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Referee #1 (Remarks to the Author): 

In this paper, the authors propose a novel state-of-the-art HADAR modality for detection and 
ranging focused on the thermal region of the light spectrum. To address the ghosting effect in 
thermal radiation, the authors show that TeX decomposition extracts the texture and depth 
information to estimate temperature and emissivity from the thermal data. Exploiting the fully 
passive property of thermal radiation from objects, the authors develop a promising estimation 
theory addressing shot-noise limits to achieve state-of-the-art performance in various ML tasks 
with physics-driven models. The authors primarily use three major attributes, temperature, 
emissivity, and texture to describe the thermal images. To demonstrate the efficacy of the 
proposed HADAR framework, the authors pick major computer vision tasks such as object 
detection, depth estimation, semantic segmentation, and automated thermography. 

 

The fundamental contribution of this paper is to recover the texture information from thermal 
radiation by breaking TeX degeneracy and constructing a custom material library of spectral 
emissivity to train a Neural Network to estimate TeX information for HADAR. In addition, the 
authors also propose HADAR estimation theory to address limitations of thermal signatures-
based ML tasks and? demonstrate that physics governed ML decisions are more accurate than 
data-driven ML models for thermal imagery-related tasks. For ML tasks, the authors use the 
following extracted parameters: temperature, emissivity, and texture jointly as done 
equivalently with color, brightness, and saturation for the RGB domain. The reviewer 
appreciates the author's rigorous work in the mathematical illustration and physical significance 
of the underlying process discussed in the paper. Some of the promising applications of this 
framework would be in the robotic vision for self-driving cars at night or to aid search and 
rescue operations such as firefighters utilizing thermal imagery to interpret their surroundings 
more effectively. 

 

The reviewer has some concerns about this paper which are discussed below. 

 

1. It would be interesting to see what the neural network learns on training from the material 
library? Saliency maps visualization would be helpful and some correlation with physical 
attributes of thermal data. Also, having a physics-informed ML model with a physics-based loss 
function would be insightful here. Even though the authors call this NN a physically aware 
machine perception, having the NN train without such a physics model-based loss function 
doesn’t justify the objection. Adding the above-suggested results would make the paper more 
compelling. 



 

2. The authors mention a very detailed comparison with the state-of-the-art thermal imaging in 
the paper, The reviewer thinks they are limited and not quantified well for each task. Detailed 
quantification of the performance of HADAR vs state of art method with metrics such as 
accuracy, AUC, or mAP for each task would be more credible to readers and justify the efficacy 
of the HADAR. 

 

 

3. For the scalable performance of HADAR based on this TeX decomposition, is there any form 
of incremental learning to address the estimation issue as the material library grows per the 
demand of the user? Will there be performance degradation as the library grows? How does the 
efficacy analysis using the Cramer Rao Bound change in such a scenario? 

 

4. The authors have demonstrated the Estimation theory under theoretical and simulation 
grounds which is a good starting point. However, it is equally important to demonstrate the 
efficacy of this proposed method on a real-world dataset. How do the authors do HADAR 
ranging and stereo vision? A more in-depth description of this process would aid clarity of the 
paper and understanding of the reader. Also, what is meant by ~100 x accuracy in ranging? Does 
this apply to all scenarios rather than specific cases? 

 

 

5. As per the authors, the HADAR framework requires a hyperspectral cube to input to the NN. 
Despite such promising performance of HADAR, its applicability on real-world datasets might be 
limited as most of the real-world thermal datasets are only available based on temperatures. Do 
authors intend to extend the HADAR estimation to extrapolate the rest of the information 
based on this limitation in information availability for more applicability? 

 

6. The NN devised for TeX decomposition is a flattened fully connected layer/1D CNN, which 
results in the loss of spatial-spectral information during the inferences. How much of that is 
evident in current results? Quantification of results is missing and needs to be added to make 
the argument for HADAR application more compelling. Will a 3D CNN based on spatial-spectral 
info be more useful for better performances? 

 

 

7. It is not clear if the authors can identify pixels corresponding to different material from 1D 
CNN. Is the material identification done at a global image-level or pixel-by-pixel basis? Would 
1D CNN suffice for the task if it is done pixel by a pixel basis? Something like UNET based models 
would be apt for such tasks. 

 



8. In the supplementary material for HADAR estimation theory, in the last sentence of the 
section, Theory of Texture, the authors mention that HADAR texture is equivalent to grayscale 
imaging in daylight, which the reviewer thinks is False as grayscale imaging posses greater 
qualitative and quantitative texture information than that of HADAR as inferred by the results 
currently presented in the paper. Improving results to substantiate this claim or else removing it 
is suggested. 

 

9. To prove the efficacy of the HADAR, the authors estimate material characteristics with NN 
but use a direct inverse function to estimate T and X. How effective would the application of 
such inverse function be for real-life applications in comparison to the simulations? Such 
functions sound promising for theoretical grounds and simulation but involve many constraints 
and noise factors for real-world application. 

 

10. For the thermography and semantics experiments, the authors utilize data duplication 
instead of augmentation to construct a larger dataset. Such methods are not encouraged for DL 
applications as they might bias the NN towards a certain class. Rather, the application of 
augmentation techniques is preferred. 

 

11. Regarding the applicability of the proposed HADAR setup for application, for dynamic 
environments such as self-driving vehicles, it would be expensive to have a multispectral 
acquisition device that can simultaneously acquire the data in the multi-spectrum. Even for just 
proof of concept in this HADAR framework, the authors change filters via a wheel to retrieve the 
spectral resolution which may need switching between filters for data acquisition and camera 
stabilization with such abruptly varying acquisition windows. Such a technique might be 
problematic in dynamic environments yielding a lot of background noise in TeX decomposition. 
Suggest adding a paragraph that addresses such current constraints on the real-world 
application of the method. 

 

 

The authors present a promising and potentially groundbreaking new methodology in their 
presentation of HADAR. They present significant improvements in performance over other 
modalities in low light conditions. However, such a modality is not without significant challenges 
still to be addressed before it can be recognized as a “next step” in computer vision 
applications. From on-fly calibration to the design of acquisition devices pose hardware-level 
challenges. Besides, the interface of such modules with edge computing devices for real-world 
applications would be a challenge where the TeX decomposition framework and Task-based 
frameworks can be easily be deployed in such devices. Another challenge is coming up with a 
robust library to train the framework as the material properties also change with the 
environment leading to change in each TeX parameter. Also, the authors don’t present the 
acquisition between cold and hot conditions. How that changes HADAR performance? Also, for 
cost-effectiveness, most of the available thermal cameras used in day-to-day life on consumer 
products are low priced. The applicability of such a multispectral camera for the HADAR 
application may not be cost-effective and affordable to low-end consumer products and even 



academic research. The authors make significant projections about the future of this work and 
have done excellent work in their theory. However, they have neglected to address any of the 
real and significant challenges that remain before the implementation of such work can take 
place in a real-world application. Suggest the addition of a section that highlights remaining 
constraints on the work before it can be presented as a real-world solution. This could take the 
form of a paragraph in the Discussion or Outlook. The reviewer believes that HADAR brings a lot 
of potential to the world but as it currently stands, bears significant challenges that need to be 
carefully addressed before it can replace or substitute the existing modalities in decision 
making. 

 

 

Referee #2 (Remarks to the Author): 

 

A. Summary of key results. 

The state-of-the-art machine perception utilizing active sonar, radar and LiDAR to enhance 
camera vision is not viable as the number of intelligent agents scales up. Exploiting 
omnipresent heat signals could be a new frontier for scalable perception. However, objects 
and their environment constantly emit and scatter thermal radiation leading to textureless 
images famously known as the ‘ghosting effect’. In this work, the authors proposed a method 
called HADAR to overcome this ghosting effect by decomposing the heat signal into 
temperature, emissivity and texture (TeX decomposition). They have developed the HADAR 
estimation theory and address its shot-noise limits depicting information-theoretical bounds 
to HADAR-based AI performance. In addition, they have also developed HADAR ranging (depth 
estimation) that shows an accuracy improvement up to two orders of magnitude compared 
with existing thermal ranging. They have performed physics-driven semantic segmentation to 
achieve improved performance against AI-enhanced thermal sensing. 

 
B. Originality and Significance 
This article focuses on the separability of temperature and emissivity from a thermal signal 
and the use of emissivity profiles for detection and ranging. The separability is discussed earlier 
in literature and used for various computation assisted tasks. Cramer-Rao bound on the 
distance for identifiability based on intrinsic properties of a material ascertains quantification 
of the utility of thermal imaging. Whereas an error bound given on the ranging accuracy with 
a limitation on photons counts further determines the accuracy of perception. 
The third component of significance is texture, which is computed from emissivity. Texture in 
visible light imaging qualifies the identification. TeX decomposition in thermal signal allows 
fine distinguishable parameters for image processing. 

 
C. Data and Methodology 

 
There are few comments about Data and Methodology as follows: 
1. A schematic diagram of the hardware setup would benefit the readers. Though an 

image of the hardware setup is provided, it seems insufficient for a scholarly article. 
2. Authors have derived the Cramer-Rao bound for HADAR estimation and the machine 

learning method but have not provided proof for the Cramer-Rao bound. 
 
 
 
 
 
 



3. Authors have selected a single environment for experimentation setup with a few 
characteristically distinguishable objects (person and cardboard Einstein model). It 
is evident from the computer vision literature that state-of-the-art artificial 
intelligence algorithms perform comparatively better in complex scenes. So the 
efficacy of the proposed method is hard to determine. 

4. For the development of HADAR, they have used FLIR A325sc, which is outdated. In 
addition, they have made the comparison with 16 channel lidar Velodyne puck, which 
gives sparse data. A comment about the functionality and cost comparison would help 
readers appreciate the proposed technique’s significance. 

5. Authors state, “HADAR is distinct from hyperspectral imaging where material difference 
is determined by the Euclidean distance between their reflectance spectra [32]. In stark 
contrast, HADAR identifiability is determined by multi-parameter estimation of 
temperature, emissivity and texture”, but identifiability is estimated using a CNN with 
an input of proton profiles only (as given in the Methodology section). A precise 
statement would help readers to understand the implementation details. 

6. Authors claim, “The minimum photon number for given semantic distance or vice versa, 
the minimum semantic distance for given photon number sets fundamental limits to 
object identification beyond training volume, providing a theoretical foundation for 
designing public policies.” However, ML algorithms generally perform well with missing 
or scarce information; placing a bound on input data is yet an open challenge. A 
comment about the significance of bounds would help the cross-discipline reader base. 

7. Authors said that “Thermal imaging loses textures due to TeX degeneracy (Fig. 4a) and 
leads to inaccurate ranging”. Thermal cameras, for instance, FLIR BlackFly (BFS-U3- 
51S5C-C), produce impressive images with texture, as shown in figure-1. Moreover, in 
this work, emissivity is used for range computation instead of texture. 

8. An example where thermal equilibrium can cause singularity would help appreciate 
the utility of identifiability and ranging. 

9. A comment about the change in-bounds considering the non-stationary objects in a 
scene would help assess TeX utility in interpreting sequential information. 



 
 

 
Figure-

1 
 

D. Appropriate use of statistics and treatment of uncertainties 
 

1. They have claimed that they have achieved 100 x accuracy in HADAR ranging, which 
is physics-based semantic segmentation between a person and a metallic body. In 
regard to computer vision literature, AI-based semantic segmentation results are 
already established. They have not made a comparative analysis between their 
proposed method and state-of-the-art AI-based semantic segmentation. Second, 
they have done the semantic segmentation using emissivity, and if the two subjects 
have the same emissivity, then their method fails. Below are some references for the 
AI- based semantic segmentation on thermal images 
● Li, Chenglong, Wei Xia, Yan Yan, Bin Luo, and Jin Tang. "Segmenting objects in 

day and night: Edge-conditioned cnn for thermal image semantic 
segmentation." IEEE Transactions on Neural Networks and Learning Systems 
(2020). 

● He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. "Mask r-cnn." In 
Proceedings of the IEEE international conference on computer vision, pp. 2961-
2969. 2017. 

● Treible, Wayne, Philip Saponaro, Scott Sorensen, Abhishek Kolagunda, Michael 
O'Neal, Brian Phelan, Kelly Sherbondy, and Chandra Kambhamettu. 



"Cats: A color and thermal stereo benchmark." In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pp. 2961-2969. 2017. 

2. In the HADAR ranging, the authors claim that they have used several AI algorithms for 
instance, DeepPruner, PSMNet, but they have not provided any training details for 
these algorithms. Similarly, details of data collection and experimental results for 
these algorithms are not found in this manuscript. Qualitative and quantitative 
results would help readers and reviewers to make a fair comparison. 

3. “We develop HADAR estimation theory to address fundamental limits of object 
identification from its thermal infrared signature. We believe this will be crucial in 
guiding public policy for the industrial revolution where decision accuracy of machine 
perception can be bounded by physical laws as opposed to training data volume”. It 
would help readers and reviews to appreciate the claims if an example or two are 
provided where the proposed technique helps public policy. 

 
E. Suggested improvement 
In addition to the above comments, some additional comments are as follows that require 
more explanation. 

1. “where multiple attributes are desired either for safety guarantees or scientific 
purpose”. Some examples with reference are required for this claim. 

2. “However, large scale temperature screening with existing noncontact infrared 
thermometer or infrared thermography is ineffective due to lack of adaptivity to 
emissivity (complexion/makeup), distance, age, gender, and circadian variations [36–
38].” A brief comment on the utility of TeX, in this case, will help the reader to 
appreciate 

3. “Cramér-Rao bound is therefore promising for the smart healthcare industry including 
early reliable skin cancer detection.” Reference and a brief comment will help users 
to understand the relation 

4. “Our results call for heat exploitation in the quantum regime where single photon 
detectors are being developed in the thermal infrared”. It is not mentioned in the 
whole script except in the introduction, a bit of explicit comment may help the 
readers. 

5. “However, large scale temperature screening with existing non contact infrared 
thermometer or infrared thermography is ineffective due to lack of adaptivity to 
emissivity (complexion/makeup), distance, age, gender, and circadian variations' '. 
Reference and a brief comment will help users to understand the relation. 

6. They mention a “phantom breaking phenomenon” as a disadvantage of thermal 
imaging, but do not explain if the proposed technique addresses it. 

 
 

F. References 
1. “The emerging Industry 4.0 of smart technologies [18] calls for a future with scalable 

human-robot social interactions since it is expected that one in ten vehicles will be 
automated by 2030 and 100 million robot helpers will be serving people.” The 
reference paper has no such claim. 

2. “Scalable perception”. No explanation is given for the scalable perception 
3. They claimed that this method is novel but the following are the works that have done 

temperature emissivity separation. 
 

● Jie Cheng, Qing Xiao, Xiaowen Li, Qinhuo Liu, Yongming Du, Aixiu Nie, "Multi-
layer perceptron neural network based algorithm for simultaneous retrieving 
temperature and emissivity from hyperspectral FTIR dataset", Geoscience and 
Remote Sensing Symposium 2007. IGARSS 2007. IEEE International, pp. 4383-
4385, 2007. 



 

 

● Xinghong Wang, Xiaoying OuYang, Bohui Tang, Zhao-Liang Li, Renhua Zhang, "A New 
Method for Temperature/Emissivity Separation from Hyperspectral Thermal 
Infrared Data", Geoscience and Remote Sensing Symposium 2008. IGARSS 2008. IEEE 
International, vol. 3, pp. III - 286-III - 289, 2008. 

● Hang Yang, Lifu Zhang, Junyong Fang, Xia Zhang, Qingxi Tong, "Algorithm research of 
building materials emissivity extracting", Geoscience and Remote Sensing 
Symposium (IGARSS) 2010 IEEE International, pp. 3350-3353, 2010. 

● Hang Yang, Lifu Zhang, Li Liu, Qingxi Tong, "Temperature and emissivity separation 
from TASI data based on wavebands selection", Geoscience and Remote Sensing 
Symposium (IGARSS) 2011 IEEE International, pp. 1850- 1853, 2011. 

● Ning Wang, Yonggang Qian, Hua Wu, Lingling Ma, Zhao-Liang Li, Lingli Tang, 
"Performances of temperature and emissivity separation methods for hyperspectral 
thermal data affected by the changes of spectral properties of sensor", Geoscience 
and Remote Sensing Symposium (IGARSS) 2013 IEEE International, pp. 2152-2155, 
2013. 

● Schmugge, Thomas, Andrew French, Jerry C. Ritchie, Albert Rango, and Henk 
Pelgrum. "Temperature and emissivity separation from multispectral thermal 
infrared observations." Remote Sensing of Environment 79, no. 2-3 (2002): 189-198. 

● V. Payan Corresponding author & A. Royer (2004) Analysis of Temperature Emissivity 
Separation (TES) algorithm applicability and sensitivity, International Journal of 
Remote Sensing, 25:1, 15-37, DOI: 10.1080/0143116031000115274 

 

G. Clarity 

1. Language use in writing is a bit extreme (e.g. “that can disrupt AI industry”, “TeX 
degenracy”) 

2. The authors refer to the supplementary information frequently but do not mention the 
section which becomes bothersome for the reader. 

 
H. Decision 

1. The proposed technique is a fascinating idea and can benefit the AI researchers with 
another reliable sensor. 

2. However, the current article is not ready for publication in its current form. It is 
suggested to consider the recommendations and resubmit. 
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Cover letter to Reviewer 1 

We would like to thank the reviewer for the encouraging response and valuable comments. Here, we list 

all the major revisions, and we will provide individual replies to each comment from the next page 

onwards. 

Reviewers’ main concerns and corresponding major revisions include that 

Problem (1): 

Details of our machine learning, such as, network architecture, data preparation, training analysis, 

quantitative comparisons of HADAR performances (semantic segmentation, detection, and 

ranging) with the state-of-the-art, are not provided. 

Revision (1): 

We have expanded the Supplementary Information and Methods to provide more details about our 

HADAR theory, machine learning, and experiments. Especially, we have explained the 

architecture of our TeX-Net for TeX decomposition, Saliency maps in material classification, and 

physics-based loss. We have also made quantitative and qualitative comparisons of machine 

learning performances based on our TeX vision against the state-of-the-art thermal vision. In 

particular, our results focus on semantic segmentation, people detection, and ranging. 

Problem (2): 

The previous version only demonstrated HADAR efficacy for a few simple scenes. HADAR 

efficacy for real-world level complicated scenes is not verified. 

Revision (2): 

We have built and released the 1st HADAR database with complicated scenes and clearly shown 

HADAR efficacy. 

Problem (3): 

HADAR efficacy on hot and cold weather conditions are not compared. 

Revision (3): 

We have also added one more experiment in summer daylight to compare HADAR performances 

on cold winter and hot summer conditions. 

Problem (4): 

Textures recovered in HADAR are not quantified and compared to the state-of-the-art approaches. 

Revision (4): 

We have quantified textures and have made comparison with state-of-the-art approaches to show 

the advantage of HADAR in recovering textures. 

We have also made revisions according to all other comments. Now, we will address each comment 

sequentially in the following. Notations used in this response include C: Comment, R: Reply, Italic: 

revisions, underline: emphasize. 

Author Rebuttals to Initial Comments:
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Reviewer 1 

C0 In this paper, the authors propose a novel state-of-the-art HADAR modality for detection and 

ranging focused on the thermal region of the light spectrum. To address the ghosting effect in 

thermal radiation, the authors show that TeX decomposition extracts the texture and depth 

information to estimate temperature and emissivity from the thermal data. Exploiting the fully 

passive property of thermal radiation from objects, the authors develop a promising estimation 

theory addressing shot-noise limits to achieve state-of-the-art performance in various ML tasks 

with physics-driven models. The authors primarily use three major attributes, temperature, 

emissivity, and texture to describe the thermal images. To demonstrate the efficacy of the 

proposed HADAR framework, the authors pick major computer vision tasks such as object 

detection, depth estimation, semantic segmentation, and automated thermography. 

The fundamental contribution of this paper is to recover the texture information from thermal 

radiation by breaking TeX degeneracy and constructing a custom material library of spectral 

emissivity to train a Neural Network to estimate TeX information for HADAR. In addition, the 

authors also propose HADAR estimation theory to address limitations of thermal signatures-

based ML tasks and demonstrate that physics governed ML decisions are more accurate than 

data-driven ML models for thermal imagery-related tasks. For ML tasks, the authors use the 

following extracted parameters: temperature, emissivity, and texture jointly as done equivalently 

with color, brightness, and saturation for the RGB domain. The reviewer appreciates the author's 

rigorous work in the mathematical illustration and physical significance of the underlying 

process discussed in the paper. Some of the promising applications of this framework would be 

in the robotic vision for self-driving cars at night or to aid search and rescue operations such as 

firefighters utilizing thermal imagery to interpret their surroundings more effectively. 

The reviewer has some concerns about this paper which are discussed below. 

R0 We would like to thank the reviewer for the encouraging response and valuable comments. We 

have addressed each comment individually below and made major revisions to improve the 

quality of this manuscript. 

  
C1 It would be interesting to see what the neural network learns on training from the material 

library? Saliency maps visualization would be helpful and some correlation with physical 

attributes of thermal data. Also, having a physics-informed ML model with a physics-based loss 

function would be insightful here. Even though the authors call this NN a physically aware 

machine perception, having the NN train without such a physics model-based loss function 

doesn’t justify the objection. Adding the above-suggested results would make the paper more 

compelling. 

R1 We thank the reviewer for pointing this out. We agree with the reviewer that a physics-based 

loss function is essential to call HADAR TeX-Net physically aware. 

1. In this new version of the manuscript, we’ve added the architecture of our TeX-Net for 

TeX decomposition, as well as the physics-based loss function (Extended Data Fig.1), 

see below. 
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Fig.1 Architecture of TeX-Net for TeX decomposition. The input to TeX-Net is the hyperspectral heat 

cube. The output is the TeX vision. Physics-based loss function to train TeX-Net is defined on the 

reconstructed heat cube, which is based on physics models of blackbody radiation, the material library, 

and the mathematical structure of texture X. This figure is given in Extended Data Fig.1. 

 

For TeX decomposition, we need to extract information from both spatial patterns and 

spectral thermal signatures. This motivates us to use spectral and pyramid attention layers 

in the UNet model (PAN [1]). Even though TeX-Net outputs TeX vision, one cannot 

directly use ground truth TeX to train the network. The mathematical structure of X has 

to be specified to ensure the uniqueness of inverse mapping and overcome TeX 

degeneracy.  Hence, our key insight is to learn thermal lighting factors V instead of 

texture X. Texture X is constructed with thermal lighting factor V indirectly.  

Supervised Learning: In supervised learning, TeX-Net is trained with ground truth 

temperature (T), material index (m), and thermal lighting factor (V). The ground truth T, 

m, and V are obtained with least-squares estimation based on the material library. The 

loss function is a combination of individual losses with regularization hyper-parameters.  

Unsupervised Learning: In un-supervised learning, no ground truth data is required. 

The material library is built into the network. The physics-based loss function defined on 

the re-constructed heat cube is based on physics models of the heat signal. The network 

is trained with material library ℳ, Planck's law 𝐵(𝑇), and the mathematical structure of 

texture (X). In practice, we use a hybrid loss function with T, e, V contributions in 

addition to the physics-based loss. 

2. In this paper, we have built the city block dataset to train TeX-Net. The HADAR-

CityBlock dataset is the first LWIR (long-wave infrared) stereo-hyperspectral dataset in 

the world with ground truth depth and ground truth TeX vision. We have made the dataset 

available at https://drive.google.com/drive/folders/1da2Uh5t_QOy-

MrWxhkJJw3MueNxsuVtn?usp=sharing. We will host it on Github for the research 

community once the paper is published. 

3. We have trained the TeX-Net with supervised, un-supervised, and hybrid learning. 

Results of supervised learning is given in Fig.S12 in Sec.SIIIA of the Supple. Info. The 

Saliency map for material e(m) is given in Fig.S13 in in Sec.SIIIA, as cited below. 

https://drive.google.com/drive/folders/1da2Uh5t_QOy-MrWxhkJJw3MueNxsuVtn?usp=sharing
https://drive.google.com/drive/folders/1da2Uh5t_QOy-MrWxhkJJw3MueNxsuVtn?usp=sharing
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Fig.2 Saliency map of TeX-Net in supervised learning. The active region in Saliency maps is localized 

and highly correlated with the corresponding material region (last column), indicating that TeX-Net has 

properly learnt spatial and spectral features for material classification. 3 samples out of 20 materials are 

shown. a, Saliency map for class 2, window glass. b, Saliency map for class 5, aluminum. c, Saliency 

map for class 7, tire. Pred: material index prediction of TeX-Net. This figure is the Fig.S13 in Supple. 

Info. 
 
Reference(s): 

[1] Li, Hanchao, et al. "Pyramid attention network for semantic segmentation." arXiv preprint arXiv:1805.10180 

(2018). 
 

C2 The authors mention a very detailed comparison with the state-of-the-art thermal imaging in the 

paper, The reviewer thinks they are limited and not quantified well for each task. Detailed 

quantification of the performance of HADAR vs state of art method with metrics such as 

accuracy, AUC, or mAP for each task would be more credible to readers and justify the efficacy 

of the HADAR. 

R2 We thank the reviewer for asking about the quantitative comparison of our HADAR performance 

with the state-of-the-art AI-enhanced thermal sensing. We agree with the reviewer that 
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quantification of performance enhancement is necessary to justify HADAR efficacy. In this new 

version, we have added quantitative and qualitative comparisons, regarding people detection, 

semantic segmentation, and ranging, to show the advantages of HADAR TeX vision over 

traditional thermal vision. 

1. Before quantifying the performance, we would like to explain the ground truth we used. 

We have built the 1st LWIR stereo-hyperspectral dataset in the world, HADAR-

CityBlock, as the platform to test HADAR efficacy. The ground truth depth and ground 

truth TeX vision of the city block scene are synthesized by Monte Carlo path tracing, 

through exploiting Planck’s law and Kirchhoff’s law in Blender Cycles. Ground truth 

semantic segmentation is generated by transforming the material map in TeX vision with 

a customized algorithm, see algorithm 4 of the Supple. Info. Our demonstration of 

physics-driven detection focuses on distinguishing similar visual appearances (e.g., 

human vs. robot) where conventional techniques exploiting visual appearance alone 

would fail. In two separate scenes, we will show HADAR advantage of using material 

signature for people detection. We do not provide detailed statistics of people detection 

since the conventional vision -driven techniques fail.  

2. To quantify semantic segmentation performance, the metric of mIoU (mean intersection 

over union) is used instead of mAP, according to Ref. [1] on DANet. We used the DANet 

(pre-trained on the Cityscapes dataset) on thermal vision as the state-of-the-art baseline, 

and we used the output of TeX-Net plus our algorithm 4 in Supple. Info. to get HADAR 

semantic segmentation. The quantitative comparison is given in Extended Data Fig.8, as 

cited below. We note that we used AI-enhancement only in thermal vision but not in 

HADAR. HADAR semantics outperforming thermal semantics clearly show that the 

advantage of HADAR semantics comes from TeX vision but not the AI algorithm. In the 

future, dedicated AI algorithms can be developed using our HADAR database to improve 

the performance further. 
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Fig.3 HADAR TeX-physics-driven semantic segmentation beats state-of-the-art thermal-vision-driven 

semantic segmentation (thermal vision + AI). a, Thermal semantic segmentation with DANet (pre-trained 

on the Cityscapes dataset). b, HADAR semantic segmentation transformed from the material map in 

estimated TeX vision. c, Ground truth material map in the ground truth TeX vision. d, Semantic 

segmentation transformed from (c) to approximate the ground truth segmentation, see Sec.SIIIE of the 

Supple. Info. for more details of the non-machine-learning transformation. Since AI enhancement is only 

used in thermal semantics, the advantage of HADAR semantics is clearly from TeX vision with physical 

attributes. Statistics in the table is analysed for 10 frames (8:10:98) of the left camera in the city block 

dataset 1. mIoU: Pixel-wise mean intersection over union. 

3. To quantify stereo matching performance, we used the metrics of mean disparity error 

(mean absolute per-pixel disparity error with respect to the ground truth) and Accuracy 

(fraction of pixels for which the estimated disparity is within tau pixels of the ground 

truth values). We used DeepPruner (pre-trained on the KITTI dataset) as the state-of-the-

art AI algorithm. The quantitative and qualitative comparisons are given in Extended 

Data Figs. 6 and 7, as cited below. 
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Fig.4 Quantitative and qualitative comparisons of ranging performances based on HADAR and 

traditional thermal vision. Top figure is the Extended Data Fig.6. 67 folds mean disparity error 

suppression by HADAR has been observed on the street part, compared with AI-enhanced thermal 

ranging, and 26 folds mean disparity error suppression has been observed for the entire image. Bottom 

figure is the Extended Data Fig.7. The fundamental reason for this improved performance in HADAR is 

due to breaking of TeX degeneracy and overcoming the ghosting effect. 

 

4. For object detection, in addition to the previous people detection (current Extended Data 

Fig.5), we further provided one more figure to demonstrate how HADAR detection can 

distinguish human vs. robot utilizing material signatures (Fig.S17 of the Supple. Info), 

which is impossible for traditional thermal vision. We note that in HADAR TeX vision, 

the scene is captured with physical attributes being represented by hue (material 

index), saturation (temperature) and value (texture). This novel representation has 

information content which is not present in the output of optical cameras (RGB vision), 

conventional IR thermal cameras (panchromatic thermal vision), or LiDAR (point cloud).  

Basically, we extract the material region corresponding to the desired target and only 

perform detection over the selected region, as shown below. For human detection, we 

extract the region of material ‘human’ from the material map, and the detection result 

gives bounding boxes of humans. For robot detection, we extract the region of material 

‘aluminum’. Even though car logo and other components of the car are also selected, 

people detection finds the correct spatial patterns and succeeds in robot detection. In the 

above case of people detection, we used HOG+SVM pre-trained on the INRIA Person 

dataset available in Matlab. 

 
Fig.5 Demonstration of physics-driven object detection. HADAR can perform object detection over 

particular material regions, and hence HADAR can distinguish similar geometries with material 

signatures. This figure is given as Fig.S17 of the Supple. Info 
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5. The previous Extended Data Tab. I was intended to give a qualitative summary of the 

potentials for HADAR (TeX vision + AI) and traditional thermal sensing (thermal vision 

+ AI). To make our argument more precise, we have revised the caption ‘HADAR 

outperforms AI-enhanced thermal sensing in detection and ranging. HADAR provides 

intrinsic physical attributes and enhanced textures enabling comprehensive 

understanding of the scene beyond AI-enhanced conventional thermal imaging…’ 
6. In this new version, we have also quantified textures and made a quantitative comparison 

to state-of-the-art approaches. See Sec.SIID of the Supple. Info. for details of texture 

quantification. See Extended Data Figs. 2, 3, 10, and Fig.S11 of the Supple. Info. for 

quantitative and qualitative comparisons of textures. 

 

Quantifying HADAR performances for all other tasks in computer vision, such as, optical/scene 

flow, instance segmentation, pose estimation, etc. will be the subject of extensive future studies. 

 
Reference(s): 

[1] Fu, Jun, et al. "Dual attention network for scene segmentation." Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition. 2019. 
 

C3 For the scalable performance of HADAR based on this TeX decomposition, is there any form of 

incremental learning to address the estimation issue as the material library grows per the demand 

of the user? Will there be performance degradation as the library grows? How does the efficacy 

analysis using the Cramer Rao Bound change in such a scenario? 

R3 We thank the reviewer for asking about incremental learning and the performance change as the 

library grows. This is a very good point in applications of HADAR. We shall answer this 

question by analyzing changes in Cramer-Rao bound first and then discussing our observations 

in learning and performance changes. 

1. The HADAR identifiability (Cramer-Rao bound) of a target material in a multi-material 

library is given by Eq.2 in the main text 

 
with the semantic distance d0 replaced by the minimum semantic distance of the target 

material with other materials, see Algorithm 3 of the Supple. Info (briefly cited below). 

