) ibm ithaca. (c) Single/two qubit error per gate (EPG)
distribution for ibm kyiv. Median value is indicated in the plot. The two qubit gates within the same layer are calibrated and
evaluated simultaneously. Mean value of single qubit EPG is 6.75 × 10−4 ± 6.80 × 10−4 and mean value of two qubit EPG is
1.15 × 10−2 ± 0.61 × 10−2. (d) Single/two qubit error per gate (EPG) distribution for ibm ithaca. Median value is indicated
in the plot. The two qubit gates within the same layer are calibrated and evaluated simultaneously. Mean value of single
qubit EPG is 5.44× 10−4 ± 3.17× 10−4 and mean value of two qubit EPG is 1.17× 10−2 ± 0.54× 10−2. (e) Readout fidelity
distribution for ibm kyiv. Median value is indicated in the plot, and the mean value is 1.53× 10−2 ± 3.57× 10−2. (f) Readout
fidelity distribution for ibm ithaca. Median value is indicated in the plot, and the mean value is 2.56× 10−2 ± 2.55× 10−2.

the noisy layer, and the conjugation of Pi by the ideal (noise-free) layer. Third, we precede all final measurements
by a Pauli X or I operator, sampled uniformly at random, and classically implement the corresponding bit-flips to all
measurements. All other gates are left unchanged. It is easily seen that each part implements the desired operation
in expectation, and it then follows directly from independence of the components that we sample our circuits from
the desired distribution.

B. Data accumulation and extrapolation

We illustrate the data accumulation and extrapolation protocol for the mitigated estimation of a single observable
⟨O = X2⟩ on a 65-qubit circuit consisting of four Trotter steps with θh = 0, with states prepared and measured in
the Pauli-X basis, as illustrated in Fig. S3(a). Extrapolation is done at noise-gain levels G ∈ {1, 1.1, 1.34, 1.58},
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corresponding to tilted Chebyshev nodes [S9]. We prepare Nb = 54 batches of 100 randomized circuit instances for
each of the four different gain levels and acquire 64 samples per circuit by sequentially running all batches on IBM’s
65-qubit processor ibm ithaca. Following readout-error mitigation [S8] on the data we obtain the time-series data
shown in Fig. S2(a). The time-series shows large fidelity degradations for circuit instances 3500 to 4500, corresponding
to batches 35–45. The temporal locality of these aberrations suggests they are caused by transient degradations in
the device performance, such as the resonant interaction of qubits with two-level systems (TLSs) [S10, S11], which
we further analyze in Sec. III. To identify such outliers, we use thresholding based on the median absolute deviation
(MAD). That means that, given the time-series estimates [O] = [⟨O⟩1 , ⟨O⟩2 , . . . , ⟨O⟩Nb

], we identify batch i as an
outlier whenever

| ⟨O⟩i −median([O])| > 2σ̄, (1)

where σ̄ = k ·MAD describes the deviation of the observable with MAD = median(|[O]−median([O])|) and k = 1.4826
is chosen assuming normally distributed data. Following this procedure, we identify seven batches, indicated as vertical
lines in Fig. S2(a), as outliers and exclude these batches from all further processing. We obtain the final observable
estimate by averaging the ⟨O⟩i values of the remaining batches. The cumulative mean of ⟨O⟩i over the selected data
stabilizes after around 3000 accumulated circuit instances, as shown in Fig. S2(b).

Given the observable estimates for the different gain levels, we can perform extrapolation to the zero-noise limit.
Figure S2(c) plots the mitigated observable value obtained using linear (empty symbol) and exponential (filled blue
symbol) least-square fits. The estimate closest to the ideal value of 1 is obtained using the exponential fit. We
determine error bars on the final mitigated observables by means of bootstrapping. That means the data are resampled
and reprocessed to obtain a set of estimates that can then be used to estimate confidence intervals. Random sampling
occurs twice in the experiment: once when generating random circuit instances, and again when repeatedly sampling
each circuit instance on the quantum hardware. We therefore first resample circuits, uniformly at random with
replacement, from the pool of circuit instances. We then resample shots from the pool of shots for each of the sampled
circuit instance. In our experiment we generate 100 mitigated expectation values this way for and plot the median
and ±68% quantiles in Fig. S2(c). Fig. S2(d) illustrates the corresponding plot for increasing amounts of data. While
the extrapolated value converges near 1, the corresponding confidence interval obtained from bootstrap also decreases
for more data accumulation.

Using the same batch data, we repeat the procedure outlined in Fig. S2(a–d) for all 65 weight-one Pauli-Z observables
Oq. Figure S2(e) plots the distribution of ⟨Oq⟩ over the 100 bootstrap instances along with the global magnetization

MO = (1/65)
∑
q

⟨Oq⟩ , (2)

for the different fitting methods. We found that exponential extrapolation can become unstable for large circuit
depths when the expectation values cluster around zero, even for small noise-gain levels. Similar unstable behavior
can occur for high-order polynomial extrapolation in the form of Runge’s phenomenon [S12], where overfitting leads
to large fluctuations outside the sampled domain. As a way of regulating these instabilities we reject results in which
the uncertainty of the extrapolated estimate, taken as the square root of the diagonal element of the covariance matrix
returned by the fit routine, exceeds a threshold value of 0.5. Based on this criterion we successively downgrade the
estimation from exponential fit to linear fit, and from linear fit to the unmitigated result obtained for noise-gain level
G = 1. This pragmatic solution was performed on both experimental and bootstrapped results independently, and we
leave further improvements to this approach for future studies. Quadratic fits were found to produce larger variance
and larger error compared to exponential extrapolation (see for instance Fig. S2(e)), and were therefore not used for
any of the results in the main text.

C. Beyond optimizing mitigation protocols

The two error mitigation protocols ZNE and PEC set out to improve expectation values within the allotted coherence
time of the device. For these protocols the hardware noise sets a constant coherence limit in both the depth and the
number of qubits. A rough estimate [S13] for some generic device noise parameter λ indicates that one requires the
product nLλ, for n - qubits and circuit depth L, to be small. As such, these mitigation protocols are not expected
to increase the circuit depth beyond what is permitted by the hardware constants. Recently derived information
theoretic bounds, that are independent of the specific error mitigation protocols, provide formal support for this
picture [S14–S16]. This indicates that going forward beyond the optimization of the protocols taking into account the
actually relevant circuit volume [S17], the central contribution for increased circuit volumes will be the improvement
in hardware noise.
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FIG. S2. Data processing procedures. As an example, we illustrate processing steps for estimating ⟨Oq = X2⟩ after 4
Trotter steps of the circuit in Fig. S3(a) using data from ibm ithaca at noise amplification factors G = 1, 1.1, 1.34, 1.58. (a)
Each point represents an expectation value obtained from a batch of 100 random circuit realizations for Pauli/readout twirling
and random Pauli gate insertion for noise amplification. Error bars indicate 68% confidence interval for all panels, obtained
from bootstrapping 100 configurations; some are smaller than markers. Vertical lines indicate outliers identified from Eq. 1.
(b) The cumulative averages converge after a few thousands of random circuit instances. Vertical lines emphasize excluded
outliers identified in (a). (c) Error mitigation (ZNE) is performed using four gain factors (three in the main text). First order
polynomial fit and exponential order extrapolation (exp) are plotted along with the unmitigated experimental results. (d)
Error mitigation is performed as a function of accumulated data. The ideal value is 1 for this observable, indicated as a dotted
horizontal line. The exponential extrapolation outperforms the first order polynomial fit. (e) The unmitigated and mitigated
observables on the 65 qubits are plotted to show the estimated observable distribution across 65 qubit device.

