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2 Supplementary Methods

1. Experimental procedures49

1.1. Study participant50

This study includes data from one participant (identified as T12) who gave informed consent and51

was enrolled in the BrainGate2 Neural Interface System clinical trial (ClinicalTrials.gov Identifier:52

NCT00912041, registered June 3, 2009). This pilot clinical trial was approved under an Investigational53

Device Exemption (IDE) by the US Food and Drug Administration (Investigational Device Exemption54

#G090003). Permission was also granted by the Institutional Review Board of Stanford University55

(protocol #52060). T12 gave consent to publish photographs and videos containing her likeness. All56

research was performed in accordance with relevant guidelines/ regulations.57

T12 is a left-handed woman, 67 years old at the time of data collection, with slowly-progressive58

bulbar-onset Amyotrophic Lateral Sclerosis (ALS) diagnosed at age 59 (ALS-FRS score of 26 at the59

time of study enrollment). On March 30, 2022, four 64-channel, 1.5 mm-length silicon micro electrode60

arrays coated with sputtered iridium oxide (Blackrock Microsystems, Salt lake City, UT) were implanted61

in T12’s left hemisphere, based on preoperative anatomical and functional magnetic resonance imaging62

(MRI) and cortical parcellation (see sections 1.2 and 1.3 below for details). Two arrays were placed in63

area 6v (oral-facial motor cortex) of ventral precentral gyrus, and two were placed in area 44 of inferior64

frontal gyrus (considered part of Broca’s area). Data are reported from post-implant days 27-148. On65

average, 119.6 ± 5.0 (Mn ± sd) out of 128 electrodes recorded spike waveforms at a rate of at least66

2 Hz when using a spike-detection threshold of -4.5 RMS, where RMS is the electrode-specific root67

mean square of the voltage time series recored on that electrode (see Extended Data Fig. 1 for example68

waveforms).69

T12 is severely dysarthric due to bulbar ALS and has been for nearly 8 years. She retains partial use70

of her limbs, and communicates primarily through use of a writing board or iPad tablet. She is able71

to vocalize while attempting to speak, and is able to produce some subjectively differentiable vowels72

sounds. However, we had difficulty discerning nearly all consonants produced in isolation (with the73

possible exception of the bilabial nasal consonant “M”), and could not reliably make out any consonants74

or vowels when T12 attempted to speak whole sentences at a fluent rate (SVideo 1 shows examples of75

attempted speaking).76

1.2. Functional MRI speech lateralization77

Prior to surgery, participant T12 underwent anatomic and functional brain imaging on a GE Discovery78

MR750 3T MRI scanner, using a routine clinical acquisition protocol, in order to determine whether79

she was right or left hemisphere dominant for language. BOLD fMRI images were acquired using T2*-80

weighted volumes collected with 4 mm slice thickness and 2x2 mm2 in-plane voxel resolution. BOLD81

images were acquired during performance of a suite of tasks including visually responsive naming,82

object naming, auditory responsive naming, repetitive movements of the right hand, left hand, right83

foot, left foot, and tongue. Tasks were performed in 4 minute blocks consisting of repeated sequences84

of 10 seconds of task performance followed by 10 seconds of rest. Task instructions were presented85

by the SensaVue presentation system with verbal instructions given by the MRI technologist. T-score86

thresholds for processing were chosen based on direct inspection of the preliminary fMRI output for87

each task produced by the scanner software and inspected by the interpreting radiologist at the scanner.88

Following scan completion, the complete data set was sent to and processed by DynaSuite. Fully89

processed fMRI statistical parametric maps for each task were registered to and overlaid on an anatomic90

3D gradient echo T1-weighted (BRAVO) image acquired with 1 mm isotropic voxels. Quality control91

steps including motion tracking and assessment of anatomic-functional registration fidelity. Language92

lateralization was assessed by visual inspection of lateralization of activation in Broca’s area, Wernicke’s93

area, speech supplemental motor area, and the basal temporal language area. Results indicated a clear94

left hemisphere lateralization of language in T12.95
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1.3. Array placement targeting96

The surgical targets for array placement within areas 6v and 44 were selected based on gross anatomical97

structure (e.g., gyri and sulci), vasculature, and estimates of the boundaries of areas 44 and 6v obtained98

using a cortical parcellation method derived from multi-modal Human Connectome Project (HCP) data99

[39].100

We acquired T1-weighted (T1w), T2-weighted (T2w), resting-state functional MRI (rsfMRI), single101

band fMRI, and spin echo fieldmap images to generate the HCP-based cortical parcellation. The102

participant was scanned in a 3T Ultra High Performance scanner (GE Healthcare) with a Nova 32-103

channel coil. Scan parameters were based on HCP Lifespan protocols and modified for the GE system104

(Table 1).105

Data were processed using the HCP pipelines as described on https://github.com/Washington-106

University/HCPpipelines (see Glasser et al. 2016 for further details). Briefly, T1w and T2w images107

were initially preprocessed using the FreeSurfer pipeline (version 7.1.1) to perform motion, distortion,108

and bias field corrections; brain extraction; white matter segmentation; cortical surface reconstruction,109

and spherical mapping (PreFreeSurferPipelineBatch.sh, FreeSurferPipelineBatch.sh). Surface outputs110

were then aligned to the standard surface template using MSMSulc, as well as used to create myelin111

maps (PostFreeSurferPipelineBatch.sh).112

rsfMRI data were corrected for motion, bias field, and susceptibility distortions using the spin echo113

fieldmaps and single band reference fMRI images and non-linearly registered to MNI space (GenericfM-114

RIVolumeProcessingPipelineBatch.sh), followed by volume to surface mapping (GenericfMRISurface-115

ProcessingPipelineBatch.sh). Data then underwent spatial MELODIC ICA (IcaFixProcessingBatch.sh),116

manual classification of the components as signal or noise, and denoising.117

The MSMAll pipeline was then run to re-align the participant’s cortical surface to the standard118

surface template using areal features from the cortical folding map, myelin map, rsfMRI networks,119

and rsfMRI-based retinotopy. Lastly, the data also underwent a dedrift and resample step (DeDriftAn-120

dResamplePipelineBatch.sh). This then allowed us to overlay the Human Connectome Project (HCP)121

cortical parcellation (210P) and areal confidence (210V) maps [39] onto the participant’s brain using122

Connectome Workbench, thereby obtaining estimates of areas 6v and 44 within the participant’s brain123

(as shown in Extended Data Fig. 2). In Extended Data Fig. 2E-F we show resting state network 25 (an124

ICA component originally identified in [39] as the "Language RSN" shown there in supplemental figure125

8a).126

1.4. Neural signal processing127

Neural signals were recorded from the microelectrode arrays using the Neuroplex-E system (Blackrock128

Microsystems) and transmitted via a cable attached to a percutaneous connector. Signals were analog129

filtered (4th order Butterworth with corners at 0.3 Hz to 7.5 kHz), digitized at 30 kHz (250 nV resolution),130

and fed to custom software written in Simulink (Mathworks) for digital filtering and feature extraction.131

Digital filtering began with a highpass filter (300 Hz cutoff) that was applied non-causally to each132

electrode, using a 4 ms delay, in order to improve spike detection [40]. Linear regression referencing133

(LRR) was then applied to further reduce reduce ambient noise artifacts [41].134

After filtering, binned threshold crossing counts (20 ms bins) were computed by counting the135

number of times the filtered voltage time series crossed an amplitude threshold set at -4.5 times the136

standard deviation of the voltage signal. Electrode-specific thresholds and LRR filter coefficients were137

set using data recorded from an initial “diagnostic” block at the beginning of each session (see section138