 
The underlying physics of using minimum semantic or statistical distance is that, whether 

material A can be identified or not depends on material B with the most spectral similarity 

with material A. The other materials in the library do not directly affect the identifiability 

since the spectral features are discernible with sufficiently high spectral resolution 

detectors. HADAR identifiability for multi-material library is demonstrated in Extended 

Data Fig.4, as cited below.  
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Fig.6 HADAR estimation theory for multi-material library. This figure intuitively shows that HADAR 

identifiability based on semantic/statistical distance is an effective figure of merit to describe 

identifiability. a, Incident spectra of 5 materials generated by Monte Carlo simulations. b, Minimum 

statistical distance of each material. Spectra of silica and paint have non-trivial features that are distinct 

with other materials in the library. Statistical distance larger than 1 (dashed line) consistently indicates 

that silica and paint are identifiable. Note that aluminum is similar to human skin under TeX degeneracy 

and non-identifiable, even though with the same temperature its spectrum is much weaker than human 

skin. 

To see the change of HADAR identifiability with increasing material library, we assume 

in the beginning we have 2 materials in the library ℳ′ = {𝑒𝑚|𝑚 = 1,2} , m=1 

corresponding to Human and m=2 corresponding to Silica, as shown in the above figure. 

Since Silica has spectral features and is very different with the Human emissivity 

spectrum, the statistical distance between Human and Silica is around 𝑑(1,2) = 2, above 

the distinguishable criterion (dashed line), and hence Human and Silica are both 

identifiable. This can also be visually seen in Fig.6a.  

 

Now, we introduce a third material into the library, m=3 corresponding to Brick. Brick 

has a spectrum similar with Human but is different from Silica. The statistical distance 

between Brick and Human is around 𝑑(1,3) = 0.5 and the statistical distance between 

Brick and Silica is around 𝑑(2,3) = 2. The minimum statistical distance of Human from 

two other materials in the library becomes 𝑑1 = min[𝑑(1,2), 𝑑(1,3)] = 0.5, and the 

minimum statistical distance of Silica from two other materials in the library is 𝑑2 =
min[𝑑(1,2), 𝑑(2,3)] = 2. This implies that after introducing Brick into the material 

library, Human becomes non-identifiable, and Silica is still identifiable. After 

introducing Marble, Paint, and Aluminum into the library, Silica is still identifiable. 

Overall, the minimum semantic and/or statistical distance of each material in the library 

will decrease when new materials are introduced into the library. The influence on each 

material is different, as discussed in the above paragraph. Semantic and statistical 

distance will increase with better spectral resolution (more spectral bands) in the camera. 

 

The above analysis implies the following scaling law.  
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- For fixed spectral resolution, the more materials in a library, the more difficult 

it is to distinguish each of them. For a fixed number of materials in the library, 

higher the spectral resolution, the easier it is to distinguish each of them. And to 

distinguish a large number of materials in a library, higher spectral resolution 

and low noise sensors are required. This paragraph has been added in Sec.SIIB of 

the Supple. Info. to help readers understand the bound changes with increasing 

materials. 

 

2. We shed light on the performance changes of growing library size by analyzing its role 

on TeX-Net training loss using our HADAR-Cityblock dataset. In the Cityblock dataset, 

there are 20 materials in the material library, but we train the network with a subset of 

the library, i.e., with only a few materials in the library. This scenario is closely related 

to real-world applications where, in the real-world scene, there might be over hundreds 

of materials, but we’ve only calibrated a few of them. These few selected materials 

amount to be material classes into which we can approximate the scene. Explicitly, we 

trained TeX-Net with only 3 materials in the library, distinct glass and brass, and all 

others were approximated as a blackbody. This approximation will surely bias the 

temperature and texture predictions, but as the number of materials in the library grows, 

the overall physics-based loss will decrease. We repeat the above training for different 

number of materials in the library, and indeed, we observe loss decrease as cited below. 

In contrast to point 1, here, number of materials in the scene is fixed, and more materials 

in the library leads to better approximation of the scene. 
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Fig.7 Physics-based loss decreases as the number of materials in the library increases. a, materials are 

added into the library with a greedy approach, and pixels are classified into those material classes based 

on visual similarity. Temperature and thermal lighting factors are solved out accordingly. b, Pixels are 

classified into material classes with neural network (TeX-Net). TeX-Net finds more accurate TeX 

decomposition, and again, we can see that with more materials in the library the physics-based loss is 

lower. The error in (b) after 5 materials is noise. This figure is the Fig.S14 of the Supple. Info. 

 

3. We note that the number of epochs needed to train the network is not significantly slower 

with increasing materials in the library. TeX-Net was trained independently for different 

number of materials in the library. As incremental learning itself is an open question, we 

plan to explore it in a detailed and dedicated study in the future. 

 

C4.1 The authors have demonstrated the Estimation theory under theoretical and simulation grounds 

which is a good starting point. However, it is equally important to demonstrate the efficacy of 

this proposed method on a real-world dataset.  

R4.1 We agree with the reviewer that it is necessary to demonstrate HADAR efficacy with real-world 

level complicated scenes and compare with state-of-the-art AI-enhanced thermal vision. 
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However, we note that there is no experimental hyperspectral LWIR database with ground truth 

depth available in the literature. To further demonstrate HADAR efficacy in this new version, 

we have: (1) built and released the 1st synthesized HADAR database with real-world level 

complicated scenes (https://drive.google.com/drive/folders/1da2Uh5t_QOy-

MrWxhkJJw3MueNxsuVtn?usp=sharing; we will host it on Github for the scientific community 

once the paper is published), (2) trained and tested our TeX-Net to demonstrate the efficacy of 

TeX vision on real-world level scenes, and (3) compared the machine-learning performances, 

especially detection and ranging, based on our TeX vision and the traditional thermal vision. 

Our new results (see Extended Data Figs. 1, 2, 6, 8 and 11 in the new version) clearly show 

the efficacy of HADAR in real-world level complicated scenes. In the following, we will 

further explain our results to demonstrate HADAR efficacy. 

1. To generate the synthesized database, we used Monte Carlo path tracing (Planck’s law + 

Kirchhoff’s law + Blender Cycles) and designed a city block scene to mimic a real-world 

self-driving task. This city block scene is rendered with multiple scattering cutoff of 𝑙 =
4 (i.e., ray depth = 4), which is commonly adopted for real-world level image quality 

especially for low-reflection materials. In this city block scene, there are 21 different 

material categories (M=20 for the material library, robots share the same material with 

car logo). For comparison, we note that state-of-the-art semantic segmentation of optical 

imaging in the literature has similar number of categories. For example, the pre-trained 

DANET [1] was trained to segment 19 categories, while the CityScapes dataset 

(https://www.cityscapes-dataset.com/) has 30 classes for segmentation. One key 

difference of our approach is physics-driven semantic segmentation. State-of-the-art 

semantic segmentation focuses on object level distinctions within the scene (e.g., car, 

road, pedestrian, etc.). However, our approach for TeX decomposition focuses on 

materials and hence exploits the unique thermal signatures at the physical-component 

level (e.g., car paint, window, headlights, tire, etc.), which is more advanced, see the 

following figure. 

 
Figure 8. Left: a sample of the state-of-the-art semantic segmentation in the object level (ADE20K), with 

6 categories. Right: a sample TeX vision in our HADAR database, with 20 categories. This comparison 

is to show the real-world complexity of our dataset. 

 

In our city block dataset, there are multiple pedestrians, including men, women, kids, the 

elders, and robots, to mimic a future scene. We believe our database presents a 

convincing platform to test HADAR efficacy (TeX decomposition and TeX vision). 

https://drive.google.com/drive/folders/1da2Uh5t_QOy-MrWxhkJJw3MueNxsuVtn?usp=sharing
https://drive.google.com/drive/folders/1da2Uh5t_QOy-MrWxhkJJw3MueNxsuVtn?usp=sharing
https://www.cityscapes-dataset.com/
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2. Based on our synthesized database, the machine learning performances of our TeX-Net 

(see Extended Data Fig.1) shows the applicability of TeX decomposition and TeX vision 

on complicated scenes. This demonstrates HADAR efficacy on synthesized real-world 

scenes. The comparison of TeX-Net output with the ground truth TeX vision is given in 

Fig.S12 in the Supple. Info., as cited below. 

 
Fig.9 Comparisons of TeX-Net output with the ground truth show that TeX-Net is indeed able to perform 

TeX decomposition. Small prediction errors in temperature lead to texture error in brightness, and hence 

there are some noisy spots observed in c. This can be improved by imposing sophisticated smooth 

constraint on temperature and harder training. 

3. In this paper, we demonstrate a few typical examples, i.e., people detection with 

HOG+SVM, semantic segmentation with DANet, and ranging with DeepPruner. 

Performance comparisons between TeX vision and traditional thermal vision clearly 

indicates HADAR efficacy, as shown in Extended Data Figs. 5, 6, 8, and Fig. S17 of the 

Supple. Info. We briefly cite the results as below for the reviewer’s convenience. We 

note that HADAR requires multi-spectral information to output TeX vision. In the 

proposed concept of TeX vision, the scene is captured with physical attributes being 

represented by hue (material index), saturation (temperature) and value (texture). 

This novel representation has physical context which is not present in the output of 

optical cameras (RGB vision), conventional IR thermal cameras (panchromatic thermal 

vision), or LiDAR (point cloud). Subsequent machine learning algorithms in computer 

vision regarding stereo matching, optical flow, scene flow, semantic segmentation, etc. 

that are previously based on RGB vision, thermal vision or point cloud can be adapted to 

TeX vision. Developing new algorithms exploiting TeX vision presents a new research 

frontier and we plan to pursue multiple avenues in future studies. 
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Fig.10 ‘TeX vision + AI’ beats the state-of-the-art ‘thermal vision + AI’ in ranging, showing HADAR 

efficacy in complicated scenes. 

 
Fig.11 HADAR semantic segmentation based on TeX vision beats the state-of-the-art ‘thermal vision + 

AI’ segmentation, showing HADAR efficacy in complicated scenes. 

 

4. Finally, we want to comment on the development of a real-world HADAR dataset. We 

note that a real-world experimental hyperspectral LWIR database with ground truth TeX 

vision and depth is not available. The procedures to build an experimental database are 

basically the same as what we have done in the outdoor experiments, and they can be 

briefly summarized as the following: (1) collecting left and right hyperspectral data 
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cubes; (2) collecting the corresponding material library; (3) solving TeX as the ground 

truth by least-squares estimators; and (4) collecting ground truth depth with LiDAR. In 

this first paper, we have provided a synthetic database and shown two proof-of-concept 

experiments in summer and winter. This forms a foundation to develop a real-world 

HADAR dataset. The two key steps are outlined below. 

Collecting material library: In our current experiments, we used a subset of the NASA 

JPL ECOSTRESS spectral library as our material library. This library is for Spaceborne 

applications, not self-driving cars. Consequently, there are many materials (e.g., human 

skin, hair, clothes, and tires of cars) common in daily life but missing in the library, since 

they are rare to be seen from the space. Instead, we have to use other similar materials to 

approximate the spectral emissivity. Note that TeX vision requires spectrally resolved 

emissivity different from existing panchromatic thermal vision where emissivity is 

approximated as a single number (i.e. e(λ) vs e=constant).  We did observe residual errors 

in our results due to the mismatch of emissivities used in the algorithm with respect to 

the actual emissivities. The error manifests in the texture map especially around 

boundaries in Fig.5 and Extended Data Fig.10; if the material library is perfectly known, 

one can recover texture as accurate as Extended Data Fig.2c. We intend to follow the 

same procedures as the JPL database [2] to generate a standard material database for self-

driving applications. Handheld spectrometers can be used to collect the material library 

instead of bench-top spectrometers used in [2]. Building a material library includes 

spectrometer calibration, sample preparation, measurement, error analysis, and 

especially cross analysis with the JPL library for shared materials. 

Spectral resolution of thermal image: Secondly, to distinguish larger number of 

materials in the HADAR material library requires better spectral resolution, in our case, 

more spectral filters. However, research and commercialization of LWIR spectral filters 

currently lag behind visible-light filters. Especially in the COVID period, the 10 filters 

we used are the only significantly independent filters available in stock from Spectrogon, 

an industry-leading company providing LWIR filters. We are fabricating custom spectral 

metamaterial filters to enhance the resolution. Alternatively, using grating-

/interferometer-based hyperspectral imagers could be another solution. 

Our group has extensive preliminary work on those various aspects, and we are confident 

that the above two factors can be overcome in the near future. We do provide the research 

community with this first set of HADAR data collected in Indiana. However, building a 

standard material library or building a hyperspectral imager are independent projects 

beyond the scope of this first paper on HADAR. 

 

Synthesized database is commonly used in the literature, for example, the Scene Flow 

dataset (https://lmb.informatik.uni-

freiburg.de/resources/datasets/SceneFlowDatasets.en.html) for depth estimation and 

segmentation, and the MPI Sintel benchmark for optical flow 

(https://ps.is.tuebingen.mpg.de/research_projects/mpi-sintel-flow). Synthesized data, 

especially by Monte Carlo path tracing, has the real-world image quality and complexity, 

and has perfect ground truth and calibrations. We believe this dataset will motivate the 

research community to pursue multiple avenues related to TeX vision and HADAR. 

https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://ps.is.tuebingen.mpg.de/research_projects/mpi-sintel-flow
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Reference(s): 

[1] Fu, Jun, et al. "Dual attention network for scene segmentation." Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition. 2019. 

[2] A. Baldridge, et al, “The aster spectral library version 2.0”, Remote Sens. Environ. 113, 711 (2009). 

 

C4.2 How do the authors do HADAR ranging and stereo vision? A more in-depth description of this 

process would aid clarity of the paper and understanding of the reader.  

R4.2 We note that we use all three coupled physical attributes of TeX vision: temperature, emissivity, 

and texture for computing the range. TeX vision exploits spectral information in infrared heat 

radiation along with the HADAR constitutive equation (Eq 1) to separate intrinsic and extrinsic 

thermal photons. This physics-driven approach gives rise to three information channels which 

we represent as hue (emissivity), saturation (temperature) and value (texture). This is 

fundamentally different from optical cameras which output RGB vision. HADAR ranging is 

based on stereo matching of left and right TeX vision images, like traditional stereo matching on 

RGB vision images. Thus, the large number of neural network architectures used in optical vision 

tasks can be adopted to TeX vision in the near future. 

(1). We apologize that in the previous version of Fig.1b, it was confusing to put depth before 

TeX vision. In this new version, we revised it to the following. 

 
Fig.12 HADAR outputs TeX vision. Detection, semantic segmentation, ranging, etc are based on TeX vision. 

Depth is computed after TeX vision 

 

(2). To make our approach clearer, we have directly stated in the introduction (last sentence, 1st 

page) that: 

“Our demonstrations of HADAR include detection and ranging based on TeX vision, for both 

real-world level HADAR database and outdoor experiments.” 

(3). In HADAR ranging section of the main text and Fig.4, stereo matching is used only for the 

scattering signal, (1-e)X, to show the importance of texture in ranging and compare with optical 

imaging. This is because the main text focuses on describing the fundamental limits of HADAR, 

and it is more intuitive to illustrate the ranging error bound with only the scattering signal. 

However, we emphasize that our fundamental bound on ranging error is universal and applies to 

all kinds of images, including the TeX vision, X-type texture, the scattering signal, or even 

optical images. We have added these explanations in the HADAR ranging section to make the 

logic flow more fluent: 

“…To show the importance of texture in ranging and compare with optical imaging, here we 

focus on the scattering signal that can be reconstructed through TeX decomposition...” 
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(4). Moreover, HADAR ranging based on TeX vision is also explicitly demonstrated in Extended 

Data Fig.6. Stereo matching is performed with DeepPruner pre-trained on the KITTI dataset. 

 

C4.3 Also, what is meant by ~100 x accuracy in ranging? Does this apply to all scenarios rather than 

specific cases? 

R4.3 The previously mentioned 100-fold improvement in ranging accuracy is for one single line in 

the specially designed scene shown in Fig.4 of the main text. It does not apply to all scenarios. 

In that special scene in Fig.4, ranging accuracy enhancement is between 1~100 at different image 

parts. We focused on one single line in Fig.4 in order to verify our fundamental bound of 

HADAR ranging. 

Ranging results on general scenes like the city block dataset are given in the Extended Data 

Fig.6, as cited below. We have observed about 67 folds mean disparity error suppression of 

HADAR ranging with respect to thermal ranging for the street region and 26 folds mean disparity 

error suppression for the entire image. Note that disparity error is proportional to ranging error. 

In the new version, statistics have been analyzed across multiple frames. 

 
For the fundamental bound of ranging accuracy, the improvement factor is related to 𝜂 =
𝜎𝑐,𝑡
2 /𝜎𝑐,ℎ

2 = 𝐽𝑥,ℎ
0 /𝐽𝑥,𝑡

0 , where 𝜎𝑐,ℎ
2  is the photonic correspondence uncertainty with spectral 

resolution (HADAR), 𝜎𝑐,𝑡
2  is the photonic correspondence uncertainty without spectral resolution 

(thermal vision), 𝐽𝑥,ℎ
0  is the Fisher information with spectral resolution, and 𝐽𝑥,𝑡

0  is the Fisher 

information without spectral resolution, as given in Tab. S4 of the Supple. Info. This 

improvement factor 𝜼 is scene dependent but is always greater than or equal to 1 (between 

1 to ∞). Relevant discussions are given in page 33 of the Supple. Info. as cited below. 
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In order not to mislead readers, we have revised relevant statements: 

<the second sentence in HADAR ranging section, page 3> 

“…We prove a transformative 2-orders-of-magnitude accuracy improvement in depth estimation 

with HADAR ranging, as compared with existing thermal ranging We demonstrate depth 

accuracy improvement of HADAR ranging up to two orders of magnitude compared with existing 

thermal ranging…” 

<last sentence of the first paragraph in HADAR ranging section> 

“…the absolute ranging error (cyan data points in insets) with respect to the ground truth along 

white dashed lines shows ∼ 100× accuracy improvement in HADAR (The improvement is scene 

dependent. See Extended Data Fig. 6 for general scenes and Fig. 14 for experimental evidence 

of the advantage of HADAR ranging)” 

 

C5 As per the authors, the HADAR framework requires a hyperspectral cube to input to the NN. 

Despite such promising performance of HADAR, its applicability on real-world datasets might 

be limited as most of the real-world thermal datasets are only available based on temperatures. 

Do authors intend to extend the HADAR estimation to extrapolate the rest of the information 

based on this limitation in information availability for more applicability? 

R5 We agree with the reviewer that existing real-world thermal datasets are only based on 

panchromatic radiance (commonly treated as temperature) without spectral resolution, while 

spectral resolution in hyperspectral data cubes is very essential to HADAR to obtain the TeX 

vision. We have created the first stereo-hyperspectral Cityblock dataset to aid the community in 

exploring fundamental bounds of TeX vision and HADAR. Specific aspects of HADAR can be 

extended to existing thermal datasets without spectral resolution in the following way 

1. The fundamental bound on ranging accuracy in our theory is universal, applicable to 

various kinds of data including hyperspectral data cubes, RGB images, and even 

panchromatic grayscale images. The bound is fully given in Sec.SIIC of the Supple. Info. 

as cited below, 

 
where 𝜎𝑐 = 1/𝐽𝑥

0  is the photonic correspondence uncertainty given by single-photon 

Fisher information 𝐽𝑥
0. In this new version of manuscript, we have provided in Tab. S4 of 

the Supple. Info. the Fisher information 𝐽𝑥
0 about point-source location for both thermal 

data without spectral resolution and hyperspectral data cubes with spectral resolution. 

Furthermore, as can be seen in insets of Fig.4 in the main text, the theoretical predictions 

(red curves) of our HADAR ranging bounds are consistent with numeric experiments 

(blue dots), both with and without spectral resolution. 

Even for practical imaging without spectral resolution where the exact photon number is 

unknown, we also provided the corresponding Fisher information about window position 

as cited below. The associated Cramer-Rao bound (inverse of Fisher information) bounds 

the ranging accuracy. 
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Our fundamental bound on ranging accuracy is applicable to existing thermal 

datasets. In our current paper, we have only compared with our own dataset but will 

extend to other thermal datasets in the future. 

2. The fundamental bound of HADAR identifiability (material estimation) cannot be 

extended to thermal datasets without spectral resolution. Spectral thermal signatures are 

key to material estimation, while panchromatic thermal imaging loses spectral 

information. 
3. As an extension of our theory, we propose pseudo-TeX vision for existing panchromatic 

thermal imaging datasets, to extend the practical application regime of TeX vision. For 

high emissivity objects, thermal image is widely approximated as the temperature 

contrast. Standard thermal cameras can do the inverse transform and provide a rough 

estimate of the temperature. Therefore, we use the thermal image itself to approximate 

temperature T. Secondly, existing semantic segmentation based on thermal vision can 

extract spatial patterns (geometry) from thermal images and estimate semantic 

categories. We use it to approximate material category e(m). Thirdly, AGC (automatic 

gain control) can improve visual contrast, maximizing the usage of residual texture in 

sensor data. We use it to approximate texture X. In doing so, we get an approximation to 

the three attributes of T, e and X (pseudo-TeX vision). Please see the following Fig.14 

for a sample thermal image in the FLIR thermal dataset without spectral resolution 

(https://www.flir.com/oem/adas/adas-dataset-form/). We emphasize that spectral 

resolution is crucial to accurate temperature estimation, material classification as well as 

texture recovery. 

 
Fig.13 Pseudo-TeX vision for a sample thermal image in the FLIR thermal dataset without spectral 

resolution (https://www.flir.com/oem/adas/adas-dataset-form/). 

 

We emphasize that the fundamental bounds are not improved in pseudo-TeX vision. 

Pseudo-TeX vision uses information of different levels (spatial pattern, rough 

https://www.flir.com/oem/adas/adas-dataset-form/
https://www.flir.com/oem/adas/adas-dataset-form/
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temperature, and weak variation) to extrapolate the material and geometry information 

and might find applications, for example, in practical ranging, as shown below. Pseudo-

TeX vision has been added in Sec.SIIID of the Supple. Info. 

 
Fig.14 Disparity in stereo matching based on raw thermal vision and pseudo-TeX vision. This scene is 

one frame of the city block dataset. 

At last, we want to add that (1) hyperspectral imaging technology is developing fast in recent 

years. Our group has worked on developing hyperspectral imagers for years and we know that 

other than the filter wheel approach, there are color mosaic sensors [1], spatial separation 

approaches (prism-based push broom [2], grating/AOTF [3]), and interference approaches 

(Michelson interferometer [4], Fabry-Perot cavity [5]) to obtain hyperspectral data cubes. (2) We 

have built and released the 1st LWIR stereo-hyperspectral HADAR dataset by exploiting 

Planck’s law and Kirchhoff’s law in Blender Cycles. With continuous efforts in the near future, 

we are generating larger and larger LWIR hyperspectral datasets, both synthetic and 

experimental, for the scientific community to develop HADAR algorithms. 

 
Reference(s): 

[1] Bao, Jie, and Moungi G. Bawendi. "A colloidal quantum dot spectrometer." Nature 523.7558 (2015): 67-70. 

[2] Mouroulis, Pantazis, Robert O. Green, and Thomas G. Chrien. "Design of pushbroom imaging spectrometers 

for optimum recovery of spectroscopic and spatial information." Applied Optics 39.13 (2000): 2210-2220. 

[3] Gupta, Neelam, Rachid Dahmani, and Steven J. Choy. "Acousto-optic tunable filter-based visible-to-near-

infrared spectroploarimetric imager." Optical Engineering 41.5 (2002): 1033-1038. 

[4] Potter, Kimberlee, et al. "Imaging of collagen and proteoglycan in cartilage sections using Fourier transform 

infrared spectral imaging." Arthritis & Rheumatism 44.4 (2001): 846-855. 

[5] Lucey, Paul G., et al. "A compact Fourier transform imaging spectrometer employing a variable gap Fabry-Perot 

interferometer." Next-Generation Spectroscopic Technologies VII. Vol. 9101. International Society for Optics and 

Photonics, 2014. 

 

C6 The NN devised for TeX decomposition is a flattened fully connected layer/1D CNN, which 

results in the loss of spatial-spectral information during the inferences. How much of that is 

evident in current results? Quantification of results is missing and needs to be added to make the 

argument for HADAR application more compelling. Will a 3D CNN based on spatial-spectral 

info be more useful for better performances? 

R6 We thank the reviewer for the suggestion of using spatial-spectral information. In the previous 

version, we were considering a simplest model that decomposes TeX attributes pixel per pixel, 

using spectral information but ignoring spatial information. That previous simplest model (3-
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layer 1D CNN) is unable to process complicated scenes. Instead, we have now used 3D CNN 

based on spatial-spectral information in this new version, and we have observed better 

performances of TeX decomposition utilizing both spatial patterns and spectral signatures. 

Explicitly, to improve the quality of this manuscript, (1) we have built and released the 1st 

HADAR Cityblock stereo-hyperspectral dataset with real-world level complicated scenes 

(https://drive.google.com/drive/folders/1da2Uh5t_QOy-

MrWxhkJJw3MueNxsuVtn?usp=sharing), and (2) we have adopted spectral and pyramid 

attention layers in the UNet model [1] and proposed the TeX-Net for TeX decomposition, as 

cited below. 

 
Fig.15 Architecture of TeX-Net for TeX decomposition. The input to TeX-Net is the hyperspectral heat cube. The 

output is the TeX vision. Loss function to train TeX-Net is defined on the reconstructed heat cube, which is based 

on physics models of blackbody radiation, the material library, and the mathematical structure of texture X. This 

figure is given in Extended Data Fig.1. 
 

TeX-Net has built-in 3D CNN’s and is using spatial-spectral information. The training and 

performance of TeX-Net is given in Sec.SIIIA of the Supple. Info., as cited below. 

 
Fig.16 Comparisons of TeX-Net output with the ground truth show that TeX-Net is indeed able to do TeX 

decomposition. TeX-Net is trained with supervised learning. Small prediction errors in temperature lead to texture 

error in brightness, and hence there are some noisy spots observed in c. This can be improved by imposing 

sophisticated smooth constraint on temperature and harder training. 

https://drive.google.com/drive/folders/1da2Uh5t_QOy-MrWxhkJJw3MueNxsuVtn?usp=sharing
https://drive.google.com/drive/folders/1da2Uh5t_QOy-MrWxhkJJw3MueNxsuVtn?usp=sharing
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Reference(s): 

[1] Li, Hanchao, et al. "Pyramid attention network for semantic segmentation." arXiv preprint arXiv:1805.10180 

(2018). 
 

C7 It is not clear if the authors can identify pixels corresponding to different material from 1D CNN. 

Is the material identification done at a global image-level or pixel-by-pixel basis? Would 1D 

CNN suffice for the task if it is done pixel by a pixel basis? Something like UNET based models 

would be apt for such tasks. 

R7 As explained above in Comment & Reply 6 (R6), the previous simplest model of 1D CNN is 

working on a pixel-by-pixel basis. That simplest model was a 3-layer CNN for material 

classification followed by analytical expressions to solve temperature T and texture X. The 

previous model can identify materials per pixel for our simple synthesized scenes shown in the 

paper but cannot work on real-world level complicated scenes. We thank the reviewer again for 

the suggestion of using 3D CNN, spatial-spectral information, and UNET-based models. In this 

new version, we have developed TeX-Net for TeX decomposition. TeX-Net has built-in 3D 

CNN’s and has both spatial and spectral attention layers. TeX-Net is inspired by the Pyramid 

Attention Network [1] which uses UNet. TeX-Net identifies material for each pixel at a global-

image level, using both spectral and spatial information. 

 
Reference(s): 

[1] Li, Hanchao, et al. "Pyramid attention network for semantic segmentation." arXiv preprint arXiv:1805.10180 

(2018). 
 

C8 In the supplementary material for HADAR estimation theory, in the last sentence of the section, 

Theory of Texture, the authors mention that HADAR texture is equivalent to grayscale imaging 

in daylight, which the reviewer thinks is False as grayscale imaging posses greater qualitative 

and quantitative texture information than that of HADAR as inferred by the results currently 

presented in the paper. Improving results to substantiate this claim or else removing it is 

suggested. 

R8 We regret that we made an unclear statement in the previous version saying ‘HADAR texture is 

equivalent to grayscale imaging in daylight’. We have removed the above unclear sentence in 

the new version. 

The message we tried to convey is the following. Grayscale optical imaging in daylight which 

possesses textures uses the scattered light signal from objects. Thermal imaging suffers from the 

ghosting effect because the scattered signal is immersed in strong direct heat emission. HADAR 

reconstructs the scattered signal and hence recovers the thermal texture. We agree that materials’ 

response to light (spectral features of emissivity) in the visible-light spectrum is different from 

that in the thermal infrared spectrum. Therefore, HADAR has different textures than grayscale 

imaging in daylight even though HADAR reconstructs the scattered signal. 

To make our argument clearer and to improve the quality of our results in the new version, 

1. We have expanded the Supple. Info. to explain in detail the theory of thermal textures, 

see Sec.SID for more details. Explicitly, we have explained the above arguments in one 

of the paragraphs as cited below. 
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2. We have quantified textures at both the fundamental level (Fisher information metric) 

and the visual level (standard deviation metric), see Sec.SIID for more details. 

3. We have improved our results about texture recovery, in both outdoor experiments and 

synthesized dataset, as cited below. The following summer daylight experiment shows 

HADAR TeX vision in comparison with traditional thermal vision. HADAR texture 

recovers geometric textures, see the grass. Quantitatively, HADAR TeX vision has a 

mean texture density of 0.0879 (in standard deviation metric), 4.60 folds more than the 

state-of-the-art pseudo-color approach (0.0191). 
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Fig.17 HADAR TeX vision in summer daylight. This figure is a new experiment result given in the 

Extended Data Fig.10. 

 

We also tested our TeX vision on the city block dataset. The city block dataset clearly 

shows that TeX vision recovers textures, especially on the road and sidewalks, beating 

both raw thermal vision and state-of-the-art enhanced thermal vision. Quantitatively, the 

mean texture density in enhanced thermal vision (standard deviation metric) is 0.0170, 

while the mean texture density in TeX vision is 0.0788 and is about 4.64 folds larger. 

This result is given in Extended Data Fig.2. HADAR TeX vision has also been tested on 

an off-road desert scene in Extended Data Fig.11, where we can see that TeX vision 

recovers textures. It has the physical appearance comparable to an RGB image as 

opposed to a conventional thermal image. In the dataset, emissivity in the material library 

is accurately known. Also, image size of the dataset is 1080*1920, much larger than FLIR 

A325sc (240*320). These two factors make the TeX vision in dataset much better than 

proof-of-concept experimental performance of TeX vision. 
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Fig.18 Top: Raw thermal vision with ghosting effect. Middle: State-of-the-art enhanced thermal vision in 

pseudo color. Bottom: HADAR TeX vision. To better visualize textures, we enlarge TeX vision in 

comparison with state-of-the-art thermal vision. Texture density figures are not shown here. 
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C9 To prove the efficacy of the HADAR, the authors estimate material characteristics with NN but 

use a direct inverse function to estimate T and X. How effective would the application of such 

inverse function be for real-life applications in comparison to the simulations? Such functions 

sound promising for theoretical grounds and simulation but involve many constraints and noise 

factors for real-world application. 

R9 We agree with the reviewer about the analytical inverse function for temperature T and texture 

X. Our previous simplest model of 1D CNN only works for simple synthesized scenes.  The 

previous analytical inverse function is only valid for single-object-single-scattering heat signal 

model which is unable to process real-world scenes. We used the analytical inverse function to 

prove the concept of TeX decomposition, but we totally agree that it is essential to demonstrate 

HADAR efficacy (TeX decomposition) for real-world level complicated scenes. The reviewer 

is correct that the analytical inverse function suffers from noise as it involves differentiation 

operations. 

To demonstrate HADAR efficacy in real-world level complicated scenes, in this new version we 

proposed the TeX-Net for TeX decomposition, as cited below. 

 
Fig.19 Architecture of TeX-Net for TeX decomposition. The input to TeX-Net is the hyperspectral heat cube. The 

output is the TeX vision. Loss function to train TeX-Net is defined on the reconstructed heat cube, which is based 

on physics models of blackbody radiation, the material library, and the mathematical structure of texture X. This 

figure is given in Extended Data Fig.1. 

 

In un-supervised learning of TeX-Net, the entire network is a mapping from heat cube S to itself. 

The second part reconstructing �̃� from temperature T, material e(m), and thermal lighting factors 

V is based on the forward analytical function. The first part in the TeX-Net box is technically 

approximating the inverse functions of T, m, and V. This is a generalization of our previous 

analytical inverse function. In this revised version, we have provided extensive analysis of TeX 

vision performance for the multitude of synthesized scenes and two experimental regimes (hot 

summer day and cold winter night). 