D. Trotter experiments on ibm ithaca

As a demonstration of reproducibility of our methods, we measure error mitigated observables for verifiable Clifford
circuits on ibm ithaca. The ideal value can be obtained efficiently using Clifford circuit simulator and compared
against the experiment results. As a first example, we set the transverse field in the Ising Hamiltonian to zero
(RX(0) = I) and evolve an initial state |+⟩⊗65

= (H |0⟩)⊗65, where H is the Hadamard gate. Inset of Fig. S3(a)
illustrates the Hadamard gates applied at the beginning for the state preparation, and another Hadamard before
measurement to perform a projective meausrement on x−axis. Since we apply RZZ(−π/2) rotational gate per Trotter
step, and all the gates commute, every 4 Trotter steps makes a full RZZ(−2π) rotations and is equivalent to identity
operation. Therefore, for any qubit q, the weight-1 observable ⟨Xq⟩ ideally recovers expectation value 1 every four

steps. Note that the choice of initial state is different from the one in the main text, |0⟩⊗127
. The particular choice

of |+⟩⊗65
is to expose the circuit to phase errors, and similar experiment is performed and discussed in Sec. IVC for

ibm kyiv. Figure S3(a) shows the experimental results for averaged weight-1 observable, ¯⟨X⟩. While the unmitigated
observable shows a gradual decay from 1 with an increasing deviation for deeper circuits, the mitigated observables
(blue symbol) show agreement with the ideal value even going up to 20 Trotter steps or CNOT depth 60.

Another Clifford angle of interest is θh = π/2 (RX(π/2) = e−iπ/4
√
X). We use Qiskit (quantum info.Clifford) to

efficiently find some stabilizers of the circuit, which have eigenvalues ±1. The minimum weight of the stabilizers thus
obtained grows for increasing Trotter steps, and here we select two such stabilizers for each Trotter step related by
the 180◦ rotational symmetry of the connectivity of ibm ithaca (Fig. S3(b) inset). Figure S3(b) shows absolute values
of the estimated expectation values of the two minimum-weight stabilizers at each Trotter step. The unmitigated
observable (empty symbol) clearly decays for increasing Trotter steps due to the accumulated errors arising from the
increased circuit depth and weight of the observable.

III. NOISE MODEL INSTABILITY DUE TO TWO-LEVEL SYSTEMS (TLS)

Qubit-TLS interactions are a well known source of qubit coherence fluctuations. In this section, we first discuss
data revealing the effect of TLS on error mitigated estimates of expectation values, and then present an additional
experiment that repeatedly runs the noise-learning scheme to directly probe the drift of the device noise over time.
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FIG. S3. Experimental results on ibm ithaca for Clifford circuits. Similar experiments presented in the main text are
carried out on ibm ithaca. The magnetization Mx, computed by averaging weight-1 expectation values, is estimated for the
circuit described in inset above (a). Here we have included the final H layer in the definition of the X measurements. (a)
Results of verifiable Clifford circuits with θh = 0. Mitigated estimates of Mx every 4 Trotter steps are in good agreement with
the ideal value of 1 (stars). (b) Another verifiable Clifford circuit, with θh = π/2. Here we measure selected stabilizers at
each Trotter step whose true eigenvalue is 1. The error mitigation successfully estimates the ideal values up to Trotter step 6.
Error bars indicate 68% confidence intervals obtained from 100 bootstrap configurations in all panels; some are smaller than
the markers.

Both experiments were performed on ibm ithaca.

A. TLS signatures in mitigated expectation values

Figure S4 illustrates the impact of the qubit-TLS interaction on error mitigated estimates of the same observable
discussed in Fig. S2(a). Figure S4(a) focuses on G = 1 results, showing the fluctuation of ⟨X2⟩ in chronological
order. The acquisitions were not evenly spaced in time, so the same data are plotted in Fig. S4(b) as a function of
elapsed wall-clock time. Interleaved with these acquisitions were experiments to monitor qubit-TLS interactions by
TLS spectroscopy [S11], plotted in Fig. S4(c). TLS spectroscopy monitors the excited state probability P1 remaining
after a fixed delay time of 20 µs as a quick estimator of T1. A variable off-resonant Stark tone sweeps the qubit
frequency, allowing us to obtain spectra of the qubit-TLS interactions. Dark regions in Fig. S4(c) indicate spectral
dips in T1 corresponding to strong qubit-TLS resonances. A clear dip develops for ⟨X2⟩ near elapsed time 99 to 113
hours in Fig. S4(b), where a corresponding feature is observed in Fig. S4(c). This correlation indicates that the large
fluctuation of the unmitigated signal in Fig. S4(a) is likely due to the strong qubit-TLS interaction.

Figure S4(d) helps illustrate the impact of the qubit-TLS interaction on the mitigated results. The data processing
performed in panel (d) differs from the standard procedure depicted in Sec. II. In this panel, each bin of 100 random
circuit instances is extrapolated independently (blue circles) and then cumulatively averaged (blue line), rather than
the standard procedure of bins being averaged and then extrapolated. Some additional scatter is expected in these
results due to the limited number of circuit instances in each bin. However, the exponential extrapolation clearly fails
to fully mitigate errors during the TLS dip, biasing the accumulated mean value away from the ideal value of 1.

In panel (e), we return to the standard procedure of averaging first and then extrapolating. If we include all of the
data near the large dip, that data noticeably biases the extrapolated result. In contrast, panel (f) shows the result
after rejecting outliers per Eq. 1, which improves the bias and reported uncertainty.
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FIG. S4. Impact of TLS on unmitigated and mitigated observable. (a) A weight-1 unmitigated (G = 1) observable
presented in Fig. S2(a). Each point represents 100 random realizations of Pauli/readout twirling. (b) The same data in (a)
are now plotted against the start time of the mitigation task. Vertical lines indicate start times of the two-level system (TLS)
spectroscopy. (c) TLS spectroscopy monitors excited state population P1 after RX(π) followed by 20µs delay. The decay is
a proxy for T1 and P1 is collected near the original qubit frequency (red dots). Color bar indicates P1 value and dark blue
region indicates a strong qubit-TLS interaction. (d) Exponential extrapolation is performed for each point (blue circle). The
accumulated average of each extrapolation results are presented (blue line). (e) The unmitigated observables are obtained
from cumulative average, then the extrapolation is performed in exponential fit (blue line). (f) The unmitigated observables
are obtained from cumulative average excluding the outliers indicated as vertical lines. We obtain extrapolated results with
exponential fit and the results are shown in blue.

