
 

  

Peer Review File 

Manuscript Title: A foundation model for generalisable disease detection from retinal 

images 

Reviewer Comments & Author Rebuttals 

Reviewer Reports on the Initial Version: 

Referees' comments: 

 

Referee #1 (Remarks to the Author): 

 

This manuscript is important, well-written, and will be of interest to a wide audience. Methods and 

data quality are appropriate. Conclusions in line with results. Kudos to the authors for a 

straightforward, well-executed, and significant study. I mention three points on which authors 

might choose to expand. 

1. Implications of foundation models for medicine 

Authors might consider adding a sentence or two expanding on the implications of foundation 

models for medicine. The term (while not the idea) is relatively recent and some readers might 

benefit from an expanded explanation of the concept’s implications. In particular, it’s not just that 

foundation models can substantially reduce resources required to build usable health care AI (to 

democratize it, as authors write). It’s that in so doing these models could help direct support away 

from many single use, costly, initially impressive, AI tech demos, that rarely become integrated 

into routine care and feed skepticism of health care AI’s benefits. 

2. Potential weaknesses associated with study’s data sets 

Authors acknowledge limitations associated with relying on datasets drawn almost entirely from 

the UK. However, because historically this literature (broadly, health care AI) has been prone to 

exaggeration—enabled often by ignoring limits created by homogeneity of people represented in 

study datasets—authors might consider highlighting this limitation not only at the end of the paper 

but also in one of the many passages noting the RETFound’s generalizability. 

3. What is a clinical task 

Claims about the utility of RETFound to perform “a broad range of clinical tasks” (line 172) are 

accurate in their immediate context. But authors might examine what they mean by clinical tasks. 

When most people read the phrase, they assume a clinician—a person—is doing something, a task. 

The clinical tasks to which authors refer in this manuscript are tasks that can be achieved by AI. 

The point here is not lament AI’s potential replacement of people, it is rather to point out that AI is 

capable at this stage- even informed by foundation models – of performing only a very limited set 

of clinical tasks. To perform a “broad range” of “diverse” clinical tasks, health care AI needs still to 

better integrate human-AI collaboration. Authors might consider revising phrases about clinical 

tasks to more accurately express AI’s limitations in this regard. 

 

 

Minor: 

Standardize Foundation model capitalization 

 

 

Referee #2 (Remarks to the Author): 

 

Healthcare AI is fundamentally constrained by the substantial resources and ethical dillemas in 

obtaining sufficiently rich and well characterized training data, compared to the relative 

overabundance in other fields. Thus for progress in this field, it is imperative to use prior 

knowledge where available (and reliable) so that the sparse training data can be used most 

effectively, and both biomarkers based priors - where known - and emergent priors - such as 



 

  

transfer learning - are gaining interest. 

 

However, the present study does not contribute in a meaningful way to this research endeavor. 

While it is of interest that the authors show that their transfer approach allows less training data to 

be used for meaningful accuracy, this is to be expected as transfer learning in all its varieties has 

been widely published. 

ALternatively, the authors could have focused on true validation and transfer learning based 

algorithms, but their validations are based single physician or other low fidelity reference 

standards. 

 

 

Referee #3 (Remarks to the Author): 

 

Foundation models are having a well deserved day in the sun. The promise of general purpose 

models that can be fine-tuned for specific tasks or subdomains is exciting and the promise seems 

to be fulfilled with the recent large language models. Therefore testing a foundation model for eye 

disease like RetFound seems quite appropriate. This is a well written paper which provides suitable 

motivation and intuitive understanding of the methods for non-ML scientists. 

 

What is clear is that while having at least comparable performance to other pipelines, RetFound is 

much more label efficient which itself is an important property for the generalization and growth of 

this model. 

 

In the eye specific disease tasks, the manuscript might seem to be making much larger claims of 

superior whereas looking at Figure 2b there does not seem to be a single performance that is 

statistically significant. 2b is important because external validation is the far better measure of 

robust performance. 

3b does have have a couple of significantly superior performances with RetFound. Unless these 

figures are erroneous this suggests that there is a strong repeated trend towards better 

performance but it’s far from globally significant. 

 

There is quite a lot of diversity in the populations studied and it would be interesting to see an 

added side-by-side comparison for at least the larger subpopulations to see if the trends seen 

overall are different for the subgroups. It might be that the self-supervised training might have a 

better edge there. Or not. 

 

 

Overall, this manuscript will encourage others to explore the use of Foundation Models in different 

biomedical domains and with far less dependence on human labels. 

 



Review responses 

 

Dear editors and reviewers,  

 

Thank you for your encouraging comments and appreciation of research on foundation 

models for medicine. We have revised the paper in light of your instructive suggestions for a 

more robust description and insightful analysis (changes highlighted in blue). Please see our 

point-to-point response below. 

 

 

 

Referee #1 

 
This manuscript is important, well-written, and will be of interest to a wide audience. Methods 

and data quality are appropriate. Conclusions in line with results. Kudos to the authors for a 

straightforward, well-executed, and significant study. I mention three points on which authors 

might choose to expand. 

 

1. Implications of foundation models for medicine 

Authors might consider adding a sentence or two expanding on the implications of 

foundation models for medicine. The term (while not the idea) is relatively recent and some 

readers might benefit from an expanded explanation of the concept’s implications. In 

particular, it’s not just that foundation models can substantially reduce resources required to 

build usable health care AI (to democratize it, as authors write). It’s that in so doing these 

models could help direct support away from many single use, costly, initially impressive, AI 

tech demos, that rarely become integrated into routine care and feed skepticism of health 

care AI’s benefits. 

 

Response: Thank you for the suggestion. We agree that there is value in expanding on the 

implications of foundation models for medicine. In particular, your point on the benefits of 

diverting attention away from superficially impressive but poorly generalisable tech demos is 

highly relevant to the field of healthcare AI. This has been added to line 257-261 in the 

discussion. 

 

By contrast, the data and computational requirements required to fine-tune 

RETFound to downstream clinical tasks are comparatively small, and therefore more 

achievable for the majority of institutions. We required only one NVIDIA Tesla T4 

(16GB) GPU, requiring about 1.2 hours ($2) with a dataset of 1000 images. 

Moreover, foundational models offer the potential to raise the general quality of 

healthcare AI models. Their adoption may help avoid superficially impressive 

models that rarely impact clinical care. These poorly generalisable models 

consume significant resources and can feed scepticism about the benefits of 

AI in healthcare. By making RETFound publicly available, we hope to accelerate the 

progress of AI in medicine by enabling researchers to utilise our large dataset to 

design high quality models for use in their own institutions or to explore alternative 

downstream applications. 

Author Rebuttals to Initial Comments:



 

 

2. Potential weaknesses associated with study’s data sets 

Authors acknowledge limitations associated with relying on datasets drawn almost entirely 

from the UK. However, because historically this literature (broadly, health care AI) has been 

prone to exaggeration—enabled often by ignoring limits created by homogeneity of people 

represented in study datasets—authors might consider highlighting this limitation not only at 

the end of the paper but also in one of the many passages noting the RETFound’s 

generalizability. 

 

Response: Thank you for this suggestion. We acknowledge the importance of being 

transparent about the limitations of our work throughout the manuscript. We have therefore 

edited our Results section which now also includes this information in line 68-71. 

 

For the tasks of ocular disease prognosis and systemic disease prediction, we used 

a cohort from the Moorfields AlzEye study (MEH-AlzEye) which links ophthalmic data 

of 353,157 patients, who attended Moorfields Eye Hospital between 2008 and 2018, 

with systemic disease data from hospital admissions across the whole of England. 