 

C10 For the thermography and semantics experiments, the authors utilize data duplication instead of 

augmentation to construct a larger dataset. Such methods are not encouraged for DL applications 

as they might bias the NN towards a certain class. Rather, the application of augmentation 

techniques is preferred. 
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R10 We thank the reviewer for the suggestion. In this new version, we have abandoned data 

duplication completely. In training the TeX-Net, we have built the Cityblock dataset with 

sufficient training data. In training material classification for human vs. robot identification in 

Fig.3, we generated sufficient training data with the forward analytical equation of heat signal. 

Our current approach of TeX-Net uses the input heat cube and down samples it to get the 

environmental thermal radiation contribution (𝑆𝛽). 𝑆𝛽 is used in reconstructing the texture X, see 

more details in Sec.SIII of the Supple. Info. Therefore, we have not used data augmentation 

either in this paper, as it will influence the reconstruction of texture X. 

 

C11 Regarding the applicability of the proposed HADAR setup for application, for dynamic 

environments such as self-driving vehicles, it would be expensive to have a multispectral 

acquisition device that can simultaneously acquire the data in the multi-spectrum. Even for just 

proof of concept in this HADAR framework, the authors change filters via a wheel to retrieve 

the spectral resolution which may need switching between filters for data acquisition and camera 

stabilization with such abruptly varying acquisition windows. Such a technique might be 

problematic in dynamic environments yielding a lot of background noise in TeX decomposition. 

Suggest adding a paragraph that addresses such current constraints on the real-world application 

of the method. 

R11 We agree with the reviewer that moving HADAR out of lab to the real world will face many 

practical challenges. 

1. As suggested by the reviewer, we have added one paragraph in the Methods section --- 

‘Prototype HADAR calibration and data collection’ to address data acquisition and 

functionality-cost tradeoff of HADAR in real-world applications: 

“…In our proof-of-concept experiments, we used the filter-wheel approach to 

demonstrate the prototype HADAR. The filter-wheel approach is time consuming but cost 

effective. HADAR can also be implemented by other approaches such as mosaic sensors, 

gratings, prisms, interferometers, or Fabry-Perot cavities, depending on the desired 

spectral resolution, spatial resolution, data acquisition speed, or functionality-cost 

balance.” 

2. We have added a section in Sec.SIIE of the Supple. Info to address camera vibration and 

non-stationary objects. Generally, camera vibration and dynamic scenes can be described 

by motion blur and scene flow. We have discussed the applicability of TeX vision and 

HADAR bounds in the presence of scene flow and motion blur in Sec.SIIE. 

 

In the following, we provide in-depth discussions regarding the above constraints, for the 

reviewer’s information. 

1. Real-time data acquisition and processing are important to enable high-speed navigation 

of self-driving cars. It is true that the filter wheel approach for collecting the hyperspectral 

data cube is time consuming. Switching 10 filters implies it is 10 times slower than 

thermal imaging. We chose the filter wheel approach only to demonstrate our proof-of-

concept experiments, and the reason to use the filter wheel approach is that it is the most 

cost effective. In the literature, there are many other approaches to collect hyperspectral 

data cube at a faster speed, for example, the color mosaic sensors [1], spatial separation 



       SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING 

_________________________________________________________________ 

Birck Nanotechnology Center, Room 2293  ■  1205 W State St  ■  West Lafayette, IN 47907  ■  (765) 494-3514  ■  zjacob@purdue.edu 

approaches (prism-based push broom [2], grating/AOTF [3]), and interference 

approaches (Michelson interferometer [4], Fabry-Perot cavity [5]). Color mosaic sensors 

is as efficient as thermal imaging but sacrifices spatial resolution. Spatial separation and 

interference approaches have the best spectral resolution but is time consuming, limited 

in field of view, cumbersome, and expensive. Compared to grating/prism/interferometer 

approaches, the filter approach is less vulnerable to mechanical vibrations. Improving 

hyperspectral data acquisition is a hot topic in the scientific community, and fast progress 

is being made by the community. In processing data, the adoption of TeX-Net instead of 

least-squares fitting for TeX decomposition enables real-time processing as well as 

accuracy on complex real-world scenarios. 

2. Camera vibration, non-stationary objects, and slow data acquisition all lead to motion 

blur in images. Although our bounds and TeX vision are derived and demonstrated for 

stationary objects, they are also applicable for non-stationary objects when the motion 

blur is negligible, that is, when the apparent motion of a point source is within one pixel 

on the image plane. The apparent motion is given by Δ = 𝑣𝑡𝐿/𝑟𝜃, where 𝑣 is the relative 

transverse speed, 𝑡  is the exposure time, 𝐿  is the number of pixels in the horizontal 

direction, 𝑟  is the distance of the target, and 𝜃  is the field of view. Motion blur is 

negligible when either the transverse speed is low or the exposure time is short. For 

example, a target at 30 m away captured by FLIR A325sc (t<12 ms, L=320, 𝜃=50 degree) 

equipped on a car driving at 30 mph [𝑣 ≤ 30 sin
𝜃

2
 mph] will have Δ ≲ 0.8 and hence the 

motion blur is negligible. To allow a higher travelling speed, the frame rate of the used 

camera must be high so that the exposure time is sufficiently short to avoid motion blur, 

according to the criterion Δ <1. This criterion, Δ <1, constrains the applicability of our 

bounds. Within the criterion, TeX decomposition can be performed for each individual 

heat cube to get the TeX vision, and detection and ranging are based on TeX vision. We 

have added the above details in Sec.SIIE of the Supple. Info, with further discussions 

about the applicability of TeX vision with motion-blur removal. 

 
Reference(s): 

[1] Bao, Jie, and Moungi G. Bawendi. "A colloidal quantum dot spectrometer." Nature 523.7558 (2015): 67-70. 

[2] Mouroulis, Pantazis, Robert O. Green, and Thomas G. Chrien. "Design of pushbroom imaging spectrometers 

for optimum recovery of spectroscopic and spatial information." Applied Optics 39.13 (2000): 2210-2220. 

[3] Gupta, Neelam, Rachid Dahmani, and Steven J. Choy. "Acousto-optic tunable filter-based visible-to-near-

infrared spectroploarimetric imager." Optical Engineering 41.5 (2002): 1033-1038. 

[4] Potter, Kimberlee, et al. "Imaging of collagen and proteoglycan in cartilage sections using Fourier transform 

infrared spectral imaging." Arthritis & Rheumatism 44.4 (2001): 846-855. 

[5] Lucey, Paul G., et al. "A compact Fourier transform imaging spectrometer employing a variable gap Fabry-Perot 

interferometer." Next-Generation Spectroscopic Technologies VII. Vol. 9101. International Society for Optics and 

Photonics, 2014. 

[6] A. Baldridge, et al, “The aster spectral library version 2.0”, Remote Sens. Environ. 113, 711 (2009). 

 

C12 The authors present a promising and potentially groundbreaking new methodology in their 

presentation of HADAR. They present significant improvements in performance over other 

modalities in low light conditions. However, such a modality is not without significant 

challenges still to be addressed before it can be recognized as a “next step” in computer vision 
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applications. From on-fly calibration to the design of acquisition devices pose hardware-level 

challenges. Besides, the interface of such modules with edge computing devices for real-world 

applications would be a challenge where the TeX decomposition framework and Task-based 

frameworks can be easily be deployed in such devices. Another challenge is coming up with a 

robust library to train the framework as the material properties also change with the environment 

leading to change in each TeX parameter. Also, the authors don’t present the acquisition between 

cold and hot conditions. How that changes HADAR performance? (will be addressed as C13) 

Also, for cost-effectiveness, most of the available thermal cameras used in day-to-day life on 

consumer products are low priced. The applicability of such a multispectral camera for the 

HADAR application may not be cost-effective and affordable to low-end consumer products and 

even academic research. The authors make significant projections about the future of this work 

and have done excellent work in their theory. However, they have neglected to address any of 

the real and significant challenges that remain before the implementation of such work can take 

place in a real-world application. Suggest the addition of a section that highlights remaining 

constraints on the work before it can be presented as a real-world solution. This could take the 

form of a paragraph in the Discussion or Outlook. The reviewer believes that HADAR brings a 

lot of potential to the world but as it currently stands, bears significant challenges that need to be 

carefully addressed before it can replace or substitute the existing modalities in decision making. 

R12 We thank the reviewer for the detailed suggestion. We agree that HADAR bears significant 

challenges that need to be carefully addressed before it can replace or substitute the existing 

modalities in decision making. 

In the Reply to last question (R11), we have added two paragraphs to address data acquisition 

and motion blur. In addition, 

1. We have also revised our ‘Outlook’ paragraph in the main text to discuss existing 

challenges in real-world HADAR application: 

“We proposed and demonstrated HADAR for fully-passive and physically-aware 

machine perception. Our shot-noise limits of detection and ranging set the benchmark 

and call for heat exploitation in the quantum regime where single photon detectors are 

being developed beyond visible spectral range into the thermal infrared. Practical 

challenges exist, such as, library collection, on-fly calibration, real-time data acquisition, 

and functionality-cost optimization. Nevertheless, we believe HADAR will lead to a new 

chapter in the Fourth Industrial Revolution with applications in autonomous navigation, 

healthcare, agriculture, wildlife monitoring, geosciences and defense industry.” 

2. We have also added a paragraph in Methods --- ‘pseudo-TeX vision’, and a sub-section 

in Supple. Info., Sec.SIIID, to discuss the applicability of TeX vision in common thermal 

datasets. See Comment and Reply 5 (R5) for more details. 

 

At last, we would like to add that it takes decades in time and enormous efforts from a whole 

industry for LiDAR to achieve its current breadth of applicability since it was proposed. We 

hope our work of HADAR could initiate the efforts in industries to boost HADAR improvement. 

 

C13 Also, the authors don’t present the acquisition between cold and hot conditions. How that 

changes HADAR performance? 
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R13 In the new version, we have added a further experiment in summer daylight (Sep. 2021), in 

comparison with the previous experiment at a winter night (Dec. 2020). 

TeX vision of the summer daylight experiment is given in Extended Data Fig.10, as cited below. 

In terms of texture recovery performances, the texture density (standard deviation) of TeX vision 

in summer daylight is about 4.6 folds more than the texture density in state-of-the-art thermal 

vision. At winter night, the texture density in TeX vision is about 2.9 folds more than the texture 

density in state-of-the-art thermal vision. This comparison shows that HADAR efficacy is robust 

on different temperatures. Furthermore, HADAR performance is better in summer daylight (hot 

temperature) than winter night (cold condition). This is consistent with common thermal 

experiments, as in hot environments, thermal radiation is stronger and hence the signal-to-noise 

ratio is higher. Relevant details have been added in the caption of Extended Data Fig.10. 

 
Fig.20 HADAR TeX vision in summer daylight. Texture density of TeX vision is about 4.6 folds more than that in 

thermal vision. 
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Fig.21 HADAR TeX vision at winter night. Texture density of TeX vision is about 2.9 folds more than that in 

thermal vision. 
 

We thank the reviewer once again for the time and efforts spent to provide us such details comments. With 

the above changes, we believe the manuscript is now significantly improved and ready for publication. 
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Cover letter to Reviewer 2 

We would like to thank the reviewer for the encouraging response and valuable comments. Here, we list 

all the major revisions, and we will provide individual replies to each comment from the next page 

onwards. 

Reviewers’ main concerns and corresponding major revisions include that 

Problem (1): 

The previous version of our manuscript needs to be better organized. The derivation of our 

HADAR theory, details of our machine learning, and details of our HADAR experiments are not 

provided sufficiently. More examples or explanations are needed. 

Revision (1): 

We have expanded the Supple. Info., Methods, and Extended Data to provide more details about 

the theory, machine learning, and experiments, with proper references in the main text. 

Problem (2): 

The previous version only demonstrated HADAR efficacy for a few simple scenes. HADAR 

efficacy for complicated scenes is not verified. 

Revision (2): 

a) We have built and released the 1st HADAR database with complicated scenes. 

b) We have proposed TeX-Net, based on which, we have clearly shown HADAR efficacy. 

c) We have also added one more experiment in summer daylight to compare HADAR performances 

on cold and hot conditions, as suggested by other reviewers. 

Problem (3): 

Quantitative comparisons of HADAR performances (detection and ranging) with the state-of-the-

art are incomplete or missing. 

Revision (3): 

We have made quantitative and qualitative comparisons of machine learning performances based 

on our TeX vision against the state-of-the-art thermal vision. We show the HADAR advantage for 

people detection, semantic segmentation, and ranging. 

Problem (4): 

Textures recovered in HADAR are not quantified and compared to the state-of-the-art approaches. 

Revision (4): 

We have quantified textures and have made fair comparison with state-of-the-art approaches to 

show the advantage of HADAR in recovering textures. 

Problem (5): 

The novelty of TeX decomposition vs. traditional TE separation is not well explained. 

Revision (5): 

We have explained and emphasized the difference between our TeX decomposition and the 

traditional TE separation that has been discussed earlier in literature (see R21 for the full reply). 

 

We have also made revisions according to all other comments. Now, we will address each comment 

sequentially in the following. Notations used in this response include C: Comment, R: Reply, Italic: 

revisions, underline: emphasize.  
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Reviewer 2 

C0 A. Summary of key results. 

The state-of-the-art machine perception utilizing active sonar, radar and LiDAR to enhance 

camera vision is not viable as the number of intelligent agents scales up. Exploiting omnipresent 

heat signals could be a new frontier for scalable perception. However, objects and their 

environment constantly emit and scatter thermal radiation leading to textureless images famously 

known as the ‘ghosting effect’. In this work, the authors proposed a method called HADAR to 

overcome this ghosting effect by decomposing the heat signal into temperature, emissivity and 

texture (TeX decomposition). They have developed the HADAR estimation theory and address 

its shot-noise limits depicting information-theoretical bounds to HADAR-based AI performance. 

In addition, they have also developed HADAR ranging (depth estimation) that shows an 

accuracy improvement up to two orders of magnitude compared with existing thermal ranging. 

They have performed physics-driven semantic segmentation to achieve improved performance 

against AI-enhanced thermal sensing. 

B. Originality and Significance 

This article focuses on the separability of temperature and emissivity from a thermal signal and 

the use of emissivity profiles for detection and ranging. The separability is discussed earlier in 

literature and used for various computation assisted tasks. Cramer-Rao bound on the distance for 

identifiability based on intrinsic properties of a material ascertains quantification of the utility of 

thermal imaging. Whereas an error bound given on the ranging accuracy with a limitation on 

photons counts further determines the accuracy of perception. The third component of 

significance is texture, which is computed from emissivity. Texture in visible light imaging 

qualifies the identification. TeX decomposition in thermal signal allows fine distinguishable 

parameters for image processing. 

R0 We would like to thank the reviewer for the encouraging response and valuable comments. We 

have addressed each comment individually below and made major revisions to improve the 

quality of this manuscript. 

  
C1 C. Data and Methodology 

There are few comments about Data and Methodology as follows: 

1. A schematic diagram of the hardware setup would benefit the readers. Though an image of 

the hardware setup is provided, it seems insufficient for a scholarly article. 

R1 We thank the reviewer for pointing this out. We agree that a better integrated device and a more 

descriptive picture with 3D schematics are very important for readers to understand HADAR. In 

this new version, we revised the schematic of hardware setup (previous Extended Data Fig.4, 

current Extended Data Fig.9), with a real-world picture of our prototype HADAR and 

corresponding 3D schematics, as cited in the following Fig.1. 

Furthermore, we also provided the full heat signal models and calibration schematic in the 

Supple. Info. Schematics of heat signal model are given and explained in Sec.SI. The calibration 

of our prototype HADAR is fully explained in Sec.SIV. 
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Fig.1 The picture (a) and schematics (b-c) of our prototype HADAR. d-e, HADAR signal before and after 

calibration of back reflection. This figure is our new Extended Data Fig.9. For more details of calibration, see 

Sec.SIV of our Supple. Info. 

 

C2 Authors have derived the Cramer-Rao bound for HADAR estimation and the machine learning 

method but have not provided proof for the Cramer-Rao bound. 

R2 We regret that the previous version of the manuscript was over compressed, and the derivation 

of Cramer-Rao bounds was only briefly explained in the previous Supple. Info. In this new 

version, we have expanded the Supple. Info to include the full derivations of the fundamental 

limits for both detection and ranging problems, see Sec.SII of the Supple. Info. The full 

derivations are based on the unified heat signal model which is explained in Sec.SI of the Supple. 

Info. (Fig.S2). 

1. Explicitly, for HADAR identification (material estimation for detection), we used a W-

dimensional hyperspace (W being the number of spectral bands) to define the exact 

detection probability (also known as the recall, or true positive rate; see Fig.S5 and 

Algorithm 1 in Sec.SIIA). We then developed an analytical theory to derive the detection 

probability based on Fisher information matrix and the Cramer-Rao bound (see Theorem 
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1). The Shannon information or HADAR identifiability of a material within a library was 

defined by the material’s detection probability given the thermal photons in a scene (see 

Algorithms 2 and 3). The above full derivation implies that distinguishing two materials 

is equivalent to estimating the continuous fraction g of a mixture of those two materials. 

g is continuous and therefore we use a threshold to provide the final discrete estimate of 

the material index. Based on this equivalency, previously we provided a simpler 

derivation in previous Supple. Info. We still feel necessary to keep the simpler derivation, 

which is easier for readers to follow, so we have moved it into the Methods of the paper 

(Sec. HADAR estimation theory).  

We show that the neural network performance in distinguishing two materials given 

the thermal signal can achieve the fundamental bound predicted by HADAR 

estimation theory. Furthermore, this can allow for future comparisons across neural 

networks to identify the best one which reaches the bound.  

Numeric Monte Carlo experiments of material classification with machine learning to 

verify the fundamental limit of HADAR identifiability are given in Fig.3b of the main 

text and Fig.S6 of the Supple. Info. 

2. For depth estimation (ranging), we re-interpreted the correspondence problem in 

computer vision as a window-position estimation problem in estimation theory (see 

Fig.S8). This allows us to connect the photonic disparity error with the window-position 

estimation error (see Eqs.S37-41). We then analyzed the physical process of imaging and 

derived the Cramer-Rao bound of window position uncertainty, which gives the 

fundamental limit of ranging error (see Eq.S43). Numeric experiments with Monte Carlo 

path tracing and stereo matching algorithms to verify the fundamental limit of ranging 

error are given in Fig.4 of the main text. 

 

 

C3 Authors have selected a single environment for experimentation setup with a few 

characteristically distinguishable objects (person and cardboard Einstein model). It is evident 

from the computer vision literature that state-of-the-art artificial intelligence algorithms perform 

comparatively better in complex scenes. So the efficacy of the proposed method is hard to 

determine. 

R3 We agree with the reviewer that it is necessary to demonstrate HADAR efficacy with 

complicated scenes and compare with state-of-the-art AI-enhanced thermal vision. To do so, we 

have (1) built and released the 1st HADAR database with complicated scenes; (2) trained and 

tested the TeX-Net for TeX decomposition; (3) compared the machine-learning performances 

based on our TeX vision and the traditional thermal vision; and (4) added one more experiment 

in a different environment. Our new results (see Extended Data Figs. 1, 2, 6, 8 and 11 in the 

new version) clearly show the efficacy of HADAR in real-world level complicated scenes. 

Previously, we used the prototype HADAR in Indiana on a winter night (Dec. 2020) to show 8-

material TeX vision (including the background). In the object-level semantic segmentation, 

previously we only focused on ‘car detection’ and ‘distinguishing the human body and the 

cardboard Einstein model’, to emphasize the advantage of HADAR over LiDAR and optical 

cameras. 
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1. To demonstrate HADAR efficacy in different environments, we have done one more 

experiment in Indiana, USA, in summer daylight (Sep. 2021), in this new version of the 

manuscript. This was also suggested by another reviewer to compare HADAR 

performances on cold and hot conditions. Our results in Extended Data Fig.10 (cited 

below in Fig.2) of the TeX vision in summer daylight shows consistent TeX capability 

with the TeX vision on a winter night in Fig. 5. This demonstrates HADAR efficacy of 

TeX decomposition and TeX vision in different temperature conditions. Furthermore, 

TeX vision in summer daylight shows better texture recovery. Texture density in TeX 

vision is about 4.6 folds more than texture density in state-of-the-art enhanced thermal 

vision. This is generally true that higher temperature would lead to higher signal-to-noise 

ratio and better performance. 

 
Fig.2 HADAR TeX vision in summer daylight. This figure is a new experiment result given in the 

Extended Data Fig.10 to show HADAR efficacy on different temperature conditions. For texture 

quantification, see Sec.SIID of the Supple. Info. for more details. 

2. To demonstrate HADAR efficacy in complicated scenes with more objects, we have built 

a synthesized LWIR (long-wave infrared) stereo-hyperspectral database with Monte 

Carlo path tracing, by exploiting Planck’s law and Kirchhoff’s law in Blender Cycles 

renderer. The database has been made available at 

(https://drive.google.com/drive/folders/1da2Uh5t_QOy-

MrWxhkJJw3MueNxsuVtn?usp=sharing), based on which we have tested machine 

learning performances. We will host it on Github for the research community once the 

paper is published. To generate the synthesized database, we designed a city block scene 

to mimic a real-world self-driving task. This city block scene is rendered with multiple 

scattering cutoff of 𝑙 = 4 (i.e., ray depth = 4), which is commonly adopted for real-world 

level image quality especially for low-reflection materials. In this city block scene, there 

are 21 different material categories (M=20 for the material library, robots share the same 

https://drive.google.com/drive/folders/1da2Uh5t_QOy-MrWxhkJJw3MueNxsuVtn?usp=sharing
https://drive.google.com/drive/folders/1da2Uh5t_QOy-MrWxhkJJw3MueNxsuVtn?usp=sharing
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material with car logo). For comparison, we note that state-of-the-art semantic 

segmentation of optical imaging in the literature has similar number of categories. For 

example, the pre-trained DANET [1] was trained to segment 19 categories, while the 

CityScapes dataset (https://www.cityscapes-dataset.com/) has 30 classes for 

segmentation. One key difference of our approach is physics-driven semantic 

segmentation. State-of-the-art semantic segmentation focuses on object level 

distinctions within the scene (e.g., car, road, pedestrian, etc.). However, our approach for 

TeX decomposition focuses on materials and hence exploits the unique thermal 

signatures at the physical-component level (e.g., car paint, window, headlights, tire, etc.), 

which is more advanced, see the following figure. 

 
Figure 3. Left: a sample of the state-of-the-art semantic segmentation in the object level (ADE20K), with 

6 categories. Right: a sample TeX vision in our HADAR database, with 20 categories. This comparison 

is to show the real-world complexity of our dataset. 

The physical-component-level TeX vision will enable physics-driven semantic 

segmentation, as opposed to the state-of-the-art visual appearance driven semantic 

segmentation. We emphasize that TeX vision itself is not semantic segmentation and we 

have extensive algorithms to obtain the semantics of the scene from TeX vision, see 

Extended Data Fig.8 and Sec.SIIIE of the Supple. Info. for more details. In our city block 

dataset, there are multiple pedestrians, including men, women, kids, the elders, and 

robots, to mimic a future scene. We believe our database presents a convincing platform 

to test HADAR efficacy (TeX decomposition and TeX vision). 

3. Based on our synthesized database, the machine learning performances of our TeX-Net 

(see Extended Data Fig.1) shows the applicability of TeX decomposition and TeX vision 

on complicated scenes. These results demonstrate HADAR efficacy on synthesized real-

world scenes. The comparison of TeX-Net output with the ground truth TeX vision is 

given in Fig.S12 in the Supple. Info., as cited below. 

https://www.cityscapes-dataset.com/
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Fig.4 Comparisons of TeX-Net output with the ground truth show that TeX-Net is indeed able to perform 

TeX decomposition. TeX-Net exploits the spectral information in thermal radiation along with the 

HADAR constitutive equation (Eq. 1) to separate the intrinsic and extrinsic thermal photons. Small 

prediction errors in temperature lead to texture error in brightness, and hence there are some noisy spots 

observed in c. This can be improved by imposing sophisticated smooth constraint on temperature and 

harder training. 

 

4. In this paper, we demonstrate a few typical examples, i.e., people detection with 

HOG+SVM, semantic segmentation with DANet, and ranging with DeepPruner. 

Performance comparisons between TeX vision and traditional thermal vision clearly 

indicates HADAR efficacy, as shown in Extended Data Figs. 5, 6, 8, and Fig. S17 of the 

Supple. Info. We briefly cite the results as below for the reviewer’s convenience. We 

note that HADAR requires multi-spectral information to output TeX vision. In the 

proposed concept of TeX vision, the scene is captured with physical attributes being 

represented by hue (emissivity index), saturation (temperature) and value (texture 

X). This novel representation has physical context which is not present in the output of 

optical cameras (RGB vision), conventional IR thermal cameras (panchromatic thermal 

vision), or LiDAR (point cloud). Subsequent machine learning algorithms in computer 

vision regarding stereo matching, optical flow, scene flow, semantic segmentation, etc. 

that are previously based on RGB vision, thermal vision or point cloud can be adapted to 

TeX vision. Developing new algorithms exploiting TeX vision presents a new research 

frontier and we plan to pursue multiple avenues in future studies. 
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Fig.5 ‘TeX vision + AI’ beats the state-of-the-art ‘thermal vision + AI’ in ranging, showing HADAR 

efficacy in complicated scenes.  

 

 
Fig.6 HADAR semantic segmentation based on TeX vision beats the state-of-the-art ‘thermal vision + 

AI’ segmentation, showing HADAR efficacy in complicated scenes. 

 

5. We want to comment on the development of a real-world HADAR dataset. We note that 

a real-world experimental hyperspectral LWIR database with ground truth TeX vision 

and depth is not available. The procedures to build an experimental database are basically 

the same as what we have done in the outdoor experiments, and they can be briefly 

summarized as the following: (1) collecting left and right hyperspectral data cubes; (2) 

collecting the corresponding material library; (3) solving TeX as the ground truth by 

least-squares estimators; and (4) collecting ground truth depth with LiDAR. In this first 

paper, we have provided a synthetic database and shown two proof-of-concept 

experiments in summer and winter. This forms a foundation to develop a real-world 

HADAR dataset. The two key steps are outlined below. 
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Collecting material library: In our current experiments we used a subset of the NASA 

JPL ECOSTRESS spectral emissivity library as our material library.  

This library is for Spaceborne applications, not self-driving cars. Consequently, there are 

many materials (e.g., human skin, hair, clothes, and tires of cars) common in daily life 

but missing in the library, since they are rare to be seen from  space. Instead, we have to 

use other similar materials to approximate the spectral emissivity. Note that TeX vision 

requires spectrally resolved emissivity different from existing panchromatic thermal 

vision where emissivity is approximated as a single number (i.e. e(λ) vs e=constant).  We 

did observe residual errors in our results due to the mismatch of emissivities used in the 

algorithm with respect to the actual emissivities (mismatch error remains in the texture 

map especially around boundaries in Fig.5 and Extended Data Fig.10; if the material 

library is perfectly known, one can recover texture as good as Extended Data Fig.2c). We 

intend to follow the same procedures as the JPL database [2] to generate a standard 

material database for self-driving applications. Handheld spectrometers can be used to 

collect the material library instead of bench-top spectrometers used in [2]. Building a 

material library includes spectrometer calibration, sample preparation, measurement, 

error analysis, and especially cross analysis with the JPL library for shared materials. 

Spectral resolution of thermal image: Secondly, to distinguish more materials in the 

HADAR material library requires better spectral resolution, in our case, more spectral 

filters. However, research and commercialization of LWIR spectral filters currently lag 

behind visible-light filters. Especially in the COVID period, the 10 filters we used are the 

only significantly independent filters available in stock from Spectrogon, an industry-

leading company providing LWIR filters. We are fabricating custom spectral 

metamaterial filters to enhance the resolution. Alternatively, using grating-

/interferometer-based hyperspectral imagers could be another solution. 

Our group has extensive preliminary work on those various aspects, and we are confident 

that the above two factors can be overcome in the near future. We do provide the research 

community with this first set of HADAR data collected in Indiana. However, building a 

standard material library or building a hyperspectral imager are independent projects 

beyond the scope of this first paper on HADAR. 

 

Synthesized database is commonly used in the literature, for example, the Scene Flow 

dataset (https://lmb.informatik.uni-

freiburg.de/resources/datasets/SceneFlowDatasets.en.html) for depth estimation and 

segmentation, and the MPI Sintel benchmark for optical flow 

(https://ps.is.tuebingen.mpg.de/research_projects/mpi-sintel-flow). Synthesized data, 

especially by Monte Carlo path tracing, has the real-world image quality and complexity, 

and has perfect ground truth and calibrations. 

6. We also want to mention that our HADAR estimation theory is general for multiple 

scatterings and multiple objects, see Sec.SIII of the Supple. Info. Therefore, the HADAR 

efficacy for complex scenes illustrated above is consistent with the theory. 

 
Reference(s): 

https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
https://ps.is.tuebingen.mpg.de/research_projects/mpi-sintel-flow
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[1] Fu, Jun, et al. "Dual attention network for scene segmentation." Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition. 2019. 

[2] A. Baldridge, et al, “The aster spectral library version 2.0”, Remote Sens. Environ. 113, 711 (2009). 

 

C4 For the development of HADAR, they have used FLIR A325sc, which is outdated. In addition, 

they have made the comparison with 16 channel lidar Velodyne puck, which gives sparse data. 

A comment about the functionality and cost comparison would help readers appreciate the 

proposed technique’s significance. 

R4 We thank the reviewer for pointing out the functionality-cost tradeoff. Indeed, reducing the cost 

while maintaining the essential functionality is crucial for our technology to achieve real-world 

impact. This is one of the guidelines we followed in designing those experiments. 

To develop HADAR, we need science-grade radiometric sensors as well as the spectral filters. 

The radiometric sensors that support quantitative analyses of the heat signal are preferred instead 

of ‘thermal imagers’ which focus on thermal visual appearances but distort heat information in 

the data.  

Camera Model: The FLIR Thermal Vision Automotive Development Kit (FLIR ADK, with 

Tau-2 camera core), for example, is a thermal imager that FLIR uses to generate the FLIR starter 

thermal dataset (https://www.flir.com/oem/adas/adas-dataset-form/). FLIR ADK is cost 

effective, around $3,000, but it is less accurate and doesn’t support radiometric analyses such as 

noise-equivalent temperature difference (NETD) [for radiometric analysis, ADK needs further 

calibration/upgrade which is more expensive]. In contrast, FLIR A325sc is the most cost-

effective science-grade thermal camera available when we started the experiment one year ago. 

We note that now A325sc (320*240 pixel array, NETD<50mK, unit price around $10,000) has 

been discontinued and covered by a more advanced model, A655sc (640*480 pixel array, 

NETD<30mK, unit price around $20,000). But we emphasize that A325sc proves sufficient to 

demonstrate the prototype HADAR and illustrate its advantages.  

Spectral filters: The advantage of HADAR over traditional thermal vision comes from the 

spectral resolution and the theory we used to interpret the hyperspectral data. Therefore, we 

prioritized the optimization of filters, and chose almost all significantly independent filters from 

Spectrogon to fully fill the 12-position filter wheel (10 filters + Null + golden mirror; filters are 

around $10,000 in total). Compact hyperspectral imagers are currently only used in defense 

applications as well as remote sensing and are very expensive. We believe our work will inspire 

the development of cheaper infrared spectral sensors for autonomous navigation applications. 

As another reviewer has also pointed out, the total cost of the HADAR system will greatly impact 

its applicability in real world. We think our current design using A325sc and spectral filters in 

our proof-of-concept experiments presents a good functionality-cost balance. With the 

development of relevant industry and new sensors, we anticipate the total cost would go down. 