B. TLS signatures in learned noise models

The accuracy and stability of noise model play a crucial role in the efficacy of the error mitigation. With instabilities
in coherence arising from qubit-TLS interaction as discussed above, a natural question is how these are captured in the
noise learning. We monitored the stability of the noise model coefficients by repeatedly executing the noise learning
procedure on ibm ithaca for approximately 17 hours. The learning circuits contain a CNOT layer repeated 0, 2, 4,
8, 12, 24, or 48 times. We twirl the two qubit gate noise by inserting random Pauli gates before and after CNOT
gates, along with random gates for readout twirling, producing 64 different random realizations. We then apply pre
(post) rotational single qubit gates to collect all the relevant prepared (measured) Pauli bases to construct the sparse
Pauli-Lindblad noise model [S8, S18]. We apply dynamical decoupling on qubits not participating in the layer of two
qubit gates. Each learning experiment on all 65 qubits takes around 47 minutes on average.

Instead of visualizing all model coefficients, we define the single-qubit quantity γi =
∏

k∈Ki
e2λk where Ki is the set

of model coefficient indices associated with weight-1 Pauli generators acting on the qubit i. Likewise, we also define
local two-qubit quantity γi,j =

∏
k∈Ki,j

e2λk where Ki,j is the set of model coefficient indices associated with weight-2

Pauli generators acting on the qubit pair (i, j). Both γi and γi,j are factors in the quantity γ that determines the
sampling overhead of PEC [S18], which is discussed in the Methods section. Ideal gates on qubit i (qubit pair i, j)
would produce γi = 1 (γi,j = 1), while noisy gates would produce values larger than 1. These quantities thus provide
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FIG. S5. Experimentally measured stability on noise model. The learning task is carried out on one particular set of
two qubit gates for 21 consecutive times on ibm ithaca. (a) A defined weight-1 noise parameter γi where i ∈ {0, · · · , 64} is
qubit index. We measure its variability by the ratio of standard deviation and averaged value. The quantity that shows top
five variability is highlighted. (b) A defined weight-2 noise parameter γi,j where i, j are nearest neighboring qubit index. (c)
Overall γ = ΠiγiΠi,jγij parameter is plotted (rectangular symbol). γ shows reduced fluctuation once we exclude i, j = 45, and
becomes relatively stable if we exclude i, j = 3, 11, 31, 41, 45. (d-e) We plot TLS spectroscopy that is monitored during the
experimental period on top pannel. The bottom panel shows the corresponding γi, which is binned based on the experiment
start time. The color bar is P1 value measured using the same protocol described in Fig. S4.

convenient ways of monitoring noise model fluctuations local to a specific qubit or pair of qubits.
Figure S5(a, b) shows examples of fluctuations in γi and γi,j , respectively. In each panel, we show the five qubits

(qubit pairs) with the largest relative fluctuations, computed as the standard deviation divided by the mean value.
We find that most of the qubit indices identified in Fig. S5(a) also appear in Fig. S5(b), suggesting the overall error is
dominated by noise localized to a few particular qubits. Figure S5(c) shows the quantity γ =

∏
k∈K e2λk , related to the

sampling cost of the layer, where K spans all model parameters (squares). Excluding the most prominent fluctuator,
qubit 45, significantly reduces the fluctuation of the overall γ (triangles). Removing all model errors associated with
the top five fluctuators in Fig. S5(a), i.e. excluding all i, j ∈ {3, 11, 31, 41, 45}, further stabilizes and reduces γ.

Figure S5(d-h) shows TLS spectroscopy near the frequency of the specified qubit (upper panel) and the corre-
sponding γi (lower panel) over time. The bottom panel γi is binned based on the TLS spectroscopy time and the
start time of the learning task. Dark vertical bands in panels (d,e,h) indicate broad suppression of P1 due to strong
qubit-TLS interactions, correlated with elevated γi in the bottom panel. Panel (f) also shows correlation of broader
P1 suppression with the moderate elevation in γ41. We observe more significant elevation of γ41 when a spectrally
narrow TLS feature develops close to Q41 frequency. Similar behavior is observed in (g), where a TLS (dark horizontal
band) drifts into resonance with the qubit around 4-9 hours in elapsed time. These observations help clarify how TLS
spectral dynamics are a major contributor to instability of the noise models.

It is challenging to prevent qubit-TLS interaction as the physical origin of TLS is not fully understood and super-
conducting transmon qubits are generally exposed to multitudes of TLS [S19, S20]. Nonetheless, Fig. S5 highlights
that addressing strong qubit-TLS interactions in superconducting qubits will be crucial for the stability of learned
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FIG. S6. Example noise models for the three CNOT layers. The three noise models shown partly obscured in Fig. 1c
are shown here in full.

noise model, and therefore for extending the reliability of error mitigation performance on large scale processors.

IV. ADDITIONAL DETAILS ON THE TROTTER EXPERIMENTS ON ibm kyiv

This section provides further supporting details regarding the Trotter-simulation experiments in the main text,
which were run on ibm kyiv.

A. Noise learning and random-circuit generation

The noise model of ibm kyiv is obtained following a protocol similar to that outlined in Sec. III B. The learning cir-
cuits consists of a CNOT layer repeated 0, 2, 4, 8, 12, or 48 times, and 40 random circuit realizations for Pauli/readout
twirling. The averaged wall-clock time for the learning task takes around 34 minutes. We sequentially learn the three
layers of two qubit gates described in Fig. 1 in the main text. The three example noise-models shown overlapping in
Fig. 1(c) are displayed in full in Fig. S6. We refreshed the noise model by running the learning procedure again on
average every ∼ 7 hours 29 minutes. For example, learning task was performed twice for Fig. 2(c) and four times for
Fig. 3(a,b).

We carry out the error-mitigation experiment in Fig. 2(c) by compiling the circuits for G = 1, 1.2, 1.6 and
0, 4, 8, 12, 16, 20 Trotter steps, producing for each configuration 100 random circuit realizations on Pauli/readout
twirling and insertion of Pauli gates for error amplification. The compiled circuits are submitted to the quantum
backend in a random order so that all the relevant circuits are exposed to the similar noise environment during the
experiment. The experiment is repeated 20 times with different random seeds in order to accumulate 2000 circuit
instances.

Experiments in Fig. 3(a-b) are performed by compiling the circuits for G = 1, 1.2, 1.6, and 0, 5 Trotter steps at a
particular choice of θh. We use two distinct measurement bases (one for weight-1 observable, the other for weight-
10 observable) for 100 random circuit realizations on Pauli/readout twirling and insertion of Pauli gates for error
amplification. The batched tasks are submitted for various θh first then the experiments are repeated 20 times with
different random circuit realizations to accumulate 2000 circuit instances in total. This way of batching allows us to
expose experimental results for various θh to relatively similar temporal variation of device characters.

Experiments in Fig. 3(c) and Fig. 4(a-b) are performed in a similar fashion with Fig. 3(a-b), but using one distinct
measurement basis for the observable of interest. he tasks are similarly batched per 100 random circuit realizations
and submitted for various θh. Experiments in Fig. 3(c) and Fig. 4(b) are performed with G = 1, 1.2, 1.6, while
G = 1, 1.3, 1.6 is used for Fig. 4(a). We could not find any discernible difference in extrapolation quality for two
different choices of gain factor. We accumulated more random circuit instances for certain angles, for instance near
θh = π/2 in Fig. 4(a), in order to have better confidence interval.
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FIG. S7. Estimated sampling costs using a naive PEC implementation to mitigate the Trotter circuits of the
main text. These astronomical values suggest that such a mitigation scheme would be untenable here, motivating the use of
methods expected to have lower overhead such as ZNE or lightcone-optimized PEC.