1.7 for more details). Binned spike band power (20 ms bins) was computed by taking the sum of139

squared voltages observed during each time bin. Threshold crossing rates and spike band power are140

commonly used measurements of local spiking activity that have been shown to be comparable to sorted141

single unit activity in terms of decoding performance and neural population structure [42, 43, 44]. For142

decoding, threshold crossing counts and spike band power from the 128 electrodes in area 6v were143
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Image T1w T2w rsfMRI rsfMRI-single
band

Spin echo
fieldmap

Sequence 3D MPRAGE 3D CUBE 2D Gradient
Echo EPI

2D Gradient
Echo EPI

2D Spin Echo
EPI

TR (ms) 3000 2500 800 4200 8000
TE (ms) 3.5 60-78 37 30 min full
TI (ms) 1060 - - - - -
Parallel imaging 2 x 1.25 1.9 x 1.9 - - -
Fat suppression no no yes yes yes
Resolution (mm) 0.8 x 0.8 x 0.8 0.8 x 0.8 x 0.8 2 x 2 x 2 2 x 2 x 2 2 x 2 x 2
Matrix size 320 x 320 x

230
320 x 320 x
216

104 x 104 x 72 104 x 104 x 72 104 x 104 x 72

FOV (mm) 256 x 256 x
184

256 x 256 x
184

208 x 208 x
144

208 x 208 x
144

208 x 208 x
144

Flip angle 8 - 54 90 -
Slice orientation sagittal, AC-

PC
sagittal, AC-
PC

axial AC-PC axial AC-PC axial AC-PC

Phase encoding - - AP and PA
(separately)

AP and PA
(separately)

AP and PA
(separately)

Multiband factor - - 8 1 -
Table 1. MRI Scan Parameters for Cortical Parcellation.

concatenated to yield a 256 x 1 feature vector per time step. For neural tuning analyses (e.g. Figure 1),144

only threshold-crossing counts were used.145

1.5. Data collection rig146

Digital signal processing and feature extraction was performed on a dedicated computer using Simulink147

Real-Time. Extracted features were then sent to a separate computer running Ubuntu for neural decoding148

and recording. Decoding and recording software was written in Python using TensorFlow 2 and Redis.149

The Ubuntu computer also ran the experimental task software that displayed cues to T12 on a computer150

monitor. The task software was implemented using MATLAB and the Psychophysics Toolbox [45]).151

Finally, a third computer running Windows was used to interface with the Neuroplex-E system and152

control the starting and stopping of experimental tasks.153

1.6. Overview of data collection sessions154

Neural data were recorded in 2-4 hour “sessions” on scheduled days, which typically occurred 2 times155

per week. During the sessions, T12 sat in either a wheelchair or power lift chair in an upright position,156

with a pillow placed to support her head and neck, and her hands resting on her lap. A computer monitor157

placed in front of T12 indicated which sentence to speak (or which movement to make) and when. Data158

were collected in a series of 5-10 minute “blocks” consisting of an uninterrupted series of trials. In159

between these blocks, T12 was encouraged to rest as needed. Table 2 below lists all 27 data collection160

sessions reported in this work.161

Table 2: Data Collection Sessions

Session Number Date (Post-Implant Day) Description Data
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1 2022.04.21 (22) Phoneme and oro-
facial movement
sweeps

• 16 repetitions of each of the
39 English phonemes
• 20 repetitions each of
various orofacial movements
(tongue, lips, jaw, cheeks, lar-
ynx, forehead, eyelids)

2 2022.04.26 (27) Phoneme sweep
• 20 repetitions of each of the
39 English phonemes

3 2022.04.28 (29) Initial training data
day #1 • 300 Open WebText training

sentences

4 2022.05.03 (34) Individual words
from the 50-word set
[46]

• 20 repetitions of each of
50 individual words from the
Moses et al 2021 vocabulary
[46]

5 2022.05.05 (36) Initial training data
day #2 • 380 Open WebText training

sentences

6 2022.05.17 (48) Initial training data
day #3 • 440 Open WebText training

sentences
• 50 Moses sentences used for
offline assessment (not train-
ing)

7 2022.05.19 (50) Initial training data
day #4 • 200 Open WebText training

sentences
• 50 Moses sentences used for
offline assessment (not train-
ing)

8 2022.05.24 (55) Real-time decoding
pilot day #1 • 480 Switchboard training

sentences
• 75 Moses evaluation sen-
tences

9 2022.05.26 (57) Real-time decoding
pilot day #2 • 480 Switchboard training

sentences
• 50 Moses evaluation sen-
tences

10 2022.06.02 (64) Real-time decoding
pilot day #3 • 520 Switchboard training

sentences
• 25 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

11 2022.06.07 (69) Real-time decoding
pilot day #4 • 480 Switchboard training

sentences
• 40 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences
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12 2022.06.14 (76) Real-time decoding
pilot day #5 • 440 Switchboard training

sentences
• 40 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

13 2022.06.16 (78) Real-time decoding
pilot day #6 • 440 Switchboard training

sentences
• 40 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

14 2022.06.21 (83) Real-time decoding
pilot day #7 • 400 Switchboard training

sentences
• 40 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

15 2022.06.23 (85) Real-time decoding
pilot day #8 (silent
speaking)

• 440 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

16 2022.06.28 (90) Real-time decoding
pilot day #9 • 440 Switchboard training

sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

17 2022.07.05 (97) Real-time decoding
pilot day #10 • 400 Switchboard training

sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

18 2022.07.14 (106) Real-time decoding
pilot day #11 • 440 Switchboard training

sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

19 2022.07.21 (113) Real-time decoding
evaluation day (vocal
#1)

• 440 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences
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20 2022.07.27 (119) Real-time decoding
evaluation day (vocal
#2)

• 440 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

21 2022.07.29 (121) Real-time decoding
evaluation day cut
short due to equip-
ment failure (training
data only)

• 240 Switchboard training
sentences

22 2022.08.02 (125) Real-time decoding
evaluation day (vocal
#3)

• 440 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

23 2022.08.11 (134) Real-time decoding
evaluation day (vocal
#4)

• 260 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

24 2022.08.13 (136) Real-time decoding
evaluation day (vocal
#5)

• 260 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

25 2022.08.18 (141) Real-time decoding
evaluation day (silent
#1)

• 400 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

26 2022.08.23 (146) Real-time decoding
evaluation day (silent
#2)

• 480 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences

27 2022.08.25 (148) Real-time decoding
evaluation day (silent
#3)

• 480 Switchboard training
sentences
• 80 Switchboard evaluation
sentences
• 50 Moses evaluation sen-
tences
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1.7. Instructed delay tasks162

All tasks employed an instructed delay paradigm, with each trial consisting of an instructed delay phase163

followed by a go phase. For sentence speaking blocks, during the delay period the text of the sentence164

was displayed on the screen above a red square, providing T12 time to read it and prepare to speak. After165

the delay period, the red square cue then turned green, and the sentence remained on the screen while166

T12 attempted to speak it (either aloud or by silently mouthing it, depending on the session). When T12167

finished speaking the sentence, she pushed a button held in her lap, which triggered the system to move168

to the next sentence trial.169

For the single phoneme task, each phoneme was cued during the delay period with both text and an170

audio sample of that phoneme being spoken. Vowels were spoken in isolation and cued with the text of171

a word containing that vowel, with the vowel capitalized (e.g., strUt for 2). Consonants were all paired172

with the vowel "ah" following the consonant (denoted "AA" in ARPAbet notation and "A" in IPA).173