Comparison to LiDAR: When we compare the prototype HADAR with LiDAR, our end goal 

is to show the advantage of HADAR in physics-based perception. Particularly, we want to show 

the evidence that (1) LiDAR can detect the cardboard and the human body but cannot distinguish 

them; and (2) LiDAR has a shorter detection range and has special difficulties in detecting low-

reflectivity objects (e.g., very common black cars). Those two aspects are rooted in the operating 

principle of LiDAR (LiDAR measures geometric shape or depth through reflection signal) and 

do not depend on specific models. Therefore, we chose Velodyne Puck VLP-16 ($4,000) which 

https://www.flir.com/oem/adas/adas-dataset-form/
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proves sufficient to compare with HADAR. Again, Velodyne HDL-32E (32 channels, 

$15,000~$20,000) or even Velodyne HDL-64E (64 channels, way more expensive) will surely 

give denser LiDAR data, but Puck VLP-16 presents a better functionality-cost balance. Another 

reason that led us to a sparse LiDAR is recent research developments called ‘pseudo-LiDAR++’ 

[1]. In pseudo-LiDAR++, researchers proposed to use sparse but cheaper LiDAR to de-bias 

stereo depth estimation and finally get dense and accurate ranging results. Pseudo-LiDAR++ 

inspired the possibility of combining sparse LiDAR with HADAR for some special applications. 

We are partially working along that line, but that is beyond the scope of this paper. 

As FLIR is constantly updating products in a pace that, unfortunately, customers cannot foresee, 

we have added a comment as suggested in the Method Section ‘Thermal camera specifications’ 

to clearly explain the datasheet of A325sc and the functionality-cost tradeoff, to help readers 

appreciate HADAR’s significance: 

“Our FLIR A325sc thermal camera is a science-grade high-performance radiometric camera 

(price ~ 10,000$). It is equipped with an uncooled Vanadium Oxide (VoX) microbolometer 

detector that produces thermal images of 320 × 240 pixels. Detector pitch is 25 µm. Pixel size is 

approximately 12 µm. Time constant is 12 ms. Focal length is 18 mm. And f-number is 1.3. 

Noise equivalent temperature difference (NETD) is typically < 50 mK and characterized to be 

47.8 mK. FLIR A325sc was available when the experiments in this paper were designed and 

conducted. We note that it has now been discontinued and replaced by a more advanced model, 

FLIR A655sc. The latter has a 640 × 480 pixel array with typical NETD < 30 mK, but it is twice 

as expensive. A better camera will give higher resolution HADAR data. Since the advantage of 

HADAR over traditional thermal vision comes from the spectral resolution and the theory we 

used to interpret the hyperspectral data, FLIR A325sc presents a better functionality-cost 

balance.” 

 
Reference(s): 

[1] You, Yurong, et al. "Pseudo-lidar++: Accurate depth for 3d object detection in autonomous driving." arXiv 

preprint arXiv:1906.06310 (2019). 

 

C5 Authors state, “HADAR is distinct from hyperspectral imaging where material difference is 

determined by the Euclidean distance between their reflectance spectra [32]. In stark contrast, 

HADAR identifiability is determined by multi-parameter estimation of temperature, emissivity 

and texture”, but identifiability is estimated using a CNN with an input of proton profiles only 

(as given in the Methodology section). A precise statement would help readers to understand the 

implementation details. 

R5 In the new version of our manuscript, we have expanded the Supple. Info. to include the full 

HADAR theory. We realize that it is better to understand the above statement with the help of 

the W-dimensional hyperspace (W being the number of spectral bands), see Sec.SIIA of the 

Supple. Info. For convenience, we explain the most relevant parts here. 

The difference in spectra between two materials in hyperspectral imaging (HSI) is described by 

the following paragraph (last paragraph, page 17 of the Supple. Info.): 
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and the following figure of W-space: 

 
Figure 7. Part of Fig.S5 of the Supple. Info. (a) material difference of HSI is the Euclidean distance between red 

and blue dots. (b) material difference in HADAR is the shortest ‘distance’ of the red dot to the blue curve/sheet. 

 

The identifiability between two materials in HADAR is described by the following two 

paragraphs (second paragraph, page 19; line 4, page 25): 
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TeX-Net takes hyperspectral data cube as input and performs multi-parameter estimation of three 

physical attributes for each pixel of the scene – T, e and X. For non-neural-network approaches 

of TeX decomposition working on each pixel, we take the input as the radiation spectrum S and 

the output is TeX values, (see Methods --- TeX decomposition), of which e(m) describes the 

material category. The three physical attributes are coupled and hence uncertainty in texture and 

temperature will directly affect the accuracy of material classification (see extended data figure 

13).  

To make it easier for readers to understand the argument, we have revised the statement in the 

main text to guide the readers to the W-space and relevant contexts in Supple. Info.: 

“HADAR is distinct from hyperspectral imaging where material difference is determined by the 

Euclidean distance between their reflectance spectra. In stark contrast, HADAR identifiability is 

determined by multi-parameter estimation of temperature, emissivity and texture (Fig.S5 and 

relevant contexts in Supple. Info.)” 

 

C6 Authors claim, “The minimum photon number for given semantic distance or vice versa, the 

minimum semantic distance for given photon number sets fundamental limits to object 

identification beyond training volume, providing a theoretical foundation for designing public 

policies.” However, ML algorithms generally perform well with missing or scarce information; 

placing a bound on input data is yet an open challenge. A comment about the significance of 

bounds would help the cross-discipline reader base. 

R6 We agree with the reviewer that machine learning algorithms generally perform well with 

missing or scarce information, such as, for image generation, data prediction, data completion, 

denoising, etc. However, our perspective is different from the above. Our purpose is exactly to 

place a bound on the ML performances (on average) determined by the input data quality. 

1. Shot noise limit of machine learning: As the input data is usually an optical signal, we 

would like to further explain our objective with a concrete example of daily experience. 

Suppose we have a phone camera taking a picture of a barcode and our task is to identify 

the barcode to retrieve the associated information, see the following figure. This scenario 

is common in a supermarket or a library, and the barcode is actually a spatial profile 

analogue of the spectral profiles under consideration in our manuscript. General machine 

learning usually uses sufficiently strong signal (photon number is huge), and it is good at 

dealing with blur, missing, or noisy signal (see the following Fig. a-c). However, one 

always wants the identification process to be as fast as possible to be more productive 

(by decreasing the exposure time), and the illumination light to be as weak as possible to 

save energy, and even the camera aperture to be as small as possible to make the phone 

more compact. Pushing toward those limits, the signal becomes so weak that the light 

field should be treated as quantized photon streams. In this limit, the input data will 

become poorer and poorer (d-e) and eventually fail the identification test. What are the 

criteria to which we can optimize the hardware design (phone) while still guaranteeing 

successful identification? Our manuscript is devoted to addressing this type of question, 

in the context of HADAR, with all parameters modelled in the total photon number. 
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Fig.8 General machine learning performs well on blur, missing, noisy, but strong signal (a-c). When the 

input signal is extremely weak (a few photons, e) or the signal-to-noise ratio (SNR) is extremely low (f), 

the quality of input data is so poor to train a neural network well, no matter how large the training 

volume is. This figure is generated particularly for the reviewer, not included in the paper. 

 

Few-Photon-Limit: The input data for training vision algorithms consists of images. These 

images are bitstream of photons falling on a detector. In the quantum limit, only a few photons 

fall on a detector. Our test data and training data are in this few-photon-image limit. In this 

limit, neural network performance is bounded (on average over many runs) by the fundamental 

physical laws of thermal photonic information theory. Thus, we can use the bound to compare 

across different neural network architectures and whether they can indeed achieve the bound 

in tasks like object detection/classification/ranging etc. 

 

Detector noise: The bound specifically includes the detector specifications used to generate 

the training data. The inefficiencies of the detector used to collect training data causes a 

limitation in the best performance achievable by the neural network independent of the volume 

of training data.  

 

2. In comparison, missing data in general machine learning is usually caused by detector 

readout failure, post-processing bugs, human errors, etc. But our focus is on the total 

information input to the detector determined by the hardware configuration. Detector 

imperfection (readout failure or electronic noise) is included in our theory, while human 

error or software bugs are not. Human error or software bugs are practical factors that 

will degrade the data quality, but our fundamental bounds are useful because they depict 

the optimal performances of machine learning when human error and software bugs are 

completely corrected. The shot-noise limit further depicts the optimal performance of 

machine learning when the sensor noise is optimized. Practical errors show variability 

across systems, but our shot-noise limits which exploit physical laws of thermal 

information theory are universal and can be the guidance to public policies. 

3. Cramer-Rao Bound for Machine Learning: Any machine learning algorithm or its 

associated neural network is a particular estimator to the problem under consideration. 

The Cramer-Rao lower bound is the lower bound to the uncertainty of any unbiased 

estimator. We agree that placing a bound on one single ML evaluation is an open 
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challenge to date, but on average, ML performances will be bounded by the Cramer-Rao 

bound, as we have demonstrated in Fig.3b in the main text. Therefore, we think our theory 

is important as it combines machine learning with information/estimation theory, and it 

lays a theoretical foundation (1) for analyzing the maximum achievable machine learning 

performance given a specific detector and (2) for designing public policies of minimum 

hardware requirements for a given ML task.  

 

To make our argument clearer, we have added a comment in Methods --- Guiding public policy 

(2nd paragraph): 

“… 

Our fundamental limits bound the average machine learning performances due to the shot noise 

and detector noise. Specific lucky evaluation events can occur but they will fluctuate around the 

average bounds, as can be seen in Fig.3b and insets of Fig.4. Human error or software bugs are 

not considered in our bounds, but our bounds are useful because they depict the optimal 

performances of machine learning when human error and software bugs are completely 

corrected. Therefore, our bounds related to physical laws of thermal photonic information theory 

can be used as a guidance to public policies.” 

 

C7.1 Authors said that “Thermal imaging loses textures due to TeX degeneracy (Fig. 4a) and leads to 

inaccurate ranging”. Thermal cameras, for instance, FLIR BlackFly (BFS-U3- 51S5C-C), 

produce impressive images with texture, as shown in figure-1.  

 
R7.1 We agree with the reviewer that in the FLIR dataset (panchromatic thermal vision) there are 

impressive thermal images with textures. We would like to clarify our argument about texture 

by (1) explaining the relation of our work of TeX vision with the FLIR approach; (2) explaining 

how the FLIR approach works; and (3) making a fair comparison of our work with the state-of-

the-art FLIR approach. Furthermore, we have also obtained new experimental results with 

improved texture recovery. 

1. TeX vision exploits the spectral information in thermal radiation along with the 

HADAR constitutive equation (Eq. 1) to separate the intrinsic and extrinsic thermal 

photons. This is in stark contrast to the FLIR dataset which is panchromatic i.e. all 

spectral information is lost at the detector itself. In TeX vision, the scene is captured with 

physical attributes being represented by hue (material index), saturation (temperature) 

and value (texture). This new representation has physical context which is not present in 
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the output of optical cameras (RGB vision), conventional IR thermal cameras 

(panchromatic thermal vision), or LiDAR (point cloud). 

 

As shown in the texture flow diagram below, thermal textures in the scene will be (1) 

collected by hardware sensors and (2) visualized to users. In Sec.SID of the Supple. Info., 

we theoretically analyzed the heat signal and identified 3 types of thermal textures in the 

scene, i.e., T-type (temperature contrast), e-type (nonuniform material), and X-type 

(geometric texture). Moreover, we listed 4 texture-loss channels in data collection, i.e., 

shot-noise/detector noise, finite bit depth, spectral integral, and the TeX degeneracy. 

Thermal imaging loses textures in step one, data collection, but can still manifest certain 

residual textures in practice (FLIR dataset). The amount of residual texture is scene 

dependent. For special scenes, such as the HADAR alphabet sample shown in Fig.6b or 

the car & pedestrian scene in Fig.4a in the main text, this residual texture may completely 

vanish. In general, even the collected residual texture in thermal data cannot be seen by 

users if step two, data visualization, is improper.  

 

We note that BlackFly BFS-U3-51S5C-C is an optical camera in the visible-light 

spectrum, not a thermal camera, so we focus our response on FLIR ADK (with Tau-2 

camera core) that is used to generate the FLIR dataset. It uses a sophisticated AGC 

(automatic gain control) algorithm to improve the visual contrast in step two, maximizing 

the usage of residual texture. We emphasize that image processing like AGC cannot add 

textures to the data but can only maximize the visualization of existing textures. This is 

implied by the well-known Data Processing Inequality --- 'post-processing cannot 

increase information’ [1]. In comparison, HADAR is improving step one, data collection, 

by estimating the spectral dependence of blackbody radiation law as well as the spectrally 

resolved reflectivity and emissivity of materials. This is crucial to increasing the 

information content (texture) in the collected signal which is otherwise lost in traditional 

panchromatic infrared imaging.  

 

In the visualization phase, we use AGC as well (see Sec.SIIIC of Supple. Info.) to 

maximize the visual effect of collected textures. Various artificial intelligence algorithms 

may have various performances in detection and ranging, but the fundamental bound is 

determined by the raw sensor data input to neural networks. Therefore, HADAR which 

improves data collection through spectral resolution has better fundamental information 

content about the heat signal than thermal imaging. Our theory of thermal textures and 

the following figure have been detailed in Sec.SID of the Supple. Info. 
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Fig.9 Texture flow diagram to compare our work with the FLIR approach. HADAR is collecting more 

information in the sensor data, in contrast to state-of-the-art approaches of post image processing. 

 

2. The impressive image quoted by the reviewer from the FLIR dataset (FLIR ADAS 

1_3/FLIR_00316) has a low-contrast raw vision before image processing, see Fig.10a 

below. The raw data output by FLIR camera is also provided in the FLIR dataset in the 

16-bit raw data folder. Raw thermal data is distributed in two narrow pixel value ranges, 

as can be seen in the histogram ©. Details with small pixel-value variations are difficult 

for human eyes to perceive but can be discriminated by machines. FLIR AGC attempts 

to enhance the visual contrast of weak data variations. AGC is a modified version of 

histogram equalization algorithm (using high-pass filters before histogram equalization). 

It performs a nonlinear map from raw pixel values to new pixel values so that the new 

image has a relatively uniform distribution in histogram, see Fig.10d. AGC is not a 

unique mapping but has multiple free parameters, see the right panel of Fig.10. FLIR also 

states in the FLIR Application Notes (https://flir.netx.net/file/asset/15755/original), 

‘FLIR highly recommends that each customer optimize AGC parameter settings for each 

particular application. “Preferred” AGC settings are highly subjective and vary 

considerably depending upon scene content and user preferences’. From the above 

details, it can be seen that AGC is a heuristic post-processing algorithm that improves 

visual contrast but cannot increase information in the sensor data. On the other hand, TeX 

vision is a representation of infrared heat radiation where hue-saturation-value in the 

image is thermal-physics-driven. 

https://flir.netx.net/file/asset/15755/original
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Fig.10 (a) raw thermal vision from the FLIR dataset. (b) Enhanced thermal vision with AGC, as quoted 

by the reviewer. (c) histogram of (a). (d) histogram of (b). The right panel is the FLIR AGC template, 

showing multiple parameters to improve visual contrast 

 

3. To make a fair comparison of our work with the state-of-the-art approach, we will 

quantify textures at both the fundamental level and the visual level. In Sec.SIID of the 

Supple. Info., texture quantification, we have introduced two metrics. The Fisher 

information metric quantifies textures at the fundamental level and relates to the ranging 

accuracy, while the standard deviation metric quantifies textures at the visual level.  

At the fundamental level, we derived the expression of texture, J0, in Tab.4 of Supple. 

Info. with (HADAR) or without (thermal imaging) spectral resolution. The fact that 

textures with spectral resolution are more than textures without spectral resolution can 

be rigorously proved and understood, as explained by the paragraph below Eq.S43 of the 

Supple. Info. 
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We note that the Fisher information in the heat signal is defined on the raw sensor data. 

This fundamental metric is not altered by post-processing techniques like AGC and can 

only be governed by the detector physics. This Fisher information metric governs the 

error in the accurate estimation of texture. Therefore, AGC-enhanced thermal vision 

cannot increase Fisher information as AGC does not alter the sensor itself. It has less 

Fisher information than HADAR since our approach alters the sensor and adds spectral 

information. Thus the Fisher information metric shows that HADAR recovers more 

textures than thermal imaging. 

 

To make a fair comparison between the FLIR dataset and our TeX vision approach at the 

visual level, we first explain the concept of pseudo-coloring. We use the pseudo-coloring 

approach as the state-of-the-art reference instead of the grayscale AGC approach since 

our TeX vision has 3 color channels. We use these 3 color channels for both our work 

and the state-of-the-art. We note that pseudo-coloring has the same functionality as AGC, 

and pseudo-coloring is more commonly used in FLIR camera visualizations. AGC is used 

to map pixel values from grayscale to grayscale, but pseudo-coloring is utilized to map 

pixel values from grayscale to RGB triplets. Both of them can enhance visual contrasts, 

see Fig.11 and also the FLIR Application Notes 

(https://flir.netx.net/file/asset/15755/original). 

 
Fig.11 State-of-the-art approaches to improve visual contrast. To visualize more details, (b) AGC maps 

raw pixel values from grayscale to grayscale, while (c) pseudo-coloring maps raw pixel values from 

grayscale to RGB. 
 

For the outdoor experiment in Indiana in winter, we quantified textures with the standard 

deviation metric (stdfilt function in matlab) for our TeX vision (Fig.S11 d-f of the Supple. 

Info., as cited below), compared to the state-of-the-art (a-c). We can see that TeX vision 

(0.077) almost has 3 times more textures than the state-of-the-art enhanced thermal vision 

(0.027). 

https://flir.netx.net/file/asset/15755/original
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Fig.12 Quantitative comparison of our TeX vision with state-of-the-art thermal vision regarding texture 

recovery. HADAR TeX vision almost has 3 times more textures than the state-of-the-art enhanced 

thermal vision. Experiment was done at a winter night (Dec. 2020). 

 

For special scenes like the car & pedestrian scene in Fig.4 of the main text, once textures 

are lost in the sensor data, neither AGC nor pseudo-coloring can recover the texture, see 

below 

 
Fig.13 Comparison of HADAR texture with state-of-the-art approaches in recovering textures. This 

figure is given as Extended Data Fig.3. AGC is post processing. Once texture is lost in sensor data, AGC 

cannot recover the texture. In comparison, HADAR has spectral resolution and collects more textures in 

sensor data itself, enabling recovery of otherwise inaccessible textures. 



       SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING 

_________________________________________________________________ 

Birck Nanotechnology Center, Room 2293 ■ 1205 W State St ■ West Lafayette, IN 47907 ■ (765) 494-3514 ■ zjacob@purdue.edu 

 

Therefore, the argument that HADAR recovers more textures than thermal imaging with 

AGC also holds at the visual level. 

 

4. To improve our results about texture recovery, (1) we have done one more experiment in 

summer daylight, and (2) we tested texture recovery on our HADAR city block database.  

• The summer daylight experiment below shows that HADAR (0.0879) recovers more 

textures (4.6 folds) than the state-of-the-art pseudo-color approach (0.0191). 

 
Fig.14 HADAR TeX vision in summer daylight. HADAR TeX vision has 4.6 times more textures 

than the state-of-the-art enhanced thermal vision. This figure is a new experiment result given in the 

Extended Data Fig.10. 

• We tested our TeX vision on the city block dataset, as shown below. The city block 

dataset clearly shows that TeX vision recovers textures, beating both raw thermal 

vision and state-of-the-art enhanced thermal vision. Quantitatively, the mean texture 

density in enhanced thermal vision (standard deviation metric) is 0.0170, while the 

mean texture density in TeX vision is 0.0788 and is about 4.6 folds larger. This result 

is given in Extended Data Fig.2. In the dataset, emissivity in material library is 
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accurately known. Also, image size of the dataset is 1080*1920, much larger than 

FLIR A325sc. These two factors make the TeX vision in the synthesized dataset 

much better than proof-of-concept experimental performance of TeX vision. 
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Fig.15 Top: Raw thermal vision with ghosting effect. Middle: State-of-the-art enhanced thermal vision in pseudo 

color. Bottom: HADAR TeX vision. HADAR TeX vision has 4.6 times more textures than the state-of-the-art 

enhanced thermal vision. To better visualize textures, we enlarge TeX vision in comparison with state-of-the-art 

thermal vision. Texture density figures are not shown here. 

 

5. Furthermore, we would like to add a comment about FLIR that (1) the thermal imager 

used in the FLIR dataset, FLIR ADK, has a larger pixel array than our FLIR A325sc 

(640*480 vs. ours 320*240). This can usually make images more impressive, as 

discussed above with our dataset. Based on the same camera and same condition, 

HADAR with spectral resolution will be better in texture recovery than thermal imaging 

without spectral resolution. (2) The key to improving visual contrast is to subtract the 

strong signal floor and keep weak variations. FLIR AGC and pseudo-coloring are 

empirical approaches to subtract the signal floor, as stated in the above FLIR Application 

Notes. In comparison, HADAR measures temperature and emissivity to estimate the 

direct emission which is exactly the strong signal floor. Hence, HADAR is a physics-

inspired way to subtract the signal floor, see more discussions in Sec.SIIIC of the Supple. 

Info. 

 

Reference(s): 

[1] N. J. Beaudry and R. Renner, An intuitive proof of the data processing inequality, Quantum 

Information & Computation 12, 432 (2012) 

 

C7.2 Moreover, in this work, emissivity is used for range computation instead of texture. 

R7.2 We note that we use all three coupled physical attributes of TeX vision: temperature, emissivity, 

and texture for computing the range. TeX vision exploits spectral information in infrared heat 

radiation along with the HADAR constitutive equation (Eq 1) to separate intrinsic and extrinsic 

thermal photons. This thermal-physics-driven approach gives rise to three information channels 

which we represent as hue (emissivity), saturation (temperature) and value (texture). This is 

fundamentally different from optical cameras which output RGB vision. HADAR ranging is 

based on stereo matching of left and right TeX vision images, like traditional stereo matching on 

RGB visions. Thus, the large number of neural network architectures used in optical vision tasks 

can be adopted to TeX vision in the near future. 

 

(1). We apologize that in the previous version of Fig.1b , it was confusing to put depth before 

TeX vision. In this new version, we revised it to the following. 

Old: 

 
New: 
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Fig.16 Top: previous Fig.1b. Bottom: new Fig.1b. HADAR generates TeX vision. Detection, semantic 

segmentation, ranging, etc are based on TeX vision. Depth is computed after TeX vision. 

 

(2). To make our approach clearer, we have directly stated in the introduction (last sentence, 1st 

page) that: 

“Our demonstrations of HADAR includes detection and ranging based on TeX vision, for both 

real-world level HADAR database and outdoor experiments.” 

(3). In HADAR ranging section of the main text and Fig.4, stereo matching is used only for the 

scattering signal, (1-e)X, to show the importance of texture in ranging and compare with optical 

imaging. This is because the main text focuses on describing the fundamental limits of HADAR, 

and it is more intuitive to illustrate the ranging error bound with only the scattering signal. 

However, we emphasize that our fundamental bound on ranging error is universal and applies to 

all kinds of images, including the TeX vision, X-type texture, the scattering signal, or even 

optical images. We have added these explanations in the HADAR ranging section to make the 

logic flow more fluent: 

“…To show the importance of texture in ranging and compare with optical imaging, here we 

focus on the scattering signal that can be reconstructed through TeX decomposition...” 

(4). Moreover, HADAR ranging based on TeX vision is also explicitly demonstrated in Extended 

Data Fig.6. Stereo matching is performed with DeepPruner pre-trained on the KITTI dataset. 

 

C8 An example where thermal equilibrium can cause singularity would help appreciate the utility 

of identifiability and ranging. 

R8 We have added two typical examples of equilibrium singularity in Sec.SIIA, page 25 of the 

Supple.Info., where we discussed the HADAR identifiability in details, to help readers appreciate 

the utility of identifiability. The relevant contents are cited below. In thermal equilibrium, 

singularity means it is impossible to distinguish objects’ materials. 
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C9 A comment about the change in-bounds considering the non-stationary objects in a scene would 

help assess TeX utility in interpreting sequential information. 

R9 We thank the reviewer for asking about the TeX utility for non-stationary objects and sequential 

information. Indeed, this is the common case in applications when either the object or the 

intelligent agent equipped with HADAR is moving. The relative motion of objects is described 

by scene flow in the literature. Projected onto the image plane, scene flow is manifested as 

motion blur in each individual image and optical flow in sequential image frames. Now, we 

discuss the bounds of HADAR detection and ranging, TeX decomposition and TeX vision, in 

the presence of scene flow with different motion-blur levels. 

1. Weak motion blur: Although our bounds and TeX vision are derived and demonstrated 

for stationary objects, they are also applicable for non-stationary objects when the motion 

blur is negligible, that is, when the apparent motion of a point source is within one pixel 

on the image plane. The apparent motion is given by Δ = 𝑣𝑡𝐿/𝑟𝜃, where 𝑣 is the relative 

transverse speed, 𝑡  is the exposure time, 𝐿  is the number of pixels in the horizontal 

direction, 𝑟  is the distance of the target, and 𝜃  is the field of view. Motion blur is 

negligible when either the transverse speed is low or the exposure time is short. For 

example, a target at 30 m away captured by FLIR A325sc (t<12 ms, L=320, 𝜃=50 degree) 

equipped on a car driving at 30 mph [𝑣 ≤ 30 sin
𝜃

2
 mph] will have Δ ≲ 0.8 and hence the 

motion blur is negligible. To allow a higher travelling speed, the hyperspectral data cube 

acquisition rate of the used camera must be high so that the exposure time is sufficiently 

short to avoid motion blur, according to the criterion Δ  <1. This criterion, Δ  <1, 

constrains the applicability of our bounds. Within the criterion, TeX decomposition can 

be performed for each individual heat cube to obtain TeX vision. Subsequent detection 

and ranging are based on TeX vision. Worth noting is that traditional optical flow, scene 
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flow, semantic segmentation, etc., can all be extensively explored based on TeX vision 

and depth, presenting a new research frontier. For example, the RGB-d flow in Ref. [1] 

can be formally transplanted on TeX vision and depth (TeX-d), to retrieve sequential 

information. 

2. Moderate motion blur: For stronger motion blur beyond the criterion, if local motion 

field can be represented by linear convolutional kernels, there are multiple motion-blur 

removal algorithms available to estimate the motion field [2,3,4] and get the clean signal 

without motion blur out of the raw data. Consequently, TeX decomposition and TeX 

vision are applicable again after the pre-processing of motion-blur removal. 

3. Strong motion blur: In the limit of extremely long exposure time, the motion blur kernel 

is a complicated convolution depending on the velocity field of the scene flow. The 

algorithms to remove motion blur in the presence of such motion blur are still open 

questions and deserve future research. New generation of ultrafast bolometers and 

hyperspectral imagers can mitigate strong motion blur for moderate navigation speeds. 

4. However, in the presence of strong motion blur, the bound for ranging accuracy (Eq. S43 

of Supple. Info.) still holds, even though the photonic correspondence uncertainty now 

includes contributions from motion blur in a complicated form. In this scenario, we can 

directly use Eq. S37, which is universal for all stereo images (including those with motion 

blur) and can be derived for given image pairs themselves. 

 

Accordingly, we have added the above comment in Sec.SIIE of the Supple. Info. --- bounds in 

the presence of scene flow. 

 
Reference(s): 

[1] Herbst, Evan, Xiaofeng Ren, and Dieter Fox. "Rgb-d flow: Dense 3-d motion estimation using color and depth." 

2013 IEEE international conference on robotics and automation. IEEE, 2013. 

[2] Sun, Jian, et al. "Learning a convolutional neural network for non-uniform motion blur removal." Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. 

[3] Gupta, Kavya, Brojeshwar Bhowmick, and Angshul Majumdar. "Motion blur removal via coupled autoencoder." 

2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017. 

[4] Portz, Travis, Li Zhang, and Hongrui Jiang. "Optical flow in the presence of spatially-varying motion blur." 

2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012. 

 

C10 D. Appropriate use of statistics and treatment of uncertainties 

1. They have claimed that they have achieved 100 x accuracy in HADAR ranging, which is 

physics-based semantic segmentation between a person and a metallic body. In regard to 

computer vision literature, AI-based semantic segmentation results are already established. They 

have not made a comparative analysis between their proposed method and state-of-the-art AI-

based semantic segmentation. Second, they have done the semantic segmentation using 

emissivity, and if the two subjects have the same emissivity, then their method fails. Below are 

some references for the AI- based semantic segmentation on thermal images 

(1) Li, Chenglong, Wei Xia, Yan Yan, Bin Luo, and Jin Tang. "Segmenting objects in day and 

night: Edge-conditioned cnn for thermal image semantic segmentation." IEEE Transactions on 

Neural Networks and Learning Systems (2020). 
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(2) He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. "Mask r-cnn." In 

Proceedings of the IEEE international conference on computer vision, pp. 2961-2969. 2017.  

(3) Treible, Wayne, Philip Saponaro, Scott Sorensen, Abhishek Kolagunda, Michael O'Neal, 

Brian Phelan, Kelly Sherbondy, and Chandra Kambhamettu."Cats: A color and thermal stereo 

benchmark." In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 2961-2969. 2017. 

R10 We thank the reviewer for drawing our attention to the above references and we agree that it is 

necessary to make a fair comparison to the established AI-enhanced thermal semantic 

segmentation. We checked the above references trying to get a proper baseline for comparison. 

However, the authors of the above Ref. (1) replied that their model is not saved and unavailable. 

The above Ref. (2) is for instance segmentation and the above Ref. (3) is for stereo matching. 

Instead, we turn to the DANet [1] which is also one of the state-of-the-art AI-based semantic 

segmentation that can be applied on thermal images. 

• The quantitative comparison is added in Extended Data Fig. 8, as cited below. It can 

be clearly seen that our physics-driven semantic segmentation gives better 

segmentation results. 

 
Fig.17 Comparison of our physics-driven semantic segmentation with the state-of-the-art AI-enhanced 

thermal semantic segmentation. HADAR semantic segmentation based on TeX vision beats the state-of-

the-art ‘thermal vision + AI’ segmentation, showing HADAR efficacy in complicated scenes. 

 

• Moreover, we want to clarify that our TeX vision or its material map (emissivity) 

itself is different from conventional semantic segmentation. In our approach, every 

material category has a discrete index label whereas in traditional semantic 

segmentation – every object has a discrete index label. We exploit the underlying 

physics that all materials have a spectral emissivity curve which arises from its causal 
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optical response function. HADAR requires a multi-spectral infrared thermal camera 

different from conventional panchromatic FLIR or optical cameras or LiDAR. TeX 

vision is an alternative physics-driven-representation of heat distinct from RGB 

vision or LIDAR point cloud. All other subsequent AI algorithms like optical/scene 

flow, stereo matching, semantic/instance segmentation, etc. that are previously 

developed on RGB vision can be adapted to TeX vision. We are excited to pursue 

these ideas through extensive future studies. Although, it is true that material map or 

emissivity is very similar to a semantic map. Material map is at the physical-

component level, while semantic map functions at the object level. In this paper, we 

have used a heuristic non-machine-learning algorithm to transform the obtained 

material map into semantic segmentation to demonstrate HADAR efficacy. The 

algorithm is detailed in algorithm 4 of the Supple. Info. We tested our algorithms on 

our city block dataset, where we have multiple aluminum robots vs. humans, and 

aluminum is also used for car logo. Basically, each semantic category is a 

combination of several materials within the map, e.g., Car = window glass + tire + 

car paint + headlights + aluminum logo, Robot = aluminum, and so on. Neighboring 

pixel interactions have been used to transform the material map to semantic map, as 

shown in the above figure c and d. We emphasize that our heuristic semantic 

segmentation is not only based on emissivity but also neighboring pixels, and hence 

it won’t fail if two subjects have the same emissivity. For example, car logo is 

aluminum, the same as robot, but they can be distinguished in our semantic 

segmentation (above Fig.b). In the future, our cityblock dataset can be used to design 

AI algorithms for semantic segmentation with TeX vision. 

• At last, for people detection, we extract the material region corresponding to the 

desired target and only perform detection over the selected region, as shown below. 

For human detection, we extract the region of material ‘human’ from the material 

map, and the detection result gives bounding boxes of humans. For robot detection, 

we extract the region of material ‘aluminum’. Even though car logo and other 

components of the car is also selected, people detection finds the correct spatial 

patterns and gives robot detection. Again, our approach won’t fail even if two objects 

have the same materials. These results are added in Sec.SIIIE of the Supple. Info. 
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Fig.18 Demonstration of physics-driven object detection. HADAR can perform object detection over particular 

material regions, and hence HADAR can distinguish similar geometries with material signatures. This figure is 

given as Fig.S17 of the Supple. Info. 