B. Predicted sampling costs of a naive PEC implementation

In this section, we estimate what the sampling cost would be if we used a naive PEC implementation (i.e. not
optimized by lightcone analysis [S17]) instead of ZNE to mitigate errors in Trotter experiments of the main text.
Six different noise models, each including all three layers, were learned and employed to obtain data for Figs. 2 and
3. Defining γl as the γ (see Methods section for more details) of a circuit containing one copy of the CNOT layer
l, the median (15%, 85%) γl from 29 separate learning attempts for the three layers are 10.60 (−1.37,+3.3), 12.00
(−1.24,+6.14), and 12.88 (−3.83,+2.89). Applying PEC to a circuit with 20 Trotter steps (CNOT depth 60) would
thus incur a sampling cost of γ2 = (γ1γ2γ3)

40 ∼ 10128. Values are plotted as a function of circuit depth in Figure S7.
We see that ZNE performed well in the main-text experiments despite the presence of hardware noise predicted to
make a naive PEC implementation unaffordable, highlighting the importance of choosing an error mitigation scheme
suitable for a given computational task and available quantum hardware.

C. Magnetization measurements with θh = 0 circuits

Here we further detail the Clifford circuit experiments in Fig. 2(c) to provide better understanding on device-
wide error mitigation results for varying Trotter steps. In addition, we show the effectiveness of the exponential
extrapolation compared to first order polynomial extrapolation. While exponential extrapolation provides minimal
bias on average, first order extrapolation results clearly show increasing deviation from the ideal value for deeper and
more noise-prone circuits. The last point is discussed further in Sec. V.

Figure S8(a) presents the same data from Fig. 2(c) up to 12 Trotter steps. Panels (b-d) detail the data underlying the
points in (a), including the unmitigated values (G = 1) along with the results of first-order polynomial and exponential
extrapolations, and finally the best extrapolation as defined in Sec. II. During the experiment, we identified strong
qubit-TLS interactions affecting qubit 23, 55, and 67 that manifest as low-flying outliers in the unmitigated data.
As expected, uncertainties generally increase with circuit depth (Fig. S8(b-d)), as more errors accumulate during the
longer circuits; in a few cases this leads to unphyiscally large observable values for exponential extrapolation with
large fit uncertainty. Note that the resultant mean value of the exponential extrapolation in Fig. S8(d) is biased by
a data point with poor fit and this results in an unphysically large observable estimate, outside of the plotting range.
In this case, best fit selects first order polynomial extrapolation such as the outliers Q67 in Fig. S8(c) and Q23,67 in
Fig. S8(d) for experimental value. A similar situation happens for bootstrapped values; portion of the bootstrapped
instances select exponential fit while another portion of the instances choose first order extrapolation, resulting in
large error bar. We leave optimization of how to threshold extrapolation method selection to best trade off bias and
variance for future work.

For completeness, Fig. S3(e-h) show results of an analogous experiment with an additional layer of Hadamard gates
at the start and end of each circuit (inset), similar to Fig. S3(a). Here the unmitigated results exhibit greater bias
and variance compared to those in Fig. S3(a), which we attribute to the Hadamard gates making the state sensitive to
phase errors. Nonetheless, exponential ZNE still recovers comparable accuracy. In contrast, the biases of polynomial
fits grow significantly with circuit depth (more pronounced for the circuit with Hadamards), supporting the preference
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FIG. S8. Further details of mitigated magnetizations with θh = 0 on ibm kyiv. (a) Global magnetization Mz as a
function of Trotter steps of the inset circuit. The data are reproduced from Fig. 2(c). (b-d) Distributions for unmitigated,
polynomial extrapolation, exponential extrapolation, and the best fit results after 4, 8, and 12 Trotter steps in panels (b-d)
respectively. (e-h) Similar to the top row, but with initial and final Hadamard gates that increase susceptibility to phase errors.
Error bars indicate 68% confidence interval obtained from 100 bootstrap configurations in all panels; some are smaller than the
markers.

for exponential extrapolation in most cases, as further motivated in Sec. V.

V. EXPONENTIAL EXTRAPOLATION

In this section we study how the observable expectation values change with different scaling factors of noise ampli-
fication and suppression. For Clifford circuits we show that the expectation values can be described by exponential
curves. For circuits with non-Clifford gates, this generally changes to sums of exponentials. A different derivation
in [S21] resulted in the same multi-exponential form.

A. Noise scaling

As a preliminary, let U = U · U† be a linear operator and denote by Pn = {Pi}4
n

i=1 = {I, σx, σy, σz}⊗n the set of
n-qubit Pauli operators. The Pauli transfer matrix (PTM) corresponding to U indicates, informally, how much of
Pauli Pj it transforms to Pauli Pi. The matrix MU therefore has elements

MU [i, j] =
1

2n
tr[PiU(Pj)], with i, j ∈ [1, 4n].
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A useful property of Pauli transfer matrices that we will use below, is that the PTM of a product of linear operators A
and B satisfies MAB = MAMB. For Clifford operators G, MG is a signed permutation matrix. That is, each row and
column of MG contains exactly one element with value ±1. In particular, we define the non-zero element in column j
to be σG(Pj) ∈ {−1,+1}, such that TG(P ) := σG(P )G(P ) ∈ Pn for any P ∈ Pn. That is, application of G on P results

in Pauli TG(P ) with sign σG(P ). We can express the noisy implementation of an operator U as Ũ = U ◦ΛU , where ΛU
represents a noise channel. By virtue of Pauli twirling, we can assume, without loss of generality, that ΛU is a Pauli
channel:

ΛU (ρ) =

4n∑
j=1

cU [j]PjρP
†
j , (3)

with cU [j] ≥ 0 and ∥cU∥1 = 1. The Pauli transfer matrix MΛU is diagonal with elements

fΛU (Pi) =
1

2n
tr[PiΛU (Pi)] =

4n∑
j=1

µ(Pi, Pj)cU [j],

where µ(Pi, Pj) is 1 if Pi and Pj commute (that is, PiPj = PjPi), and −1 otherwise. A special class of structured
Pauli channels can be represented by the Pauli-Lindblad error model. Given such a model, Λ, with model parameters
{λk} and associated Pauli terms {Sk}, we have fidelities [S18]

fΛ(Pi) = exp
(∑

k

λk(µ(Sk, Pi)− 1)
)
> 0.

Scaling the model coefficients λk by a factor β results in the noise operator Λβ with (diagonal) Pauli transfer matrix

FΛβ = F β
Λ . Although the resulting operator is no longer a Pauli channel for β < 1, it can still be applied, on average,

using quasi-probabilistic sampling. For general Pauli channels, we can form Λβ
U by exponentiating the fidelities and

apply the Walsh-Hadamard transformation to obtain updated channel coefficients cU .

B. Noisy Clifford circuits

The ability to apply Λβ allows us to control the noise for a gate. For instance, premultiplying a noisy Clifford
gate G̃ = G ◦ Λ by Λβ , with β = α − 1, results in an operator G̃α with transfer matrix MGFΛF

α−1
Λ = MGF

α
Λ . In

probabilistic error cancellation (PEC), this property is leveraged to cancel gate noise by choosing α = 0, since F 0
Λ = I.