Consonants were paired with a text cue evoking the sound of that consonant (e.g. "kah" or "wah"). For174

the single word task, where T12 spoke individual words from the 50-word Moses et al. word set [46],175

each word was cued with text only. For the orofacial movement sweep task, each movement was cued176

with a text description of that movement (e.g., "Tongue Up").177

We ran a single "diagnostic" block at the beginning of each speech decoding session. Data from the178

diagnostic block was used to set electrode thresholds and linear regression reference (LRR) coefficients,179

and was also used to examine the rate of change of neural tuning across days. In this block, T12 spoke180

individual words from a diagnostic set of 7 words designed to span the space of articulation (with 8181

repetitions per word). Words were cued with text only. The word set consisted of the following words:182

’bah’, ’choice’, ’day’, ’kite’, ’though’, ’veto’, ’were’.183

Task Delay
Low

Delay
Mean

Delay
High

Go Period Return
Period

Sentences 4.0 s 4.5 s 5.0 s Variable
(button-
controlled)

None

Phonemes 1.8 s 2.3 2.8 1.7 s None
Orofacial movements 2.0 s 2.5 3.0 1.0 s 1.0 s
Single words (50-
word set)

2.0 s 2.5 3.0 2.0 s None

Diagnostic block (7
words)

1.5 s 2.0 2.5 2.0 s None

Table 3. Task timing parameters.

Delay period durations were pseudorandomly drawn from an exponential distribution with a task-184

specific mean (see Table 3); values that fell outside of a specified task-specific range were re-drawn.185

Go period durations were set fixed to a task-specific value for non-sentences tasks (for the sentence186

production task, T12 advanced the trial by pressing a button). Finally, in the orofacial movement sweep187

task, the go period was followed by a short "return" phase where T12 relaxed back to a neutral posture188

before starting the next trial. In all other tasks, the next trial started immediately after the go period189

ended.190

1.8. Voiced vs. silent speaking behavior191

For most speaking sessions, T12 was instructed to attempt to produce voiced speech in a "typical"192

manner (i.e., by trying to move all of her articulators and modulate her larynx to pass sound as one193

would to attempt to speak normally). The acoustic output was largely unintelligible. During the course194
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of the study, T12 reported that due to her reduced breath control abilities, attempting to produce voiced195

speech was fatiguing. We experimented with different speaking behavior paradigms and found that196

“mouthing” or silent speaking yielded similar decoding performance to voiced speech while being less197

fatiguing for T12. For silent speech sessions, we instructed T12 to pretend that she was mouthing the198

sentence to someone across the room. During this silent speaking behavior, T12 produced no audible199

sound, but visibly moved her lips, tongue and jaw. Sessions 15, 25, 26 and 27 were all performed with200

this silent speaking behavior.201

1.9. Decoder evaluation sessions202

Real-time speech decoding was evaluated in sessions 19, 20, 22, 23 and 24 for voiced speaking behavior203

and sessions 25, 26 and 27 for silent speaking behavior. These were the evaluation sessions reported in204

Fig. 2 and were conducted with the final version of the real-time decoder and parameters. Previous real-205

time decoding sessions were pilot sessions used to explore different online approaches and parameters.206

Each evaluation session began with a “diagnostic” block as described previously (section 1.7). This207

block was used to calculate the threshold values and filters for online LRR that would be used for the208

rest of the session. Then, we collected "open-loop" blocks of sentences (~6 blocks with 40 sentences209

per block) during which no decoder was active. We trained the decoder using these blocks of data210

(combined with data from all past sessions) to obtain a "stage 1" RNN decoder. Next, we collected211

additional training blocks with real-time feedback, where the decoder output from the stage 1 RNN was212

displayed in real-time as T12 attempted to speak each sentence. Upon completion of each sentence, T12213

would push a button to indicate she was finished and the decoded text was read aloud using Google214

Cloud’s Text-To-Speech functionality. After the response was voiced by the computer, T12 pushed the215

button again to continue to the next sentence. Stage 1 real-time decoding was done for 3-6 blocks, with216

40 sentences per block. Finally, the RNN was retrained a second-time using all open-loop and stage 1217

data (combined with data from all past sessions) to yield a "stage 2" RNN. The stage 2 RNN was then218

evaluated on the 50 sentences from Moses et al 2021 [46] as well as 80 randomly-selected sentences219

from the Switchboard corpus, for which the final error rate and word per minute values were reported.220

1.10. Sentence selection221

For the first four initial training data collection sessions, sentences were randomly drawn from the222

OpenWebText2 corpus [47]. For all subsequent sessions, training sentences were drawn from the223

Switchboard corpus of telephone conversations between speakers of American English [48]. Sentences224

were selected by first generating lists of potential sentence segments by automatically splitting the225

transcription using provided punctuation marks. Sentence segments were then filtered to include only226

those that expressed a complete meaning, and superfluous starter words (e.g. “and”) were deleted. We227

also did not include sentences with confusing or distracting meaning, such as violent or offensive topics.228

Finally, we upsampled sentences with rare phonemes to ensure there was sufficient training data for229

the RNN to learn these rare phonemes. This resulted in a diverse sample of sentences from spoken230

conversational contexts.231

For each evaluation day, after the final "stage 2" RNN was trained, three evaluation blocks were232

run. These included one block of the 50 sentences used for evaluation in Moses et al 2021 [46] (these233

sentences were the same every session), and two blocks of 40 sentences each from Switchboard, selected234

in the same manner as the training data. The Switchboard sentences were different for each evaluation235

session. The RNN decoder was never evaluated on a sentence that it had been trained on, and every236

sentence was unique (except for the “direct comparison” blocks that always used the same 50 sentences237

from Moses et al 2021). When we retrained the decoder each day before performance evaluation, we238

retrained it using all previously collected data (from all prior days) except for these direct comparison239

blocks, in order to prevent the RNN from overfitting to these repeated sentences.240



10 Supplementary Methods

2. Neural representation of orofacial movements and speech in orofacial cortex241

2.1. Tuning heat maps242

To generate the neural tuning heat maps shown in Figure 1, we first started with binned threshold243

crossing spike counts using a -4.5 RMS threshold (20 ms bins). To account for drifts in mean firing rates244

across the session, the binned threshold crossing rates were mean-subtracted within each block (i.e., for245

each electrode, its mean firing rate within each block was subtracted from each time step’s binned spike246

count).247

Next, for each trial and electrode, threshold crossing counts were averaged in an 800 ms window248

(200 to 1000 ms after the go cue). Significance of tuning was then assessed via 1-way ANOVAs applied249

per electrode, where each ANOVA group corresponded to a different movement condition of a given250

movement type, and each observation was a scalar average firing rate for a single trial. The movement251

conditions that were used to assess tuning to each movement type are shown in Extended Data Fig. 3. P-252

values from each ANOVA were used to define tuning significance (p<1e-5) for the tuning heatmaps (Fig253

1f) and mixed tuning counts (Extended Data Fig. 4). To make the statistical power of the "phonemes"254

and "words" movement types comparable to the orofacial movement types (so that the amount of255

tuning to phonemes/words can be fairly compared to orofacial movement), we used only the following256

6 phoneme or word conditions as opposed to using all 39 phonemes and all 50 words: (B, HH, N, TH,257

Z, IY) and (am, coming, good, hungry, no, tell). The results appeared robust to the particular set of258

phonemes/words chosen.259

The fraction of variance accounted for by movement tuning on a single electrode was defined as:

𝐹𝑉𝐴𝐹 = 1 − 𝑆𝑆𝐸𝑅𝑅

𝑆𝑆𝑇𝑂𝑇

SSTOT is the total sum of squared average firing rates over all trials. For computing SSTOT, squaring260

was performed after the grand mean across all trials was subtracted from each trial first, so that the261

overall mean firing rate did not contribute to the variance.262

SSERR is the sum of squared prediction errors across all trials. Prediction error was assessed with263

a cross-validated (5-fold) model which predicts the firing rate of each trial based only on the mean of264

the condition it belongs to. Condition-specific means were estimated on the training set by taking the265

sample means across training trials, and then applied to the held-out test set.266

If there are large differences in mean firing rate between movement conditions (i.e., strong movement267

tuning), then SSERR will be small relative to SSTOT. Cross-validation prevents overestimation of tuning268

due to spurious differences in mean firing rate between conditions that are not stable across folds.269

2.2. Naive Bayes classification270

Offline classification results (reported in Fig 1d,e and Extended Data Fig. 3) were generated using271

a cross-validated (leave-one-out) Gaussian naive Bayes classifier, following the methods described in272

[49], using threshold crossing rates computed in a window from 0 to 1000 ms after the go cue (Fig273

1d, Extended Data Fig. 3) or a sliding 100 ms window (Fig 1e). We used -4.5 x RMS thresholds274

for classification. 95% confidence intervals for classification accuracies were computed with bootstrap275

resampling (10,000 resamples). We chose to use a Gaussian naive Bayes classifier because it is a simple276

method that performed well enough to demonstrate the existence of strong neural tuning - it is likely277

that more advanced methods could improve classification accuracy further.278
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2.3. Preserved articulatory representation of phonemes279

2.3.1. Electromagnetic articulography (EMA) representations280

Electromagentic articulography (EMA) and corresponding audio data was taken from the publicly281

available "USC-Timit" dataset [50] and the "Haskins Production Rate Comparison" dataset [51], which282

both contain phoneme labels (the beginning and end of each phoneme is marked for each sentence). EMA283

data was collected with markers placed on the lip, tongue and jaw. We used only the X and Y positions284

of each marker (sagittal plane position), yielding an articulatory time series with dimensionality ranging285

from 12 (6 markers) to 16 (8 markers) depending on the subject.286

To compute an EMA representation of each phoneme, we averaged over all EMA marker position287

data recorded at time points that were labeled as belonging to that phoneme, yielding a single average288

articulator position vector for each phoneme. Finally, a binary voicing indicator variable was added to289

the EMA representation of each phoneme. This variable was set to 1 for voiced phonemes (e.g., ’z’)290

and 0 for unvoiced phonemes (e.g., ’s’). Since EMA does not measure voicing, this is a simple way to291

include some voicing information that would otherwise be omitted from the EMA representation.292

EMA data from USC-Timit subject ’M1’ was used for all Figure 3 analyses. Extended Data Fig. 8293

shows data from all 12 subjects.294

2.3.2. Saliency vector representation295

Saliency vectors, which quantify the neural vectors which maximally excite each of the decoder’s296

phoneme outputs, were generated by computing RNN logit gradients with respect to the input features.297

We used an RNN trained on all voiced speech days and then used the first 30 trials from each day’s test298

set to compute the gradients.299

For each day’s data, we run the RNN over each sample

𝑥 (𝑡) ∈ R256

for five time steps (first initializing the hidden state to zeros) - this allows the network some time to
integrate information about the specific feature vector. This yields a phoneme probability output for
each time step

𝑓𝑅𝑁𝑁 (𝑥 (𝑡) ) = 𝑦 (𝑡) ∈ R41

For each time step 𝑡, we then calculate the Jacobian matrix 𝐽, which contains entries corresponding to
first-order partial derivatives of each logit output with respect to each channel, i.e.

𝐽𝑖,: = ∇𝑦 (𝑡)
𝑖

|𝑥 (𝑡 )

This gradient records how small changes in each channel’s activity influences the probability of class 𝑖.
We can calculate the Jacobian for all phonemes and timesteps, resulting in a time x channels x phonemes
matrix M where

𝑀𝑡 ,:,:

contains the Jacobian at timestep 𝑡. We then average across the time dimension to obtain an integrated300

estimate of how each channel’s activity influences different phoneme class probabilities.301

To compute the gradients, we used SmoothGrad [52], a method for denoising saliency maps by
computing gradients over an input with multiple noise perturbations, i.e.

∇𝑦 (𝑡)
𝑖

|𝑥 (𝑡 ) + 𝑁 (0, 𝜎)

The resulting saliency map estimates are then averaged together. We use n = 20 perturbations and noise302

level = 10 (relative to the overall range of firing rates after capping outliers). This extra step contributed303

a small but consistent improvement in similarity matrix correlations with the EMA data.304
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2.3.3. Similarity matrices305

Similarity matrices in Figure 3a and 3d were computed using cosine similarity. That is, for each pair
(𝑥, 𝑦) of RNN saliency or EMA vectors, similarity was defined as

𝑥 · 𝑦
| |𝑥 | | | |𝑦 | |

This equation computes the cosine of the angle between 𝑥 and 𝑦. Before computing cosine similarity,306

the vectors were first centered by subtracting the mean across all consonant (Figure 3a) or all vowel307

vectors (Figure 3d).308

2.3.4. Correlation between articulatory and neural representations309

Figure 3b and 3e show the correlation between the neural and EMA phoneme representations, which310

was computed across all phonemes and dimensions after a cross-validated Procrustes alignment of the311

saliency vectors to the EMA vectors. In Extended Data Fig. 8, this same method was used to compute312

the correlation between neural representations and articulatory representations that were estimated in313

different ways. In Extended Data Fig. 8c, correlation values were computed between consonants and314

vowels separately and then averaged together to produce a single value.315

First, neural vectors were concatenated into a 256 x 39 matrix X (256 neural features x 39 phonemes)316

and articulatory vectors were concatenated into a N x 39 matrix Y (N articulatory dimensions x 39317

phonemes). X and Y were then reduced to D dimensions using PCA applied across the rows, yielding318

an D x 39 matrix X̃ and an D x 39 matrix Ỹ. D was set to 12 if N>=12, otherwise D was set equal to N.319

X̃ was then aligned to Ỹ using a cross-validated orthogonal rotation (Procrustes analysis) using320

leave-one-out cross-validation. Specifically, for each vector 𝑥𝑖 in X̃, Procrustes analysis was applied to321

align all other vectors {𝑥1, ...𝑥𝑖−1, 𝑥𝑖+1, ...𝑥𝑛} to the matching vectors {𝑦1, ...𝑦𝑖−1, 𝑦𝑖+1, ...𝑦𝑛}, yielding322

an orthogonal rotation R. R was then applied to 𝑥𝑖 to yield 𝑥𝑖 . Orthogonality enforces that the rotation323

be rigid, so that the underlying structure in the data is preserved.324

Finally, all 𝑥𝑖 vectors were concatenated into an (8x39) x 1 vector 𝑥 and all �̃�𝑖 vectors were concate-325

nated into an (8x39) x 1 vector �̄�. The Pearson correlation coefficient was then calculated between 𝑥 and326