 

• We have also revised the caption of Fig.5 in the main text and relevant contexts 

from ‘physics-driven semantic segmentation’ to ‘physics-driven perception’ to 

avoid confusion. 

 
Reference(s): 

[1] Fu, Jun, et al. "Dual attention network for scene segmentation." Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition. 2019. 

 

C11 2. In the HADAR ranging, the authors claim that they have used several AI algorithms for 

instance, DeepPruner, PSMNet, but they have not provided any training details for these 

algorithms. Similarly, details of data collection and experimental results for these algorithms are 

not found in this manuscript. Qualitative and quantitative results would help readers and 

reviewers to make a fair comparison. 

R11 We apologize that in the previous version of the manuscript DeepPruner and PSMNet are 

mentioned without explanation on the training data. In our work, we used pre-trained AI 

algorithms to demonstrate HADAR advantages over AI-enhanced thermal sensing. The reasons 

to use pre-trained models are three folds. 

Firstly, we note that in HADAR TeX vision, the scene is captured with physical attributes being 

represented by hue (material index), saturation (temperature) and value (texture). This novel 

representation has information content which is not present in the output of optical cameras 

(RGB vision), conventional IR thermal cameras (panchromatic thermal vision), or LiDAR (point 

cloud). Subsequent machine learning algorithms in computer vision regarding stereo matching, 

optical flow, scene flow, semantic segmentation, etc. that are previously based on RGB vision, 
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thermal vision or point cloud can be adapted to TeX vision. Developing new machine learning 

algorithms exploiting TeX vision presents a new research frontier and will be subject of future 

studies.  

Secondly, our city block dataset and our outdoor experimental data are for demonstrating proof 

of concept TeX vision advantages over existing panchromatic thermal vision. We therefore use 

existing pre-trained NN models to compare both these representations of infrared thermal 

radiation.  

Thirdly, it is the convention to test new data (TeX vision) with old models (pre-trained). This 

will reveal the features in new data compared to the old training data. For example, in the ‘Cats’ 

thermal dataset [1], they used pre-trained models to test stereo matching on their new data and 

show the challenge of thermal ranging, as cited below. 

 
To make fair comparisons between HADAR and AI-enhanced thermal sensing, we used 

DeepPruner (pre-trained on the KITTI dataset) on both thermal vision and TeX vision for stereo 

matching. Similarly, we used HOG+SVM (pre-trained on the INRIA Person dataset) on both 

thermal vision and TeX vision for people detection. Finally, we exploit DANet (pre-trained on 

the Cityscapes dataset) on thermal vision as a baseline comparison for the task of semantic 

segmentation. On the other hand, for HADAR semantic segmentation, we used non-machine-

learning algorithms based on TeX vision. Above all, our comparisons between TeX vision and 

thermal vision are either characterized with the same AI algorithms, or with AI enhancement 

only for thermal vision, so that when HADAR outperforms AI-enhanced thermal sensing, the 

advantage is clearly from our TeX vision but not the algorithm. 

 

To better show our comparisons, we have made the following revisions. 

1. We have explicitly marked the training dataset when we introduce those AI algorithms. 

In the caption of Extended Data Fig.5: 

“…using HOG features and support vector machine pre-trained on the INRIA Person 

dataset…” 

In the caption of Extended Data Fig.6: 

“…using machine-learning-based DeepPruner (pre-trained on the KITTI dataset)…” 

In the caption of Extended Data Fig.8: 

“…thermal semantic segmentation with DANet (pre-trained on the Cityscapes dataset)…” 

2. We have provided quantitative ranging comparisons in Extended Data Fig.6 and qualitative 

comparisons in Extended Data Fig.7. In comparing TeX vision with traditional thermal 

vision, we used DeepPruner as the state-of-the-art AI algorithm. The PSMNet we used in the 

previous version is pre-trained on the Scene Flow dataset. As its performance is not as good 

as DeepPruner and not representative, we have removed the PSMNet part in the new version. 

We have also replaced previous SGBM (semi-global block matching, non-machine-learning) 

results with the DeepPruner (machine learning) results in Extended Data Fig.7.  Both non-
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machine-learning and AI-based algorithms show TeX vision enhances the accuracy of 

ranging through texture recovery. New results of Extended Data Figs.6 and 7 are briefly cited 

below. 

 

 
Fig.19 Quantitative and qualitative comparisons of ranging performances based on HADAR and traditional 

thermal vision. HADAR ranging beats state-of-the-art AI-enhanced thermal ranging. Top figure is the 

Extended Data Fig.6. Bottom figure is the Extended Data Fig.7 

 

3. We have provided the details of our prototype HADAR calibration and outdoor data 

collection in ‘Methods --- prototype HADAR calibration and data collection’ and also in the 

current Extended Data Fig.9. We have also made our city block dataset public and available 

at (https://drive.google.com/drive/folders/1da2Uh5t_QOy-

MrWxhkJJw3MueNxsuVtn?usp=sharing; we will host it on Github for the scientific 

community once the paper is published) where we have described how the dataset is 

generated. The reason of using synthesized dataset and the procedures on how to generate an 

https://drive.google.com/drive/folders/1da2Uh5t_QOy-MrWxhkJJw3MueNxsuVtn?usp=sharing
https://drive.google.com/drive/folders/1da2Uh5t_QOy-MrWxhkJJw3MueNxsuVtn?usp=sharing
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experimental dataset have been detailed in Comment & Reply 3 (R3). The training details of 

our TeX-Net for TeX decomposition and TeX vision are given in Sec.SIIIA of the Supple. 

Info. 
 
Reference(s): 

[1] Treible, Wayne, et al. "Cats: A color and thermal stereo benchmark." Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. 2017. 

 

C12 3. “We develop HADAR estimation theory to address fundamental limits of object identification 

from its thermal infrared signature. We believe this will be crucial in guiding public policy for 

the industrial revolution where decision accuracy of machine perception can be bounded by 

physical laws as opposed to training data volume”. It would help readers and reviews to 

appreciate the claims if an example or two are provided where the proposed technique helps 

public policy. 

R12 We regret that the example we provided in the manuscript has not been explained clearly to make 

our claim easy to understand. The above claim about guiding public policies is related to the 

HADAR identifiability given by Eq.2 in the main text. 

 
HADAR identifiability, I (0≤I≤1), describes the maximum Shannon information of the target 

material that one can retrieve from N observed thermal photons. In the special case of two 

materials, I=1 signifies one bit information in the thermal photons causing the classification to 

always yield the correct material. For I=0, lack of information in the collected thermal signal 

causes random material classification i.e. 50% probability. Here, γ is a characterization of the 

used HADAR sensor (related to Noise-Equivalent Power or Special Detectivity), and d0 is the 

semantic distance between a pair of candidate materials. The identifiable criterion (threshold) is 

given by I0≈0.75 (
𝑁𝑑0

2

1+𝛾
= 1), which means one can identify the target material if I > I0, or 

𝑁𝑑0
2

1+𝛾
≥

1. 

The example we have shown is the human-robot identification problem in Fig.3 of the main text. 

The walking human-shaped target has two candidate materials, organic skin/fabrics or metallic 

aluminum, with semantic distance calculated to be 𝑑0 ≈ 0.001 . This requires 
𝑁

1+𝛾
≥ 106  to 

identify the target if the environment is at 𝑇0 = 20 𝐶° and 𝑉0 = 0.5 (see Fig.3c). The observed 

photon number N is related to the human-robot scene, as well as the f-number (focal length f 

over the aperture size D), exposure time t, and pixel size Ap, see the heat signal model in Sec.I 

of the Supple. Info. Eventually, the above identifiable criterion leads to the minimum 

requirement of the hardware configurations, 
𝑡𝐴𝑝

(1+𝛾)(𝑓/𝐷)2 ≥ 5 × 10−16 . This minimum 

requirement of the hardware can be used to guide the public policies in the AI industry. For 

example, the lowest detectivity (or highest NEP), the smallest aperture size, the highest frame 

rate and hence the maximum travelling speed, etc., must meet the above inequality so as to be 

able to identify human vs. robot. If the detector doesn’t meet the above requirement, its collected 

data will be insufficient in information. No matter how much data is collected and used to train 
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a neural network (how large the training volume is), machine learning just cannot perform well 

(see the machine learning performance in Fig.3b of the main text when the photon number is 

insufficient, i.e., the normalized photon number is below 1). 

A second example is the other way around. If the detector is given, say, the FLIR A325sc camera, 

we have  
𝑡𝐴𝑝

(1+𝛾)(𝑓/𝐷)2 = 8.16 × 10−18 in one frame or shot. To have I > I0, we must have 𝑑0 >

0.0078 , which means the FLIR A325sc camera can only distinguish sufficiently different 

material pairs in one shot, such as organic skin vs. glass mannequin (𝑑0 = 0.049). This minimum 

semantic distance identifiable by the given detector will also guide the public policies in the AI 

industry. For example, in which scenario the given camera can be used, and in which scenario 

the camera cannot. We note that the HADAR identifiability also applies to multi-material 

libraries, as can be seen in Sec.SIIB of the Supple. Info. 

To make our claim clearer, we have added the above details into the Method section ‘Guiding 

public policy’: 

“The HADAR identifiable criterion is 
𝑁𝑑0

2

1+𝛾
= 1, which means one can identify the target material 

if 
𝑁𝑑0

2

1+𝛾
≥ 1. The semantic distance between human body (skin) and robot (aluminum) in Fig.3 is 

calculated to be 𝑑0 ≈ 0.001. This requires 
𝑁

1+𝛾
≥ 106 to identify the target if the environment is 

at 𝑇0 = 20 𝐶°  and 𝑉0 = 0.5  (see Fig.3c). The observed photon number N is related to the 

human-robot scene, as well as the f-number (focal length f over the aperture size D), exposure 

time t, and pixel size Ap, see the heat signal model in Sec.SI of the Supple. Info. Eventually, the 

above identifiable criterion leads to the minimum requirement of the hardware configurations, 
𝑡𝐴𝑝

(1+𝛾)(𝑓/𝐷)2 ≥ 5 × 10−16 . This minimum requirement of the hardware will guide the public 

policies in the AI industry. For example, the lowest detectivity (or highest NEP), the smallest 

aperture size, the highest frame rate and hence the maximum travelling speed, etc., must meet 

the above inequality so as to be able to identify human vs. robot. If the detector doesn’t meet the 

above requirement, its collected data will be insufficient in information. No matter how much 

data is collected and used to train a neural network (how large the training volume is), machine 

learning just cannot perform well (see the machine learning performance in Fig.3b of the main 

text when the photon number is insufficient, i.e., the normalized photon number is below 1). 

If the detector is given, e.g., the FLIR A325sc camera, we have  
𝑡𝐴𝑝

(1+𝛾)(𝑓/𝐷)2 = 8.16 × 10−18 in 

one image frame. To meet the criterion, we must have 𝑑0 > 0.0078, which means the FLIR 

A325sc camera can only distinguish sufficiently different material pairs in one image frame, 

such as organic skin vs. glass mannequin (𝑑0 = 0.049). This minimum semantic distance 

identifiable by the given detector will also guide the public policies in the AI industry. For 

example, in which scenario the given camera can be used, and in which scenario the camera 

cannot.” 

 

C13 E. Suggested improvement 

In addition to the above comments, some additional comments are as follows that require more 

explanation.  
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1. “where multiple attributes are desired either for safety guarantees or scientific purpose”. Some 

examples with reference are required for this claim. 

R13 In this new version of our manuscript, we have cited the ‘phantom braking’ example to illustrate 

the argument ‘multiple physical attributes beyond visual appearance are desired for safety 

guarantees’ for autonomous navigation applications. With temperature and material identified, 

in addition to the visual shape, TeX vision can overcome the phantom braking issue by checking 

if the temperature or material of the phantom image is consistent with a real human body, as 

demonstrated with the Einstein cardboard in Fig.5 of the main text. This is also consistent with 

the spirit of safety redundancy in the multi-sensor fusion solution (cameras + sonar + radar + 

LiDAR) adopted in the self-driving industry to ensure safety (see, 

https://www.thedrive.com/tech/17541/heres-how-nvidia-plans-to-ensure-self-driving-car-

safety, and also [1]). 

As for wildlife monitoring, we have added a reference [2] to help readers appreciate the 

application. In the reference of ‘multimodal wireless sensor network for wild life monitoring’, 

optical and thermal cameras are used to obtain different attributes (shape + temperature) and 

perform monitoring during the whole day as well as night time. Shape with geometric textures 

is better suited for recognition, while temperature pattern is better suited for analyzing health 

conditions of wildlife. However, most wild animals are active at night when optical cameras 

don’t work. In this scenario, TeX vision recovering temperature as well as geometric textures 

can provide both valuable attributes of shape + temperature close to the fundamental bound of 

precision. 

Accordingly, the relevant part is revised as below: 

“Major advantages of TeX semantics will be found in autonomous navigation and wildlife 

monitoring, where multiple physical attributes beyond visual appearance are desired either for 

safety guarantees [#1] or scientific purposes [#2].” 

 
Reference(s): 

[1] Khaleghi, Bahador, et al. "Multisensor data fusion: A review of the state-of-the-art." Information fusion 14.1 

(2013): 28-44. 

[2] Lopes, Carlos Eduardo Rodrigues, and Linnyer Beatrys Ruiz. "On the development of a multi-tier, multimodal 

wireless sensor network for wild life monitoring." 2008 1st IFIP Wireless Days. IEEE, 2008. 

C14 2. “However, large scale temperature screening with existing noncontact infrared thermometer 

or infrared thermography is ineffective due to lack of adaptivity to emissivity (complexion 

/makeup), distance, age, gender, and circadian variations [36–38].” A brief comment on the 

utility of TeX, in this case, will help the reader to appreciate. 

R14 We thank the reviewer for the question as we believe TeX vision will have an important role to 

play for reaching the fundamental bound of temperature estimation through a completely non-

contact approach. Traditionally, the thermal infrared cameras do not capture spectral information 

and therefore the estimate of temperature or emissivity is biased and far from the fundamental 

precision bound. In HADAR, we exploit spectral resolution to analyze and distinguish different 

emissivities (complexion/skin variabilities) with different spectral features. One major roadblock 

to achieving the fundamental bound of temperature estimation is that traditional panchromatic 

cameras and algorithms do not account for X i.e. the environmental thermal emission which 

https://www.thedrive.com/tech/17541/heres-how-nvidia-plans-to-ensure-self-driving-car-safety
https://www.thedrive.com/tech/17541/heres-how-nvidia-plans-to-ensure-self-driving-car-safety
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enters the camera and completely changes the temperature estimate. In TeX vision, the spectral 

resolution along with the HADAR constitutive equation helps us separate X (environmental 

factors) and reach the fundamental bound of temperature estimation in the image.  

 

In follow-up research, we are proposing to also build the material library for different human 

complexions and human skin variabilities. Consequently, HADAR with TeX vision can identify 

emissivity and recover textures for age, gender, and circadian recognitions. In addition to 

HADAR ranging based on TeX visions, HADAR is promising in adaptivity to emissivity 

(complexion/skin variabilities), distance of the target, age, gender, and circadian variations. 

In this new version of manuscript, we have added a brief comment to further explain how 

HADAR and TeX vision could help temperature screening: 

“However, large scale temperature screening with existing noncontact infrared thermometer or 

infrared thermography is ineffective due to lack of adaptivity to emissivity (complexion/skin 

variabilities), age, gender, circadian variations and distance of the target [37–39]. As illustrated 

above, HADAR with TeX vision can identify spectral emissivity, estimate distance, and recover 

textures, promising in advanced adaptivity for more accurate temperature estimation. Here, we 

experimentally demonstrate that HADAR thermography can automatically recognize emissivity 

(also with ranging) and reach the Cramer-Rao bound on temperature accuracy” 

 

C15 3. “Cramér-Rao bound is therefore promising for the smart healthcare industry including early 

reliable skin cancer detection.” Reference and a brief comment will help users to understand the 

relation. 

R15 Early skin cancer detection via thermography is a cutting-edge research direction [1-3]. The key 

idea is that tumor cells are more active and are of higher temperature than regular cells. The 

temperature difference could be as high as 0.25 Celsius degree, as reported in [4]. However, the 

signal captured by a thermal camera is the radiance S that includes scattering contributions from 

the environment (X) along with direct emission from the cancerous cells. Having a hot object 

(other people, instruments) in the patient room (or, considering X or not) makes a striking 

difference in estimated temperatures. We start with the HADAR constitutive equation  

 
As an example, the emissivity of skin can be well approximated as a constant of 0.95, and we 

assume that the environment is a blackbody (X=B) to approximately see the errors arising from 

ignoring the environment. The presence/absence of environmental scattering signal (X) is 

equivalent to a 5% relative difference of direct emission of the target (B(Tα)), which corresponds 

to 3 Celsius degree temperature variation around the standard 37 Celsius degree temperature. 

This error arising from ignoring the environmental signal is much larger than the temperature 

difference caused by tumor cells. To minimize this effect, K. Tang et. al. in [4] performed 

experiments ‘either in an open-area, outdoor environment under clear sky (cloud free), or using 

a cold-plate setup’, which restricts the indoor applications for fever surveillance. 

Since TeX vision decomposes S, HADAR can reach the Cramer-Rao bound of temperature in 

the entire scene by accurately estimating e and X . This approach is promising for reliable skin 

cancer detection from thermal infrared images which have spectral resolution and TeX vision. 

Accordingly, we have added a reference in the main text: 
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“Cramér-Rao bound is therefore promising for the smart healthcare industry including early 

reliable skin cancer detection [#1]” 

and we have added the above details to the Method section ‘HADAR thermography’ to make 

our claim clearer: 

“… 

The temperature difference between tumor cells and regular cells in skin cancer could be as high 

as 0.25 degree Celsius. However, the signal captured by a thermal camera is the radiance S that 

includes scattering contributions from the environment (X) along with direct emission from the 

tumor cells. Having a hot object (other people, instruments) in the patient room (or, considering 

X or not) striking difference in estimated temperatures. As an example, the emissivity of skin can 

be well approximated as a constant of 0.95, and we assume that the environment is a blackbody 

(X=B) to approximately see the errors arising from ignoring the environment. The 

presence/absence of X is equivalent to a 5% relative difference of B(T), which corresponds to 3 

Celsius degree temperature variation around the standard 37 Celsius degree temperature. This 

error arising from ignoring the environmental signal is much larger than the temperature 

difference caused by tumor cells. To minimize this effect, accurate thermography is limited to 

‘either an open-area, outdoor environment under clear sky (cloud free), or using a cold-plate 

setup’, which restricts the indoor applications for fever surveillance. Since TeX vision 

decomposes S, HADAR can reach the Cramer-Rao bound of temperature by properly estimating 

e and X and hence is promising for reliable skin cancer detection” 

 
Reference(s): 

[1] Magalhaes, Carolina, et al. "Comparison of machine learning strategies for infrared thermography of skin 

cancer." Biomedical Signal Processing and Control 69 (2021): 102872. 

[2] Magalhaes, C., Ricardo Vardasca, and J. Mendes. "Recent use of medical infrared thermography in skin 

neoplasms." Skin Research and Technology 24.4 (2018): 587-591. 

[3] Iljaž, J., et al. "Solving inverse bioheat problems of skin tumour identification by dynamic thermography." 

Inverse Problems 36.3 (2020): 035002. 

[4] Tang, Kechao, et al. "Millikelvin-resolved ambient thermography." Science advances 6.50 (2020): eabd8688. 

 

C16 4. “Our results call for heat exploitation in the quantum regime where single photon detectors 

are being developed in the thermal infrared”. It is not mentioned in the whole script except in the 

introduction, a bit of explicit comment may help the readers. 

R16 We agree. We would like to clarify that conventional cameras (visible or infrared) are not 

sensitive enough to measure single particles of light i.e. single photons. In the visible spectral 

range, there exists single photon avalanche detector arrays and EMCCDs that have single photon 

sensitivity which is the fundamental limit for a detector’s sensitivity. However, such detectors 

do not exist for the thermal mid-infrared and long-wave infrared spectral range. Only recently 

has research work in superconducting detectors [1] begun to address this urgent need. We believe 

such new class of single photon detectors in the infrared spectral range can lead to new frontier 

of applications of HADAR + TeX vision. This is true since our theory works in the shot noise 

limited regime which is the boundary of the performance regime between classical IR thermal 

cameras and quantum single photon detector arrays. Our results of shot-noise limits to detection 

and ranging can be compared to these new emerging quantum detectors once they are used in 

heat exploitation. 
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Accordingly, we have revised the above statement to help multi-disciplinary readers understand 

the connection: 

“Our shot-noise limits of detection and ranging set the benchmark and call for heat exploitation 

in the quantum regime where single photon detectors are being developed beyond visible spectral 

range into the thermal infrared [1]” 

 
Reference(s): 

[1] Reddy, Dileep V., et al. "Superconducting nanowire single-photon detectors with 98% system detection 

efficiency at 1550 nm." Optica 7.12 (2020): 1649-1653. 

 

C17 5. “However, large scale temperature screening with existing non-contact infrared thermometer 

or infrared thermography is ineffective due to lack of adaptivity to emissivity 

(complexion/makeup), distance, age, gender, and circadian variations' '. Reference and a brief 

comment will help users to understand the relation. 

R17 We have added a comment as explained in Reply 14 (R14). 

“However, large scale temperature screening with existing noncontact infrared thermometer or 

infrared thermography is ineffective due to lack of adaptivity to spectral emissivity 

(complexion/skin variabilities), distance of target, age, gender, and circadian variations [37–39]. 

As illustrated above, HADAR with TeX vision can identify spectral emissivity, estimate 

distance, and recover textures, promising in advanced adaptivity for more accurate temperature 

estimation. Here, we experimentally demonstrate that HADAR thermography can automatically 

recognize emissivity (also with ranging) and reach the Cramer-Rao bound on temperature 

accuracy” 

 

C18 6. They mention a “phantom breaking phenomenon” as a disadvantage of thermal imaging, but 

do not explain if the proposed technique addresses it. 

R18 We regret that we haven’t clearly explained in the previous version that HADAR can address 

the phantom braking problem. As demonstrated in Fig.5a-c of the main text, the Einstein 

cardboard is misunderstood as a human body by optical cameras (a) and LiDAR (c), however, it 

is clearly distinguished from a human body by HADAR (b). HADAR TeX vision can check if 

the temperature and material of a phantom image are consistent with a real human body. This is 

also demonstrated in the summer experiment in Extended Data Fig.10. Extended Data Figs.5 and 

8 where robots are distinguished from the human bodies also demonstrate our argument. 

Accordingly, we have revised it in the section of HADAR semantics as below: 

“We now experimentally demonstrate HADAR in an outdoor scene and illustrate how it 

addresses phantom braking … HADAR detects people only in the corresponding material region 

(skin+fabrics) and clearly distinguishes it from the cardboard, providing an approach to 

overcome the phantom braking problem [ref].” 

 

C19 F. References 

1. “The emerging Industry 4.0 of smart technologies [18] calls for a future with scalable human-

robot social interactions since it is expected that one in ten vehicles will be automated by 2030 

and 100 million robot helpers will be serving people.” The reference paper has no such claim. 
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R19 We apologize that references are not properly given in the previous version and it caused 

confusion. The previous Ref. [18] is solely given as a review of smart technologies. The 

statistical projection of ‘one in ten vehicles will be automated by 2030’ can be found at 

https://mailchi.mp/statista/autonomous_cars_20200206?e=145345a469. There are two versions 

of statistical projections of the number of robot helpers by 2030. One clearly says 20 million 

robots (https://resources.oxfordeconomics.com/how-robots-change-the-world) while the other 

says 800 million jobs will be taken by robots (https://www.bbc.com/news/world-us-canada-

42170100). We do anticipate that statistical projections might not be accurate. Previously, we 

took a number in-between, but now we realize it is better to stick to the relatively robust and 

original data. Therefore, we have revised 100 million to 20 million and added these two links: 

“The emerging Industry 4.0 of smart technologies [18] calls for a future with scalable human-

robot social interactions since it is expected that one in ten vehicles will be automated by 2030 

[16] and 20 million robot helpers will be serving people [17].” 

 

C20 2. “Scalable perception”. No explanation is given for the scalable perception 

R20 We use ‘Scalable perception’ to denote the machine perception techniques that can support 

simultaneous operations of multiple intelligent agents (IA). For example, active modalities like 

sonar, radar, and LiDAR can work accurately on one single IA, but they will immediately have 

signal interference issues when two or more IA’s work together simultaneously. ‘Eye safety’ is 

the main restriction to the detection range of LiDAR (tens or hundreds of meters). However, if 

there are N=100 self-driving cars using LiDAR on the same street, the signal emission power 

should be decreased further by N=100 folds, to ensure eye safety. Technically, large number of 

agents (N) will decrease the ranging distance of every self-driving car due to the lower power 

emission budget. Therefore, we mentioned that active modalities face the key challenge of 

scalability. 

Accordingly, we have revised line 6, second column, page 1 to define the concept of scalable 

perception: 

“However, simultaneous perception of the scene by numerous agents (scalable perception) is 

fundamentally prohibitive” 

We have also added the scaling law and eye safety in a footnote: 

“[11] J. Hecht, Lidar for self-driving cars, Opt. Photon. News 29, 26 (2018). Eye safety requires 

the emitting power of an agent to scale down as the inverse of the number of agents” 

 

C21 3. They claimed that this method is novel but the following are the works that have done 

temperature emissivity separation.  

(1) Jie Cheng, Qing Xiao, Xiaowen Li, Qinhuo Liu, Yongming Du, Aixiu Nie, "Multi-layer 

perceptron neural network based algorithm for simultaneous retrieving temperature and 

emissivity from hyperspectral FTIR dataset", Geoscience and Remote Sensing Symposium 

2007. IGARSS 2007. IEEE International, pp. 4383-4385, 2007. 

(2) Xinghong Wang, Xiaoying OuYang, Bohui Tang, Zhao-Liang Li, Renhua Zhang, "A New 

Method for Temperature/Emissivity Separation from Hyperspectral Thermal Infrared Data", 

Geoscience and Remote Sensing Symposium 2008. IGARSS 2008. IEEE International, vol. 3, 

pp. III - 286-III - 289, 2008.  

https://mailchi.mp/statista/autonomous_cars_20200206?e=145345a469
https://resources.oxfordeconomics.com/how-robots-change-the-world
https://www.bbc.com/news/world-us-canada-42170100
https://www.bbc.com/news/world-us-canada-42170100
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(3) Hang Yang, Lifu Zhang, Junyong Fang, Xia Zhang, Qingxi Tong, "Algorithm research of 

building materials emissivity extracting", Geoscience and Remote Sensing Symposium 

(IGARSS) 2010 IEEE International, pp. 3350-3353, 2010.  

(4) Hang Yang, Lifu Zhang, Li Liu, Qingxi Tong, "Temperature and emissivity separation from 

TASI data based on wavebands selection", Geoscience and Remote Sensing Symposium 

(IGARSS) 2011 IEEE International, pp. 1850- 1853, 2011.  

(5) Ning Wang, Yonggang Qian, Hua Wu, Lingling Ma, Zhao-Liang Li, Lingli Tang, 

"Performances of temperature and emissivity separation methods for hyperspectral thermal data 

affected by the changes of spectral properties of sensor", Geoscience and Remote Sensing 

Symposium (IGARSS) 2013 IEEE International, pp. 2152-2155, 2013.  

(6) Schmugge, Thomas, Andrew French, Jerry C. Ritchie, Albert Rango, and Henk Pelgrum. 

"Temperature and emissivity separation from multispectral thermal infrared observations." 

Remote Sensing of Environment 79, no. 2-3 (2002): 189-198.  

(7) V. Payan Corresponding author & A. Royer (2004) Analysis of Temperature Emissivity 

Separation (TES) algorithm applicability and sensitivity, International Journal of Remote 

Sensing, 25:1, 15-37, DOI: 10.1080/0143116031000115274 

R21 We regret that the novelty of our TeX decomposition has not been explained clearly in the 

previous version. Here, we would like to clarify our novelty and make comparisons with the 

above references. 

One of the motivations underlying our work of HADAR is the ‘ghosting effect’ challenge in 

existing thermal imaging which cannot be tackled by the conventional approaches to 

temperature-emissivity (TE) separation. To recover the (geometric) texture and overcome the 

‘ghosting effect’, we analyzed the full heat signal model as shown below and proposed the TeX 

decomposition which immediately leads to TeX vision. 

 

 
1. The key to our HADAR theory is the consideration of texture X with the correct spectral and 

scene-dependent structure. In the mathematic structure of X, unknown thermal lighting 

factors V depict local surface normal of the target and hence is crucial to overcome the 

‘ghosting effect’ and improve ranging. This leads to rich texture information in X, instead of 

a spatially uniform constant, and enables TeX vision. 

2. In contrast, X is either ignored in the literature or approximated as a constant spectrum 

without a structure, incapable of revealing the local geometric texture (surface normal). As 

we have cited in the main text before, the TE separation is firstly proposed in Ref.[1]. 

Gillespie et. al. in [1] approximated X as a given downwelling atmospheric irradiance 𝑆↓ as 

in their heat signal model L 

 
where 𝜌 = 1 − 𝑒𝛼𝑣 , their 𝜀 is our 𝑒𝛼𝑣 , and 𝜏 and 𝑆↑ are irrelevant to this comment. Since 

𝑋𝛼𝑣 = 𝑆↓ is assumed known and independent of target 𝛼, it becomes a uniform term ready 

to subtract and cannot capture the local surface normal of the target. Therefore, the inverse 

problem is simplified from TeX decomposition to TE separation without X. We emphasize 
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that the explicit structure of X in our HADAR theory complicates the inverse problem quite 

a lot but brings us the benefit of texture. 

3. All other TE-separation papers mentioned by the reviewer follow the same heat signal model 

used in [1] that cannot capture local texture. Explicitly, 

• The above reference (1) pointed out that the TE separation proposed in [1] doesn’t 

work well under certain conditions when the difference of ground-leaving radiance 

and object’s blackbody radiation at its true temperature and the instrument random 

noise are on the same order. They proposed a 3-layer perceptron neural network to 

settle the defect. However, reference (1) uses spatially uniform 𝑆↓ and cannot capture 

local texture. 

• The above reference (2) follows a similar heat signal model as [1], see their equation 

2, 

 
Reference (2) tried to improve the estimation of T and e by making use of spectral 

features of downwelling atmospheric irradiance 𝐿↓ . But again, reference (2) uses 

spatially uniform 𝐿𝑖
↓ and cannot capture local texture. 

• The above reference (3) analyzed and compared different algorithms (iterative vs. 

non-iterative) for TE separation. It follows a similar heat signal model as [1], see their 

equation 2, 

 
But again, reference (3) uses spatially uniform 𝐿𝑎𝑡𝑚,𝑗

↓  and cannot capture local 

texture. 

• The above reference (4) analyzed the SNR of each band and the temperature accuracy 

based on wavebands selection. Reference (4) follows a similar heat signal model as 

[1], see their equation 6, 

 
Again, reference (4) uses spatially uniform 𝐿𝑎𝑡𝑚,𝑗

↓  and cannot capture local texture. 

• The above reference (5) analyzed the robustness and accuracy of several algorithms 

of TE separation, under different instrument characteristics, including the shifting of 

spectral and the broadening of the full-width half-maximum (FWHM). It follows a 

similar heat signal model as [1], see their equation 1b, 

 
Again, reference (5) uses spatially uniform 𝑅𝑎𝑡↓ and cannot capture local texture. 

• The above reference (6) presented data from their TIMS (Thermal Infrared 

Multispectral Scanner) instrument and applied traditional TE separation algorithm to 

process the data. Their heat signal is like [1], see their equation 3, 

 
Again, reference (6) uses spatially uniform 𝐿𝑗(𝑎𝑡𝑚 ↓)  and cannot capture local 

texture. 
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• The above reference (7) is to assess the TE separation proposed by [1], showing the 

applicability of TE separation for hyperspectral data. The heat signal model is 

consistent with [1], see their equation 5 

 
Again, reference (7) uses spatially uniform 𝐿𝑎𝑡𝑚↓ and cannot capture local texture. 

 

4. In TeX decomposition, we use a material library for dimensional reduction. This is naturally 

suitable for material classification or semantic segmentation in intelligent applications. In 

contrast, TE separation usually assumes lower and upper bounds of spectral emissivity to 

estimate temperature and subsequently estimate emissivity. The estimated emissivity in TE 

separation itself doesn’t have implication in semantic segmentation i.e. there is no mapping 

to the specific physical material within a library. 

