
Illuminating protein space with a 
programmable generative model

In the format provided by the 
authors and unedited

Nature | www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-023-06728-8



Supplementary Information for:

Illuminating protein space

with a programmable generative model

John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang,

Ahmed Ismail, Vincent Frappier, Dana M Lord, Christopher Ng-Thow-Hing,

Erik R Van Vlack, Shan Tie, Vincent Xue, Sarah C Cowles, Alan Leung,

João V Rodrigues, Claudio L Morales-Perez, Alex M Ayoub, Robin Green,

Katherine Puentes, Frank Oplinger, Nishant V Panwar, Fritz Obermeyer,

Adam R Root, Andrew L Beam, Frank J Poelwijk, Gevorg Grigoryan

Generate Biomedicines, Inc.

1



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 2

Supplementary Information

Table of Contents

A Overview 7

A.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

A.2 Conditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

A.3 Wet lab experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

B Diffusion Models with Structured Correlations 11

B.1 Correlated diffusion as uncorrelated diffusion in a transformed space . . . . . . . 11

B.2 Scheduling diffusion to balance signal and noise . . . . . . . . . . . . . . . . . . 12

B.3 Training with likelihood on an Evidence Lower Bound (ELBO) . . . . . . . . . . 14

B.4 Auxiliary training objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B.5 Sampling with the Reverse-time SDE . . . . . . . . . . . . . . . . . . . . . . . 18

B.6 Sampling with the Probability Flow ODE . . . . . . . . . . . . . . . . . . . . . 18

B.7 Conditional sampling from the posterior under auxiliary constraints . . . . . . . 19

B.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C Low-Temperature Sampling for Diffusion Models 20

C.1 Reverse-time SDE with temperature annealing . . . . . . . . . . . . . . . . . . . 21

C.2 Annealed Langevin Dynamics SDE . . . . . . . . . . . . . . . . . . . . . . . . 23

C.3 Hybrid Langevin Reverse-time SDE . . . . . . . . . . . . . . . . . . . . . . . . 24

D Polymer-Structured Diffusions 26

D.1 Diffusion processes predictably affect molecular distances . . . . . . . . . . . . 26

D.2 Covariance model #1: Ideal Chain . . . . . . . . . . . . . . . . . . . . . . . . . 28

D.3 Covariance model #2: Rg-confined Globular Polymer . . . . . . . . . . . . . . . 29

D.4 Alternative covariance model: Residue Gas . . . . . . . . . . . . . . . . . . . . 35

E Random Graph Neural Networks 36

E.1 Background: efficient N-body simulation . . . . . . . . . . . . . . . . . . . . . 36

E.2 Random graph generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

E.3 Computational complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

F Structure from Inter-residue Geometry Predictions 39



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 3

F.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

F.2 Equivariant structure updates via convex optimization . . . . . . . . . . . . . . . 39

F.3 Equivariant prediction of backbone atoms . . . . . . . . . . . . . . . . . . . . . 44

F.4 Time-dependent post-prediction scaling . . . . . . . . . . . . . . . . . . . . . . 44

G Chroma Architecture 45

G.1 Graph neural networks for protein structure . . . . . . . . . . . . . . . . . . . . 45

G.2 ChromaBackbone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

G.3 ChromaDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

G.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

H Training 51

H.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

H.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

I Sampling 52

I.1 Sampling backbones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

I.2 Sampling sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

J Evaluation: Unconditional Samples 54

J.1 Sample generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

J.2 Backbone geometry statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

J.3 Tertiary motif analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

J.4 Novelty analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

J.5 Refolding analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

J.6 Sequence design analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

K Evaluation: Conditional Samples 62

K.1 Refolding substructure-conditioned samples . . . . . . . . . . . . . . . . . . . . 63

K.2 Refolding symmetry-conditioned samples . . . . . . . . . . . . . . . . . . . . . 64

K.3 Refolding shape-conditioned samples . . . . . . . . . . . . . . . . . . . . . . . 65

K.4 Refolding class-conditioned samples . . . . . . . . . . . . . . . . . . . . . . . . 65

K.5 Refolding language-conditioned samples . . . . . . . . . . . . . . . . . . . . . . 68

K.6 Analysis of structure prediction confidence versus refolding TM . . . . . . . . . 69

L Evaluation: Ablation Study 69

L.1 Alternate model configurations and training . . . . . . . . . . . . . . . . . . . . 70



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 4

L.2 Ablation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

M Programmability: Conditioners framework 74

M.1 Bayes’ theorem for score functions . . . . . . . . . . . . . . . . . . . . . . . . . 74

M.2 Conditioners: motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

M.3 Conditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

M.4 Example applications of constraint composition . . . . . . . . . . . . . . . . . . 79