We also used UK Biobank for external evaluation in predicting systemic diseases. 

The validation datasets used for ocular disease detection are sourced from 

multiple countries, while systemic disease prediction was solely validated on 

UK datasets due to limited availability of this type of longitudinal data. Our 

assessment of generalisability for systemic disease prediction was therefore 

based on multiple tasks and datasets, but did not extend to vastly different 

geographical settings. Details of the clinical datasets are listed in Supplementary 

Table 2 (flowcharts for patient selection are listed in Supplementary Fig. 2 to Fig. 6). 

 

 

3. What is a clinical task 

Claims about the utility of RETFound to perform “a broad range of clinical tasks” (line 172) 

are accurate in their immediate context. But authors might examine what they mean by 

clinical tasks. When most people read the phrase, they assume a clinician—a person—is 

doing something, a task. The clinical tasks to which authors refer in this manuscript are tasks 

that can be achieved by AI. The point here is not lament AI’s potential replacement of 

people, it is rather to point out that AI is capable at this stage- even informed by foundation 

models – of performing only a very limited set of clinical tasks. To perform a “broad range” of 

“diverse” clinical tasks, health care AI needs still to better integrate human-AI collaboration. 

Authors might consider revising phrases about clinical tasks to more accurately express AI’s 

limitations in this regard. 

 

Response: Thank you for the suggestion. We appreciate that the term ‘clinical task’ may be 

interpreted in a way that we had not intended. We had merely hoped to convey that the task 

is something that might be useful in a medical context. We have changed all such 

occurrences to more neutral phrasing such as ‘disease detection tasks’, which is also 

consistent with our manuscript title. Additionally, we have included the important point you 

raised about the need for enhanced human-AI integration to facilitate true diversity for AI 

applications, in line 277-279. 



 

Combining these, we propose to further enhance the strength of RETFound in 

subsequent iterations by introducing even larger quantities of images, exploring 

additional modalities, enabling dynamic interaction across multi-modal data, and 

evaluating additional SSL approaches. Whilst we are optimistic about the broad 

scope of RETFound to be used for a range of AI tasks, we also acknowledge 

that enhanced human-AI integration is critical to achieving true diversity in 

healthcare AI applications. 

 

 

Minor: 

Standardize Foundation model capitalization 

 

Response: Apologies for this oversight. We have changed all occurrences to ‘RETFound’ 

and used the term ‘foundation model’ (without capitalization) throughout. 

 

 

  



Referee #2  

 
Healthcare AI is fundamentally constrained by the substantial resources and ethical dillemas 

in obtaining sufficiently rich and well characterized training data, compared to the relative 

overabundance in other fields. Thus for progress in this field, it is imperative to use prior 

knowledge where available (and reliable) so that the sparse training data can be used most 

effectively, and both biomarkers based priors - where known - and emergent priors - such as 

transfer learning - are gaining interest. 

However, the present study does not contribute in a meaningful way to this research 

endeavor. While it is of interest that the authors show that their transfer approach allows less 

training data to be used for meaningful accuracy, this is to be expected as transfer learning 

in all its varieties has been widely published. 

 

Response: Thank you for your comment. After careful consideration, we remain confident 

that our work offers a significant contribution to the field of healthcare AI. We have carefully 

reviewed our manuscript and attempted to articulate this contribution more clearly. We hope 

that these edits and the below discussion will suitably address your concerns. If there are 

specific aspects of our contribution that you feel are unsubstantiated or poorly expressed, we 

would be happy to clarify further. 

 

Generally, transfer learning indicates the process of storing knowledge gained whilst solving 

one machine learning problem and applying it to a different but related problem [1]. In our 

paper, we refer to the initial stage of transfer learning as ‘pre-training’ and the subsequent 

stage as ‘fine-tuning.’ Traditional supervised-learning-based transfer learning pre-trains AI 

models with labelled data while recent self-supervised learning requires only unlabelled data, 

which better fits in healthcare AI where vast amounts of medical data are unlabelled and 

unexploited. Self-supervised learning with 1.6 million retinal images allows RETFound to 

learn retina context, including anatomical structures and lesions, which are potential imaging 

biomarkers for ocular and systemic disease detection (line 143-157 and Figure 5). 

 

Our key contribution is one of the first medical foundation models, which involves the 

application and validation of self-supervised learning on a large scale. The key advantages 

of foundation models in medicine are: 

1. Reduced requirements for labelled medical data by instead harnessing the vast 

quantities of unlabelled data that have not previous contributed to training - as you 

have noted, this is a key barrier to developing medical AI models due to the cost of 

expert annotations. 

2. Improved generalisability to a range of downstream tasks - this is also highly relevant 

in medicine where AI models may be used for multiple tasks and in multiple settings. 

3. Raised standard for medical AI applications allowing the field to move away from 

costly, single-use, AI ‘demos’ that are poorly generalisable and feed scepticism over 

the benefits of AI in healthcare. This final point has been pointed out by Reviewer 1 

and we have now included this in our manuscript. 

Applying and validating self-supervised learning to a medical setting is an important 

contribution due to the significant challenges involved. These barriers are outlined in the 

manuscript and summarised below: 



1. Self-supervised learning requires large quantities of domain-specific medical data, 

often only available at large institutions. 

2. Sophisticated data pipelines are required for the data to be curated into a form that is 

usable, which is expensive to initiate. 

3. Training requires enormous computational resources that are not widely available. 

4. Diverse downstream tasks should be organised to test the generalisability and 

efficiency of the foundation model.   

By making our model open source, we hope to democratise the development of ophthalmic 

AI models and accelerate progress towards safe and effective applications. As one of the 

earliest medical foundation models validated on large-scale clinical data, we are hopeful that 

ours can be used as an exemplar case to encourage the development of further foundation 

models within other image-centric specialties, such as dermatology, radiology, and 

pathology. 

 

 

 

ALternatively, the authors could have focused on true validation and transfer learning based 

algorithms, but their validations are based single physician or other low fidelity reference 

standards. 

 

Response: Thank you for your comment. Whilst we agree that considering the reliability of 

reference standards is important, we maintain that those used in this work are well-suited to 

our study aims. We acknowledge that enhanced clarity would enable readers to evaluate this 

important aspect more readily and have made appropriate edits. We hope that the below 

clarifications and manuscript edits will suitably address your concern. 

 

For ocular disease detection, we chose validation sets that are widely-used benchmarks. 

Rather than single physician grading, 5 out of the 8 validation sets report rigorous 

adjudication protocols involving multiple clinical experts. The remaining 3 provided limited 

details such that it is difficult to assess the strength of the labels. These details are 

summarised below and have now been added to line 360-368 in the Online method. 

 

For systemic disease prediction, validation was performed on 2 large cohort studies linking 

retinal imaging to incident systemic labels using hospital admissions codes, including the 

landmark UK Biobank (from which over 6000 papers have been published so far) and the 

more recent ocular-systemic health cohort, AlzEye. Whilst recognising that the context of 

collection may impact upon the quality of labelling, numerous epidemiological studies have 

recognised the benefits of using hospital admissions data as a more pragmatic approach to 

assessing longitudinal outcomes [2-5], and many studies have found these labels to be 

sufficiently robust for this type of work [6-8]. 

 

Finally, we believe that it is important to consider the context of the work when assessing 

reference standards, in particular, where the work lies on the translational continuum 

towards clinical implementation. We see our contribution as fitting early on in this continuum. 

We seek to provide a resource which enables the democratisation of healthcare AI 

development, not to provide an autonomous AI solution that is ready to replace clinicians in 

a real-world setting. We agree that the latter would require a prospective, real-world study, 



with rigorous reference standards to guarantee the precision of diagnostic accuracy results. 