�̄� using consonant entries only (Figure 3b) or vowel entries (Figure 3e).327

As a control, this same procedure was repeated 10,000 times but with the columns of X shuffled into328

a random order, which allows estimation of what the correlation could be expected to be ’by chance’ if329

each phoneme’s vector was random but drawn from the same distribution. Note that the cross-validation330

procedure causes the chance distribution to be centered at 0 (otherwise it would be biased upwards as331

Procrustes would overfit and align noise). The true correlation is far greater than any of the 10,000332

shuffle results, indicating statistical significance.333

2.3.5. Low-dimensional visualization of phoneme geometry334

To make the plots in Figure 3c and 3f, the neural saliency vectors were first aligned to the EMA vectors335

using cross-validated Procustes analysis, as described in the above section. After alignment, the top two336

dimensions were plotted; for vowels, these two dimensions were rotated and flipped within the plane in337

order to highlight the classic (front vs. back) and (high vs. low) structure.338

2.3.6. Place and formant representation339

In Extended Data Fig. 8, we tested a different method for quantifying the articulatory representation340

of phonemes based on classical ways of understanding consonants and vowels. We represented each341

consonant based on its place of articulation (labial, dental, alveolar, post-alveolar, velar, glottal) by using342

a 24 x 6 "place code" matrix. In this matrix, each row is a consonant and each column corresponds to343

one of the six places of articulation. For each consonant, we placed a "1" in the column corresponding to344

its place of articulation and a "0" in all other columns. We represented vowels using a 15 x 2 "formant"345
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matrix. In this matrix, each row is a vowel, and the two columns correspond to the logarithm of the first346

and second formant frequencies [53].347

2.3.7. Decoder labeling representation348

In Extended Data Fig. 8, we tested different methods for quantifying the neural representation of349

phonemes. One of these was the "Decoder Labels" method, which was based on identifying time steps350

that belonged to each phoneme using the RNN decoder output, and then averaging across these time351

steps to find a neural representation vector for each phoneme.352

To accomplish this, we used the segmentation algorithm from [54]. This algorithm estimates a time353

window during each phoneme occurs, given the outputs of a decoder trained with the CTC loss function354

[55]. For this approach, we trained a bidirectional RNN offline, because previous studies have found355

that bidirectional RNN strained with the CTC loss produces better alignment than unidirectional RNNs356

[56, 57]. Because RNN models trained with the CTC loss tend to delay their predictions [56, 57], we357

extended the start time of each phoneme’s neural activity segment by one kernel size (defined in Table358

5). Once the time windows for each phoneme were identified, we simply averaged over all time steps359

to generate a single average neural vector for each phoneme. For offline RNN training, we followed the360

procedure described below in section 7.361

2.3.8. Single phoneme task representation362

In Extended Data Fig. 8, we tested different methods for quantifying the neural representation of363

phonemes. One of these was the "Single Phoneme Task" method, which was based on the instructed364

delay task shown in Fig. 1. In this task, T12 spoke individual vowels or consonants paired with the same365

vowel "AA". To compute the neural representation of each phoneme, we simply averaged the threshold366

crossing rates within a 0 to 1000 ms window after the go cue for each trial belonging to that phoneme367

(threshold = -4.5 RMS).368

2.4. Neural correlation across days369

To compute how the neural representation of speech was correlated between pairs of days (Fig. 4d),370

we used data from a "diagnostic block" collected at the beginning of each day. During this block, T12371

completed an instructed delay task where she attempted to speak individual words from a set of 7372

words designed to span the space of articulation (8 repetitions per word). The word set consisted of373

the following words: ’bah’, ’choice’,’day’,’kite’,’though’,’veto’, and ’were’. We also included a condition374

where T12 was instructed to rest silently (’do nothing’).375

First, threshold crossing rates for each trial were averaged between a 100 to 600 ms window after the376

go cue to yield a single firing rate vector for each trial (of length 128). Then, "pseudo-trial" vectors were377

created by concatenating together a single firing rate vector from each condition, resulting in pseudo-378

trial vectors of length 128*8=1024. The result of this step is a set of eight vectors {𝑣1, 𝑣2, ..., 𝑣8}, one379

vector for each of the eight repetitions of all conditions. When assessing the similarity between any two380

days, we then have two sets of vectors to consider: {𝑣1, 𝑣2, . . . , 𝑣8} and {𝑢1, 𝑢2, . . . , 𝑢8}. Consider each381

of these vectors as a random draw from a day-specific distribution (let us denote the two distributions382

as 𝑉 and 𝑈). To quantify similarity, we estimated the correlation between the means of 𝑉 and 𝑈 (note383

that the means themselves are also vectors). The quantity of interest here is the mean because this384

represents the average firing rates observed for each condition (i.e., the neural representation of each385

word). To estimate the correlation between the means of 𝑉 and 𝑈, we used a cross-validated measure386

of correlation that reduces the impact of noise. See our prior work [49] and accompanying code387

repository https://github.com/fwillett/cvVectorStats for more details about this method. Importantly,388

this cross-validated method is different from simply correlating 1
8
∑8

𝑖=1 𝑣𝑖 and 1
8
∑8

𝑖=1 𝑢𝑖 , which would389

underestimate the true correlation due to noise that causes the estimated means to appear more dissimilar390

https://github.com/fwillett/cvVectorStats
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than they really are. For example, even if𝑉 and𝑈 have identical means, noise in 𝑣𝑖 and 𝑢𝑖 would always391

cause the estimated correlation to be less than 1 when correlating 1
8
∑8

𝑖=1 𝑣𝑖 and 1
8
∑8

𝑖=1 𝑢𝑖 together.392

To make the plot in Fig. 4d, we included all pairings of the following 12 days on which a diagnostic393

block of attempted vocal speaking was collected: 2022.06.16, 2022.06.21, 2022.06.28, 2022.07.05,394

2022.07.07, 2022.07.14, 2022.07.21, 2022.07.27, 2022.07.29, 2022.08.02, 2022.08.11, 2022.08.13.395

3. Phoneme transcription and labelling396

Each sentence prompt was transcribed into a sequence of phonemes using the CMU Pronouncing397

Dictionary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict) and the g2p software package [58]. The398

CMU Dictionary uses 39 phonemes, each denoted using the ARPAbet symbol set developed for speech399

recognition (see Table 4 for the correspondence between IPA notation and ARPAbet notation, and400

https://en.wikipedia.org/wiki/ARPABET). Note that we did not incorporate the stress labeling given by401

the CMU dictionary for vowels (i.e., we labeled each vowel in the same way regardless of how it is402

stressed in the word).403

We automatically added a “silence” phoneme to the end of each word in order to denote the separation404

between words. We reasoned that this gives the RNN decoder the ability to communicate demarcations405

between words to the language model, and we found that it improved performance. Note that the silence406

token is not necessarily intended to model literal silence, as the participant may or may not be silent407

between each word (although she appeared to take brief pauses between many of the words, as can be408

seen in SVideo 1).409

4. Decoder performance metrics410

4.1. Word and phoneme error rates411

We evaluate both phoneme error rate and word error rate. Phoneme error rate was defined as the edit412

distance between the decoded sequence of phonemes and the prompt sentence phoneme transcription413

(i.e., the number of insertions, deletions or substitutions required to make the sequence of phonemes414

match exactly). Similarly, word error rate was the edit distance defined over sequences of words.415

Note that the reported error rates are "aggregate" error rates, which are the result of combining across416

many independent sentences. To combine data across multiple sentences, we summed the number of417

errors across all sentences and divided this by the total number of phonemes/words across all sentences418

(as opposed to computing error rates first for each sentence separately, and then averaging the rates).419