M.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

N Programmability: Substructure Constraints 80

N.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

N.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

O Programmability: Substructure Distances 83

O.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

O.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

P Programmability: Substructure Motifs 85

P.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

P.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Q Programmability: Symmetry 86

Q.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Q.2 Symmetry breaking in sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Q.3 Symmetric transformation as a conditioner . . . . . . . . . . . . . . . . . . . . . 87

Q.4 Practical implementation with scaling and composition . . . . . . . . . . . . . . 89

Q.5 Additional symmetric samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

R Programmability: Shape 91

R.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

R.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

S Programmability: Classification 94

S.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

S.2 Model inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

S.3 Featurization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

S.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

S.5 Labels and loss functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

S.6 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 5

S.7 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

T Programmability: Natural Language Annotations 95

T.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

T.2 Dataset curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

T.3 Model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

T.4 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

T.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

U Experimental Validation 100

U.1 Protein design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

U.2 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

U.3 Experimental figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

U.4 Experimental tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

List of Figures
1 Low temperature sampling with Hybrid Langevin SDE . . . . . . . . . . . . . . 22

2 Low temperature sampling analysis, proteins . . . . . . . . . . . . . . . . . . . . 25

3 Polymer-structured diffusions for proteins . . . . . . . . . . . . . . . . . . . . . 27

4 Random graph sampling for random graph neural networks . . . . . . . . . . . . 38

5 Equivariant structure updates from inter-residue geometries . . . . . . . . . . . . 40

6 Anisotropic confidence models for predicted inter-residue geometries. . . . . . . 43

7 Chroma architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 Randomized autoregression orders with varying spatial clustering . . . . . . . . 50

9 Random single-chain samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10 Random complex samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

11 Structural metrics analysis of unconditional samples . . . . . . . . . . . . . . . 57

12 Novelty analysis of unconditional samples . . . . . . . . . . . . . . . . . . . . . 58

13 The protein space of unconditional samples . . . . . . . . . . . . . . . . . . . . 59

14 Refolding analysis of unconditional samples . . . . . . . . . . . . . . . . . . . . 61

15 Sequence recovery evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

16 Refolding analysis for substructure conditioning . . . . . . . . . . . . . . . . . . 63

17 Refolding analysis for symmetry conditioning . . . . . . . . . . . . . . . . . . . 64

18 Refolding analysis for shape conditioning . . . . . . . . . . . . . . . . . . . . . 66

19 Refolding analysis for class conditioning . . . . . . . . . . . . . . . . . . . . . . 67

20 Refolding analysis for natural language conditioning . . . . . . . . . . . . . . . 68



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 6

21 Evaluation of structure prediction confidence versus agreement . . . . . . . . . . 69

22 Ablation study of novel model components . . . . . . . . . . . . . . . . . . . . 71

23 Programmable design with diffusion conditioners . . . . . . . . . . . . . . . . . 76

24 Substructural infilling with globular covariance . . . . . . . . . . . . . . . . . . 81

25 Substructural infilling examples . . . . . . . . . . . . . . . . . . . . . . . . . . 82

26 RMSD conditioning: Motifs can occur in entirely unrelated structural contexts . . 85

27 Constrained transformations for symmetry operations. . . . . . . . . . . . . . . . 90

28 Symmetric complex samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

29 Symmetric complexes with poor contacts . . . . . . . . . . . . . . . . . . . . . 92

30 Architecture: ProClass model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

31 Architecture: ProCap model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

32 ProCap evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

33 ProCap-guided sample predictions of CATH class . . . . . . . . . . . . . . . . . 100

34 In silico scores scatter plot to split GFP and length . . . . . . . . . . . . . . . . . 107

35 In silico scores partial correlation to split GFP. . . . . . . . . . . . . . . . . . . . 107

36 Unconditional protein designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

37 Secondary structure conditional designs . . . . . . . . . . . . . . . . . . . . . . 110

38 Split-GFP protein solubility assay . . . . . . . . . . . . . . . . . . . . . . . . . 111

39 Soluble protein expression confirmation via western blot . . . . . . . . . . . . . 112

40 Evaluation of additional set of unconditional protein designs . . . . . . . . . . . 113

41 Differential scanning calorimetry experiments . . . . . . . . . . . . . . . . . . . 114

List of Tables
1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Hyperparameters for the backbone network . . . . . . . . . . . . . . . . . . . . 48

3 Hyperparameters for the design network . . . . . . . . . . . . . . . . . . . . . . 49

4 Hyperparameters for sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Structural metrics for backbones . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conditioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Design protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8 Split-GFP control sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 7