5. The consideration of texture X is also crucial for accurate estimation of temperature T and 

material e. In the literature of thermal imaging, the texture X term is usually ignored, see e.g., 

[1] (K. Tang et al use the Stefan-Boltzmann law which is an integral of the self-emission 

term e*B, without considering reflection from X). As mentioned in Comment & Reply 15, 

the ignorance of X can lead to up to 3 Celsius degree temperature uncertainty. Furthermore, 

in our outdoor experiment, we have also confirmed that correct material classification 

(estimation of e) is only possible with the TeX model rather than the traditional temperature-

emissivity model (without X term), as shown below. 

 
Fig.20 X term is also crucial for material classification (e estimation). For three sample pixels, A, B, and C, in 

the left image, TeX model gives the correct material classification, while TE model returns wrong 

classification. Cost (blue stars) is defined as the residual error of least-squares fitting to TeX or TE models. 

The minimum cost (red circles) gives the prediction for the material. 

 

Above all, the TE separation in the literature assumes spatially uniform X (no mathematic 

structure of X that correctly captures local surface normal) or simply ignores X, leading to 
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the loss of textures and inaccurate temperature and material estimation. Technically, TE 

separation is only a simplified model of our TeX decomposition. We believe our TeX 

decomposition is a novel perspective in understanding the heat signal, especially in recovering 

textures and overcoming the ‘ghosting effect’. 

Accordingly, we have revised Methods Section ‘TeX decomposition’ (last line) to explain and 

emphasize this argument: 

“…We verify that TeX decomposition is crucial for vision applications and goes beyond the 

traditional TE (temperature-emissivity) separation approach, see Extended Data Fig.13. We 

emphasize that TE separation completely ignores the environmental heat processes or assumes 

spatially uniform environmental heat signal (X). In stark contrast, TeX decomposition captures 

the interplay between the complex real-world scene and its non-uniform environment through 

the HADAR constitutive equation (Eq 1). Thus TeX decomposition captures local surface 

normals of objects in the scene that arises from environmental thermal illumination and carries 

crucial information about texture.” 

Also, we have added the above material classification result with/without the X term in Extended 

Data Fig.13 to show the importance of X term in analyzing heat signal. 

Furthermore, we have also added the influence of X on temperature estimation to the last 

paragraph of Method section ‘HADAR thermography’. 

 
Reference(s): 

[1] Tang, Kechao, et al. "Millikelvin-resolved ambient thermography." Science advances 6.50 (2020): eabd8688. 

[2] A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. Hook, and A. B. Kahle, A temperature and emissivity 

separation algorithm for advanced spaceborne thermal emission and reflection radiometer (aster) images, IEEE 

Trans. Geosci. Remote Sens. 36, 1113 (1998). 

 

C22 G. Clarity 

1. Language use in writing is a bit extreme (e.g. “that can disrupt AI industry”, “TeX degenracy”) 

R22 We thank the reviewer for the suggestions. We have removed extreme words sticking to 

objective statements. 

But, we still kept TeX degeneracy, as in the physics community, the word ‘degeneracy’ is used 

when multiple states of the system (T,e,X configurations) correspond to the same observable (S). 

Instead, we have explicitly pointed this out in Methods --- TeX degeneracy: 

“…Physical states having distinct triplet of TeX attributes but having the same observed heat S  

is addressed as TeX degeneracy.” 

 

C23 2. The authors refer to the supplementary information frequently but do not mention the 

section which becomes bothersome for the reader 

R23 We apologize that the previous version is not well organized and properly referenced. In this 

new version, we have expanded the Methods and Supple. Info., and clearly cited the Section 

number or Figure number whenever mentioned elsewhere. 

 

C24 H. Decision 

1. The proposed technique is a fascinating idea and can benefit the AI researchers with another 

reliable sensor.  
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2. However, the current article is not ready for publication in its current form. It is suggested to 

consider the recommendations and resubmit. 

R24 We are glad that the reviewer appreciates our proposed technique. We thank the reviewer again 

for the time and efforts spent to provide us with such detailed comments. We have addressed 

each comment individually above and made major revisions to significantly improve the quality 

of the manuscript. With these changes, we believe the current version is now ready for 

publication. 

 
 



 

Reviewer Reports on the First Revision: 

Referees' comments: 
 
Referee #1 (Remarks to the Author): 
 
 
The reviewer recognizes and appreciates the diligence and effort shown by the authors in addressing 
the provided comments and concerns. While the authors have done a great job in laying out the 
theoretical framework and have provided sufficient mathematical and physics-based explanations 
for their approach, some major issues remain concerning the scientific soundness of the proposed 
ML/DL approaches and their correctness. The work certainly has the potential to present a 
breakthrough in the field of computer vision and AI. However, the majority of the testing is done on 
synthesized images but makes claims that it can outperform models that are largely applied to real-
world imagery and the noise that such imagery inevitably encompasses. To justify these claims, the 
reviewer’s greatest concern is that the synthetic datasets used by the authors are not comparable to 
real-world datasets acquired by HADAR. Despite the novel hardware design, the authors pursue to 
majorly utilize the synthetically generated datasets which cripple the proposed novel design. To truly 
prove the claim of superior performance and provide the breakthrough alluded to in the paper, the 
reviewer needs to see similar performance when using real-world datasets as opposed to results-
based majorly on synthetic datasets. 
 
 
The following items present the remaining concerns of the reviewer which to be addressed before 
the article can be accepted: 
1) The reviewer acknowledges the work done to create the new spectro-spatial deep learning model 
presented in the paper compared against the multi-layer perceptron as presented in the earlier 
version of the manuscript. Still, there are some concerns about the generalized performance of the 
proposed model for multiple scenarios where the scenes depicted, vary as is typical of real-world 
imagery. So far in the paper, only select scenes have been presented where the HADAR model beats 
the SOTA models. It is equally important to gauge the model’s performance over multiple images 
that are dissimilar and report the overall performance on these datasets. 
2) The reviewer is keen to have a look at the TexNet code to examine the parameters and their 
efficacy. It is not clear if the performance reported in the paper is for one specific test set. The 
inclusion of cross-fold validation results on the dataset would eliminate the bias in test performance. 
3) It is not clear how the authors generate TeXvision from T, E, X components. Is the TexNet 
framework trained end to end? Specifically, since the TexNet is trained with a physics-based loss on 
a different objective, how are the authors able to realize Texvision out of the learned model? It is 
very important to elaborate these details to the readers as this is one of the fundamental strengths 
of this paper. 
4) The authors are presenting their HADAR framework as a real-world breakthrough as opposed to a 
theoretical design and attempt to demonstrate real-world efficacy. However, the results presented 
are largely based on synthetic images. For example, Figures 1, 2,3,5,6,7,8, &11 are all based on 
synthetic images and correspond to results tables. In contrast, Figures 4, 10, & 12 are from a real-
world image but it is the same image and none of these figures correspond to results tables showing 



 

model efficacy. Thus, the reporting on comprehensive model performance is centered on images 
that do not accurately represent the noise found in real-world data and thus can not be 
representative of real-world efficacy, only validation of theoretical concepts. In other words, there 
exists a huge domain gap between the presented synthetic LWIR images and the HADAR captured 
images. While the synthetic images are valuable for some demonstration, the reviewer suspects 
model performance was gauged solely on synthetic images and thus the results presented do not 
reflect real-world performance. This is a major issue with the paper. 
5) Although the authors tested the figures with the RGB image pre-trained people detection 
framework, the domain gap between source and target image domains would lead to incorrect 
detection for target images. Be careful that although the framework correctly identifies humans for 
this specific frame, a generalized performance estimation over multiple frames would be useful. Still, 
it is recommended to train the detection model with target images with few-shot learning to avoid 
the requirement for large labeled datasets. Also, be informed that the thermal and the HADAR 
results don't have significant texture information to correctly estimate the HOG features to be able 
to perform detection on these features. This is also evident with the detection score as shown in 
extended data fig5. Alternately, you could use SOTA human detection frameworks designed for 
thermal images. Take into consideration that the detection framework suffers if the HOG features 
generated for both the Robot and humans are the same since the only difference between these is 
the semantic color and some textures. 
6) As the authors pointed out, the identification of the object is dependent on the 
semantic/statistical distance of each material in the library, which decreases when materials are 
introduced to the library. To address this issue, the authors propose to use a setup with higher 
multispectral band capabilities but their hardware itself is constrained in that it cannot identify even 
a minimal number of bands that occur in a real-world application. Firstly, these sorts of hardware 
constraints are not considered in synthetic examples which are used to demonstrate the superior 
performance on various tasks compared to thermal or other modalities. Secondly, realizing these 
constraints, I am skeptical of their performance in real-world situations where design costs are the 
bottleneck. The authors emphasize the need for a low-cost design for HADAR optimal design, but 
this will not allow the design to function optimally for optimal setup for separability of materials in 
the real-world situation. In the synthetic examples to prove HADAR efficacy, these constraints are 
relaxed as a result of which the authors can demonstrate many sets of materials whereas, for the 
real world, the material library is a bare minimum and insufficient to capture the variation in spectral 
signatures encountered in the real world. 
 
Please carefully address these concerns for the next submission. 
 
 
 
Referee #3 (Remarks to the Author): 
 
In this paper, the authors proposed and demonstrated HADAR(Heat-Assisted Detection and Ranging) 
for fully-passive and physically-aware machine perception. This work is interesting, the authors 
exploited physics-driven perception to achieve improved performance against AI-enhanced thermal 
sensing. The paper is not easy to read, and I suggest authors should move some essential 
information from supplementary material to the article. Following are a few suggestions and some 



 

questions for the authors: 
 
1.Although more complex data are used in experiments suggested by other reviewer, I still feel the 
scenes visualized in the article are not complex enough. I hope the authors will add more complex 
scenes such as dense crowds and dense vehicles in the additional content. 
 
2.The authors mention that HADAR is expected to make great progress in industry, but it seems that 
there is no demonstration of HADAR computational efficiency and deploy-ability in the article. 
 
3.In HADAR, a deep neural network approach is used to predict materials by spectra, and I'm rather 
curious about what the results will be for HADAR if the prediction is wrong in this process. Is the 
prediction of materials by spectra robust enough? 
 
4.In the comparison of this paper, the authors' distinction between humans and robots does not 
look extensive enough and there should be more visual examples to support the effectiveness of the 
proposed approach. 
 
5.The experiments need improvement. In the paper, the algorithm of Thermal sensing + AI 
comparison is not state-of-the-art, and the authors should add the comparison with the latest 
algorithm. 
 
6.Some experimental results seem unconvincing. For example, in Extended Data Fig. 8, why choose 
10 frames of the left camera in the city block dataset 1? Can you evaluate them on entire dataset? 
 
7.The fusion of infrared image and visible image perception is a common practice in real scenes. The 
authors should compare the performance after fusing optical imaging with raw thermal vision and 
HADAR TeX vision. 
 
8.In open environments, there exist unknown classes of materials and unknown scenes. I wonder 
how the TeX vision would work in open environments. 
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Cover letter to Reviewer 1 

We would like to thank the reviewer for the encouraging response and very insightful and valuable 

comments. It certainly helped us to significantly revise our manuscript. In this round of review, there is 

one remaining major concern from all reviewers. Here, we briefly list all the major revisions, and we will 

provide individual replies to each comment from the next page onwards. 

Major concern:    Will HADAR work in a real-world environment? 

The reviewers want to see (i) real-world HADAR performance and (ii) generalized performance over 

multiple dissimilar scenes. Explicitly, the reviewers want to see the performance in more complex 

synthetic scenes such as dense crowds and dense vehicles, and in real-world open environments with 

inevitable sensor noise and unknown classes of materials. 

Major revision(s):    Real-world demonstration of HADAR 

In this latest revised manuscript, we have made major revisions to fully address the concerns. 

1. We have added HADAR prototype-2 and real-world experiments, in the presence of sensor

noise and unknown materials. Based on the input from the reviewer and to respond to the detailed

questions, we formed a partnership with DARPA (The Defense Advanced Research Projects

Agency, through the Invisible Headlights project) and the Army night-vision team (Infrared Camera

Technology Branch, DEVCOM C5ISR Center, U.S. Army). We have now collected real-world

experimental data using a pushbroom hyperspectral imager (~$1M) and it took ~$20K a day for

personnel to collect data. Along with our previous home-built HADAR prototype-1 device, we call

this as HADAR prototype-2. This data will be made available to the global research community

accelerating progress not only in machine learning algorithms but also in the creation of new cost-

effective and cheap sensors for HADAR. We have also generalized our HADAR theory so that it

does not require an input of material library.

2. We have created a HADAR database with 11 dissimilar scenes to test generalized HADAR

performance. Our HADAR database consists of complex scenes, like (a) Crowded Street, (b)

Highway, (c) Suburb, (d) Countryside, (e) Indoor, (f) Forest, (g) Desert, (h) Conventional Street, (i)

Natural Park, (j) Rocky Terrain, (k) Real-world off-road, covering most common road conditions

that HADAR may find applications in.

We have tested TeX vision, detection and ranging, and reported in this revised manuscript the (i) real-

world HADAR performance and (ii) generalized performance on dissimilar scenes. We are glad to 

confirm that HADAR has promising and consistent performance that beat AI-enhanced thermal sensing. 

See Fig.1c, Fig.6, Extended Data Figs.2-8 in the revised manuscript for more details. Please see the 

supplemental video for a demonstration of real-world TeX vision of an off-road scene at night! 

We have also made revisions according to all other comments. Now, we will address each comment 

sequentially in the following. Notations used in this response include C: Comment, R: Reply, Italic: 

revisions, underline: emphasize. 

Author Rebuttals to First Revision:
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This permanent link to the HADAR database (https://github.com/FanglinBao/HADAR) will be made 

public once the paper is published. The temporary Microsoft one drive link for reviewers is: 

https://purdue0-

my.sharepoint.com/:f:/g/personal/baof_purdue_edu/ErtlrHN6qO1IvNtfbD9ezaIBDPtdSjldpW7EEegMuPw_RQ?e=MzbG6V  

https://github.com/FanglinBao/HADAR
https://purdue0-my.sharepoint.com/:f:/g/personal/baof_purdue_edu/ErtlrHN6qO1IvNtfbD9ezaIBDPtdSjldpW7EEegMuPw_RQ?e=MzbG6V
https://purdue0-my.sharepoint.com/:f:/g/personal/baof_purdue_edu/ErtlrHN6qO1IvNtfbD9ezaIBDPtdSjldpW7EEegMuPw_RQ?e=MzbG6V
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Reviewer 1 

C0 The reviewer recognizes and appreciates the diligence and effort shown by the authors in 

addressing the provided comments and concerns. While the authors have done a great job in laying 

out the theoretical framework and have provided sufficient mathematical and physics-based 

explanations for their approach, some major issues remain concerning the scientific soundness of 

the proposed ML/DL approaches and their correctness. The work certainly has the potential to 

present a breakthrough in the field of computer vision and AI. However, the majority of the testing 

is done on synthesized images but makes claims that it can outperform models that are largely 

applied to real-world imagery and the noise that such imagery inevitably encompasses. To justify 

these claims, the reviewer’s greatest concern is that the synthetic datasets used by the authors are 

not comparable to real-world datasets acquired by HADAR. Despite the novel hardware design, 

the authors pursue to majorly utilize the synthetically generated datasets which cripple the 

proposed novel design. To truly prove the claim of superior performance and provide the 

breakthrough alluded to in the paper, the reviewer needs to see similar performance when using 

real-world datasets as opposed to results-based majorly on synthetic datasets. 

R0 We would like to thank the reviewer for the encouraging response and valuable comments. We 

have addressed each comment individually below and made major revisions to improve the quality 

of this manuscript. Overall, we are glad to confirm and report that HADAR has promising 

performance over multiple dissimilar scenes as well as real-world experimental scenes, 

consistently outperforming AI-enhanced thermal sensing. 

• Explicitly, reply R1 reports the overall HADAR performance over multiple dissimilar scenes  

• R2 and R3 provide the details of the TeX-Net code, training, cross validation, and how TeX 

vision is generated  

• R4 and R6 report and analyze the real-world experimental HADAR performance and statistics  

• R5 discusses the human-robot identification with thermal people detection networks 

We also want to point out that, in this revised manuscript, we have improved our argument about 

HADAR ranging to better reflect our findings. 

<old argument>: 

HADAR ranging shows an accuracy improvement up to two orders of magnitude compared with 

existing thermal ranging. 

<new argument>: 

HADAR ranging at night beats existing thermal ranging and shows an accuracy comparable with 

RGB stereovision in daylight. 

In this revised manuscript, we shall present results accordingly to support the new argument. The 

reason we improve the argument is given as below. 

Note that RGB stereovision in daylight already has widespread applications in autonomous 

navigation, while thermal ranging at night (stereovision based on thermal IR images) is still 

elusive due to the ghosting effect. Since RGB camera records no signal in the dark, having night 

vision and ranging that are comparable to daylight counterparts has been a long-standing quest in 

machine perception. One of our themes throughout this manuscript is ‘HADAR and TeX vision 

see textures and depth through the darkness as if it were day’. It is most natural to use RGB 

stereovision in daylight as a baseline and quantitatively compare TeX and IR at night with RGB 



       SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING 

_________________________________________________________________ 

Birck Nanotechnology Center, Room 2293  ■  1205 W State St  ■  West Lafayette, IN 47907  ■  (765) 494-3514  ■  zjacob@purdue.edu 

stereovision in daylight. We think the new argument is more suitable because it directly meets the 

need in applications and is scene-independent and universal. 

In contrast, the old argument involved the depth accuracy improvement of HADAR ranging vs. 

thermal ranging. As we have explained in the previous round of revision, this accuracy 

enhancement is scene dependent, metric dependent, and not universal. In this work, we have still 

observed in many scenes that the accuracy improvement is near 100X. But for some other simple 

scenes where thermal ranging itself can be comparable to RGB stereovision, HADAR ranging can 

match RGB stereovision but the accuracy enhancement over thermal ranging will not always be 

as high as 100X. Please see Fig.6 in the main text and Fig.S19 in the Supple. Info. for quantitative 

statistics. 

  
C1 The following items present the remaining concerns of the reviewer which to be addressed before 

the article can be accepted: 

1) The reviewer acknowledges the work done to create the new spectro-spatial deep learning 

model presented in the paper compared against the multi-layer perceptron as presented in the 

earlier version of the manuscript. Still, there are some concerns about the generalized performance 

of the proposed model for multiple scenarios where the scenes depicted, vary as is typical of real-

world imagery. So far in the paper, only select scenes have been presented where the HADAR 

model beats the SOTA models. It is equally important to gauge the model’s performance over 

multiple images that are dissimilar and report the overall performance on these datasets. 

R1 We agree with the reviewer that it is equally important to gauge the model’s performance over 

multiple dissimilar images and report the overall performance of HADAR. To make HADAR 

more convincing and go beyond selected scenes, in this revised manuscript we have made our best 

efforts to create a HADAR database consisting of 11 dissimilar datasets and test TeX vision, 

detection and ranging on it. 

1. HADAR database: 

The HADAR database includes dissimilar scenes like Crowded Street, Highway, Suburb, 

Countryside, Indoor, Forest, Desert, etc., covering most common road conditions that HADAR 

may find applications in. The 11th dataset is a real-world off-road scene with heat cube 

dimension Height*Width*Channel = 260*1500*49, while the first 10 scenes are synthetic 

with heat cube dimension Height*Width*Channel = 1080*1920*54. The channels in the real-

world scene correspond to the 5th ~ 53rd channels of the synthetic scenes. The HADAR 

database is designed to mimic various dissimilar self-driving situations. The HADAR 

sensor(s) are either mounted at the positions of headlights, or on the top of the automated 

vehicles, or on robot helpers. Each scene has 5 frames for each camera, and there are 30 

different kinds of materials in total in the HADAR database. For the Street, Suburb, Rocky 

Terrain, and the Real-World Off-Road scenes, TeX, RGB and IR images are provided for the 

purpose of ranging. The Street scene has a long animation version (100 frames, 12 channels). 

For the real-world experimental scene, HADAR sensor is a pushbroom hyperspectral imager 

that can produce 256 spectral bands (price ~ $1M). Sensor parameters are given in Methods-

prototype HADAR calibration. Data collection was conducted under the DARPA IH (The 

Defense Advanced Research Projects Agency, Invisible Headlights) project, with the help of 

the Army night-vision team (Infrared Camera Technology Branch, DEVCOM C5ISR Center, 
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U.S. Army). Ground truth material library was not collected. Instead, we used a customized 

TES (temperature-emissivity separation) algorithm followed by K-means clustering to 

generate a semantic library as an estimation of the material library. 4 frames that share the 

same semantic library form the 11th dataset. The heat cubes have been interpolated into 49 

channels to match the channels in synthetic scenes developed before the experiments. Only 49 

channels of all the scenes are used to train TeX-Net. 

The HADAR database is summarized in Extended Data Figs.2-3, as cited below. The database 

is available at https://github.com/FanglinBao/HADAR in the HADAR database folder. 

 
-----------------------------------------------------------------------------------  

https://github.com/FanglinBao/HADAR
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Fig.1 HADAR database with 11 dissimilar scenes to show the generalized performance of HADAR. 

 

2. TeX-Net and TeX vision: 

We split the HADAR database (11 scenes) into training set + validation set to train the TeX-

Net with 5-fold cross validation. Due to limited experimental data, we manually split the 

database, instead of randomly splitting, to ensure the same diversity of the validation set and 

training set. We used a hybrid loss with half supervised loss and half physics loss, and we 

trained TeX-Net for 40K epochs. Since the real-world scene (260*1500) has a different image 

size with the synthetic scenes (1080*1920), we used random crop (256*256) in training. 

For the experimental scene, we first applied our newly proposed TeX-SGD (semi-global 

decomposition) to generate the TeX vision, as an estimation of the ground truth TeX vision. 

TeX-SGD results are then used together with synthetic data to train the TeX-Net. TeX-SGD 

is a non-machine-learning approach that decomposes TeX pixel per pixel based on the physics 

loss and a smoothness constraint. 

The TeX-Net performance (TeX vision) on the validation set has been summarized in 

Extended Data Fig.3 and Fig.S18 in the Supple. Info., as cited below. The network model, 

training details, and pre-trained weights are available along with the database at 

https://github.com/FanglinBao/HADAR in the TeX-Net folder. Codes for TeX-SGD and TeX 

visualization are also available there in the HADAR folder.  

https://github.com/FanglinBao/HADAR
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Fig.2 General TeX vision performance on various dissimilar scenes. 
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Interestingly, for the real-world scene, even though the TeX vision generated by TeX-SGD 

was used as the ground truth, TeX-Net outputs a spatially smoother TeX vision than TeX-

SGD. This is because TeX-Net utilizes both spatial and spectral information in TeX 

decomposition, while TeX-SGD only uses the spectral information. We observed that TeX-

SGD is better at material identification and texture recovery for fine structures, such as, bridge 

fence, bark wrinkles, culverts, etc. 
 

3. Ranging: 

As mentioned in Reply R0, we have improved our ranging argument to ‘HADAR ranging at 

night beats existing thermal ranging and shows an accuracy comparable with RGB 

stereovision in daylight’. Therefore, we have done ranging statistics accordingly on various 

dissimilar scenes and real-world scenes to support the new claim. The performance figure is 

given in Fig.6 and Fig.S19, as cited below. Fig. c shows that HADAR ranging metrics beat 

thermal ranging and are comparable to RGB stereovision, clearly demonstrating our new 

argument. 

 
------------------------------------------------------------------------ 

 
Fig.3 General and real-world HADAR ranging performance. 
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The data for ranging performance on various dissimilar scenes and real-world scenes is 

available in the HADAR ranging folder in the HADAR database. We emphasize again that 

with different AI algorithms, with different metrics, or with different scenes the depth accuracy 

enhancement of TeX vs. IR may be different, but our argument about the depth accuracy 

relation ‘TeX_night ~ RGB_day > IR_night’ is robust, i.e., HADAR sees depth through the 

darkness as if it were day and beats thermal ranging. 
 

4. Segmentation: 

Our segmentation statistics on both synthetic and real-world scenes is given in Extended Data 

Fig.8, as cited below. Note that existing segmentation AI algorithms like DANet are usually 

trained on city scenes (e.g., CityScapes dataset). It is expected that they would have poor 

performance on non-city scenes beyond their training set. Therefore, to define a fair 

comparison, we only compare HADAR vs. AI-enhanced thermal sensing for City scenes in 

the HADAR database, see Fig.a-d and the upper table in the following cited figure. 

Other scenes of the HADAR database are designed as dissimilar non-city scenes for the 

purpose of diversity. We have shown one typical example of them, the real-world off-road 

scene in Fig.e-h and the lower table. Note that the TeX vision here is generated by TeX-SGD 

(non-machine-learning approach), and we use a non-machine-learning algorithm to convert 

material map to semantics as well. As anticipated, DANet + thermal vision has a poor 

segmentation performance. In contrast, HADAR has achieved segmentations with 

mIoU>65%. This off-road statistic clearly shows the robustness of HADAR semantics on 

scenes beyond the training set, as HADAR semantics here is purely physics-driven. 
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Fig.4 General HADAR segmentation performance. 

 

C2 2) The reviewer is keen to have a look at the TexNet code to examine the parameters and 

their efficacy. It is not clear if the performance reported in the paper is for one specific test set. 

The inclusion of cross-fold validation results on the dataset would eliminate the bias in test 

performance. 

R2 We thank the reviewer for pointing out the necessity of using cross validation. In this revised 

manuscript, we have used 5-fold cross validation in training TeX-Net and for all statistics. 

Explicitly, the HADAR database (11 scenes) was split into training set (80% data) + validation 

set (20% data). In each fold, one frame per view of each scene was selected for validation. This is 

to guarantee a similar diversity of the validation set as the training set. The TeX-Net codes, pre-
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trained weights and loss curves are available at https://github.com/FanglinBao/HADAR in the 

TeX-Net folder. 

 

C3 3) It is not clear how the authors generate TeX vision from T, E, X components. Is the TexNet 

framework trained end to end? Specifically, since the TexNet is trained with a physics-based loss 

on a different objective, how are the authors able to realize Tex vision out of the learned model? 

It is very important to elaborate these details to the readers as this is one of the fundamental 

strengths of this paper. 

R3 We regret that it was not made clear as to how we generate the TeX vision from TeX components. 

TeX vision is a physics-driven representation of heat signals that takes into account Kirchhoff’s 

laws as well as Planck’s law of blackbody radiation. TeX vision gives a color image where the 

hue, saturation and value are physical attributes of temperature (T), emissivity (e) and texture (X). 

We do not train TeX-Net end to end due to TeX degeneracy as differing physical attributes of T, 

e, X can lead to the same observed spectrum. This is explained in the caption of Extended Data 

Fig.1. Instead, thermal light factor V has to be learnt by the model and is used to construct the 

texture X. In this revised manuscript,  

1. we have explicitly illustrated in Extended Data Fig.1b how X is obtained from V and physics 

loss function called ‘res’ 

(1) We first use the solved thermal lighting factors V and the sky illumination to construct the 

scattering signal (�̅�) mimicking daylight imaging signal. We call this process ‘texture 

distillation’ as it removes some unwanted scattering signal not originated from the sky. 

(2) Please note that we have proposed both TeX-SGD (semi-global decomposition, non-

machine-learning approach) and TeX-Net (machine learning approach) for TeX 

decomposition. Even though TeX-Net and TeX-SGD are minimizing the physics-based 

loss called ‘res’, some ground truth texture still remain in the physics-based loss ‘res’, due 

to cutoffs on scattering and number of environmental objects in our heat signal model in 

solving the inverse problem.  

(3) Therefore, the final texture X is an information fusion of the distilled texture �̅� and the 

physics-based loss ‘res’. The fusion process can be an image superposition or image 

fusion, as we have implemented in the code package. In cases where sky illumination is 

not specified, ‘res’ gives the final texture X. Advanced fusion deserves future exploration. 

2. we have added a detailed paragraph in Sec. SIIIC of the Supple. Info. to explain the procedures 

of generating TeX vision from T/e/X components 

3. we have provided our implementation code package (matlab) with sample data at 

https://github.com/FanglinBao/HADAR. See TeX.distillX in the code package for the texture 

distillation process (getting X) and TeX.Vision for the visualization process (getting TeX 

vision).  

All these details have also been added in Sec. SIIIC of the Supple. Info. In the following, we cite 

our revisions for your convenience. 

 

Revision 1: new Fig.1b 

https://github.com/FanglinBao/HADAR
https://github.com/FanglinBao/HADAR
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Revision 2: new figure caption (b) of Fig.1 

 
Revision 3: how to generate TeX vision 
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C4 4) The authors are presenting their HADAR framework as a real-world breakthrough as 

opposed to a theoretical design and attempt to demonstrate real-world efficacy. However, the 

results presented are largely based on synthetic images. For example, Figures 1, 2,3,5,6,7,8, &11 

are all based on synthetic images and correspond to results tables. In contrast, Figures 4, 10, & 12 

are from a real-world image but it is the same image and none of these figures correspond to results 

tables showing model efficacy . Thus, the reporting on comprehensive model performance is 

centered on images that do not accurately represent the noise found in real-world data and thus 

can not be representative of real-world efficacy, only validation of theoretical concepts. In other 

words, there exists a huge domain gap between the presented synthetic LWIR images and the 

HADAR captured images. While the synthetic images are valuable for some demonstration, the 

reviewer suspects model performance was gauged solely on synthetic images and thus the results 

presented do not reflect real-world performance. This is a major issue with the paper.  

R4 We agree with the reviewer that it is necessary to show real-world statistics of HADAR 

performance to claim the advantage of HADAR vs. AI-enhanced thermal sensing. In this revised 

manuscript, we have made our best efforts to include the HADAR prototype-II experiments and 

real-world performance statistics. We are glad to report that HADAR does show consistent and 

promising real-world performance that beats state-of-the-art AI-enhanced thermal sensing. 

1. Sensor and experimental details: 

The HADAR prototype-II sensor is a pushbroom hyperspectral imager that can produce 256 

spectral bands (price ~ $1M). Sensor parameters have been detailed in Methods—prototype 

HADAR calibration. Data collection was conducted under the DARPA IH (The Defense 

Advanced Research Projects Agency, Invisible Headlights) project. There are multiple 

practical challenges in experiments, such as, (1) the pushbroom sensor shows horizontal streak 

noise due to dynamic drift of pixel gain and offset, (2) ground truth material library was not 

collected, and (3) the sky, which is a significant environmental object, was not directly 

observed. We have added one section (Sec. SV) in the Supple. Info. to explain the details of 

denoising, LiDAR-HADAR extrinsic calibration, and estimating the material library as well 

as the sky radiance. 

 
The relevant experimental HADAR data has 17 frames, among which, 3 frames have 

corresponding high-resolution LiDAR data. All 17 frames of TeX vision generated by TeX-

SGD (semi-global decomposition) are available in the HADAR ranging folder in HADAR 

database given before. Note, we only use 4 frames for training TeX-Net. Since the pushbroom 

sensor was used along with multiple other sensors (irrelevant to this work) in the IH project, 

the data collection took so long that we observed significant changes of the estimated sky 
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radiance throughout the experiment. The inaccurate sky radiance estimation causes 

performance fluctuations of TeX vision, as can be observed in 17 frames of TeX vision images. 

It also leads to instability of the estimation of the material library. Therefore, only 4 frames 

that share the same semantic library (estimated material library) are given in Scene-11 in the 

HADAR database to train the TeX-Net. Note that TeX-Net requires an input of material library 

in training. In the future, all these practical restrictions can be relieved with a proper on-site 

experimental characterization of the sky radiance and the material library. 
 

2. TeX vision and texture recovery in real-world scenes: 

We have proposed in this revised manuscript both non-machine-learning and machine-

learning algorithms for TeX vision. The former is the TeX-SGD (semi-global decomposition), 

and the latter is the TeX-Net. TeX-SGD uses the spectral information to solve TeX 

decomposition pixel per pixel, based on the physics loss and a smoothness constraint, while 

TeX-Net utilizes both spatial and spectral information. We used the TeX vision generated by 

TeX-SGD to estimate the ground truth TeX vision and train TeX-Net. We observed that TeX-

Net outputs spatially smoother TeX vision than TeX-SGD, with the help of spatial 

information. Currently, we observed that TeX-SGD is better at material identification and 

texture recovery for fine structures, such as, bridge fence, bark wrinkles, culverts, etc. 