By contrast, the aim of our work is to evaluate RETFound’s label efficiency and 

generalisability compared to existing pre-training approaches. In this context, we believe that 

permitting the inclusion of datasets with imperfect reference standards is justified when it 

enables us to better evaluate the generalisability of RETFound to a diverse range of complex 

tasks and patient populations. It is these superior features of foundation models that promote 

the potential of applying healthcare AI and human-AI collaboration into routine care. 

 

 

Summary of grading protocols used for publicly available datasets: 

Dataset Reference Standard 

IDRiD (DR) 2 medical experts provided adjudicated consensus grades 

MESSIDOR-2 (DR) 
Adjudicated by a panel of 3 retina specialists in accordance with 

a published protocol 

APTOS-2019 (DR) 
Kaggle dataset with limited information but possibly a single 

clinician grader 

PAPILA (Glaucoma) 

Labelling and segmentation by 2 experts following extensive 

clinical examination and testing procedure, including 

retrospective clinical record review 

Glaucoma Fundus 

(Glaucoma) 

Agreement of 2 specialists based on visual fields and extensive 

imaging 

JSIEC (Multi-condition) 

Labelled by ophthalmologists and confirmed by senior retina 

specialists. Disagreements resolved by panel of 5 senior retina 

specialists 

Retina (Multi-condition) Details not available 

OCTID (Multi-

condition) 

Describes image labelling based on the diagnosis of retinal 

clinical experts but does not specify duplicate adjudication 
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Reviewer #3 

 
Foundation models are having a well deserved day in the sun. The promise of general 

purpose models that can be fine-tuned for specific tasks or subdomains is exciting and the 

promise seems to be fulfilled with the recent large language models. Therefore testing a 

foundation model for eye disease like RETFound seems quite appropriate. This is a well 

written paper which provides suitable motivation and intuitive understanding of the methods 

for non-ML scientists. What is clear is that while having at least comparable performance to 

other pipelines, RETFound is much more label efficient which itself is an important property 

for the generalization and growth of this model. 

 

In the eye specific disease tasks, the manuscript might seem to be making much larger 

claims of superior whereas looking at Figure 2b there does not seem to be a single 

performance that is statistically significant. 2b is important because external validation is the 

far better measure of robust performance. 

3b does have have a couple of significantly superior performances with RETFound. Unless 

these figures are erroneous this suggests that there is a strong repeated trend towards 

better performance but it’s far from globally significant. 

 

Response: Thank you for your comment. We believe that there has been a 

miscommunication with regards to the significance results and we apologise for the lack of 

clarity on our part. We would like to clarify that the results in Figure 2b indicate that 

RETFound’s performance was statistically significantly higher than the most competitive 

method in all cases. As introduced in the Figure legend “Unless otherwise specified, p-value 

is less than 0.001. ** indicates 0.001<p-value<0.01, * 0.01<p-value<0.05, and ns 0.05<p-

value.” RETFound also significantly outperformed the most competitive method for most of 

the tasks shown in Figure 3b.  

 

We had initially designed our figures in this way to minimise clutter, but acknowledge that 

this may not be the most intuitive approach. To avoid any confusion brought by asterisk 

rules, we have recategorised p-values and changed the way we illustrate significance results 

as follows: 

 

● ** indicates p-value < 0.01 

● * indicates p-value between 0.01 - 0.05 

● absence of symbol indicates p > 0.05 (non-significant) 

 

We have updated all figures with the new asterisk convention. We will continue to work with 

Nature editors to ensure that we are illustrating these points as effectively as possible and 

that our figures are consistent with journal guidelines. 

 

Updated Figure 2 and Figure 3 are listed below: 

 



 

Fig. 2. Performance on ocular disease diagnostic classification. a, internal evaluation, models are 

adapted to each dataset via fine-tuning and internally evaluated on hold-out test data. The task of 

diabetic retinopathy is to classify the retinal images based on the International Clinical Diabetic 

Retinopathy Severity scale, indicating five stages from no diabetic retinopathy to proliferative diabetic 

retinopathy. The task of glaucoma is to identify images with non-glaucoma, early glaucoma, or 

advanced glaucoma. The multi-category datasets include multiple retinal diseases (more details are 

listed in Supplementary Table 1). b, external evaluation, models are fine-tuned on one diabetic 

retinopathy dataset and externally evaluated on the others. c, performance on ocular disease 

prognosis. The models are fine-tuned to predict the conversion of fellow eye to wet-AMD in 1 year and 

evaluated internally. RETFound performs best in all tasks. 95% confidence intervals are shown as 

error bars. We compare the performance of RETFound with the most competitive comparison model 

(e.g., SL-ImageNet on APTOS-2019) to check if statistically significant differences exist. p-value is 

calculated with the two-sided t-test. ** indicates p-value<0.01 and * indicates 0.01<p-value<0.05 

 



 

Fig. 3. Performance on 3-year incidence prediction of systemic diseases with retinal images. a, 

internal evaluation, models are adapted to curated datasets from MEH-AlzEye via fine-tuning and 

internally evaluated on hold-out test data. b, external evaluation, models are fine-tuned on MEH-

AlzEye and externally evaluated on UK Biobank. Data for internal and external evaluation is described 

in Supplementary Table 2. Although the overall performances are not high due to the difficulty of 

tasks, RETFound achieved significantly higher AUROC in all internal evaluation and most external 

evaluation. We compare the performance of RETFound with the most competitive comparison model 

to check if statistically significant differences exist. 95% confidence intervals are shown as error bars. 

** indicates p-value<0.01 and * indicates 0.01<p-value<0.05. 

 

 

 

 

 

 

 

 



There is quite a lot of diversity in the populations studied and it would be interesting to see 

an added side-by-side comparison for at least the larger subpopulations to see if the trends 

seen overall are different for the subgroups. It might be that the self-supervised training 

might have a better edge there. Or not. 

 

Response: Thank you for this suggestion. We have performed additional subgroup analyses 
to explore the consistency of our findings within ethnic subpopulations. We selected three 
systemic disease prediction tasks from the AlzEye dataset for which there were sufficient 
numbers to permit further analysis, specifically heart failure, ischaemic stroke, and 
myocardial infarction. Subgroup analyses were performed for White, Asian or Asian British, 
and Black or Black British subgroups, the three largest major categories of ethnicity as 
described by the UK Government’s Office for National Statistics. 

 
In each graph, the first column shows the performance on all test data, followed by subgroup 
results for each of the three ethnic categories. The cohort quantity is listed in the titles. We 
can see that RETFound significantly outperformed the other pre-training strategies in all 
cases, and that subgroups showed a similar performance trend compared to the overall 
cohort.   
 

 

 

Incident prediction of heart failure: 

 

 

Supplementary Fig. 15. AUROC of predicting 3-year heart failure in subsets with different ethnicity, 

including White, Asian or Asian British, and Black or Black British subgroups, the three largest major 

categories of ethnicity as described by the UK Government’s Office for National Statistics. Data is 

from MEH-AlzEye test set. the first column shows the performance on all test data, followed by results 

on the three subgroups. The cohort quantity is listed in titles. 95% confidence intervals are shown as 

error bars. We compare the performance of RETFound with the most competitive comparison model 

to check if statistically significant difference exists. ** indicates p-value<0.01 and * indicates 0.01<p-

value<0.05. 