Symbol Definition

N number of atoms or residues

xt ∈ R
N×3 coordinates sampled at time t

xMt ∈ R
|M|×3 motif-sliced coordinates based on index setM⊂ [[1,N]]

x
(i)
t ∈ R

3 the ith coordinate in xt

G = (V,E) a graph composed of sets of vertices and edges

Di j, Di j Euclidean distance between i and j ∥x(i)−x( j)∥2

z ∈ R
N×3 whitened noise, and zi is the individual noise component

Σ = RR⊺ covariance matrix for polymer-structured prior, [Rz]ik = ∑ j[R]i jz jk

T = (O, t) Euclidean transformation with rotation O and translation t

αt time-dependent mean scaling in the forwards diffusion

σt time-dependent variance scaling in the forwards diffusion

ht time-dependent generalized drift coefficient

gt time-dependent generalized diffusion coefficient

βt time-dependent noise schedule for variance-preserving process

λt time-dependent inverse temperature

ψ Langevin equilibration rate in Hybrid SDE

T number of integration time steps

x̂θ denoising network in Cartesian space

ẑθ denoising network in the whitened space

∇x log pt(x, t) score estimator network

dw, dw̄ forward Brownian noise, reverse Brownian noise

Supplementary Table 1: Table of notation

A Overview

A.1 Model

Factorization Chroma is a joint generative model for the all-atom structures of protein com-

plexes given a set of chain lengths. To model this complex set of dependencies across mixed

continuous and discrete degrees of freedom, we factorize the joint distribution into parameterized

components as

log pθ (x,s,χ) = log pθ (x)
︸ ︷︷ ︸

backbone likelihood

+ log pθ (s|x)
︸ ︷︷ ︸

sequence likelihood

+ log pθ (χ|x,s)
︸ ︷︷ ︸

side-chain likelihood

,

where x ∈ R
4N×3 represents the backbone heavy atom coordinates (i.e., N, Cα , C, and O), s ∈

[[20]]N represents the discrete sequences over all residues, χ ∈ (−π,π]4N represents the side-chain

torsional angles, θ represents model parameters, and N is the total number of residues in the com-

plex1. We parameterize these component distributions in terms of two neural networks: a backbone

network which uses diffusion modeling to estimate log pθ (x) and a design network which uses dis-

cretely supported distributions to estimate log pθ (χ,s|x). Both networks are based on a graph neu-

1We drop explicit dependence on chain lengths throughout this work to simplify notation.
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ral network architecture which takes SE(3)-invariant features as inputs and outputs SE(3)-invariant

scalars and SE(3)-equivariant coordinates as needed (Supplementary Appendix G).

Diffusion process Our diffusion modeling approach builds upon standard methods with exten-

sions for correlated diffusion processes (Supplementary Appendix B). Briefly, we define a forwards

noising process which destroys structure in data as

xt ∼ p(xt |x0) =N
(
x;αtx0,

(
1−α2

t

)
RR⊺) ,

where RR⊺ is the covariance matrix of the diffusion process and αt is a signal-erasing schedule

that decays monotonically from 1 to 0 as the time t goes from 0 to 1. This can also be effectively

simulated by the Ornstein–Uhlenbeck process

dx =−1

2
βtxdt +

√

βt dRw,

where−1
2βt =

dlogαt

dt
is a time-dependent noising schedule2. We design the covariance matrix RR⊺

to respect the distance statistics of natural proteins, including local chain constraints and global

density constraints based on the scaling law Rg ≈ 2.×N0.4 (Supplementary Appendix D). We also

show how to generalize this framework for arbitrary Gaussian noising schedules in Supplementary

Appendix B.

Diffusion objective Given this forwards process, we train a neural network x̂θ (xt , t) to predict

the optimally denoised structure by optimizing a bound on the likelihood of the noise-free structure

x0,

log p(x0)≥−
1

2
logdet(2πeRR⊺)− 1

2
Ep(xt |x0)p(t)

[

SNR′t

(
N

1+SNRt
−∥R−1 (x̂θ (xt , t)−x0)∥2

2

)]

,

together with auxiliary training objectives which emphasize accurate denoising of specific sub-

structural features (Supplementary Appendix B). Both the likelihood and auxiliary objectives are

weighted in terms of various functions of the time dependent Signal-to-Noise ratio, SNRt =
α2

t

1−α2
t

.

We parameterize the optimal denoiser x̂θ (xt , t) in terms of a graph neural network with random

long-range connectivity for global context (Supplementary Appendix E) which predicts denoised

structures via a weighted consensus of inter-residue geometry predictions (Supplementary Ap-

pendix F).