This helps prevent very short sentences from overly influencing the result.420

Confidence intervals for error rates were computed via bootstrap resampling over individual trials421

and then re-computing the aggregate error rates over the resampled distribution (10,000 resamples).422

4.2. Words per minute423

Words per minute was defined as the number of words spoken divided by the total amount of speaking424

time. Speaking time for each trial was defined as the time from which the cue turned green to when the425

participant pushed the button to signal she had completed saying the prompted sentence. The speaking426

rates reported in Figure 2c are "aggregate" rates which were computed by first summing the total427

number of words spoken across all trials, and then dividing by the total speaking time across all trials428

(as opposed to computing a speaking rate for each sentence separately and then averaging the rates).429

This helps prevent very short sentences from overly influencing the result.430

Confidence intervals for words per minute were computed via bootstrap resampling over individ-431

ual trials and then re-computing the aggregate speaking rate over the resampled distribution (10,000432

resamples).433

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://en.wikipedia.org/wiki/ARPABET
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ARPAbet Notation IPA Notation Example
AA A bot
AE æ bat
AH 2 but
AO O caught
AW aU bout
AY aI bite
EH E bet
ER Ç bird
EY eI bait
IH I bit
IY i beat
OW oU boat
OY OI boy
UH U book
UW u boot
B b buy

CH Ù China
D d die

DH D thy
F f fight
G g guy

HH h high
JH Ã jive
K k kite
L l lie
M m my
N n nigh

NG N sing
P p pie
R ô rye
S s sigh

SH S ship
T t tie

TH T thigh
V v vie
W w wise
Y j yacht
Z z zoo

ZH Z pleasure
Table 4. ARPAbet and IPA correspondence.

5. RNN architecture434

We used a 5 layer, stacked gated recurrent unit RNN [59] to convert T12’s neural activity into a time435

series of phoneme probabilities. The RNN ran at a 4-bin frequency (20 ms bins), outputting a phoneme436

probability vector every 80 ms. A 14-bin window of neural activity was stacked together and fed as437

input to the RNN at each 80 ms cycle (in other words: kernel size = 14, stride = 4). See Extended Data438

Fig. 5 for parameter sweeps that justify these and other architecture choices.439
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5.1. Feature pre-processing and day-specific input layers440

Threshold crossing rates and spike band power features were pre-processed by binning into 20 ms441

time steps, "z-scoring" (mean-subtracted and divided by the standard deviation), causally smoothed by442

convolving with a Gaussian kernel (sd = 40ms) that was delayed by 160ms, concatenated into 256 x443

1 vector, and then transformed using a day-specific input layer. Z-scoring was performed using block-444

specific means and standard deviations (to account for non-stationarities in the features that accrue over445

time across blocks). Using day-specific input layers outperformed the alternative of a shared input layer446

across all days (Extended Data Fig. 5B).447

The day-specific input layers consisted of an affine transformation applied to the feature vector448

followed by a softsign activation function:449

𝑥𝑡 = softsign(𝑊𝑥𝑡 + 𝑏) (1)

Here, 𝑥𝑡 is the day-transformed input vector at time step 𝑡, 𝑊𝑖 is a 256 x 256 matrix and 𝑏𝑖 is a 256 x450

1 bias vector for day 𝑖, and the softsign function is applied element-wise to the resultant vector (where451

softsign(𝑥) = 𝑥
|𝑥 |+1 ). 𝑊𝑖 and 𝑏𝑖 were optimized simultaneously along with all other RNN parameters.452

During training, dropout was applied both prior to and after the softsign.453

5.2. Rolling z-scoring454

During online evaluation, we used a rolling estimate of the mean and standard deviation of each455

feature to perform z-scoring. This helps account for neural non-stationarities that accrue across time,456

and substantially outperforms the alternative of using the prior block’s means and standard deviations457

(Extended Data Fig. 5A).458

For the first ten sentences of a new block, we used a weighted average of the prior block’s mean
estimate and the mean of whatever sentences were collected so far in the current block:

𝑢𝑖 =
11 − 𝑖

10
∗ 𝑢𝑝𝑟𝑒𝑣 +

𝑖 − 1
10

∗ 𝑢𝑐𝑢𝑟𝑟 (2)

Here, 𝑢𝑖 is the mean used to z-score sentence 𝑖, 𝑢𝑝𝑟𝑒𝑣 is the prior block’s mean estimate, and 𝑢𝑐𝑢𝑟𝑟459

is the mean across all sentences collected so far in the current block. After ten sentences had been460

collected, we stopped incorporating the prior block’s mean and simply took the mean across the most461

recent min(20, 𝑁) sentences, where 𝑁 is the number of sentences collected so far in the current block.462

The standard deviation was updated in the same way as the mean.463

6. RNN training overview464

6.1. Connectionist temporal classification (CTC) loss465

Due to T12’s inability to produce intelligible speech, we had no ground truth labels of what phonemes466

were being spoken at each time step. The lack of ground truth labels makes it difficult to apply simple467

supervised training techniques to train the RNN. To get around this problem, we used the Connectionist468

Temporal Classification (CTC) loss function, which can train neural networks to output a sequence of469

symbols (in this case, phonemes) given unlabeled time series input [55]. Using the CTC loss function470

results in an RNN that is trained to output a time series of phoneme probabilities (with an extra "blank"471

token probability). A language model can then be used to infer a sequence of underlying words from these472

probabilities, or phonemes can be decoded from these probabilities simply by emitting the phoneme of473

maximum probability at each time step (while taking care to omit repeats and time steps where "blank"474

is the maximum probability).475
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6.2. Artificial noise476

We added two types of artificial noise to the neural features to regularize the RNN. First, we added477

white noise directly to the input feature vectors at each time step. Adding white noise to the inputs478

asks the RNN to map clouds of similar inputs to the same output, improving generalization. We also479

added artificial constant offsets to the means of the neural features, to make the RNN more robust to480

non-stationarities in the neural data. Drifts in the baseline firing rates that accrue over time has been an481

important problem for intracortical BCIs [60, 61, 62]. The constant offset values were randomly chosen482

on each minibatch and were constant across all time steps in the minibatch, but unique to each feature.483

The two above-mentioned types of noise (white noise and constant offset noise) were combined
together to transform the input vector in the following way:

𝑥 ′𝑡 = 𝑥𝑡 + 𝜖𝑡 + 𝜙 (3)

Here, 𝑥 ′𝑡 are the neural features with noise added, 𝑥𝑡 are the original neural features, 𝜖𝑡 is a white noise484

vector unique to each time step, and 𝜙 is a constant offset vector.485

6.3. Supervised training486

The RNN was implemented with TensorFlow 2 and trained using stochastic gradient descent (ADAM;487

𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 0.1) for 10,000 minibatches (batch size = 64). The learning rate was decayed488

linearly from 0.02 to 0.0 across the 10,000 minibatches. We applied dropout and L2 weight regularization489

during training to improve generalization. See Table 5 for a list of RNN hyperparameters.490

RNN Parameter Description Value
nUnits Number of units in each GRU layer 512
nLayers Number of GRU layers 5
Kernel Size Number of input feature time bins stacked

together as a single input for the RNN
14

Stride Describes how many time bins the RNN skips
forward every step

4

L2 L2 regularization cost 1e-0.5
Dropout Probability of dropout during training 0.4
WhiteNoiseSD Standard deviation of white noise added to

input data for regularization
1.0

constantOffsetSD Standard deviation of constant offset noise
added to input data to improve robustness
against non-stationary feature means