 

 

 



Incident prediction of ischaemic stroke: 

 

 

Supplementary Fig. 16. AUROC of predicting 3-year myocardial infarction in subsets with different 

ethnicity. Data is from MEH-AlzEye test set. the first column shows the performance on all test data, 

followed by results on White, Asian or Asian British, and Black or Black British cohorts. The cohort 

quantity is listed in titles. 95% confidence intervals are shown as error bars. We compare the 

performance of RETFound with the most competitive comparison model to check if statistically 

significant difference exists. ** indicates p-value<0.01 and * indicates 0.01<p-value<0.05. 

 

Incident prediction of myocardial infarction: 

 

 

Supplementary Fig. 17. AUROC of predicting 3-year ischaemic stroke in subsets with different 

ethnicity. Data is from MEH-AlzEye test set. the first column shows the performance on all test data, 

followed by results on White, Asian or Asian British, and Black or Black British cohorts. The cohort 

quantity is listed in titles. 95% confidence intervals are shown as error bars. We compare the 

performance of RETFound with the most competitive comparison model to check if statistically 

significant difference exists. ** indicates p-value<0.01 and * indicates 0.01<p-value<0.05. 

 



Overall, this manuscript will encourage others to explore the use of Foundation Models in 

different biomedical domains and with far less dependence on human labels. 

 



 

  

Reviewer Reports on the First Revision: 

Referees' comments: 

 

Referee #1 (Remarks to the Author): 

 

Authors' revisions have fully addressed my comments. 

 

 

Referee #4 (Remarks to the Author): 

 

Zhou et al. present an innovative approach in the field of disease detection from retinal images 

with their foundation model, RETFound. The authors train RETFound on a substantial dataset of 

1.6 million unlabelled retinal images using self-supervised learning (SSL), which allows the model 

to learn meaningful representations without explicit labels. They subsequently adapt RETFound to 

specific disease detection tasks using labeled data. The study demonstrates that adapted 

RETFound consistently outperforms several comparison models in the diagnosis and prognosis of 

sight-threatening eye diseases. Moreover, the model exhibits promising results in predicting the 

incidence of complex systemic disorders, such as heart failure and myocardial infarction, while 

requiring fewer labeled data. 

 

Strengths: The paper's strength lies in its comprehensive exploration of disease detection 

applications, including ocular disease diagnosis, ocular disease prognosis, and systemic disease 

prediction. By addressing diverse areas of healthcare, the authors emphasize the potential impact 

of RETFound in improving medical diagnostics and prognostics. Furthermore, the study pays 

particular attention to label efficiency, a crucial aspect in the medical domain where acquiring 

labeled data can be time-consuming and costly. RETFound's ability to achieve impressive 

performance with limited labeled data signifies its practical utility. 

 

Major Weakness: However, it is worth noting that the idea of leveraging SSL for improved 

downstream performance in disease diagnosis and related tasks has been explored in previous 

research. For instance, Truong et al. (reference [1]) demonstrated the effectiveness of self-

supervised pre-training models in diabetic retinopathy classification, outperforming supervised 

ImageNet pre-training models while also considering label efficiency. Additionally, Azizi et al. 

(reference [2]) investigated the combination of ImageNet pre-training and self-supervised pre-

training for tasks such as diabetic macular edema detection, highlighting the benefits in out-of-

distribution performance and label efficiency. These existing works raise the question of how 

RETFound compares to popular contrastive learning approaches commonly used in SSL. 

 

Action points: To strengthen the paper's novelty and appeal to the readership of Nature, I think it 

is imperative to include a comparative analysis between generative pre-training methods, as 

employed in this study, and contrastive learning approaches. My suggestion is to include 

comparisons to 4-5 contrastive learning approaches (perhaps using [1] and [2] to select 

methods). By addressing this comparison, the authors could determine which method, whether 

contrastive or generative, offers the most superior universal performance. This addition would 

enhance the contribution of the paper by providing insights into the relative strengths and 

limitations of different SSL strategies and facilitating the development of more effective and 

generalizable disease detection models. 

 

References: 

[1] Truong, Tuan, Sadegh Mohammadi, and Matthias Lenga. "How transferable are self-supervised 

features in medical image classification tasks?." In Machine Learning for Health, pp. 54-74. PMLR, 

2021. 

[2] Azizi, Shekoofeh, et al. "Robust and efficient medical imaging with self-supervision." arXiv 



 

  

preprint arXiv:2205.09723 (2022). (a more recent version of this in Nature Biomedical 

Engineering) 

 



Review responses 

 

Dear editors and reviewers,  

 

We would like to express our sincere appreciation for your valuable comments and 

suggestions. We have carefully revised the manuscript to incorporate your constructive 

feedback. In particular, we have performed additional analyses using contrastive learning 

approaches which have allowed us to share new insights into the performance of different 

SSL strategies (changes are indicated in blue). Please find our point-to-point response 

below. 

 

 

 

Referee #4  

 
Zhou et al. present an innovative approach in the field of disease detection from retinal 

images with their foundation model, RETFound. The authors train RETFound on a 

substantial dataset of 1.6 million unlabelled retinal images using self-supervised learning 

(SSL), which allows the model to learn meaningful representations without explicit labels. 

They subsequently adapt RETFound to specific disease detection tasks using labeled data. 

The study demonstrates that adapted RETFound consistently outperforms several 

comparison models in the diagnosis and prognosis of sight-threatening eye diseases. 

Moreover, the model exhibits promising results in predicting the incidence of complex 

systemic disorders, such as heart failure and myocardial infarction, while requiring fewer 

labeled data. 

 

Strengths: The paper's strength lies in its comprehensive exploration of disease detection 

applications, including ocular disease diagnosis, ocular disease prognosis, and systemic 

disease prediction. By addressing diverse areas of healthcare, the authors emphasize the 

potential impact of RETFound in improving medical diagnostics and prognostics. 

Furthermore, the study pays particular attention to label efficiency, a crucial aspect in the 

medical domain where acquiring labeled data can be time-consuming and costly. 

RETFound's ability to achieve impressive performance with limited labeled data signifies its 

practical utility. 

 

Response: Thank you for your recognition of RETFound’s promising performance and label 

efficiency, as well as its practical utility across diverse disease detection applications. 

 

 

Major Weakness: However, it is worth noting that the idea of leveraging SSL for improved 

downstream performance in disease diagnosis and related tasks has been explored in 

previous research. For instance, Truong et al. (reference [1]) demonstrated the effectiveness 

of self-supervised pre-training models in diabetic retinopathy classification, outperforming 

supervised ImageNet pre-training models while also considering label efficiency. 

Additionally, Azizi et al. (reference [2]) investigated the combination of ImageNet pre-training 

and self-supervised pre-training for tasks such as diabetic macular edema detection, 

highlighting the benefits in out-of-distribution performance and label efficiency. These 

Author Rebuttals to First Revision:



existing works raise the question of how RETFound compares to popular contrastive 

learning approaches commonly used in SSL. 

 

Response: Thank you for your valuable comments and recommendation of the work of 

Truong et al. [30] and Azizi et al. [26]. We believe they each represent important 

contributions to this rapidly evolving field. While recognising the strengths of these papers, 

we believe that RETFound builds upon them in several important ways. 

 

Truong et al. applied SSL techniques to various medical classification tasks, including 

diabetic retinopathy, and demonstrated that SSL pre-trained models yield richer embeddings 

compared to supervised models. Notably, their pre-training data was limited to natural 

images from ImageNet. RETFound makes further progress by applying SSL techniques to a 

large unlabelled medical dataset of 1.6 million images (in addition to ImageNet), showing 

that the inclusion of medical images improves downstream performance. This is a notable 

contribution since it requires access to a large clinical dataset and a well-developed pipeline 

for incorporating images into a model. 

 

Azizi et al. applied SSL techniques to unlabelled medical data and show improved 

performance compared to a supervised approach. A key strength of this paper is that their 

approach is demonstrated across five imaging types that are commonly used in medicine. 