Extended Data Fig.4 shows the material identification and texture recovery in comparison with 

traditional thermal vision for two sample frames. Extended Data Fig.3 shows the comparison 

of TeX vision from TeX-SGD vs. the TeX-Net. Both are cited as below. Also see Fig.S33 in 

the Supple. Info. for a comparison between TeX vision at night and the RGB vision in daylight. 
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Fig.5 TeX vision and texture recovery for real-world scenes at night (completely dark). 

 

3. HADAR ranging in real-world scenes: 

The real-world HADAR ranging performance and statistics is given in Fig.6, as cited below. 

Ground truth depth is from the high-resolution LiDAR data. Estimated depth is visualized in 

the region where there is LiDAR data. Statistics is also done wherever there is LiDAR data. 

The experimental result Fig.(c) below is a visualization of the table (b). The metrics clearly 

demonstrate that HADAR ranging at night beats thermal ranging and matches RGB 

stereovision in daylight, and hence it demonstrates our argument ‘HADAR sees texture and 

depth through the darkness as if it were day’. 

Due to practical restrictions in experiments as explained in point 1 (i.e., material library and 

sky radiance were not collected in experiments; sky radiance varied throughout the 

experiment), only 4 frames sharing the same estimated material library are used in TeX-Net, 

while the total TeX vision frames in TeX-SGD are 17. Therefore, we used TeX-SGD results 

to test real-world HADAR performance. Since the IH government experiment only collected 

monocular data, we used monocular depth estimation for HADAR ranging. We emphasize 

that our HADAR theory applies to both monocular and binocular stereovision (see Fig.S19 of 

the Supple. Info. for binocular stereovision). In the future, our work can be extended to 

binocular stereovision with this advanced sensor. 
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Fig.6 Real-world HADAR ranging performance at night. HADAR ranging at night beats thermal ranging and is 

comparable with RGB stereovision in daylight. 
 

4. HADAR semantics in real-world scenes: 

Our real-world HADAR semantics is given in Extended Data Fig.8, as cited below. As existing 

AI algorithms for segmentation are usually trained for city scenes (e.g., DANet trained on 

CityScapes), they are expected to have poor performance on off-road scenes. In contrast, 

HADAR semantics is physics driven. Both TeX-SGD and the conversion algorithm from 

material map to semantic map are non-machine-learning approaches. Therefore, it is expected 

to see that HADAR definitely has a major advantage for robust segmentation on scenes beyond 

the training set. 

 
Fig.7 Real-world HADAR segmentation performance at night. HADAR semantics outperforms AI-enhanced 

thermal semantics. 

 

C5 5) Although the authors tested the figures with the RGB image pre-trained people detection 

framework, the domain gap between source and target image domains would lead to incorrect 

detection for target images. Be careful that although the framework correctly identifies humans 

for this specific frame, a generalized performance estimation over multiple frames would be 

useful. Still, it is recommended to train the detection model with target images with few-shot 

learning to avoid the requirement for large labeled datasets. Also, be informed that the thermal 
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and the HADAR results don't have significant texture information to correctly estimate the HOG 

features to be able to perform detection on these features. This is also evident with the detection 

score as shown in extended data fig5. Alternately, you could use SOTA human detection 

frameworks designed for thermal images. Take into consideration that the detection framework 

suffers if the HOG features generated for both the Robot and humans are the same since the only 

difference between these is the semantic color and some textures. 

R5 We thank the reviewer for the suggestion of using a detection model designed for thermal images. 

In this revised manuscript, we have adopted a very recent (from 2022) thermal-YOLO model fine-

tuned on thermal automative dataset, see Extended Data Fig.7. Also, we have tested with the 

people detection model in standard computer vision toolbox in matlab R2021b, in addition to our 

previous test in matlab R2018b. They all show consistent results. The thermal-YOLO result was 

shown in the manuscript. The human vs. robot detection result is cited as below. Note that 

HADAR detection here was performed on corresponding material region (using the physical 

attributes). The advantage of HADAR detection clearly comes from TeX vision and is independent 

of used AI algorithms. 

 
Fig.8 HADAR detection beats AI-enhanced thermal detection. 

 

C6 6) As the authors pointed out, the identification of the object is dependent on the 

semantic/statistical distance of each material in the library, which decreases when materials are 

introduced to the library. To address this issue, the authors propose to use a setup with higher 

multispectral band capabilities but their hardware itself is constrained in that it cannot identify 

even a minimal number of bands that occur in a real-world application. Firstly, these sorts of 

hardware constraints are not considered in synthetic examples which are used to demonstrate the 

superior performance on various tasks compared to thermal or other modalities. Secondly, 

realizing these constraints, I am skeptical of their performance in real-world situations  where 
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design costs are the bottleneck. The authors emphasize the need for a low-cost design for HADAR 

optimal design, but this will not allow the design to function optimally for optimal setup for 

separability of materials in the real-world situation. In the synthetic examples to prove HADAR 

efficacy, these constraints are relaxed as a result of which the authors can demonstrate many sets 

of materials whereas, for the real world, the material library is a bare minimum and insufficient to 

capture the variation in spectral signatures encountered in the real world. 

Please carefully address these concerns for the next submission. 

R6 We agree with the reviewer that our previous prototype HADAR (prototype-I, low-end HADAR, 

the sensor + filters are about $20K) was a proof-of-concept demonstration and not ready for 

complicated real-world scenes. In this revised manuscript, we have made our best efforts to 

experimentally demonstrate HADAR prototype-II (high-end HADAR, advanced pushbroom 

sensor cost ~ $1M) in complicated off-road scenes. HADAR prototype-II can generate 256 

spectral bands, and as we have demonstrated in experiments shown before, it can distinguish 

materials properly in real-world night scenes. 

We note that our work will motivate cost-effective CMOS-compatible thermal sensors in the 

future. Furthermore, research communities in coded apertures and metasurfaces will be motivated 

to develop high-speed, low-cost, low-complexity spectral thermal imagers as alternatives to 

traditional pushbroom cameras. One example is the CRISP architecture [1], which is a low-cost 

microbolometer platform with a coded aperture that can give more than 50 spectral bands in the 

long-wave infrared. We therefore believe the cost barrier to HADAR can be broken in the near-

term.   

We would like to further point out that, even though our HADAR theory is explained in the form 

of explicit spectral resolution, the TeX vision isn’t fundamentally restricted to the input of explicit 

spectral radiance, and therefore, spectrum reconstruction is not always essential. For example, our 

least-squares estimator is proposed for low-end HADAR applications where the 3rd axis of the 

heat cube is not wavenumber but filter index, and as we have demonstrated previously, it can 

distinguish certain amounts of materials. If one wants to distinguish an increasing number of 

materials, more filters are needed, and in principle, the number of filters is not limited. In Ref. [2], 

195 filters have been used in experiments. In the future, we can replace the filter-wheel approach 

to Bayer filter mosaic approach on FLIR cameras, or otherwise, use customized filter holders that 

can support desired number of filters. With more filters, spectrum reconstruction will be 

increasingly more accurate, but again, it is not essential to convert the 3rd axis of heat cube from 

filter index to wavenumber. Furthermore, TeX-Net can also be trained in a way that the input heat 

cube has filter index rather than wavenumber. 

Two prototypes we have demonstrated in this work clearly show the functionality-cost balance of 

HADAR. We agree that in situations where design costs are the bottleneck, low-end HADAR may 

not be able to function optimally as the high-end HADAR does. However, this is a common trade-

off that can also be seen in other sensors like LiDAR. For example, the low-end sparse LiDAR 

used in our work (Fig.5) cannot detect the black car 10 m away from the sensor. In a fair 
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comparison between low-end HADAR and low-end LiDAR, as we have demonstrated, our low-

end HADAR has better detection performance. 

Accordingly, we have revised our manuscript to make our argument clearer. 

<Methods -- prototype HADAR calibration>: 

“In our proof-of-concept experiments, we used the filter-wheel approach to demonstrate the 

HADAR prototype-1. The filter-wheel approach is time consuming but cost effective, suitable for 

low-end HADAR applications. In contrast, HADAR prototype-2 with a pushbroom sensor was 

demonstrated for high-end HADAR applications. HADAR can also be implemented by other 

approaches with mosaic sensors, gratings, prisms, interferometers, or Fabry-Perot cavities, 

depending on the desired spectral resolution, spatial resolution, data acquisition speed, or 

functionality-cost balance.” 

<Sec. SIVD of the Supple. Info.>: 

“First, we emphasize that spectrum reconstruction is not essential for TeX vision nor HADAR. It 

is useful when the explicit spectral resolution of radiance is desired, e.g., to help estimate the 

material library or environmental radiance in real-world experiments. When sufficient filters are 

available, reconstruction …” 

 
Reference(s): 

[1] R. M. Sullenberger, A. B. Milstein, Y. Rachlin, S. Kaushik, and C. M. Wynn, "Computational reconfigurable 

imaging spectrometer," Opt. Express 25, 31960-31969 (2017) 

[2] Bao, Jie, and Moungi G. Bawendi. "A colloidal quantum dot spectrometer." Nature 523.7558 (2015): 67-70. 

 

 

We thank the reviewer once again for the time and efforts spent to provide us such helpful and detailed 

comments. With the above changes, we believe the manuscript is now significantly improved and ready 

for publication. 
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Cover letter to Reviewer 3 

We would like to thank the reviewer for the encouraging response and valuable comments. It certainly 

helped us to significantly revise our manuscript. In this round of review, there is one remaining major 

concern from all reviewers. Here, we briefly list all the major revisions, and we will provide individual 

replies to each comment from the next page onwards. 

Major concern:    Will HADAR work in a real-world environment? 

The reviewers want to see (i) real-world HADAR performance and (ii) generalized performance over 

multiple dissimilar scenes. Explicitly, the reviewers want to see the performance in more complex 

synthetic scenes such as dense crowds and dense vehicles, and in real-world open environments with 

inevitable noise and unknown classes of materials. 

Major revision(s):    Real-world demonstration of HADAR 

In this latest revised manuscript, we have made major revisions to fully address the concerns. 

1. We have added HADAR prototype-2 and real-world experiments, in the presence of sensor 

noise and unknown materials. Based on the input from the reviewer and to respond to the detailed 

questions, we formed a partnership with DARPA (The Defense Advanced Research Projects 

Agency, through the Invisible Headlights project) and the Army night-vision team (Infrared Camera 

Technology Branch, DEVCOM C5ISR Center, U.S. Army). We have now collected real-world 

experimental data using a pushbroom hyperspectral imager (~$1M) and it took ~$20K a day for 

personnel to collect data. Along with our previous home-built HADAR prototype-1 device, we call 

this as HADAR prototype-2. This data will be made available to the global research community 

accelerating progress not only in machine learning algorithms but also in the creation of new cost-

effective and cheap sensors for HADAR. We have also generalized our HADAR theory so that it 

does not require an input of material library. 
 

2. We have created a HADAR database with 11 dissimilar scenes to test generalized HADAR 

performance. Our HADAR database consists of complex scenes, like (a) Crowded Street, (b) 

Highway, (c) Suburb, (d) Countryside, (e) Indoor, (f) Forest, (g) Desert, (h) Conventional Street, (i) 

Natural Park, (j) Rocky Terrain, (k) Real-world off-road, covering most common road conditions 

that HADAR may find applications in. 
 

We have tested TeX vision, detection and ranging, and reported in this revised manuscript the (i) real-

world HADAR performance and (ii) generalized performance on dissimilar scenes. We are glad to 

confirm that HADAR has promising and consistent performance that beat AI-enhanced thermal sensing. 

See Fig.1c, Fig.6, Extended Data Figs.2-8 in the revised manuscript for more details. Please see the 

supplemental video for a demonstration of real-world TeX vision of an off-road scene at night! 

We have also made revisions according to all other comments. Now, we will address each comment 

sequentially in the following. Notations used in this response include C: Comment, R: Reply, Italic: 

revisions, underline: emphasize. 
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This permanent link to the HADAR database (https://github.com/FanglinBao/HADAR) will be made 

public once the paper is published. The temporary Microsoft one drive link for reviewers is: 

https://purdue0-

my.sharepoint.com/:f:/g/personal/baof_purdue_edu/ErtlrHN6qO1IvNtfbD9ezaIBDPtdSjldpW7EEegMuPw_RQ?e=MzbG6V  

https://github.com/FanglinBao/HADAR
https://purdue0-my.sharepoint.com/:f:/g/personal/baof_purdue_edu/ErtlrHN6qO1IvNtfbD9ezaIBDPtdSjldpW7EEegMuPw_RQ?e=MzbG6V
https://purdue0-my.sharepoint.com/:f:/g/personal/baof_purdue_edu/ErtlrHN6qO1IvNtfbD9ezaIBDPtdSjldpW7EEegMuPw_RQ?e=MzbG6V
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Reviewer 3 

C0 In this paper, the authors proposed and demonstrated HADAR (Heat-Assisted Detection and 

Ranging) for fully-passive and physically-aware machine perception. This work is interesting, 

the authors exploited physics-driven perception to achieve improved performance against AI-

enhanced thermal sensing. 

R0 We would like to thank the reviewer for the encouraging response and valuable comments. We 

have addressed each comment individually below and made major revisions to improve the 

quality of this manuscript. 

  
C1 The paper is not easy to read, and I suggest authors should move some essential information 

from supplementary material to the article. 

R1 We regret that the previous version was not easy to read. During the review & revision process, 

the content of the manuscript became increasingly dense. We agree and we have made every 

effort to keep the essential information for the broad audience in the main text. We regret that it 

was not well done in the previous version. In this revised manuscript, we have even more results 

to show, particularly, the real-world HADAR experiments and the general HADAR performance 

on the HADAR database with 11 dissimilar scenes. To improve the readability, we have revised 

the contents’ layout and added essential information in the main text. 

<Old manuscript structure> 

The main text was devoted to describing the fundamental limits of HADAR. Real HADAR 

performance was not shown in the main text. HADAR thermography was an important subject 

but not closely related to autonomous navigation. 

<New manuscript structure> 

Since the key technical breakthrough of this work is overcoming the ghosting effect and beating 

thermal ranging, we have moved our new experimental results of real-world HADAR TeX vision 

(Fig.1c) and HADAR ranging (Fig.6) into the main text. The figure for HADAR thermography 

is moved to Extended Data Fig.9 instead. 

Now, the revised main text firstly explains the origin of the ghosting effect and introduces the 

theory of TeX vision. Then, it illustrates the fundamental limits and real-world performance of 

HADAR detection and ranging, clearly demonstrating how HADAR addresses the existing 

challenges of phantom braking and thermal ranging. The main text uses condensed/concise 

scenes to illustrate the physics more clearly, leaving HADAR performance in 

general/complicated scenes in the Extended Data. The technical details of the HADAR theory 

and experiments are mainly given in the Supple. Info. This is to make the main text more friendly 

to the broad readership of Nature. 

 

Revisions: 

To make the layout of the contents clear in the main text so as to better guide the readers, we 

have added explicit references to the Supple. Info. and Methods. We have also added the 

following essential explanations in the main text. 

<end of left column, page 3>: 

‘…With general HADAR performance shown in Extended Data, here we demonstrate the 

fundamental limits as well as real-world performance of HADAR.’ 
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<the whole section of Real-world HADAR perception, page 4>: 

‘We now experimentally demonstrate HADAR in real-world scenes. Our HADAR prototype-1 

for low-end applications is based on commercial FLIR thermal camera with custom designed 

spectral modules (see Extended Data Fig. 10) …’ 

‘Our HADAR prototype-2 for high-end applications is based on a pushbroom hyperspectral 

imager…’ 

 

<new Fig.1c>: 

 
<new Fig.6> 
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C2 Following are a few suggestions and some questions for the authors: 

1.Although more complex data are used in experiments suggested by other reviewer, I still feel 

the scenes visualized in the article are not complex enough. I hope the authors will add more  

complex scenes such as dense crowds and dense vehicles in the additional content. 

R2 We thank the reviewer for the explicit suggestion. In this revised manuscript, we have created a 

HADAR database consisting of 11 dissimilar scenes. The HADAR database includes crowded 

scenes (e.g., Crowded Street), complex scenes (e.g., Forest), and real-world off-road scenes, with 

30 different kinds of materials in total. A summary of the database is given in Extended Data 

Figs.2 and 3. Our TeX vision, detection, and ranging performance is also based on these complex 

scenes, as shown in Fig.6, Extended Data Figs. 3, 4, 7, and 8. The new complex scenes are cited 

below. 
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Fig.1 HADAR database with complex scenes. 

 

C3 2.The authors mention that HADAR is expected to make great progress in industry, but it seems 

that there is no demonstration of HADAR computational efficiency and deploy-ability in the 

article. 

R3 We thank the reviewer for pointing out the computational efficiency and deploy-ability of 

HADAR. In this revised manuscript, we have added a section in the Methods --- ‘Computational 

efficiency and deployability of HADAR’. 
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C4 3.In HADAR, a deep neural network approach is used to predict materials by spectra, and I'm 

rather curious about what the results will be for HADAR if the prediction is wrong in this 

process. Is the prediction of materials by spectra robust enough? 

R4 We would like to answer the question in the following aspects and revise accordingly. 

1. Robustness of material prediction: 

According to our theory of HADAR identifiability (Eq. 2 in the main text, Algorithms 1-3 in 

the Supple. Info.), material prediction is quantified by the probability of correct prediction 

(detection probability). The detection probability as well as the HADAR identifiability 

depends on the collected photon number (signal strength), sensor noise, semantic distance 

and spectral resolution, and the explicit cutoff on scattering and environmental objects in 

solving TeX decomposition. Intuitively, the robustness of material prediction will increase 

(i.e., detection probability increases) when the sensor noise decreases and/or the spectral 

resolution increases. 

2. Algorithms to improve material prediction: 

In our TeX decomposition algorithms, TeX-Net utilizes the spatial information in addition 

to the spectral information to improve the robustness of material prediction. On the other 

hand, TeX-SGD (semi-global decomposition) uses a spatial smoothness constraint to 

improve the robustness of material prediction. 

3. Real HADAR performance when material prediction is wrong: 

In case of wrong material prediction, temperature and thermal lighting factor estimation will 

be biased and the physics-based loss residue will be large. In the following, we discuss the 

consequences in TeX vision, detection, segmentation, and ranging, respectively. 

• TeX vision 
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TeX vision will have speckles within an otherwise uniform object. We have observed 

this in both TeX-Net and TeX-SGD results. See the following real-world experimental 

results for example. 

 
RGB vision in daylight as a reference 

 
Fig.2 Evidence of wrong material prediction in TeX vision. In Fig.b, trees (brown) are sometimes 

predicted as water (blue) or vegetation (green). In Fig.c, part of water is predicted as metal (purple), since 

that part of water is the mirror image of sky and metal in the scene is also reflecting sky signal. 

 

• Segmentation: 

In this very first paper of HADAR, our algorithm to convert material map to semantic 

segmentation (algorithm 4 in the Supple. Info.) is currently a non-machine-learning 

approach, and HADAR semantics is completely physics driven. Wrong material 

prediction will immediately hamper HADAR semantics. However, we emphasize that in 

the future the conversion between material map and semantic segmentation can also be 

learning based making use of spatial information. Therefore, HADAR semantics would 

be less influenced by wrong material prediction. As can be seen in the following figure, 

wrong material prediction leads to <100% mIoU of HADAR semantics, but still HADAR 

outperforms thermal segmentation. 
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Fig.3 Consequence of wrong material predictions in segmentation 

 

• Detection: 

In our demonstration of human vs. robot detection, the detection is performed on a certain 

material region. In the presence of wrong material prediction, the material region will not 

match the ground truth material region, but detection is robust since detection models 

will further search for certain spatial patterns in the material region. The detection result 

shown in Extended Data Fig.7 is cited below as an example. Explicitly, there are a few 

pixels under the car or around the human leg have wrong material predictions (ground 

truth: road in purple; prediction: aluminum in green). For robot detection in (d) where 

image smoothing has been done before detection, the detection model still yields correct 

result, as the wrong material prediction has not interfered with the spatial pattern of the 

robot. 

 
Fig.4 consequence of wrong material predictions in detection 

 

• Ranging: 
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We observed that when the predicted TeX vision with wrong material predictions was 

used for ranging, the ranging accuracy will decrease as compared to that based on the 

ground truth TeX vision with correct material predictions, as can be seen in table (d) 

below. But we observed that our argument ‘HADAR ranging at night beats thermal 

ranging and matches RGB stereovision in daylight’ still holds. 

 
Fig.5 Consequence of wrong material predictions in ranging 

 

Revisions: 

Accordingly, we have revised the manuscript to reflect the above points. 

<in the caption of newly added Extended Data Fig.3>: 

‘…Most of the water pixels can be correctly estimated as ‘water’, except for a small portion 

corresponding to the sky image which has been estimated as ‘metal’, since metal also reflects 

the sky signal. TeX-Net utilizes both spatial information and spectral information for TeX 

decomposition, and hence its TeX vision is spatially smoother. In contrast, TeX-SGD mainly 

makes use of spectral information and decomposes TeX attributes pixel per pixel. Compared 

with TeX-Net, we observed that TeX-SGD is better at material identification and texture recovery 

for fine structures…’ 

<in the caption of revised Extended Data Fig.8>: 

‘…In the future, learning-based approaches to convert material map to semantic segmentation 

with the help of spatial information can further improve HADAR semantics…’ 

<in the caption of revised Extended Data Fig.7>: 
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‘…We also observed that HADAR detection is robust against wrong material predictions, see 

the few road pixels under the car and around the human leg that have been predicted as 

`aluminum' in (b) and (d).’ 

<new Fig.S19, Sec.SIIIA of the Supple. Info.>: 

 
 

C5 4.In the comparison of this paper, the authors' distinction between humans and robots does not 

look extensive enough and there should be more visual examples to support the effectiveness of 

the proposed approach.  

R5 We agree with the reviewer that the human-robot identification problem itself is not extensive in 

the current world we live, but it is expected to be much more extensive by 2030 when human-

robot interaction becomes intense. Also, we positively confirm that HADAR does have more 

effective applications in computer vision even in the current world. Before giving our revisions, 

we’d like to briefly explain our motivation in selecting the human-robot identification as the 

pertinent and concise example in the main text. 

The advantage of HADAR vs. AI-enhanced thermal imaging comes from the spectral resolution 

and the disentanglement of temperature (T), emissivity (e), and texture (X). For detection and 

segmentation, thermal sensing based on radiance (or intensity) is vulnerable to errors as it only 

exploits the spatial information. This approach suffers from fundamental challenges whenever 

the spatial information is poor. In the following, we list some common and extensive situations 

where the spatial information is poor and thermal detection and segmentation is elusive. 

1. Most off-road scenes where spatial patterns are irregular: 

For off-road scenes, there is no regular spatial patterns to learn, and detection/segmentation 

can only be based on intensity contrast. As demonstrated below as well as in Extended Data 

Fig.8, segmentation of real-world thermal images based on either AI algorithms (DANet) or 

non-AI K-means clustering cannot distinguish the road and grass clearly. Using material 

identification, HADAR achieves off-road semantic segmentation. 
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Fig6. HADAR vs. thermal sensing in distinguishing road and grass. HADAR eMap is the map of material 

index in the HADAR material library. This figure is generated particularly for the reviewer. 

 

All path planning/segmentation based on thermal vision consistently has poor performance, 

as can be seen in the following test on the Desert scene in our HADAR database. 

 
Fig7. HADAR vs. thermal sensing in distinguishing road and obstacles. This figure is generated particularly 

for the reviewer. 

 

2. Most thermal images are of low-contrast and vague spatial boundaries: 

Even for regular spatial patterns, thermal vision with low contrast (exhibiting the ghosting 

effect) will pose challenges to detection. This is common in almost all thermal images, and 

it affects the detection, depending on the specific contrast and sharpness of the thermal 

image. To clearly show this to readers, we have designed scenes with particular parameters 

to emphasize the detection challenge in thermal vision. As can be seen in our Extended Data 

Fig.7 (cited below), human body visually merges with the car, since they have similar 

radiance, and hence the human body was not detected. 

 
Fig.8 HADAR vs. thermal sensing in detecting low-contrast objects. 

 

3. Visual ambiguity: 
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Even with clear spatial patterns and boundaries, visual detection algorithms do not take 

advantage of underlying material properties or physics-driven context such as temperature 

and spectral emissivity. This can cause wrong detection. One well-known example is the 

Phantom braking mentioned in our manuscript. Our human vs. robot identification is another 

example. 

 

In summary, the key argument we want to convey is that the s.o.t.a. segmentation based on spatial 

patterns alone can result in phenomena such as phantom braking. Other methods using solely 

total intensity of the signal (e.g., K-means clustering) are inaccurate. In such cases, HADAR 

exploiting spectral material fingerprint and physics-driven context (e.g., temperature) can 

substantially improve the performance. To make the physics clear to a broad audience, we decide 

to discuss concise and typical examples in the main text and give general cases in Extended Data. 

Therefore, we used the pertinent human-robot identification problem to help illustrate our 

argument, where we have made the shape and radiance of humans or robots almost the same. 

We have also provided real-world HADAR performance in extensive off-road scenes in 

Extended Data. 

 

Revisions: 

In addition to the above new results, we have also revised the manuscript to indicate that the 

advantage of using material fingerprint in detection/segmentation is extensive. 

< in the caption of revised Extended Data Fig.8>: 

‘…This real-world off-road scene is a general example to show the importance of material 

fingerprint in detection/segmentation. …’ 

 

C6 The experiments need improvement. In the paper, the algorithm of Thermal sensing + AI 

comparison is not state-of-the-art, and the authors should add the comparison with the latest 

algorithm. 

R6 We thank the reviewer for suggesting using the latest algorithms. In this revised manuscript, we 

have made our best efforts to update the used algorithms to the state-of-the-art. 

1. Detection: 

For human and robot detection, we have used the latest algorithm of thermal YOLO (YOLO-

v5 fine-tuned on the thermal automative dataset, https://github.com/MAli-Farooq/Thermal-

YOLO-And-Model-Optimization-Using-TensorFlowLite, 2022). This model was chosen 

because other reviewer(s) also wanted us to use thermal people detectors. The detection result 

is shown in Extended Data Fig.7, as cited below. We emphasize that the results are consistent 

as before. 

https://github.com/MAli-Farooq/Thermal-YOLO-And-Model-Optimization-Using-TensorFlowLite
https://github.com/MAli-Farooq/Thermal-YOLO-And-Model-Optimization-Using-TensorFlowLite
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Fig.9 HADAR detection vs. thermal sensing with the latest AI algorithm. 

 

2. Segmentation: 

DeepLab is the defacto standard for semantic segmentation (e.g., DeepLabv3 from google 

[1], 2017). In our manuscript, we used DANet [2] (2019) as the segmentation model which 

is more recent than DeepLab. Another main reason we used DANet is that we are utilizing 

both spatial and spectral information in our TeX-Net to generate HADAR TeX vision. It is 

therefore pertinent to also use a Dual-Attention Network for thermal sensing for comparison. 

3. Ranging: 

• For monocular depth estimation, we used the latest algorithm GCNDepth [3] (2023). 

Another main reason we chose GCNDepth is that it is a convolutional model and can be 

easily applied to our HADAR database which has different image sizes from their 

training set. 

• For binocular stereovision, we used the sub-pixel block matching algorithm (non-

machine-learning) to demonstrate our fundamental limit of ranging, and we used 

DeepPruner [4] (2019) as the AI algorithm for HADAR ranging statistics. Similar to sub-

pixel block matching, DeepPruner was chosen because it relies on differentiable 

PatchMatch, which has close relation to our theory of texture recovery and stereo 

matching. In the very first paper of HADAR, we think it’s beneficial to choose models 

that are close or analogous to our theory so as to make the physics clear. 

 

We agree with the reviewer that in the future all algorithms should be updated constantly to the 

latest to test HADAR performance vs. thermal sensing. 

 
Reference(s): 

[1] Florian, L-CCGP, and Schroff Hartwig Adam. "Rethinking atrous convolution for semantic image 

segmentation." Conference on computer vision and pattern recognition (CVPR). IEEE/CVF. Vol. 6. 2017. 
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[2] Fu, Jun, et al. "Dual attention network for scene segmentation." Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition. 2019. 

[3] Masoumian, Armin, et al. "Gcndepth: Self-supervised monocular depth estimation based on graph convolutional 

network." Neurocomputing 517 (2023): 81-92. 

[4] Duggal, Shivam, et al. "Deeppruner: Learning efficient stereo matching via differentiable patchmatch." 

Proceedings of the IEEE/CVF international conference on computer vision. 2019. 

 

C7 6.Some experimental results seem unconvincing. For example, in Extended Data Fig. 8, why 

choose 10 frames of the left camera in the city block dataset 1? Can you evaluate them on entire 

dataset? 

R7 We regret that our statistics was not explained well in the previous version of the manuscript. 

Previously, the segmentation was done on the CityBlock dataset (called Street-Long-Animation 

now). The dataset has left and right views, and each view has 100 frames. The dataset was split 

into training set (90 frames/view) + validation set (10 frames of the right view, 8:10:98) + test 

set (10 frames of the left view, 8:10:98). Validation and test frames were so chosen that they can 

expand to the whole dataset and would have the same diversity as the training set. The 

performance was evaluated and presented on the test set, which is a standard way of doing 

statistics. We should have said that the statistics was done on test set, instead of saying on 10 

frames of the left camera. 

Nevertheless, other reviewer(s) have pointed out that it is better to include cross validation. 

Therefore, in this revised manuscript, we have used 5-fold cross validation for both ranging and 

segmentation statistics. TeX vision of all frames, generated when they are in the validation set, 

was used in statistics. We believe this is a more convincing answer to this comment as well. 

 

C8 7.The fusion of infrared image and visible image perception is a common practice in real scenes. 

The authors should compare the performance after fusing optical imaging with raw thermal 

vision and HADAR TeX vision. 

R8 We agree with the reviewer that the fusion of thermal images and optical images has been a 

common practice in real scenes. In the literature [1-4], thermal images have been fused with 

optical images possessing poor ambient illumination for night-vision enhancement. The goal is 

to integrate complementary information from different sensors, i.e., the detailed textures in 

optical images and target highlighting in thermal images. 

Here, we would like to first compare HADAR vs. thermal-infrared fusion and clarify our 

objective underlying this work before we revise to incorporate the reviewer’s comment. 

1. HADAR is fully-passive. 

Our focus is to work in the extremely low light regime where conventional RGB sensors 

record no information at all. The multi-sensor fusion approach may have comprehensive 

information as HADAR does but cannot be fully passive. Explicitly, the visible-infrared 

image fusion is generically pseudo-passive as visible images rely on at least some level of 

ambient illumination. For completely dark scenes, such as our real-world off-road scene at 

night, there is absolutely no information in visible images and hence the visible-infrared 

image fusion is not better than the raw thermal vision.  

2. Our work aims to demonstrate that we can get rich information solely out of the heat signal 

which was previously thought to be impossible. 
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In our work, our focus is to demonstrate the advantage of HADAR vs. thermal sensing which 

are both based on heat signal. When full passivity or scalability is not required and more 

sensors can be considered in a multi-sensor fusion approach, HADAR can replace the 

traditional infrared sensor and work together with other sensors like the visible RGB camera. 

Explicitly, to combine RGB with TeX, one can following the procedures below. (1) Convert 

RGB images to grayscale. That is, keep the textures from material response in the visible-

light range (which is complementary to textures in the infrared range), and discard the color. 

The color from TeX vision will be adopted since that has physics-driven semantic meanings. 

(2) Fuse X channel with grayscale optical images. (3) Use the fused image to replace the 

original X and, together with T and e channels, form the new ‘enhanced’ TeX vision images. 

The following figure demonstrates the RGB-TeX fusion in comparison with RGB-IR fusion. 

Image fusion is implemented with the benchmark algorithms [5]. Since TeX vision is better 

than thermal IR vision, it is also seen that the new ‘enhanced’ TeX vision (TeX + RGB 

fusion) is better than visible-infrared image fusion (IR + RGB). For example, the textures on 

the street and pavement in TeX-RGB fusion are more than that in IR-RGB fusion. 