0.2

Batch Size Number of sentences included in each mini-
batch

64

Learning Rate Linearly decaying learning rate 0.02 to 0.0
𝛽1 ADAM stochastic gradient descent parameter 0.9
𝛽2 ADAM stochastic gradient descent parameter 0.999
𝜖 ADAM stochastic gradient descent parameter 0.1

Table 5. Architecture, training and regularization parameters for RNN Model.
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7. Offline performance sweeps491

7.1. Overview492

To determine the effect of different design choices made for the RNN architecture, and to understand the493

impact of data quantity and channel count, we performed several performance sweeps offline (results494

from this are shown in Extended Data Fig. 5, Extended Data Fig. 7 and Fig 4). Unless otherwise specified,495

we trained 10 seeds of an RNN model for each variation of parameters and performed inference on a496

standardized set of held-out test data. To define the training/held-out set (called the "Proximal Test Set"497

in Table 1 from the main text), we took 50 sentences at random from each day as the held-out set and498

used the remaining sentences as offline training data, drawing from all open-loop/stage 1 sentences on499

each day (but excluding stage 2 evaluation data). We used the original language model that was run500

online (as opposed to the improved version reported in Table 1).501

We ran parameter sweeps for the GRU-RNN architecture choices including number of units, number502

of layers, kernel size and stride (Extended Data Fig. 5e-h). A comparison between a shared input503

network and unique input network per session was also run (Extended Data Fig. 5b). Furthermore,504

performance when using different kinds of features was also compared in this manner (Extended Data505

Fig. 5c-d), including four different threshold crossing thresholds (-3.5,-4.5,-5.5,-6.5), spike band power,506

area 44 vs. area 6v features, and the mel-frequency cepstral coefficients (MFCCs) of the participants’507

recorded audio during attempted speaking sessions. MFCCs were computed using 40 ms window (using508

MATLAB 2020a’s "mfcc" function).509

7.2. Effect of channel count on performance510

To determine the effect of channel count on decoding performance (Fig 4b), 100 seeds of each multiple511

of 10 number of channels up to the full 128 channels was run. For each of the 100 seeds for each channel512

count, channels were randomly selected without replacement. To predict performance for higher number513

of channels past 128, a least squares linear regression was fit to the log-log relationship of the number514

of channels vs. error rate.515

7.3. Amount of training data516

To plot the number of days of training data versus performance (Extended Data Fig. 5i), RNNs were517

trained for each of the 5 vocal speaking evaluation days separately, and for each number of training518

data days going consecutively in reverse until all previous days were used in training. Performance was519

assessed only on the given evaluation day. Word error rates were then averaged over all evaluation days520

to produce a single (# of days) vs. (word error rate) curve.521

We also tested whether or not it was necessary to retrain the RNN decoder on each new performance522

evaluation day using hundreds of new sentences collected on that day, or whether fewer (or no) new523

sentences might have also yielded good performance, which would be a more realistic use case (Fig524

4c). For this analysis, models were trained on the five attempted speech evaluation sessions (sessions525

18,19,21,22,23) using reduced subsets of sentences from the given evaluation day (while still using all526

historical data). The input layer for each given evaluation day was also tied to be the same as the most527

recent historical day, in order to prevent overfitting when using a small number of training sentences.528

Once trained, RNNs were evaluated on the same set of "stage 2" online evaluation sentences used to529

report performance in Figure 2.530

7.4. Language model vocabulary size sweep531

To test how the number of words in language model (LM) affects the decoding accuracy, we built different532

3-gram LMs with various vocabulary sizes. These LMs were built following the same procedure as in533

Section 8, but with vocabulary sizes varying from 50 to 140,000. We started with the 50 words from534
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[46], and gradually added words until the vocabulary size reached 140,000. The added words were535

chosen from the LM training corpus. Words were added in the order of their frequencies in the training536

corpus. When the vocabulary size became greater then 4500, we pruned the LM with threshold 1𝑒 − 9.537

To measure the WER, we ran the LM decoders on the CTC probabilities output by RNN from the 8538

real-time speech decoding sessions (19, 20, 22, 23, 24, 25, 26, and 27).539

8. Language model540

8.1. Overview541

We used a n-gram language model (LM) to decode word sequences from RNN outputs for real-time542

decoding and offline analyses. Here, we give an overview of the major steps involved. The n-gram LM543

was created with Kaldi [63] using OpenWebText2 corpus [47]. We first preprocessed the text corpus to544

only include English letters and limited punctuation marks. Then we used Kaldi to construct a n-gram545

LM, using either the CMU Pronunciation Dictionary 1 (125k words) or the 50 words from [46]. The546

LM was represented in the form of a weighted finite-state transducer [64] which can be used to translate547

the a sequence of CTC labels into candidate sentences.548

8.2. OpenWebText2 preprocessing549

Our n-gram LM was created using samples from OpenWebText2 [47]. OpenWebText2 is a text corpus550

covering all Reddit submissions from 2005 up until April 2020. We downloaded the entire corpus and551

randomly sampled 95% as a training corpus. We preprocessed the training corpus to include only English552

letters and 4 punctuation marks (period, comma, apostrophe, and question mark). The preprocessed553

corpus was then split into sentences and converted to upper case (yielding a total of 634M sentences554

with 99B words).555

8.3. Constructing the n-gram language model556

We used publicly available scripts2 as a starting point for constructing our n-gram LM. The script557

first uses SRILM [65] to count the frequencies of n-grams (unigram, bi-gram, and 3-gram, etc.) in the558

training corpus. We used the Good-Turing discounting method [66] to improve probability estimation559

of unseen or rare word combinations. For words that are not in the pronunciation dictionary, they are560

mapped to a special token <UNK>. When using the CMU Pronunciation Dictionary, the resutling LM561

is too large to fit into the main memory of the Ubuntu computer used for real-time inference. We pruned562

the resulting n-gram LM using SRILM, which removes n-grams that causes the perplexity of the LM to563

increase by less than a threshold. The LM built with the 50 words from [46] is not pruned. For online564

real-time decoding, we used a 3-gram LM pruned with threshold 1𝑒 − 9. For offline analyses, we used565

a 5-gram LM pruned with threshold 4𝑒 − 11.566

The n-gram LM was then converted to a weighted finite-state transducer (WFST) [64]. A WFST is
a finite-state acceptor in which each transition has an input symbol, an output symbol and a weight. A
path through the WFST takes a sequence of input symbols and emits a sequence of output symbols. We
followed the recipe in [67] to construct our WFST search graph:

𝑇 ◦ 𝐿 ◦ 𝐺 (4)

Here, ◦ denotes composition.567

G is the grammar WFST that encodes legal sequences of words and their probabilities based on the568

n-gram LM.569

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict
2https://github.com/thu-spmi/CAT/blob/v1/egs/libri

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
https://github.com/thu-spmi/CAT/blob/v1/egs/libri
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L is the lexicon WFST that encodes what phonemes are contained in each legal word. Note that a570

"silence" phoneme was added to the end of each word (see section 3). We did an offline sweep of the571