However, their downstream evaluation is limited to only one or two tasks for each imaging 

type.  

 

The major advance we report with RETFound is the ability to support 13 wide-ranging 

downstream evaluation tasks from a single model using two common retinal imaging 

modalities: fundus photography and optical coherence tomography (OCT). These tasks 

cover ophthalmic disease detection and prognosis, as well as systemic (non-ophthalmic) 

disease prediction. Thus RETFound demonstrates the key potential of foundation models in 

medical imaging for the first time - the ability to learn generalisable features applicable to 

diverse downstream tasks. Demonstrating this benefit on a diverse range of tasks relies on 

our uniquely extensive data linkage between retinal imaging and longitudinal ocular and 

systemic health outcomes. 

 

We will make RETFound openly available to accelerate research in this domain, enabling 

RETFound to serve as the pioneering foundation model in healthcare and supporting the 

creation of comprehensive foundation models in other medical specialties. 

 

We have made revisions to our manuscript to acknowledge these prior contributions and 

highlight the additional advances brought about by RETFound (line 29-37):  

 

“Although several studies have shown that SSL can increase performance for 

individual ocular disease detection tasks, such as diabetic macular edema26, age-

related macular degeneration (AMD)27, and referable diabetic retinopathy28,29,30, there 

has been limited work demonstrating the ability of a single SSL pre-trained model to 

generalise to a diverse range of complex tasks. Progress has likely been hampered 

by the challenges involved with curating a large repository of retinal images with 

extensive linkage to multiple relevant disease outcomes. Moreover, the capabilities of 

different SSL approaches (contrastive SSL versus generative SSL) and the 

https://paperpile.com/c/QNNrrD/EVn7
https://paperpile.com/c/QNNrrD/uEg1M
https://paperpile.com/c/QNNrrD/E7sbJ
https://paperpile.com/c/QNNrrD/kRZ7l+ay1L


interpretability of SSL models in retinal imaging, remain relatively under-explored. 

Developing an understanding of the specific features that SSL models learn during 

training is an important step for safe and reliable translation to clinical practice.” 

 

While we remain confident in RETFound’s widespread potential for impact, we also 

acknowledge that conducting additional experiments to compare contrastive and generative 

SSL approaches would further enhance the scope of our work, as described in the following 

section. 

 

 

 

Action points: To strengthen the paper's novelty and appeal to the readership of Nature, I 

think it is imperative to include a comparative analysis between generative pre-training 

methods, as employed in this study, and contrastive learning approaches. My suggestion is 

to include comparisons to 4-5 contrastive learning approaches (perhaps using [1] and [2] to 

select methods). By addressing this comparison, the authors could determine which method, 

whether contrastive or generative, offers the most superior universal performance. This 

addition would enhance the contribution of the paper by providing insights into the relative 

strengths and limitations of different SSL strategies and facilitating the development of more 

effective and generalizable disease detection models. 

 

Response: Thank you for the suggestion. We fully agree that comparing and discussing 

how different SSL strategies (e.g. contrastive SSL versus generative SSL) perform within our 

RETFound training and evaluation pipeline will enhance the paper and increase its impact.  

 

Following your recommendations, we have now included four contrastive learning 

techniques for comparison: SimCLR16, SwAV36, DINO37, and MoCo-v314. We substituted the 

generative SSL method (i.e. masked autoencoder) with each contrastive SSL approach in 

the RETFound framework. We have added related content to the paper, including 

 

a) some context for the new experiment; 

“Moreover, the capabilities of different SSL approaches (contrastive vs generative) 

and the interpretability of SSL models in retinal imaging, remain relatively under-

explored.” (line 34-35) 

 

“Additionally, we explored the performance of using different SSL strategies, i.e. 

generative SSL versus contrastive SSL approaches, by substituting the primary SSL 

technique (i.e. masked autoencoder) with SimCLR16, SwAV36, DINO37, and MoCo-

v314 within the RETFound framework.” (line 85-87) 

 

b) new quantitative results in Supplementary Table 4 and bar plots in Supplementary 

Fig.15 (Supplementary Table 3 is also attached for reference); 

 

c) a subsection in the Results; 

“Performance of different SSL strategies in the RETFound framework. We 

explored the performance of different SSL strategies, i.e. generative SSL (e.g. 

masked autoencoder) and contrastive SSL (e.g. SimCLR, SwAV, DINO, and MoCo-

v3), in the RETFound framework. As shown in Supplementary Table 4, RETFound 

https://paperpile.com/c/QNNrrD/PQf0D
https://paperpile.com/c/QNNrrD/mT1C
https://paperpile.com/c/QNNrrD/Tz4F
https://paperpile.com/c/QNNrrD/ZW48a


with different contrastive SSL strategies showed decent performance in downstream 

tasks. For instance, RETFound with DINO achieved AUROC of 0.866 (95% CI 0.864, 

0.869) and 0.728 (95% CI 0.725, 0.731) respectively on wet-AMD prognosis and 

ischaemic stroke prediction, outperforming the baseline SL-ImageNet reported in 

Supplementary Table 3. This demonstrates the effectiveness of RETFound 

framework with diverse SSL strategies. Among these SSL strategies, the masked 

autoencoder (RETFound in Supplementary Table 3) performed significantly better 

than the contrastive learning approaches in most disease detection tasks 

(Supplementary Fig. 15). All quantitative results are listed in Supplementary Table 3 

and 4.” (line 180-189) 

 

d) related discussion; 

“We observe that RETFound maintains competitive performance for disease 

detection tasks, even when substituting various contrastive SSL approaches into the 

framework. It appears that the generative approach using the masked autoencoder 

generally outperforms the contrastive approaches, including SwAV, SimCLR, MoCo-

v3, and DINO. However, it is worth noting that asserting the superiority of the masked 

autoencoder requires caution, given the presence of several variables across all 

models, such as network architectures (e.g. ResNet-50 for SwAV and SimCLR, 

Transformers for the others) and hyperparameters (e.g. learning rate scheduler). Our 

comparison demonstrates that the combination of powerful network architecture and 

complex pretext tasks can produce effective and general-purpose medical foundation 

models, aligning with the insights derived from large language models in 

healthcare49,50. Additionally, the comparison further supports the notion that the 

retinal-specific context learned from the masked autoencoder's pretext task, which 

includes anatomical structures like the optic nerve head and retinal nerve fibre layer 

(as shown in Fig. 5a), indeed provides discriminative information for the detection of 

ocular and systemic diseases.” (line 266-277) 

 

e) implementation in Online Method; 

“Contrastive learning approach implementation. We substitute the primary SSL 

approach (i.e. masked autoencoder) with SimCLR16, SwAV37, DINO38, and MoCo-

v314 in the RETFound framework to produce variants of the pre-trained model for 

comparison. For SSL training with each contrastive learning approach, we follow the 

recommended network architectures and hyperparameter settings from the published 

papers for optimal performance. We first load the pre-trained weights on ImageNet-

1k to the models and further train the models with 1.6 million retinal images with each 

contrastive learning approach, so as to obtain pre-trained models. We then follow the 

identical process of transferring the masked autoencoder to fine-tune those pre-

trained models for the downstream disease detection tasks.” (line 457-464) 

 

“Computational resources. …We allocate an equal computational cost to each SSL 

approach for pre-training….” (line 468-469) 

 

 

 

 

 

https://paperpile.com/c/QNNrrD/hA9o+xQFa
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Supplementary Fig. 15. AUROC of predicting ocular diseases and systemic diseases by the models pre-trained 

with different SSL strategies, including the masked autoencoder (MAE), SwAV, SimCLR, MoCo-v3, and 

DINO. The data for systemic disease tasks is from MEH-AlzEye dataset. RETFound with MAE achieved 

significantly higher AUROC in most tasks. All quantitative results of RETFound using MAE can be found in 

Supplementary Table 3. The corresponding results for the contrastive SSL approaches are listed in 

Supplementary Table 4. 95% confidence intervals are shown as error bars. We compare the performance of 

MAE with the most competitive comparison model to check if statistically significant difference exists. ** 

indicates p-value<0.01 and * indicates 0.01<p-value<0.05.