In probabilistic error amplification scenario, we choose α ∈ (0, 1) or α > 1 to reduce, respectively amplify, the gate

noise. Now, consider a quantum circuit that is implemented using a series of noisy Clifford operators G̃ℓ = Gℓ ◦ Λℓ

with ℓ = 1, . . . , L. The overall Pauli transfer matrix of the circuit is given by a product of diagonal fidelity matrices
and (signed) permutation matrices. As a consequence, Pauli terms never mix, and we can therefore follow the
transformation of an arbitrary Pauli operator P0. Given an initial state ρ0, the initial weight of Pauli P0 is given by
w0 = tr[P0ρ0]. For instance, for ρ0 = |0⟩ ⟨0| = 1

2 (I + σz) and P0 = σz we find αZ = 1 with initial weight w0. We then

successively apply the gates. At step ℓ we apply gate G̃ℓ, which changes the Pauli to Pℓ = TGℓ
(Pℓ−1) and updates the

weight to wℓ = σGℓ
(Pℓ−1)f

α
Λℓ
(Pℓ−1). At the end of the circuit we often want to determine the expectation of some

Pauli observable O. Given the unique P0 such that PL = O, the expectation value is given by

⟨O⟩ρ0,α =
1

2n
tr

[
O

(
L∏

ℓ=1

G̃ℓ

)
(ρ0)

]
= α0

L∏
ℓ=1

σG(Pℓ−1)f
α
Λℓ
(Pℓ−1) =

(
α0

L∏
ℓ=1

σG(Pℓ−1)

)
·

(
L∏

ℓ=1

fΛℓ
(Pℓ−1)

)α

.

The observable expectation value ⟨O⟩ρ0,α is therefore an exponential function of the form v · sα, where v is equal to

the noise-free observable expectation value α0

∏L
ℓ=1 σG(Pℓ−1) = 1

2n tr
[
O
(∏L

ℓ=1 Gℓ

)
(ρ0)

]
. As a result, extrapolation

based on an exponential fit through the observable values ⟨O⟩ρ0,α at several α values yields a perfectly error-mitigated
observable expectation value (simply evaluate the fitted exponential at α = 0). For simplicity, we have omitted in
the above discussion, the effect of readout errors. With appropriate twirling of the readout [S8], these error appear
as multiplication of v by a readout fidelity. When known, this factor can be eliminated by scalar division.
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C. Non-Clifford gates

Quantum circuits that start in a basis state and contain only Clifford operators can be simulated efficiently classi-
cally [S22], and practically meaningful quantum circuits must therefore contain non-Clifford gates. We now show that
expectation values ⟨O⟩ρ0,α for general circuits are sums of exponentials. The fundamental reason for this is due to
the fact that Pauli transfer matrices of non-Clifford operators no longer have a permutation structure. For instance,

the PTM for the single-qubit operator for unitary z-rotation Rz(θ) = e−i θ
2σz is given by

MRz(θ) =

 1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 .

This means that application of the operator on σx gives Rz(θ)(σx) = cos(θ)σx + sin(θ)σy, which is no longer a single
Pauli. Now, suppose we have a state ρ obtained by applying a series of noisy Clifford gates with noise-scaling factor
α. Given Pauli terms Px = σx ⊗ P and Py = σy ⊗ P with weights wx = tr[Pxρ]/2

n and wy = tr[Pyρ]/2
n, it follows

from the discussion in the previous section that wx is of the form vxs
α
x , and likewise that wy = vys

α
y . Assuming for

simplicity that Rz(θ) can be applied to the first qubit in a noiseless manner (or that the noise is already included in
ρ), we find that

1
2n tr[(σx ⊗ P ) · Rz(θ)(ρ)] = cos(θ)wx − sin(θ)wy = cos(θ)vxs

α
x − sin(θ)vys

α
y .

This updated weight is sum of exponentials and, except in the special case where sx = sy, cannot be written as a
single exponential. Subsequent Clifford operators premultiply this sum by other exponential functions, resulting in
a new sum of exponentials that retains the same number of terms. Application of other non-Clifford operator may
fortuitously combine some terms, but generally results in additional terms in the sum of exponentials. When the base
terms s in this sum are similar, the curve can be well approximated using a single exponential. The unknown number
of exponential terms makes the non-Clifford circuits fundamentally more challenging to mitigate with ZNE, adding
to the importance of experimental tests in that regime.

VI. CLASSICAL SIMULATION ALGORITHMS

We have discussed classical simulation methods in Methods section of the main text; brute-force simulation and
tensor network methods in order of increasing complexity. Here, we discuss further details on matrix product states
(MPS) and isometric tensor networks (isoTNS) methods.

A. Tensor network methods

1. Matrix Product States

When representing a two-dimensional (2D) quantum state by a 1D matrix product state (MPS), one can take
advantage of a favorable O(χ3) scaling of complexity with bond dimension χ and three decades of algorithm develop-
ment [S23–S26]. However, an exponential scaling of computational complexity with the smallest linear dimension of
the 2D layout is unavoidable. This manifests in different ways depending on how the circuit evolution is performed.
Additionally, initially local nearest-neighbor interactions in 2D become long-range in 1D. Below we discuss several
different approaches to simulating quantum dynamics of 2D systems with MPS.

Before discussing two different approaches for applying multi-qubit gates to an MPS, note that the single-qubit
unitaries can be applied directly to the MPS without increasing the bond dimension. This is because single qubit
unitaries cannot increase entanglement. The application of the single-qubit unitary does not destroy the canonical
form of the MPS.

To simulate a 2D quantum state with an MPS, one must first choose how to wind the MPS through the 2D Heavy-
Hexagon lattice. Local connections in 2D become non-local in the 1D ordering, and the choice of ordering affects
entanglement of the resulting quantum state, as we generally expect nearest-neighbor qubits in 2D to be strongly
entangled. Two possible options are shown in Figure S9. The ‘Ring’ order in (a) is typically used in simulations of
2D systems on cylinders; the MPS is chosen to wind along the y axis, as the dimension Ly in the y-direction is chosen
to be less than Lx, and thus entanglement between rows is generically more than entanglement between columns.
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(a) (b)Ring IBM

FIG. S9. Two possible ordering of the 1D MPS through the 2D Heavy-Hex lattice, deformed to fit in a 15×13 2D square lattice
with 13 ∗ 15 − 127 = 68 missing sites. (a) ’Ring’ ordering typically used in studies of two-diemsional models on a cylinder.
This ordering can be used for gate-based TEBD approaches. (b) ’IBM’ ordering used to construct MPO representing layer of
two-qubit gates. Circled sites 13 and 58 are the starting points for the weight-10 and weight-17 operators considered in the
main text.

However, as the heavy hexagon lattice can be viewed as a square lattice with missing connections, another natural
choice is the ‘IBM’ ordering in (b). This ordering of the MPS reflects that the majority of nearest-neighbor couplings
are within the rows. This is the ordering (arbitrarily) used to label the qubits in the 127-qubit device. As we will
discuss below, the optimal choice of ordering is determined by the method used to evolve the quantum state with a
layer of two-qubit gates.