 
Fig.10 TeX+RGB fusion vs. IR+RGB fusion 

 

3. HADAR is physics aware. 
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HADAR has the material/semantic information in the e channel that visible-infrared image 

fusion does not have. Also, HADAR temperature in the T channel is more accurate than 

traditional thermography. 

4. The main goal of HADAR is to pursue night-time stereovision with performance metrics as 

good as the RGB stereovision in daylight. 

Visible-infrared image fusion at night is to enhance the RGB vision with thermal vision for 

the part of image with poor ambient illumination. To better support our argument, instead of 

comparing with visible-infrared image fusion, we directly compare our TeX vision at night 

(pitch-darkness) with RGB vision in daylight and show that HADAR has comparable 

textures as well as ranging accuracy. We believe this is an even stronger comparison. 

 

Revisions: 

Accordingly, we have added the above analysis and the above figure in Sec. SVE and Fig.S34 of 

the Supple. Info. 

 
Reference(s): 

[1] Gu, Yansong, et al. "Advanced driving assistance based on the fusion of infrared and visible images." Entropy 

23.2 (2021): 239. 

[2] Li, Hui, Xiao-Jun Wu, and Josef Kittler. "RFN-Nest: An end-to-end residual fusion network for infrared and 

visible images." Information Fusion 73 (2021): 72-86. 

[3] Zhao, Zixiang, et al. "Bayesian fusion for infrared and visible images." Signal Processing 177 (2020): 107734. 

[4] Zhou, Zhiqiang, et al. "Fusion of infrared and visible images for night-vision context enhancement." Applied 

optics 55.23 (2016): 6480-6490. 

[5] X. Zhang, P. Ye, G. Xiao. VIFB: A Visible and Infrared Benchmark. In Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition Workshops, 2020. 

 

C9 8.In open environments, there exist unknown classes of materials and unknown scenes. I wonder 

how the TeX vision would work in open environments. 

R9 We thank the reviewer for mentioning the HADAR performance in open environments with 

unknown materials and scenes. Other reviewer(s) also have comments regarding real-world 

experiments. Therefore, in this revised manuscript, we have made our best efforts to provide the 

HADAR prototype-2 experiments in real-world off-road scenes at night, see Fig.6 and Extended 

Data Figs. 3-8 for results. 

As shown below, the off-road scene is an open environment with complexity and diversity in 

details. Except for a few man-made objects (e.g., the checkerboard marks and the culverts) and 

a few that we can visually and roughly tell (e.g., water, grass, trees), there are many unknown 

details in the scene. The experiment was conducted under the DARPA IH project (The Defense 

Advanced Research Projects Agency, Invisible Headlights). The material library was not 

collected, and we don’t exactly know how many materials there are in the scene. The sky (which 

is a significant environmental object and important to our HADAR theory) was not directly 

observed in the image as well. The sensor was a pushbroom hyperspectral imager that has 

horizontal streak noise (sensor noise has been detailed in Methods—prototype HADAR 

calibration). We believe this is a very general experiment to prove real-world HADAR efficacy. 

In the following, we briefly describe how we obtained the TeX vision and HADAR detection 

and ranging. More details have been given in Sec. SV of the Supple. Info. 
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1. TeX vision: 

We first used a customized TES (temperature-emissivity separation) algorithm followed by 

K-means clustering to estimate the material library. To be distinguished from the exact 

ground truth material library, here we call the estimated material library the semantic library. 

The reason is also related to the fact that there are considerable unknown details in the scene. 

For example, in this real-world off-road scene, the gravel road by a grass lawn may consist 

of soil, sand, or little stones that cannot be spatially resolved by sensor pixels. In this case, 

each road pixel may exhibit a slightly different spectral emissivity curve and the ground truth 

is unknown, but their emissivity curves are still distinct with the grass, trees, or water. 

Therefore, using averaged emissivity curves can capture the semantics of road vs. others, 

while the deviation from the exact emissivity will become a perturbation to the temperature 

and thermal lighting factors, or remain in the physics-based loss, “res”. This error will 

diminish as the number of semantic categories in the library increases. We emphasize that a 

semantic library by no means covers all exact material in the scene. K-means clustering needs 

an input of number of clusters, and that determines the dimension of the semantic library. 

We read the signal off the reflecting part of the checkerboards to estimate the sky radiance. 

With the above approximation, we used our TeX-SGD (semi-global decomposition) to 

generate TeX vision, and this TeX vision was used to estimate the ground truth TeX vision 

to train TeX-Net. TeX vision results are shown below. 

 
RGB vision in daylight for comparisons with TeX vision at night 

  
Fig.11 TeX vision vs. IR and RGB vision for open environments with unknown materials 

 

In the above results, TeX-SGD only used the spectral information and physics loss for TeX 

vision, while TeX-Net utilized both spatial and spectral information. We observed that TeX-

SGD is better at material identification and texture recovery for fine structures, such as bark 
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wrinkles, culverts, bridge fence, etc., and TeX-Net is better at spatial smoothness. Both TeX 

vision results demonstrate that HADAR can see through the darkness as if it were day. 

 

2. HADAR detection (segmentation): 

With the above TeX vision, we used a custom algorithm to convert the material map to 

semantic segmentation. As discussed in Reply R4, there are few pixels where material 

prediction is wrong, but the mIoU statistics confirms that HADAR has captured the 

semantics reasonably well. 

 
Fig.12 HADAR segmentation for open environments with unknown materials 

 

3. HADAR ranging: 

With the above TeX vision, we used a monocular depth estimation model, GCNDepth, for 

HADAR ranging. The ranging statistics (Fig.f below) clearly shows that HADAR ranging at 

night beats thermal (IR) ranging and is comparable to RGB stereovision in daylight. This 

demonstrates our argument ‘HADAR sees texture and depth through the darkness as if it 

were day’. 

 
Fig.13 HADAR ranging for open environments with unknown materials. 

 
 

We thank the reviewer once again for the time and efforts spent to provide us such details comments. With 

the above changes, we believe the manuscript is now significantly improved and ready for publication. 



 

Reviewer Reports on the Second Revision: 

Referees' comments: 
 
Referee #1 (Remarks to the Author): 
 
The reviewer commends the diligent and meticulous approach taken by the authors. Their level of 
effort in addressing the reviewer's comments is commendable. The supplementary material 
comprehensively covers the mathematical foundations of formulating the fully-passive and 
physically aware machine perception. The paper has rich details on the physics and mathematical 
modeling of the imaging process. Given that the author's intended takeaway from this work is the 
breakthrough performance of computer vision tasks with Tex Vision compared to thermal, the paper 
needs to be fundamentally strong in ML components and provide rich details in these sections. To 
this point, the reviewer suggests improvements in certain important details of ML that are necessary 
to fully validate the authors' claims: 
 
1. Please thoroughly check the Error values, particularly Sq_Rel, RMSE, and RMSE_Log, for 
correctness in Fig 6b and c. For example, RMSE for Tex+AI is lower than RGB+AI; however, RMSE_Log 
for RGB+AI is lower than Tex+AI. Per the reviewer's understanding, all the error entities for RGB+AI 
should be lower than TEX+AI. Also, What do the delta parameters presented in the same table 
correspond to in the caption and discussions? 
 
2. On page 9 of the main body, under the methods section. The authors state, "The dimensionality 
curse for high spectral resolution (536 bands used) leads machine learning to over- fitting, and slight 
deviation between Monte Carlo simulation and theoretical prediction can be observed in Fig. 3b. 
Once the dimensionality curse is relieved, perfect agreement can be reached." How precisely do the 
authors relieve this dimensionality curse? 
 
3. The authors' original supposition was developing low-cost hardware with the HADAR paradigm. 
While the efficacy looks promising on synthetic examples and very high-cost sensors, the results call 
into question the efficacy of the approach utilizing the original low-cost systems upon which the 
original supposition was based and the feasibility of integration in real-world applications. In keeping 
with the original premise, it would be helpful to readers to present a visual comparison of the TEX 
vision side-by-side, achieved via prototypes 1 and 2, to understand the differences in HADAR's 
performance at different cost settings. 
 
 
4. The authors have done an excellent job discussing underlying physics and generating data 
simulations based on these physics models in the supplementary materials section. However, the 
ML/DL sections need to be strengthened with associated details as they only have minimal 
information in the supplementary material. 
 
5. On page 41 of the supplementary material, the gain in texture density with Tex-Vision compared 
to thermal vision is seemingly quite small. Also, is there a way to quantify if the texture metric is also 
impacted by noise? For example, if the TEX vision has significant noise in texture compared to 



 

thermal, that would also result in higher texture density. It would also be useful to readers if 
information about the common value for standard RGB images is provided. 
 
6. It would be useful to the readers if the details on datasets utilized for benchmarking detection, 
ranging, and segmentation with Texnet were provided. Also, the number of images used for training, 
testing, and validation for the experiments need to be included as well as the training strategy used. 
 
7. In figure s19, what does tau correspond to? 
 
 
8. In fig s24, the claim about human vs. robot identification compared to thermal, as seen from the 
supplementary material, is due to the advantages provided by multi-spectra. As shown in Fig S24, 
the ability to perform semantic segmentation exploiting the material signature to mask the 
underlying different material layers followed by detection in that masked layer raises concern about 
the simultaneous detection of different objects corresponding to different spectra in a scene and 
performing end-to-end semantic segmentation. Given this strategy, one can directly utilize the 
multispectral tensor data for this task without TeX-vision, where each spectra can be utilized 
separately to identify the subject composed of given material (skin vs. aluminum). To address this 
concern, can TEX vision enable the simultaneous detection of multi-objects from a single frame 
without masking? 
 
9. On page 71 of supplementary materials, estimating the signatures on the fly for the categorization 
of materials sounds like a good idea. As the Authors utilize k means to estimate the categories, how 
do they choose the k as this impacts the categorization process leading to over/underfitting noise 
during categorization? An incorrect categorization of materials can lead to errors in semantic 
representations, which propagate to successive tasks. Also, what is a customized TES algorithm? 
 
 
10. Since the authors utilized the result of Tex-SGD as ground truth labels to train the Tex-net, the DL 
trained is fundamentally limited by the performance of Tex-SGD. Consequently, it is not a fair 
comparison of the performance of TexNET and TexSGD when the performance of one constrains the 
performance of the other. The authors should develop alternate loss functions to decouple the 
dependency or augment some additional form of label for training the Texnet in a supervised 
fashion. 
 
 
 
 
 

  



 

Referee #3 (Remarks to the Author): 
 
The authors have conducted extensive experiments to demonstrate the effectiveness and efficiency 
of the proposed method. However, I have some minor comments and suggestions that I hope the 
authors can address before publication. Following are a few suggestions and some questions for the 
authors: 
 
1. Most of the scenes in the demo examples provided are relatively easy to segment. I am very 
curious about the performance in real-world scenes where objects are overlapped or occluded. 
 
2. The authors provide a video about the real-world experiment. But the synthesis results are not 
stable as seen in Tex.avi, for example the trees in the upper right corner of the video keep flashing. 
 
3. The video of the real-world experiment provided by the authors is short in length and lacks more 
challenges such as the movement of the objects. Authors are encouraged to provide more video 
visualizations containing more diversity of scenes. 
 
4. Considering that the authors use the ability of object detection to evaluate the quality of TeX 
vision, the authors should further introduce evaluation of visual object tracking to demonstrate the 
robustness of TeX vision. 

 



     SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING 

_________________________________________________________________ 

Birck Nanotechnology Center, Room 2293  ■  1205 W State St  ■  West Lafayette, IN 47907  ■  (765) 494-3514  ■  zjacob@purdue.edu 

Reviewer 1 

C0 The reviewer commends the diligent and meticulous approach taken by the authors. Their level 

of effort in addressing the reviewer's comments is commendable. The supplementary material 

comprehensively covers the mathematical foundations of formulating the fully-passive and 

physically aware machine perception. The paper has rich details on the physics and mathematical 

modeling of the imaging process. Given that the author's intended takeaway from this work is 

the breakthrough performance of computer vision tasks with Tex Vision compared to thermal, 

the paper needs to be fundamentally strong in ML components and provide rich details in these 

sections. To this point, the reviewer suggests improvements in certain important details of ML 

that are necessary to fully validate the authors' claims: 

R0 We thank the reviewer for all the efforts and patience throughout the whole review process. Your 

encouraging response, detailed comments and insights have helped us improve the work and 

converge to this final version for publication. We have addressed each comment individually 

below and made corresponding revisions to improve the quality of this manuscript. 

C1 Please thoroughly check the Error values, particularly Sq_Rel, RMSE, and RMSE_Log, for 

correctness in Fig 6b and c. For example, RMSE for Tex+AI is lower than RGB+AI; however, 

RMSE_Log for RGB+AI is lower than Tex+AI. Per the reviewer's understanding, all the error 

entities for RGB+AI should be lower than TEX+AI. Also, What do the delta parameters 

presented in the same table correspond to in the caption and discussions? 

R1 We would like to address this comment in two aspects. 

1. The reviewer touched upon an interesting question: is RGB+AI during the day always better

than TeX+AI at night? Our results show that the answer to this question is negative. Indeed,

we used RGB vision as a reference in this work, and we explained that HADAR recovers

textures by reconstructing the scattering heat signal, mimicking daylight imaging. That

means the mechanism of imaging textures in RGB and TeX is the same, i.e., retrieving the

scattering signal. However, a materials’ response to light (spectral features of

emissivity/reflectivity) in the visible-light spectrum is different from that in the thermal

infrared spectrum. In addition, the wavelength of the thermal infrared is around one order in

magnitude larger than that of the visible light. These factors will result in slightly different

textures in thermal and optical spectral ranges. Moreover, RGB vision only has 3 channels,

but HADAR prototype-2 in this work has 256 channels. All these factors can lead to more

textures in TeX images than RGB images, depending on specific scenes. Therefore, we only

claimed a conservative ‘comparable’ ranging performance between RGB+AI and TeX+AI,

as we have observed, instead of an absolute performance ranking.

We have added the above analyses in Sec.SID and Sec.SVD of the Supple. Info., as cited

below. 

Author Rebuttals to Second Revision:
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2. We thank the reviewer for the reminder to check metric values. We have double checked 

them and we confirm that the statistical results are correct. In fact, after checking relevant 

literature in computer vision, we realize it is a common phenomenon that a certain algorithm 

favors one metric while another algorithm may favor others. This usually occurs especially 

when two competing approaches (Day- RGB + AI, Night -TeX vision + AI) have comparable 

performances. Explicitly, it is possible that different depth metrics, due to different 

mathematical definitions, show different relative rankings, see, for example, Tab. V and Tab. 

VIII of Ref. [1]. In turn, this indicates that the ranging performance between 

Daytime:RGB+AI and Nighttime:TeX+AI is comparable, consistent with our argument. 

In this revised version, we have added a section in Methods to clearly define all metrics, as cited 

below. 
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Reference(s): 

[1] Masoumian, Armin, et al. "GCNDepth: Self-supervised monocular depth estimation based on graph 

convolutional network." Neurocomputing 517 (2023): 81-92. 

C2 On page 9 of the main body, under the methods section. The authors state, "The dimensionality 

curse for high spectral resolution (536 bands used) leads machine learning to over- fitting, and 

slight deviation between Monte Carlo simulation and theoretical prediction can be observed in 

Fig. 3b. Once the dimensionality curse is relieved, perfect agreement can be reached." How 

precisely do the authors relieve this dimensionality curse? 

R2 We regret that the statement was not made clear in the previous version. In this revised version, 

we have explicitly added that we use only 3 spectral bands for both theory and machine learning 

for human-robot identification to relieve the dimensionality curse, as cited below. 

 

C3 The authors' original supposition was developing low-cost hardware with the HADAR paradigm. 

While the efficacy looks promising on synthetic examples and very high-cost sensors, the results 

call into question the efficacy of the approach utilizing the original low-cost systems upon which 

the original supposition was based and the feasibility of integration in real-world applications. 

In keeping with the original premise, it would be helpful to readers to present a visual comparison 

of the TEX vision side-by-side, achieved via prototypes 1 and 2, to understand the differences 

in HADAR's performance at different cost settings. 

R3 We thank the reviewer for the helpful suggestion. In this revised version, we have added a new 

section (Sec.SVF) and a new figure (Fig.S35) in the Supple. Info. about the visual comparison 

of the TeX vision obtained by prototypes 1 and 2, as cited below. 
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C4 The authors have done an excellent job discussing underlying physics and generating data 

simulations based on these physics models in the supplementary materials section. However, the 

ML/DL sections need to be strengthened with associated details as they only have minimal 

information in the supplementary material. 

R4 We regret that the details about ML/DL were distributed in multiple places and not presented 

systematically for readers’ convenience. In this revised version, we have expanded Sec.SIIIA of 

the Supple. Info. to fully explain our TeX-Net and machine learning, as cited below. Details 

about the HADAR database (training data), number of images used for training and validation 

(5-fold cross validation), hyper-parameters like learning rate etc. (training strategy) are all 

included, in addition to the Saliency maps and ML/DL performance. We have also provided 

detailed README for both HADAR and TeX-Net on the GitHub pages (will be public after 

publication), as cited below. 
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-------------------------below are screenshots of the GibHub page------------------------- 

              

        

C5 On page 41 of the supplementary material, the gain in texture density with Tex-Vision compared 

to thermal vision is seemingly quite small. Also, is there a way to quantify if the texture metric 

is also impacted by noise? For example, if the TEX vision has significant noise in texture 

compared to thermal, that would also result in higher texture density. It would also be useful to 

readers if information about the common value for standard RGB images is provided. 

R5 We would like to clarify with some additional details. 

1. The absolute gain of texture density with TeX vision compared with the state-of-the-art 

thermal vision (pseudo coloring) is scene and sensor dependent. This is related to the fact 

that the absolute ranging accuracy improvement of TeX with respect to IR is scene 
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dependent. In the specific experiments of Figs.S13 and S14, the mean texture density 

(standard deviation metric) for enhanced thermal vision is around 0.02, while the mean 

texture density for TeX vision is around 0.08. The gain is around 4 folds. 

2. In this paper, we have introduced two texture metrics, see Sec.SIID of the Supple. Info. (1) 

The Fisher information metric is immune to noise and is fundamentally related to ranging 

error, see Fig.S12 of the Supple. Info. However, computing the Fisher information metric 

requires the knowledge of the ground truth scene and hence is difficult to use in real-world 

experiments. This is a common phenomenon in estimation theory. (2) The standard deviation 

(std) metric is easy to use but can be impacted by noise. Note that noise may increase the 

computed std texture but cannot increase ranging accuracy. Our experimental ranging 

statistics in Fig.6 of the main text showing 2~5 folds of accuracy improvement are 

qualitatively consistent with the standard-deviation texture analysis. 

3. At last, we thank the reviewer for the useful suggestion about RGB texture quantification. In 

this revised version, we have improved Fig.S33 of the Supple. Info. to include texture 

quantification of RGB images, as cited below. Roughly speaking,  

• the mean texture density of thermal vision in our experiments is around 0.02; 

• the mean texture density of TeX vision (HADAR prototype-1) is around 0.08; 

• the mean texture density of RGB vision is around 0.11 on average; 

• the mean texture density of TeX vision (HADAR prototype-2) is around 0.33 for the 

shown frame in Fig.c and is around 0.31 once averaged over all frames. 

It is interesting to see that TeX vision of prototype-2 has a larger texture density than RGB 

vision. Possible reasons for that include (1) the difference of HADAR sensor noise and the 

RGB camera noise as explained in the above point 2, (2) HADAR has 256 spectral bands 

and is much larger than RGB cameras which has only 3 bands, as explained in Reply-R1-

point-1, (3) RGB vision suffers from poor ambient illuminations and shadows, and (4) 

HADAR and the RGB camera have different fields of view. A deeper and thorough analysis 

deserves extensive future studies. We have provided the above analysis in the context of 

Fig.S33, as cited below. 
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C6 It would be useful to the readers if the details on datasets utilized for benchmarking detection, 

ranging, and segmentation with Texnet were provided. Also, the number of images used for 

training, testing, and validation for the experiments need to be included as well as the training 

strategy used. 

R6 We thank the reviewer for this suggestion. As explained in Reply R4, we have now provided the 

details about the database and machine learning in Sec.SIII of the Supple. Info. 

C7 In figure s19, what does tau correspond to? 

R7 We apologize for the missing definition. In this revised version, we have added in the caption of 

Fig.S19 the definitions of all used metrics including tau, as cited below. 
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C8.1 In fig s24, the claim about human vs. robot identification compared to thermal, as seen from the 

supplementary material, is due to the advantages provided by multi-spectra. As shown in Fig 

S24, the ability to perform semantic segmentation exploiting the material signature to mask the 

underlying different material layers followed by detection in that masked layer raises concern 

about the simultaneous detection of different objects corresponding to different spectra in a scene 

and performing end-to-end semantic segmentation. Given this strategy, one can directly utilize 

the multispectral tensor data for this task without TeX-vision, where each spectra can be utilized 

separately to identify the subject composed of given material (skin vs. aluminum).  

R8.1 We would like to clarify before we revise to address this comment. 

1. The information contained in TeX vision has two main sources. One is the spectro-spatial 

information from the sensor data (heat cube) mentioned by the reviewer, and the other is the 

prior information from the material library and the physics model.  

• In general, a heat cube contains a mixture of all physical features from temperature, 

emissivity, and texture. The material library and the physics model help solve the inverse 

problem and sort the features in an organized representation of TeX vision.  

• Without the material library or the physics model, the issue of TeX degeneracy arises: 

i.e. a spectrum in the heat cube can be assigned to any material at any temperature. Since 

mathematically there is no unique solution, the mapping from a heat cube to semantic 

labels is not well defined. Therefore, an end-to-end segmentation without the physics 

model will not yield comparable results to TeX vision. 

2. We agree that for simple examples/tasks it may be possible to directly use the heat cubes 

without the physics model for clustering. However, heat cubes are in general mixtures of all 

features. For example, different temperatures (with the same emissivity and texture, say, 

robot) will give very different spectra and are likely to lead to different clusters. Clustering 

based on the total heat cube cannot lead to correct semantic segmentation. 

3. TeX vision has the potential to support advanced logical constraints since all the variables 

are physics-driven. For example, objects cannot be above the sky, temperature of human 

bodies will be in the vicinity of 37C, trees are not likely to appear on a car even if the 

reflection gives rise to similar spectra etc.. Those common-sense logic constraints can be 

utilized on TeX vision for advanced semantic segmentation. However, heat cubes cannot 
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support these logic-based constraints on physical variables underlying the task of thermal 

perception. 

In summary, one cannot directly use the heat cube without the physics model. Though, we agree 

that it is not essential to explicitly output TeX vision. 

C8.2 To address this concern, can TEX vision enable the simultaneous detection of multi-objects from 

a single frame without masking? 

R8.2 We appreciate the reviewer’s idea about simultaneous detection. We believe that simultaneous 

detection can be achieved in either of the following approaches. (1) TeX vision images can be 

used as input to train a neural network for simultaneous detection. In our current work, we used 

pre-trained networks, and that is why we demonstrated detection sequentially with material 

regions (masks). (2) Our TeX-Net with the physics model can be utilized as a backbone to design 

and train novel end-to-end networks for simultaneous detection, and it is not necessary to 

explicitly output TeX vision. These ideas certainly deserve future studies. 

In this revised version, we have added the above analysis in Sec.SIIIE of the Supple. Info. as 

cited below. 

 

C9 On page 71 of supplementary materials, estimating the signatures on the fly for the categorization 

of materials sounds like a good idea. As the Authors utilize k means to estimate the categories, 

how do they choose the k as this impacts the categorization process leading to over/underfitting 

noise during categorization? An incorrect categorization of materials can lead to errors in 

semantic representations, which propagate to successive tasks. Also, what is a customized TES 

algorithm? 

R9 We would like to address this comment in the following two aspects. 

1. In this work, our semantic library was estimated by manually choosing a K parameter, as this 

is our first attempt/step to demonstrate real-world HADAR performance. We agree that this 

impacts the categorization process and will eventually lead to some errors in the material and 

semantic maps. This error is, however, inevitable for real-world scenes with open 

environments where the number of clusters is unknown or difficult to define. As we have 

observed in our prototype-2 experiments, once the semantic category was set to include tree 

and grass, bushes (which are in-between these two categories) were predicted as tree or grass. 

To minimize this error, a potential approach is to scan different K parameters, estimate 
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semantic library and TeX vision for each K, and then choose the solution with lowest physics 

loss. 

2. Our customized TES algorithm is a modified version of the existing temperature-emissivity 

separation algorithm that can be found in [1]. The original TES algorithm has a workflow as 

cited below. 

 
(this figure is only cited for the reviewer and not used in the paper) 

 

The NEM module and RAT module are relevant and adopted in our algorithm. They give the 

relative profile of the spectral emissivity, leaving one parameter --- the absolute magnitude -

-- unfixed. After that, the original TES algorithm uses an empirical formula (their Eqs. 5 and 

6) to determine temperature and the magnitude of spectral emissivity. Their empirical 

formula is based on big data from space/air-based applications and hence not applicable to 

our HADAR experiment related to ground based autonomous navigation. 

Instead, we use the K-means clustering to categorize materials and derive the averaged 

emissivity profile for each cluster. We note that multiple pixels of the same cluster (after 

manual correction to remove unwanted pixels in a cluster) share the same spectral emissivity 

magnitude. Therefore, we estimate the emissivity magnitude and temperature by least-

squares fitting according to our physics model. That completes our customized TES 

algorithm. Our customized TES algorithm outputs the semantic library, as well as an 

estimation of the temperature map which is used as an initial solution in the TeX-SGD 

algorithm. 

In this revised version, we have added the above explanation/analysis in Sec.SVC of the Supple. 

Info. as cited below. 
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Reference(s): 

[1] Gillespie, Alan, et al. "A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) images." IEEE transactions on geoscience and remote sensing 36.4 

(1998): 1113-1126. 

C10 Since the authors utilized the result of Tex-SGD as ground truth labels to train the Tex-net, the 

DL trained is fundamentally limited by the performance of Tex-SGD. Consequently, it is not a 

fair comparison of the performance of TexNET and TexSGD when the performance of one 

constrains the performance of the other. The authors should develop alternate loss functions to 

decouple the dependency or augment some additional form of label for training the Texnet in a 

supervised fashion. 

R10 We agree with the reviewer. We do not intend to compare TeX-Net and TeX-SGD. In this work, 

we propose TeX-SGD as a non-machine-learning baseline approach, and we treat both TeX-

SGD and TeX-Net as novel results to demonstrate HADAR, without the intention to claim any 

performance ranking between them. We agree that a better approach to train TeX-Net for real-

world scenes may be to generate more training data and generate experimental ground truth 

semantics. In the future, this can be done by manual annotation tools like LabelMe, as other 

existing visible frequency datasets have done. 

Since the US army night vision lacks large ground truth experimental data and we do not intend 

to claim any performance ranking between TeX-SGD and TeX-Net in this paper, we have 

acknowledged this in the caption of Extended Data Fig.3: 

‘…Note that the current TeX-Net was trained partially with TeX-SGD outputs. The above 

observations are not used to claim performance ranking between TeX-SGD and TeX-Net. Both 
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TeX-Net and TeX-SGD confirm that HADAR TeX vision has achieved a semantic 

understanding of the night scene with enhanced textures comparable to RGB vision in daylight.’ 
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Reviewer 3 

C0 The authors have conducted extensive experiments to demonstrate the effectiveness and 

efficiency of the proposed method. However, I have some minor comments and suggestions that 

I hope the authors can address before publication. Following are a few suggestions and some 

questions for the authors: 

R0 We thank the reviewer for the useful suggestions, as well as all the efforts and patience 

throughout the whole review process. We have addressed each comment individually below and 

made corresponding revisions to improve the quality of this manuscript. 

C1 Most of the scenes in the demo examples provided are relatively easy to segment. I am very 

curious about the performance in real-world scenes where objects are overlapped or occluded. 

R1 We regret that our Extended Data Fig.8 about semantic segmentation statistics was not presented 

in a clear way. In fact, the statistics in the upper table were done on the first 4 on-road scenes in 

the HADAR database, including Scene 2 -- Crowded Street and Scene 3 -- Suburb (even though 

Fig.8a-d are only for Scene 1 – Street). Scene 2 and Scene 3 were designed with significant 

overlap and occlusion, as shown below. 

 

In this latest version, we have revised Extended Data Fig.8a-d to Scene 2 as cited below, to 

reflect the complexity in our considered scenes in the statistics. 
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C2 The authors provide a video about the real-world experiment. But the synthesis results are not 

stable as seen in Tex.avi, for example the trees in the upper right corner of the video keep 

flashing. 

R2 We agree with the reviewer that TeX vision results for the HADAR prototype-2 experiments are 

not perfect. Here, we would like to explain the relevant details once again before we revise to 

address this comment. 

The HADAR prototype-2 real-world experimental data was collected in a collaboration with 

DARPA (The Defense Advanced Research Projects Agency, through the Invisible Headlights 

project) and the Army night-vision team (Infrared Camera Technology Branch, DEVCOM 

C5ISR Center, U.S. Army). This is because the high end sensors which give rise to 256 spectral 

bands in the thermal infrared spectral range are very expensive and the data collect has to be 

done in accordance with Army rules for expensive equipment. Please note all the data is available 

for the broad global audience and there are no restrictions for use by industry or academia.   

There are multiple practical challenges in experiments, such as, (1) the pushbroom sensor shows 

horizontal streak noise due to dynamic drift of pixel gain and offset, (2) ground truth material 

library was not collected, and (3) the sky, which is a significant environmental object, was not 

directly observed. We have added one section (Sec. SV) in the Supple. Info. to explain the details 

of denoising, LiDAR-HADAR extrinsic calibration, and estimating the material library as well 

as the sky radiance. Since the pushbroom sensor was used along with multiple other sensors 

(irrelevant to this work) in the DARPA IH project, the data collection took so long that we 

observed significant changes of the estimated sky radiance throughout the experiment. The 

inaccurate sky radiance estimation causes performance fluctuations of TeX vision, as pointed 

out by the reviewer. However, we emphasize that all these practical restrictions can be relieved 

in the future with a proper on-site experimental characterization of the sky radiance and the 

material library. These limitations are unrelated to the HADAR algorithms itself and we have 

added additional details as explained in the response to the next question. 

  

In this revised version, we have added the above analysis in Sec.SVC of the Supple. Info. to 

acknowledge this limitation, as cited below. 

 



       SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING 

_________________________________________________________________ 

Birck Nanotechnology Center, Room 2293  ■  1205 W State St  ■  West Lafayette, IN 47907  ■  (765) 494-3514  ■  zjacob@purdue.edu 

C3 The video of the real-world experiment provided by the authors is short in length and lacks more 

challenges such as the movement of the objects. Authors are encouraged to provide more video 

visualizations containing more diversity of scenes. 

R3 We agree with the reviewer. As explained in Reply R2, since the real-world experiment is 

extremely time-consuming and expensive, in this revised version we have provided one more 

TeX vision video for the synthetic scene --- Street-Long-Animation. The new TeX vision video 

has 100 frames, much longer than the previous experimental video, and has moving cars. The 

two TeX vision videos we provided now cover both real-world and numeric experiments, and 

both on-road and off-road scenes. The videos have also been uploaded to the HADAR database, 

in the folder ‘Real-world and numeric TeX vision video demonstrations at night’. See below for 

a screenshot of the new video. 

 

C4 Considering that the authors use the ability of object detection to evaluate the quality of TeX 

vision, the authors should further introduce evaluation of visual object tracking to demonstrate 

the robustness of TeX vision. 

R4 We thank the reviewer for this useful suggestion. In this revised version, we have added the 

visual object tracking results (a car and a pedestrian) in Sec.SIIIE of the Supple. Info., as cited 

below. 
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With these revisions, we believe the manuscript is ready for publication. We thank the reviewers for their input.  



 

Reviewer Reports on the Third Revision: 

Referees' comments: 
 
Referee #1 (Remarks to the Author): 
 
The reviewer again commends the authors' diligence in addressing the concerns raised in the 
previous round. The manuscript has significantly improved compared to the first submission, with 
more analysis, results, and sound and logical discussions. The paper would attract researchers 
around the world to explore HADAR and exploit this framework for various tasks under low visibility 
conditions. For all the above reasons, the reviewer would like to recommend the article for 
publication. 
 
 
Referee #3 (Remarks to the Author): 
 
The new version of this paper has adequately addressed the issues that have been previously raised 
by the reviewers. Hence, I recommend it for publication. 
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