Supplementary Table 4. Performance of contrastive SSL models fine-tuned to multiple disease detection and prediction. Parentheses include values of 95% confidence 

interval. For prediction of ischaemic stroke, myocardial infarction, heart failure and Parkinson’s disease, performance on MEH-AlzEye indicates internal evaluation while 

performance on UK Biobank for external evaluation. The results of RETFound using the masked autoencoder can be found in Supplementary Table 3. 

Metric AUROC AUPR 

Comparison 

groups 
DINO MoCo-v3 SimCLR SwAV DINO MoCo-v3 SimCLR SwAV 

3-year incidence prediction of ischaemic stroke 

MEH-AlzEye 

CFP 

0.728 (0.725, 

0.731) 

0.695 (0.682, 

0.708) 

0.674 (0.673, 

0.674) 

0.682 (0.663, 

0.701) 

0.726 (0.722, 

0.73) 

0.689 (0.675, 

0.703) 

0.649 (0.644, 

0.655) 

0.658 (0.638, 

0.677) 

UK Biobank 

CFP 

0.625 (0.616, 

0.634) 

0.557 (0.539, 

0.575) 

0.542 (0.524, 

0.561) 

0.549 (0.538, 

0.56) 

0.629 (0.619, 

0.639) 

0.56 (0.542, 

0.577) 

0.535 (0.515, 

0.555) 

0.533 (0.519, 

0.546) 

MEH-AlzEye 

OCT 

0.725 (0.711, 

0.739) 

0.712 (0.665, 

0.759) 

0.667 (0.639, 

0.693) 

0.601 (0.583, 

0.618) 

0.715 (0.701, 

0.729) 

0.702 (0.649, 

0.754) 

0.648 (0.629, 

0.667) 

0.578 (0.56, 

0.594) 

UK Biobank 

OCT 

0.59 (0.561, 

0.618) 

0.549 (0.525, 

0.572) 

0.492 (0.481, 

0.504) 

0.501 (0.479, 

0.521) 

0.586 (0.556, 

0.617) 

0.556 (0.535, 

0.577) 

0.496 (0.488, 

0.504) 

0.502 (0.482, 

0.523) 



3-year incidence prediction of myocardial infarction 

MEH-AlzEye 

CFP 

0.731 (0.727, 

0.734) 

0.661 (0.645, 

0.675) 

0.644 (0.639, 

0.649) 

0.65 (0.636, 

0.664) 

0.722 (0.719, 

0.725) 

0.653 (0.637, 

0.669) 

0.612 (0.599, 

0.624) 

0.625 (0.614, 

0.637) 

UK Biobank 

CFP 

0.611 (0.605, 

0.616) 

0.568 (0.543, 

0.594) 

0.563 (0.545, 

0.58) 

0.513 (0.501, 

0.526) 

0.609 (0.604, 

0.614) 

0.557 (0.537, 

0.577) 

0.551 (0.533, 

0.568) 

0.513 (0.499, 

0.527) 

MEH-AlzEye 

OCT 

0.708 (0.701, 

0.717) 

0.7 (0.675, 

0.725) 

0.658 (0.65, 

0.665) 

0.598 (0.589, 

0.606) 

0.693 (0.684, 

0.703) 

0.687 (0.66, 

0.714) 

0.644 (0.632, 

0.655) 

0.573 (0.563, 

0.582) 

UK Biobank 

OCT 

0.583 (0.578, 

0.589) 

0.536 (0.494, 

0.579) 

0.583 (0.557, 

0.609) 

0.501 (0.489, 

0.513) 

0.567 (0.562, 

0.572) 

0.546 (0.507, 

0.585) 

0.573 (0.552, 

0.594) 

0.501 (0.492, 

0.51) 

3-year incidence prediction of heart failure 

MEH-AlzEye 

CFP 

0.785 (0.783, 

0.786) 

0.745 (0.738, 

0.751) 

0.714 (0.699, 

0.729) 

0.72 (0.703, 

0.736) 

0.773 (0.771, 

0.775) 

0.731 (0.724, 

0.738) 

0.692 (0.681, 

0.703) 

0.691 (0.667, 

0.715) 

UK Biobank 

CFP 

0.656 (0.648, 

0.663) 

0.634 (0.621, 

0.648) 

0.606 (0.582, 

0.63) 

0.528 (0.501, 

0.555) 

0.65 (0.644, 

0.657) 

0.629 (0.614, 

0.644) 

0.587 (0.569, 

0.605) 

0.528 (0.509, 

0.546) 



MEH-AlzEye 

OCT 

0.793 (0.791, 

0.795) 

0.8 (0.796, 

0.803) 

0.743 (0.731, 

0.755) 

0.655 (0.642, 

0.667) 

0.782 (0.781, 

0.783) 

0.791 (0.787, 

0.795) 

0.724 (0.706, 

0.742) 

0.624 (0.611, 

0.637) 

UK Biobank 

OCT 

0.686 (0.678, 

0.695) 

0.672 (0.654, 

0.69) 

0.601 (0.569, 

0.631) 

0.509 (0.493, 

0.525) 

0.677 (0.667, 

0.686) 

0.661 (0.638, 

0.684) 

0.588 (0.557, 

0.618) 

0.508 (0.494, 

0.522) 

3-year incidence prediction of Parkinson’s disease 

MEH-AlzEye 

CFP 

0.636 (0.609, 

0.663) 

0.638 (0.624, 

0.651) 

0.631 (0.587, 

0.674) 

0.59 (0.564, 

0.615) 

0.657 (0.629, 

0.685) 

0.644 (0.632, 

0.656) 

0.626 (0.584, 

0.667) 

0.565 (0.537, 

0.593) 

UK Biobank 

CFP 

0.534 (0.476, 

0.593) 

0.499 (0.465, 

0.534) 

0.523 (0.483, 

0.562) 

0.481 (0.389, 

0.572) 

0.585 (0.539, 

0.631) 

0.549 (0.512, 

0.585) 

0.563 (0.546, 

0.58) 

0.507 (0.441, 

0.573) 

MEH-AlzEye 

OCT 

0.661 (0.633, 

0.688) 

0.686 (0.639, 

0.733) 

0.609 (0.55, 

0.667) 

0.499 (0.462, 

0.536) 

0.652 (0.63, 

0.673) 

0.698 (0.654, 

0.743) 

0.585 (0.54, 

0.629) 

0.507 (0.473, 

0.541) 

UK Biobank 

OCT 

0.447 (0.398, 

0.495) 

0.585 (0.548, 

0.623) 

0.498 (0.493, 

0.503) 

0.441 (0.398, 

0.484) 

0.488 (0.452, 

0.524) 

0.613 (0.585, 

0.641) 

0.5 (0.495, 

0.506) 

0.47 (0.442, 

0.497) 

1-year fellow eye converting to wet-AMD 



MEH-AlzEye 

CFP 

0.866 (0.864, 

0.869) 

0.828 (0.819, 

0.837) 

0.805 (0.789, 

0.822) 

0.803 (0.789, 

0.817) 

0.845 (0.844, 

0.847) 