The standard approach to simulating local dynamics on tensor networks is the Time Evolving Block Decimation
(TEBD) algorithm, which naturally encompasses gate-based evolution [S24, S27]. Local unitaries are applied to the
MPS, increasing the bond dimension, and then the bond dimension is truncated back to χ, incurring an error. Note
that not all Heavy-Hexagon nearest-neighbor interactions are local in the 1D MPS (e.g. interactions within rows
(columns) in the ‘Ring’ (‘IBM’) order). While SWAP gates can be used to reshuffle qubits in the chain, each swap
gate increases the bond dimension and thus incurs an error. An alternate approach is to simulate a linear chain of
qudits representing a set of qubits of the original layout. This approach was recently used to simulate random circuit
sampling of 54 qubits with modest computational cost [S28, S29]. For the ‘Ring’ (‘IBM’) order in Figure S9(a (b)),
columns (rows) would be collapsed to form a linear chain of 15 (13) qudits. The qudits would have max dimension
d = 210 = 1024 (215 = 32768). Now, no swap gates are needed. Interactions within the column (row) can be applied
without error, while interactions between columns (rows) are now 2-local. However, the computational cost of TEBD
is O(χ3d3), and the 2-local gates are d2×d2 matrices. Thus for the 127-qubit device considered, this method requires
far too much memory, regardless of MPS ordering.

A second approach that does not require grouping qubits into qudits is to directly simulate time evolution with
long-range interactions. Operators with long-range interactions can be efficiently encoded as matrix product oper-
ators (MPO), which are commonly used to represent Hamiltonians in the celebrated ground state Density Matrix
Renormalization Group (DMRG) algorithm. Several algorithms exist for performing time evolution given an MPO
representation of a Hamiltonian [S24]. As the two-qubit RZZ gates are the matrix exponentiation of a Hamiltonian
H = J

∑
⟨i,j⟩ ZiZj , with the cofficient J determined by the angle θh, we could start with an MPO representation

of a sum of nearest-neighbor (in 2D) ZZ gates. However, since we explicitly know the time evolution unitary to
apply, namely

∏
⟨i,j⟩ RZiZj (−π/2t), we instead work directly with MPOs representing this unitary. Note that the

bond dimension of this unitary is exponential in linear system dimension; for the ‘IBM’ ordered MPS, the needed
bond dimension is 64, while it is 256 for the ‘Ring’ ordering. Thus we use the ‘IBM’ ordering for all MPS simulations.

As in the experiment, for each Trotter step, we represent each layer of two-qubit RZZ gates acting on all nearest-
neighbor pairs as 3 layers of parallelizable gates. Each layer is represented by a separate MPO, Mi. The action of the
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entire layer of gates on state |Ψ⟩ is simply the product of the MPOs acting on the state, M3M2M1 |Ψ⟩. As all the
gates commute, the ordering of the laters and the partitioning of the gates into three disjoint sets is not physically
relevant. We do not choose the same 3 disjoint sets as used in the experiment, which are shown pictorially as different
colored bonds in Figure 1(b). We choose to use three MPOs instead of a single MPO representing the entire layer of
two-qubit gates due to ease of construction. To apply an MPO to an MPS, we use a subroutine in the tensor network
literature called MPO-MPS contraction. We adopt a variational compression for MPO-MPS contraction as this is
less memory intensive than more straightforward SVD compression [S25].

2. 2D Isometric Tensor Networks

Given inherent limitations of MPS methods for simulating 2D circuits, a true 2D method is required to scale to large
system sizes. isoTNS are a restriction of two-dimensional projected entanglement pair state (PEPS) tensor networks
[S23, S30–S34] such that each tensor in the network is an isometry [S35]. Diagramatic representation of an isoTNS
and isometric conditions are shown in Figure S10.

(a) (b)

(c)

FIG. S10. Graphical representation of a isometric tensor network for 16 spins on a 4 × 4 square lattice. The leg sticking out
the page is the physical basis state σ(i,j) on each site (i, j). The contraction of the connected legs for the 16 tensors gives the
rank-16 tensor of wave function coefficients. The arrows on the legs denote the isometry conditions. For each tensor and its
conjugate, contracing over the legs with incoming arrows yields an identity on the legs with outgoing arrows. This is shown
in (b) for a black tensor with 2 outgoing legs and in (c) for a tensor with 1 outgoing leg. The red tensor in the isoTNS is the
orthogonality center (OC).

The additional isometric structure makes both time evolution via TEBD and the evaluation of single-site observables
more efficient (O(χ7)) than is possible with standard PEPS methods (O(χ12) and O(χ10)). This reduction in com-
putational cost comes at the expense of additional approximation error from imposing the isometric constraints; yet
ground state optimizations are competitive with density matrix renormalization group (DMRG) and quantum Monte
Carlo (QMC) [S36, S37], and a large class of topologically ordered states have been shown to have an exact isoTNS
representation with finite bond dimension in the thermodynamic limit [S38].

Isometric tensor networks were introduced in [S35] and discussed in more detail in [S36]. Here we will not introduce
the method but instead discuss changes in network structure due to the Heavy-Hexagon lattice and expectation value
techniques for the weight-10 and weight-17 operators.

Algorithms for isometric tensor networks have been developed for 2D square lattices. So we embed the Heavy-Hex
lattice inside a 2D square lattice and add “fake” sites that are not coupled to the physical qubits by circuit unitaries.
The 127 qubit geometry is embedded in a 15×13 square lattice with 68 fake sites. We initialize these fake sites in the
|0⟩ state. We check that ⟨Z⟩ = 1 and ⟨X⟩ = ⟨Y ⟩ = 0 on these sites after circuit layer to ensure that the fake qubits
are not being coupled to the physical qubits.

For a generic PEPS, calculating expectation values of single-site observables requires costly, approximate calculations
involving the entire network; the cost of measurements scales as O(χ10) with bond dimension χ. For isoTNS, we can
take advantage of the isometric structure to greatly reduce the cost of single-site expectation values to O(χ7). Consider
measuring an operator O on site (2, 2) of a 4×4 network, as shown in Figure S11. Site (2, 2) is the orthogonality center
(OC), denoted graphically by the red tensor. The OC has only incoming isometry arrows and is analogous to the OC
in 1D MPS. Calculating the expectation value of a single-site observable on the OC becomes a local procedure only
involving the tensor on site (2, 2). This approach can be applied to any single-site observable on any-site, given the
ability to reconfigure the isoTNS and move the OC to any site in the network. The movement of the OC is achieved
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by the Moses Move algorithm introduced in [S35] which has a computational cost of O(χ7); this algorithm is not
exact, but its error can be systematically decreased by increasing χ.

FIG. S11. Evaluation of local observables in an 2D isometric tensor network. (a) Evaluation of ⟨O(2,2)⟩ with site (2, 2) being
the OC. The expectation value is the double-layer contraction of isoTNS, operator, and conjugated iosTNS. This contraction
is greatly simplified using the isometric conditions, first in (b) to the orthogonality hypersurface, the generlization of the OC to
a 1D object, and then in (c) to the OC itself.