"silence" phoneme probability and found 0.9 to be optimal.572

Finally, T is the token WFST that maps a sequence of RNN output labels to a single phoneme. In our573

case, T contains all the individual phonemes plus the CTC blank symbol. For more details about how574

the three WFSTs were composed, refer to [67].575

8.4. Inference with the n-gram language model576

We used the LM decoder implementation in WeNet [68] for efficient real-time inference. WeNet is a577

wrapper around Kaldi to simplify the implementation of a real-time LM decoder. The LM decoder runs578

an approximate Viterbi search (beam search) algorithm on the WFST search graph to find the most579

likely sequences of words. The WFST search graph encodes the mapping from a sequence of CTC labels580

emitted by RNN to a sequence of words. During inference, the beam search combines information from581

the WFST (state transition probabilities) and information from the RNN decoder about which CTC582

labels are likely occurring at each moment in time. We do not normalize the CTC label probabilities as583

in [67].584

The decoding parameters for beam search in defined in Table 6. The beam search runs every 80ms,585

after the RNN emits CTC label probabilities. On average, each beam search step took less than 1ms to586

complete.587

8.5. Offline language model optimization588

After data collection was completed, we further optimized the LM and found that online decoding WER589

could have improved by 6.4% with an improved LM architecture (Table 1 in main text). To improve the590

LM, we used a 5-gram LM instead of 3-gram LM and employed a 2-pass decoding strategy. The first591

pass of the 2-pass decoder is the same as the 1-pass decoder described above. But instead of outputting592

a decoded sentence, it outputs a word lattice [69, 70]. A word lattice is a directed graph where each593

node is a word and the an edge between nodes encodes the transition probability between words. It is594

a efficient representation to encode possible word sequences. The second pass of the 2-pass decoder595

uses a unpruned n-gram LM to rescore the word lattice. Rescoring replaces the original LM score with596

a more accurate score from the unpruned LM. After rescoring, we pick the best path through the word597

lattice as decoding output.598

Finally, we found that using a transformer LM [71] to rescore the candidate sentences in an third599

pass could further improve decoding accuracy. Transformer LMs have been the state of the art in many600

natural language tasks in recent years [72, 73]. Compared to an n-gram LM which models a limited601

context (e.g., 3 words for a trigram model), a transformer LM can model much longer contexts (e.g.,602

1024 words). Training a transformer LM requires a significant amount of computation resources. We603

used the publicly available pre-trained OPT LM [74]. We used the largest OPT LM (6.7B parameters)604

that can fit into one NVIDIA A100 40GB GPU. The OPT LM was used to rescore the n-best outputs605

from a 2-pass decoder.606

The 2-pass decoder first outputs at most n sentences with the highest decoding scores. The decoding
score of a sentence was defined as follows:

𝑠𝑐𝑜𝑟𝑒(𝑠) = 𝛼 ∗ 𝑙𝑜𝑔(𝑃𝑅𝑁𝑁 (𝑠)) + 𝑙𝑜𝑔(𝑃𝑛𝑔𝑟𝑎𝑚 (𝑠)) (5)

Here 𝑃𝑅𝑁𝑁 (𝑠) is the sentence 𝑠’s corresponding CTC label sequence probability output by the RNN.607

𝑃𝑛𝑔𝑟𝑎𝑚 is the sentence 𝑠’s probability estimated by the n-gram LM. 𝛼 is the acoustic scale defined in608

Table 6.609
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We then used OPT to evaluate the probability of each sentence in the n-best list and linearly interpolate
with the n-gram LM’s probability. The new score function was defined as follows:

𝑠𝑐𝑜𝑟𝑒(𝑠) = 𝛼 ∗ 𝑙𝑜𝑔(𝑃𝑅𝑁𝑁 (𝑠)) + 𝛽 ∗ 𝑙𝑜𝑔(𝑃𝑛𝑔𝑟𝑎𝑚(𝑠)) + (1 − 𝛽) ∗ 𝑙𝑜𝑔(𝑃𝑜𝑝𝑡 (𝑠)) (6)

Here 𝑃𝑜𝑝𝑡 (𝑠) is sentence 𝑠’s probability estimation from OPT LM. 𝛽 is the lm weight defined in Table610

6. The top scored sentence is the final decoding output.611

Finally, we found that decoding accuracy was improved by dividing the CTC blank label probability612

by a constant value [75], which adds a cost for not outputting any labels.613

All LM decoding parameters are optimized via grid search on a validation data set (session 7-16).614

LM Decoding Parameter Description Value
min active Beam search decoder’s minimum active states 200
max active Beam search decoder’s maximum active states 7000

beam Beam size 17
acoustic scale Scaling factor on RNN’s log probabilities 0.8

lm weight Interpolation weight between LMs 0.5
n-best Number of decoding hypotheses 100

blank penalty Penalty applied on blank labels log(7)
Table 6. LM decoding parameters .

9. Statistics615

Table 7 below lists statistical details for each confidence interval or hypothesis test reported in this616

work. In this study, uncertainty was quantified mainly with 95% confidence intervals computed using617

the bootstrap percentile method.618
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Result Statistical Details
Figure 1 Mean firing rates in Figure 1c were taken over 20 trials (for orofacial movements and

words) or 16 trials (for phonemes). 95% confidence intervals were estimated using
bootstrap resampling over trials (10,000 resamplings). For Figure 1d, 95% confidence
intervals were estimated by first computing a classification success or failure for each
trial using leave-one-out cross-validation (660 orofacial movements trials, 1,000 word
trials, and 720 phoneme trials). A confidence interval for classification accuracy was
then computed by bootstrap resampling the success/failure observations for each trial
(10,000). For Figure 1e, 95% confidence intervals were computed separately for each
classification window in the same way as Figure 1d. For Figure 1f, one-way ANOVAs
with a threshold of p<1e-5 were used to assess the presence of statistically significant
tuning to each movement category on each electrode (see section 2.1). We had 20 trials
for each movement, and each of the movement categories had the following number of
movements: forehead (4), eyelids (4), jaw (6), lips (6), tongue (5), larynx (4), phonemes
(6), words (6).

Figure 2 Circles in Figure 2b and 2c show the mean word error rates and words per minute for 80
evaluation trials (125k vocab) or 50 evaluation trials (50 word vocab) on a single day.
Lines show the 95% confidence intervals estimated by bootstrap resampling (10,000
resamplings) over the 80 available trials (125k vocab) or 50 available trials (50-word
vocab) trials.

Table 1 Online error rates in the table are computed across all evaluation trials (125k-word
vocab: 400 trials for vocal speaking, and 240 trials for silent speaking; 50-word vocab:
250 trials for vocal, 150 trials for silent). Offline error rates for the proximal test set
were computed across 250 held-out trials from the five evaluation days.

Figure 3 Statistical significance of the neural-articulatory correlations was assessed via a reshuf-
fling control (10,000 reshufflings) - see section 2.3.4. The actual correlations we found
were greater than those for all 10,000 reshufflings, indicating significance.

Figure 4 95% confidence intervals shown in Figure 4a were computed by bootstrap resampling
across the 250 evaluation trials for the 50-word vocabulary. Standard deviations in
Figure 4b were computed over 10 RNN seeds. 95% confidence intervals in Figure 4c
were computed via bootstrap resampling over 10 RNN seeds.

Extended
Data Fig.
4

Tuning to movement categories was assessed using a statistical significance threshold
(p<1e-5) with a one-way ANOVA analysis, using the same methods we used to produce
the tuning heatmaps in Figure 1f.

Extended
Data Fig.
5

Standard deviations shown in Extended Data Fig. 5i were computed over 10 RNN
seeds.

Extended
Data Fig.
7

Word error rates in Extended Data Fig. 7a were aggregated across the 400 closed-loop
evaluation trials for the 125k vocab collected for the 5 performance evaluation days.

Extended
Data Fig.
8

Chance distributions shown in Extended Data Fig. 8b were computed using a shuffle
control (10,000 reshufflings) - see section 2.3.4.

Table 7. Statistical analyses.
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