0.819 (0.808, 

0.83) 

0.782 (0.767, 

0.796) 

0.781 (0.768, 

0.793) 

MEH-AlzEye 

OCT 

0.775 (0.76, 

0.789) 

0.763 (0.753, 

0.774) 

0.664 (0.636, 

0.691) 

0.638 (0.621, 

0.654) 

0.773 (0.756, 

0.789) 

0.76 (0.748, 

0.772) 

0.644 (0.623, 

0.665) 

0.611 (0.6, 

0.621) 

Diabetic retinopathy 

MESSIDOR-2 0.835 (0.831, 

0.838) 

0.847 (0.84, 

0.853) 

0.833 (0.816, 

0.849) 

0.826 (0.804, 

0.849) 

0.512 (0.499, 

0.525) 

0.49 (0.473, 

0.507) 

0.579 (0.549, 

0.61) 

0.551 (0.521, 

0.581) 

IDRID 0.756 (0.742, 

0.77) 

0.763 (0.751, 

0.775) 

0.762 (0.748, 

0.776) 

0.76 (0.739, 

0.781) 

0.464 (0.444, 

0.483) 

0.456 (0.44, 

0.472) 

0.451 (0.425, 

0.478) 

0.459 (0.437, 

0.48) 

Kaggle APTOS-

2019  

0.932 (0.932, 

0.932) 

0.931 (0.928, 

0.934) 

0.912 (0.908, 

0.916) 

0.913 (0.906, 

0.921) 

0.666 (0.662, 

0.671) 

0.676 (0.668, 

0.683) 

0.599 (0.584, 

0.614) 

0.606 (0.588, 

0.624) 

Glaucoma 

PAPILA 0.788 (0.772, 

0.805) 

0.797 (0.76, 

0.834) 

0.805 (0.773, 

0.837) 

0.791 (0.774, 

0.809) 

0.635 (0.62, 

0.651) 

0.627 (0.568, 

0.687) 

0.637 (0.591, 

0.683) 

0.617 (0.589, 

0.644) 



Glaucoma 

Fundus  

0.918 (0.915, 

0.921) 

0.915 (0.911, 

0.918) 

0.897 (0.884, 

0.911) 

0.919 (0.908, 

0.931) 

0.802 (0.795, 

0.809) 

0.839 (0.833, 

0.845) 

0.765 (0.737, 

0.793) 

0.798 (0.768, 

0.827) 

Multi-class disease 

JSIEC 0.958 (0.955, 

0.961) 

0.954 (0.951, 

0.957) 

0.956 (0.955, 

0.958) 

0.951 (0.947, 

0.954) 

0.652 (0.633, 

0.671) 

0.755 (0.742, 

0.769) 

0.822 (0.812, 

0.833) 

0.758 (0.743, 

0.773) 

Retina 0.787 (0.778, 

0.796) 

0.787 (0.767, 

0.806) 

0.817 (0.81, 

0.825) 

0.775 (0.764, 

0.785) 

0.608 (0.591, 

0.624) 

0.635 (0.604, 

0.666) 

0.633 (0.618, 

0.647) 

0.581 (0.56, 

0.602) 

OCTID 0.961 (0.959, 

0.962) 

0.936 (0.934, 

0.937) 

0.96 (0.955, 

0.965) 

0.948 (0.94, 

0.956) 

0.937 (0.932, 

0.942) 

0.837 (0.833, 

0.841) 

0.927 (0.914, 

0.94) 

0.906 (0.874, 

0.938) 

 

 

 

 

 



Supplementary Table 3. Performance of models fine-tuned to multiple disease detection and prediction. Parentheses include values of 95% confidence interval. For 

prediction of ischaemic stroke, myocardial infarction, heart failure and Parkinson’s disease, performance on MEH-AlzEye indicates internal evaluation while performance 

on UK Biobank for external evaluation. (No change has been made on Supplementary Table 3. It is attached for reference) 

Metric AUROC AUPR 

Comparison 

groups 
RETFound SSL-Retinal SSL-ImageNet SL-ImageNet  RETFound SSL-Retinal SSL-ImageNet SL-ImageNet  

3-year incidence prediction of ischaemic stroke 

MEH-AlzEye 

CFP 

0.754 (0.752, 

0.756) 

0.697 (0.689, 

0.706) 

0.684 (0.679, 

0.689) 

0.665 (0.655, 

0.674) 

0.744 (0.74, 

0.749) 

0.685 (0.677, 

0.693) 

0.676 (0.671, 

0.681) 

0.669 (0.66, 

0.678) 

UK Biobank 

CFP 

0.594 (0.58, 

0.608) 

0.581 (0.569, 

0.593) 

0.57 (0.565, 

0.574) 

0.547 (0.54, 

0.554) 

0.587 (0.575, 

0.601) 

0.571 (0.562, 

0.58) 

0.564 (0.562, 

0.567) 

0.543 (0.534, 

0.552) 

MEH-AlzEye 

OCT 

0.746 (0.742, 

0.749) 

0.701 (0.699, 

0.702) 

0.648 (0.632, 

0.664) 

0.678 (0.669, 

0.687) 

0.736 (0.731, 

0.741) 

0.683 (0.68, 

0.686) 

0.642 (0.622, 

0.661) 

0.666 (0.657, 

0.674) 

UK Biobank 

OCT 

0.559 (0.541, 

0.577) 

0.551 (0.545, 

0.558) 

0.501 (0.484, 

0.517) 

0.54 (0.531, 

0.549) 

0.547 (0.529, 

0.566) 

0.533 (0.529, 

0.536) 

0.507 (0.497, 

0.517) 

0.548 (0.54, 

0.556) 



3-year incidence prediction of myocardial infarction 

MEH-AlzEye 

CFP 

0.737 (0.731, 

0.743) 

0.672 (0.67, 

0.675) 

0.619 (0.61, 

0.628) 

0.611 (0.605, 

0.617) 

0.726 (0.72, 

0.733) 

0.641 (0.638, 

0.644) 

0.579 (0.567, 

0.592) 

0.592 (0.586, 

0.598) 

UK Biobank 

CFP 

0.579 (0.566, 

0.593) 

0.509 (0.49, 

0.528) 

0.498 (0.485, 

0.511) 

0.499 (0.493, 

0.504) 

0.563 (0.551, 

0.575) 

0.48 (0.469, 

0.491) 

0.503 (0.494, 

0.512) 

0.505 (0.497, 

0.514) 

MEH-AlzEye 

OCT 

0.731 (0.725, 

0.736) 

0.682 (0.677, 

0.687) 

0.615 (0.605, 

0.625) 

0.633 (0.627, 

0.639) 

0.726 (0.718, 

0.734) 

0.67 (0.663, 

0.678) 

0.602 (0.592, 

0.613) 

0.631 (0.625, 

0.638) 

UK Biobank 

OCT 

0.605 (0.59, 

0.621) 

0.586 (0.574, 

0.597) 

0.498 (0.486, 

0.51) 

0.536 (0.531, 

0.541) 

0.601 (0.59, 

0.612) 

0.589 (0.576, 

0.602) 

0.507 (0.499, 

0.514) 

0.544 (0.538, 

0.551) 

3-year incidence prediction of heart failure 

MEH-AlzEye 

CFP 

0.794 (0.792, 

0.797) 

0.715 (0.714, 

0.716) 

0.715 (0.713, 

0.716) 

0.705 (0.704, 

0.706) 

0.784 (0.779, 

0.789) 

0.699 (0.698, 

0.701) 

0.708 (0.707, 

0.709) 

0.692 (0.691, 

0.693) 

UK Biobank 

CFP 

0.676 (0.67, 

0.682) 