Multi-site operators, such as the weight-10 and weight-17 operators considered experimentally, require a more
standard PEPS-style expectation value approach, i.e. contraction of the entire network as shown in Figure S11(a).
We can use the isometric conditions on the tensor network to reduce the size of the network to be contracted to just
the support of the operator and any tensors in the causal past of these tensors. The causal past is all tensors reached
by moving against the arrow direction; so the OC is the earliest tensor causally. We contract the isoTNS just on
operator support and its causal cone, the operator, and the conjugate isoTNS to measure the operator. While this
can be done with approximate double-layer boundary MPS contractions [S39] with cost O(χ10), we instead exactly
represent the boundary contraction as a dense vector. This approach has no error but incurs an exponential cost in
system size; here, system size is defined by the operator support and causal cone isoTNS. We chose this approach to
ensure that expectation values of isoTNS are not affected by the bond dimension of the boundary MPS. However,
we cannot calculate the expectation value of the weight-17 operator at χ = 12 with this method due to memory
constraints.

VII. LIGHT-CONE AND DEPTH REDUCED CIRCUITS

In this section we define the light-cone and depth reduced (LCDR) circuits that fascilitate exact simulation and
improve the accuracy of approximate simulation. First we discuss how the common structure of the circuits at
Trotter depth D and the operators measured in Figures 3 and 4 can be exploited to produce a circuit of reduced
Trotter depth D− 1. Next, we discuss how considering the past lightcone of operators yields a circuit involving fewer
gates and qubits. These simplications can be used regardless of the simulation method introduced in VI.

A. Circuit Depth Reduction

We begin by defining a unitary implementing one Trotterized layer of the circuit,

U(θh) =
∏
⟨i,j⟩

RZiZj (−π/2)
∏
i

RXi(θh) = RZZ(−π/2)RX(θ) (4)

The state produced by a circuit of depth D is |Ψ(D, θ)⟩ = UD(θ) |0⟩⊗N
. Define the operator Z(D′, k) as the Pauli

string obtained by evolving Zk by D′ layers of the circuit with θh = π/2; Z(D′, k) = UD′
(π/2)ZkU

D′
(π/2)

†
. The

three observables considered in the Figure 3 can all be expressed in this way: weight-1 Zk = Z(0, k), weight-10
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stabilizer Z(5, 13), and weight-17 stabilizer Z(5, 58). The expectation value of Z(D′ > 0, k) at circuit depth D is

⟨Z(D′, k)⟩D,θ = ⟨Ψ(D, θ)|Z(D′, k) |Ψ(D, θ)⟩

= ⟨0|⊗N
UD(θ)†UD′

(π/2)ZkU
D′
(π/2)

†
UD(θ) |0⟩⊗N

= ⟨0|⊗N [
UD−1(θ)†RX(θ)†RZZ(−π/2)†

][
RZZ(−π/2)RX(π/2)UD′−1(π/2)ZkU

D′−1(π/2)
†
RX(π/2)†RZZ(−π/2)†

]
[
RZZ(−π/2)RX(θ)UD−1(θ)

]
|0⟩⊗N

= ⟨Ψ(D − 1, θ)|RX(θ)†RX(π/2)Z(D′ − 1, k)RX(π/2)†RX(θ) |Ψ(D − 1, θ)⟩
= ⟨Ψ̃(D − 1, θ)| Z̃(D′ − 1, k) |Ψ̃(D − 1, θ)⟩ (5)

We have defined the modified state |Ψ̃(D − 1, θ)⟩ = RX(θ) |Ψ(D − 1, θ)⟩ and the modified Pauli operator Z̃(D′−1, k) =
RX(π/2)Z(D′ − 1, k)RX(π/2)†. So the expectation value of Z(D′, k) with circuit depth D can be evaluated using a
modified stabilizer at depth D′ − 1 and a modified state with depth D − 1. Putting aside the change in the operator
Z(D′, k) → Z̃(D′ − 1, k) until the next section, requiring a state at one fewer depth provides both computational
and experimental benefits; the required bond dimension for tensor network simulations is reduced at depth D − 1
compared to that at depth D, while experimentally one less layer of two-qubit gates removes a significant source or
error in the circuit.
For the weight-1 observable Zk, note that RZZ(−π/2)†ZkRZZ(−π/2) = Zk due to commutation of the gates.

Thus, ⟨Zk⟩D,θ = ⟨Ψ̃(D − 1, θ)|Zk |Ψ̃(D − 1, θ)⟩. So again the expectation value at depth D can be found from the
state at depth D − 1, but now the operator Zk is unchanged.
Note that the modified weight-17 operator measured in Figure 4(a) is Z̃(5, 58) with the modified state |Ψ̃(5, θ)⟩.

This is equivalent to measuring Z(6, 58) with state |Ψ(6, θ)⟩.

B. Lightcones

Suppose we want to measure ⟨O⟩D,θ for a generic operator O. The most straightforward approach, and the one
taken experimentally in this work, is to simulate the entire state on N qubits and then measure the operator. However,
significant simplications can be made for classical simulations. As the circuit is unitary and local, one could instead
simulate only the lightcone of O. For short depth quantum circuits, such as D = 5 in Figure 3, the lightcone includes
a number of qubits M ≪ N , which makes exact simulations feasible. Additionally, the necessary bond dimension for
exact tensor network simulates scales exponentially with system size (e.g. for an MPS, χexact ≤ 2L/2 for a system of
L qubits).

To determine M , consider ⟨O⟩D,θ = ⟨0|⊗N
UD(θ)

†OUD(θ) |0⟩⊗N
. M is the size of the support of O(D, θ) =

UD(θ)
†OUD(θ). Single-qubit RX(θ) gates do not increase the support. A two-qubit RZiZj

gate grows an operator
with support on site i to neighboring site j, as defined by the geometry of the Heavy Hexagon lattice. However,
care must be taken when calculating growth in operator support from the RZZ gates. While one may originally use
the three layers of the non-overlapping gates employed to experimentally implement the RZZ between all nearest-
neighbor qubits, since each gate commutes, the support of operator O grows to include its neighbors upon conjugation
by U†. Effectively, we can first conjugate by two-qubit gates that do not act on O and then act by gates that act
nontrivially on the operator. As noted in the inset of Figure 3, the lightcones of weight-1 Zk, the weight-10 stabilizer,
and the weight-17 stabilizers are ≤ 31 (depending on the coordination number and location of Zk), 37, and 68 qubits,
respectively. Using the circuit depth simplification discussed in the previous section, the lightcones can be greatly
reduced to ≤ 19, 26, and 48, respectively, as we can ignore a layer of two-qubit gates. In addition to the benefit of
one fewer layer of two-qubit gates from depth reduction from D → D − 1, for the high weight stabilizers Z(5, k), we

also get a reduction in the support of the original operator Z̃(4, k) from depth reduction from D′ → D′ − 1. So we
get to start with a smaller operator and grow it with fewer layers of two-qubit gates.
Beyond just simulating qubits within the support of the lightcone, one can also only simulate the gates inside of

the lightcone; gates outside of the lightcone combine with their Hermitian conjugate in ⟨O⟩D,θ. Each two-qubit gate
grows the bond dimension which requires truncation and thus incurs error. Additionally, as discussed below, the exact
bond-dimension for MPS simulations at θh = π/2 depends on the growth of the support of the initial stabilizers Zk;
each layer of gates grows the stabilizers, so any reduction in the gates applied reduces the needed bond dimension for
exact simulation.
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VIII. EXACT MATRIX PRODUCT STATES FOR STABILIZER CIRCUITS

Here we discuss how to determine the bond dimension needed to exactly represent a Pauli stabilizer state, a
state completely specified by commuting, independent Pauli operators, as an MPS. When θh = 0 and π/2, the
circuits we consider in this work are Clifford and thus produce stabilizer states. We use standard stabilizer evolution
algorithms [S22, S40] to evolve the initial stabilizer generators into the final ones for the desired depth; e.g. for the

initial state |0⟩⊗127
with generators Zi, we evolve these by conjugation by U(θh) defined in Eq. 4. Note that we can do

this for light-cone and depth reduced circuits in addition to the full-state circuit. Given a set of stabilizer generators
G(S) for the stabilizer group S specifying a stabilizer state, the entanglement entropy with respect to a bipartition
(A,A) is given by

SA = NA − |G(SA)|, (6)

where G(SA) is an arbitrary set of generators of SA, | · | denotes the number of elements in the set, and NA is the
number of qubits in region A [S41, S42]. As Rényi entropies of region A are independent of the Rényi index for
stabilizer states, the Schdmit values on the biparition between A and A are exactly flat, i.e. a flat entanglement
spectrum. Thus given SA, the Schmidt rank, i.e. number of states that need to be kept in the state decomposition,
at bipartition (A,A) is 2SA .

To connect this with the bond dimension needed to exactly represent a stabilizer state, note that an MPS is
canonical form that can be thought of as a Schmidt decomposition at every possible bipartition along the 1D chain.
The rank of Schmidt decomposition determines the bond dimension needed for exact representation. Thus, we can
determine the needed bond dimension for exact MPS representation from the stabilizer generators alone that specify
the stabilizer state. The bond dimension at each bond of the MPS is simply χ = eS , where S is the entanglement
entropy for that bipartition. We demonstrate this for the 127-qubit circuit at θh = π/2 as a function of circuit depth
in Figure S12. Note that the exact bond dimension for non-Clifford θh is not known but is upperbounded by the
value for the non-trivial Clifford circuit.

For the experiment in Figure 4(b), magnetization at depth 20 for qubit 62, let us consider the achievable bond
dimensions given access to the Summit supercomputer, which as 250 PB of memory. As detailed previously, we use
variational compression for MPO-MPS contraction to do time evolution by the two-qubit gates [S24]. This requires
the storage of N = 127 MPO environments with size χ2 ∗ D, where χ is the bond dimension of the MPS and D is
the bond dimension of the MPO. Additionally, we must store the N = 127 tensors that define the MPS, each of size
2 ∗ χ2 (ignoring boundary effects of the first and last tensor). So in total, the required memory, assuming complex
entries requiring 16 bytes each, is

Memory (Bytes) = 127 ∗ χ2 ∗ 16 ∗ (D + 2) (7)

The largest bond dimension of the three MPOs that represent the layer of two-site gates is D = 16, so for χ = 1024,
our memory estimate is 38 GB (in practice this is an underestimate of the memory usage as additional data is stored
during a simulation). Given an allowance of 250 PB, we can achieve a bond dimension of χSummit = 2.5× 106.

To calculate the fidelity of the state with χSummit with the exact state with χexact = 72057594037927936 with
the Clifford θh = π/2 circuit, note that as this state is a stabilizer state, all singular values are equal. For the
singular values si on a particular bond, we require that

∑
s2i = 1. Thus for the exact state s2i = 1/χexact. The

fidelity of the truncated state with the exact state is F = | ⟨ΨSummit|Ψexact⟩ |2, which when considering truncation
at a single bipartition reduces to the total weight of the squared singular values kept in the truncated state. Thus,
F = χSummit/χExact = 3.5 × 10−11. It is not clear, however, how the fidelity of the truncated state translates to
physical expectation values, especially for those of small weight.

IX. DETAILS OF CLASSICAL SIMULATIONS IN FIGURES 3 AND 4

Here we provide details on which specific classical simulation methods were used for each figure in the main text.

A. Figure 3

(a) The exact curve (gray) is found by brute-force simulations of the light-cone and depth reduced circuit. The
MPS (pink) and isoTNS (orange) curves are for full-state, 127-qubit simulations of the experimental, i.e. depth 5 and
not LCDR, circuit with χ = 1024 and χ = 12, respectively.
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FIG. S12. Max, mean, and median bond dimensions needed to exactly represent state produced by circuit with θh = π/2 as
a function of circuit depth. Max, mean, and median are taken with respect to the 126 bonds in the MPS. ‘IBM’ ordering is
used for the MPS. Bond dimensions are determined by evolving the stabilizer generators Zi of the initial state |0⟩⊗127 and
determining the entanglement of each bipartition. Note that the maximum bond dimension required is not monotonic in depth
but instead fluctuates when the circuit is deep enough such that all of the initially single-site stabilizers have spread to the
entire system.

(b) The exact curve (gray) is found by brute-force simulations of the LCDR circuit of 26 qubits. The MPS (pink)
and isoTNS (orange) curves are for full-state, 127-qubit simulations of the experimental, i.e. depth 5 and not LCDR,
circuit with χ = 1024 and χ = 12, respectively.

(c) The exact curve (gray) is found by χ = 2048 simulations of the 47-qubit LCDR circuit. This number of qubits
is beyond brute-force simulations. The MPS (pink) curve is for full-state, 127-qubit simulations of the experimental,
i.e. depth 5 and not LCDR, circuit with χ = 1024. isoTNS results for this operator are not possible with our current
expectation value method and memory limitations.

B. Figure 4

Exact simulation is not possible, even using the LCDR circuits.

(a) The MPS (pink) curve is given by 68-qubit LCDR circuit at depth 5 with χ = 3072. The MPS simulations
were only evolved for 4 Trotter steps due to depth reduction. isoTNS results for this operator are not possible with
our current expectation value method and memory limitations.

(b) The MPS (pink) and isoTNS (orange) curves are given by the 127-qubit, LCDR circuit at Trotter depth 20
with χ = 1024 and 127-qubit, full-circuit simulations at depth 20 with χ = 12, respectively. The bond dimension
needed for MPS of the experimental circuit is 18014398509481984, while for the light-cone reduced circuit the bond
dimension is 36028797018963968. Although the light-cone reduced circuit excludes gates that exit the lightcone, the
lightcone covers the entire chip for 6 layers of two-qubits. We conjecture that the stabilizers have grown sufficiently
within these layers that the spatial extent of the operators is not inhibited when the lightcone shrinks at deeper layers.
We find that the light-cone reduced circuit produces a stabilizer state that requires larger bond dimension that the
original circuit at one larger depth.



20

X. ADDITIONAL NUMERICAL DATA

A. Magnetization with increasing χ at 20 Trotter steps

In Figure 4(b), we consider Z62 at 20 Trotter steps. The lightcone of the operator covers the entire 127-qubit
device, and exact simulations are not possible. Instead, we perform MPS simulations of the LCDR with increasing
bond dimensions, the results of which are shown below in Figure S13. We find that the measured observable ⟨Z62⟩
moves towards the experimental value with increasing χ, but at the maximum value we tried χ = 1024, there are still
significant differences between the numerics and the experimental results.
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FIG. S13. Depth-20 ⟨Z62⟩ using MPS simulations of the LCDR circuit with varying values of χ. The numerical results with
increasing bond dimension appear to be moving towards the experimental value.
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