0.61 (0.603, 

0.617) 

0.585 (0.581, 

0.59) 

0.59 (0.583, 

0.597) 

0.655 (0.647, 

0.663) 

0.594 (0.587, 

0.601) 

0.564 (0.561, 

0.567) 

0.582 (0.576, 

0.588) 



MEH-AlzEye 

OCT 

0.809 (0.807, 

0.81) 

0.768 (0.767, 

0.769) 

0.734 (0.732, 

0.736) 

0.727 (0.725, 

0.73) 

0.801 (0.798, 

0.804) 

0.762 (0.76, 

0.763) 

0.721 (0.72, 

0.723) 

0.716 (0.714, 

0.719) 

UK Biobank 

OCT 

0.682 (0.678, 

0.685) 

0.647 (0.644, 

0.65) 

0.612 (0.609, 

0.614) 

0.602 (0.596, 

0.608) 

0.684 (0.68, 

0.688) 

0.644 (0.641, 

0.646) 

0.606 (0.604, 

0.608) 

0.587 (0.584, 

0.589) 

3-year incidence prediction of Parkinson’s disease 

MEH-AlzEye 

CFP 

0.669 (0.65, 

0.688) 

0.591 (0.564, 

0.618) 

0.595 (0.584, 

0.606) 

0.597 (0.581, 

0.613) 

0.662 (0.641, 

0.683) 

0.606 (0.587, 

0.624) 

0.606 (0.599, 

0.612) 

0.586 (0.565, 

0.608) 

UK Biobank 

CFP 

0.57 (0.554, 

0.586) 

0.501 (0.466, 

0.536) 

0.476 (0.458, 

0.494) 

0.517 (0.491, 

0.543) 

0.598 (0.561, 

0.637) 

0.525 (0.488, 

0.561) 

0.514 (0.488, 

0.54) 

0.552 (0.526, 

0.578) 

MEH-AlzEye 

OCT 

0.758 (0.738, 

0.777) 

0.688 (0.676, 

0.699) 

0.682 (0.657, 

0.707) 

0.633 (0.611, 

0.656) 

0.765 (0.742, 

0.789) 

0.713 (0.705, 

0.721) 

0.684 (0.657, 

0.71) 

0.631 (0.609, 

0.652) 

UK Biobank 

OCT 

0.551 (0.534, 

0.567) 

0.503 (0.488, 

0.519) 

0.522 (0.487, 

0.556) 

0.508 (0.482, 

0.535) 

0.531 (0.513, 

0.547) 

0.493 (0.475, 

0.511) 

0.501 (0.481, 

0.521) 

0.513 (0.491, 

0.534) 

1-year fellow eye converting to wet-AMD 



MEH-AlzEye 

CFP 

0.862 (0.86, 

0.865) 

0.814 (0.809, 

0.819) 

0.831 (0.826, 

0.836) 

0.83 (0.825, 

0.836) 

0.849 (0.845, 

0.853) 

0.795 (0.791, 

0.8) 

0.823 (0.819, 

0.827) 

0.833 (0.827, 

0.839) 

MEH-AlzEye 

OCT 

0.799 (0.796, 

0.802) 

0.783 (0.778, 

0.788) 

0.773 (0.769, 

0.777) 

0.756 (0.753, 

0.759) 

0.789 (0.784, 

0.794) 

0.783 (0.779, 

0.788) 

0.766 (0.76, 

0.772) 

0.746 (0.744, 

0.748) 

Diabetic retinopathy 

MESSIDOR-2 0.884 (0.88, 

0.887) 

0.816 (0.814, 

0.818) 

0.823 (0.809, 

0.837) 

0.859 (0.854, 

0.864) 

0.669 (0.656, 

0.683) 

0.456 (0.451, 

0.46) 

0.48 (0.445, 

0.516) 

0.601 (0.591, 

0.612) 

IDRID 0.822 (0.815, 

0.829) 

0.703 (0.695, 

0.71) 

0.76 (0.746, 

0.773) 

0.778 (0.77, 

0.786) 

0.496 (0.481, 

0.511) 

0.402 (0.395, 

0.409) 

0.449 (0.423, 

0.475) 

0.499 (0.48, 

0.519) 

Kaggle APTOS-

2019  

0.943 (0.941, 

0.944) 

0.899 (0.898, 

0.9) 

0.894 (0.891, 

0.896) 

0.918 (0.916, 

0.919) 

0.726 (0.721, 

0.73) 

0.636 (0.633, 

0.639) 

0.679 (0.666, 

0.692) 

0.704 (0.694, 

0.715) 

Glaucoma 

PAPILA 0.855 (0.842, 

0.868) 

0.705 (0.685, 

0.725) 

0.727 (0.709, 

0.745) 

0.819 (0.807, 

0.83) 

0.748 (0.706, 

0.791) 

0.507 (0.475, 

0.539) 

0.521 (0.488, 

0.554) 

0.66 (0.641, 

0.679) 



Glaucoma 

Fundus  

0.943 (0.941, 

0.945) 

0.895 (0.892, 

0.897) 

0.885 (0.881, 

0.889) 

0.919 (0.917, 

0.922) 

0.863 (0.86, 

0.867) 

0.809 (0.807, 

0.81) 

0.792 (0.784, 

0.799) 

0.813 (0.809, 

0.817) 

Multi-class disease 

JSIEC 0.99 (0.989, 

0.991) 

0.929 (0.927, 

0.931) 

0.949 (0.948, 

0.95) 

0.975 (0.974, 

0.977) 

0.884 (0.878, 

0.889) 

0.605 (0.592, 

0.619) 

0.816 (0.808, 

0.825) 

0.89 (0.882, 

0.897) 

Retina 0.847 (0.841, 

0.853) 

0.703 (0.673, 

0.733) 

0.699 (0.69, 

0.708) 

0.831 (0.824, 

0.838) 

0.697 (0.691, 

0.703) 

0.505 (0.483, 

0.527) 

0.497 (0.478, 

0.517) 

0.647 (0.638, 

0.657) 

OCTID 0.998 (0.998, 

0.999) 

0.964 (0.963, 

0.966) 

0.961 (0.958, 

0.963) 

0.965 (0.964, 

0.966) 

0.993 (0.989, 

0.998) 

0.956 (0.951, 

0.96) 

0.942 (0.93, 

0.954) 

0.962 (0.96, 

0.965) 
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The inclusion of the comparative analysis between generative and contrastive learning approaches 
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learning techniques for comparison and provided quantitative results and discussions on their 

performance within the RETFound framework. This comparative analysis enhances the novelty and 

impact of the paper by providing insights into the relative strengths and limitations of different SSL 

strategies. I would personally want to see at least one of the contrastive models brought up to the 

main text (Figures 2 and 3), but this is not a requirement. 
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highlight the additional advancements brought about by RETFound. 
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more appealing to the readership. Thank you for addressing my concerns and for your diligence in 

enhancing the quality of the manuscript. 
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four contrastive learning techniques for comparison and provided quantitative results and 

discussions on their performance within the RETFound framework. This comparative 

analysis enhances the novelty and impact of the paper by providing insights into the relative 

strengths and limitations of different SSL strategies. I would personally want to see at least 

one of the contrastive models brought up to the main text (Figures 2 and 3), but this is not a 

requirement. 

 

I also appreciate the revisions made in the manuscript to acknowledge prior contributions 

and highlight the additional advancements brought about by RETFound. 

 

Overall, I believe that the revisions and additions you have made in response to my review 

have significantly improved the manuscript. The inclusion of the comparative analysis and 

the discussions on the different SSL strategies further strengthen the paper's contribution 
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