Sampling backbones To sample backbones, we simulate a non-equilibrium reverse diffusion

process enriched with equilibrating Langevin dynamics (Supplementary Appendix C) by integrat-

ing the stochastic differential equation

dx =−1

2
βtx−

(

λt +
λ0ψ

2

)

βtRR⊺∇x log pt (x;θ)dt +
√

βt(1+ψ)Rdw̄,

2We describe more generalized noising schedules in Supplementary Appendix B.
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where λt are λ0 inverse are temperature parameters, ψ sets the rate of Langevin equilibration

per unit time, dw̄ is a reverse-time Wiener process, and ∇x log pt (x;θ) is the time-dependent

score function which can be expressed as an affine transform of the optimal denoiser. These

Langevin-enriched dynamics allow us to adjust the time-dependent distribution to account for per-

turbations such as external conditioning cues or lower sampling temperatures which bias towards

high-likelihood states (Supplementary Appendix C).

Sampling side-chains For the design network, we train a graph neural network to predict discrete

sequence states via either conditional Potts models or conditional language models and predict side

chain conformations via an autoregressive decomposition and an empirical histogram parameter-

ization binned at 10◦ resolution. Sampling is performed via a combination of penalized Markov

Chain Monte Carlo and/or ancestral sampling (Supplementary Appendix I).

Dataset We constructed a dataset of 28,819 protein complex structures from the Protein Data

Bank circa March 20, 2022 (Supplementary Appendix H). These complexes were filtered for X-ray

crystal structures at resolution ≤ 2.6 Å and were then redundancy-reduced via general sequence

clustering at 50% identity followed by re-enrichment of 1,726 highly-variable antibody systems

with clustering at 10% sequence identity. We split these data into 80%/10%/10% training/valida-

tion/test components based on a graph-based annotation overlap reduction procedure.

Training We trained two configurations of the backbone network on 8 V100 GPUs for approxi-

mately 1.6 and 1.8 million training steps with target batch sizes of approximately 32,000 residues

per step, with each model having approximately 19 million parameters (Supplementary Table 2).

To test the influence of different components of our framework, we also carried out an ablation

study of 7 different model configurations each trained with 8 V100 GPUs and similar batch sizing

for approximately 500,000 steps (Supplementary Appendix L, Supplementary Figure 22). Addi-

tionally, we trained two configurations of the design network on 1 or 8 V100 GPUs with each

model having approximately 4 or 14 million parameters, respectively, based on the inclusion of

side chain and autoregressive decoding layers.

A.2 Conditioners

To make protein design with Chroma programmable, we introduce a Conditioners framework that

allows for automatic conditional sampling under arbitrary composition of protein specifications.

These specifications can come in the forms of restraints, which bias the distribution of states, and

constraints, which directly restrict the domain of underlying sampling process (Supplementary

Appendix M). We accomplish this by formulating conditional protein design as sampling under

composable transformations which can affect both the energy and/or the state variables. Briefly,

we can express the time-dependent (unnormalized) posterior log-likelihood of structures x given
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conditions y as

log p̃(xt |y, t) = log p̃(xt |t)
︸ ︷︷ ︸

Prior

+ log p(y|xt , t)
︸ ︷︷ ︸

Likelihood

=
1

2

∥
∥σ−1

t R−1 ( f (x̃t ,U0; t)−αt x̂t ( f (x̃t ,U0; t), t))
∥
∥

2

2
︸ ︷︷ ︸

Diffusion Energy

+ U f (x̃t ,U0; t)
︸ ︷︷ ︸

Conditioner Energy

,

where f (x̃t ,U0; t) is a function that (optionally) transforms the state and U f (x̃t ,U0; t) is a function

that transforms the energy. These transformation functions are composable and, by leveraging

automatic differentiation, we can derive universal conditional samplers from any gradient-based

MCMC algorithm such as Langevin dynamics (Supplementary Appendix M.2).

We implement and evaluate several conditioners within this framework capturing a variety of po-

tential protein design criteria including:

• substructure constraints (Supplementary Appendix N)

• substructure distance restraints (Supplementary Appendix O)

• substructure motif restraints (Supplementary Appendix P)

• symmetries across chains (Supplementary Appendix Q)

• arbitrary volumetric shapes (Supplementary Appendix R)

• neural network classifiers (Supplementary Appendix S)

• natural language prompts (Supplementary Appendix T)

A.3 Wet lab experiments

We experimentally analyzed 310 proteins generated by Chroma (Fig. 5A, Supplementary Fig-

ure 36, Supplementary Figure 37A, Supplementary Figure 40A) using a split-GFP pooled solubil-

ity assay in E. coli (Supplementary Figure 38, Supplementary Table 8), quantitating protein solu-

bility scores by Nanopore sequencing-based enrichment analysis after fluorescence-activated cell

sorting (Fig. 5B, Supplementary Figure 37B, Supplementary Figure 40B-C) and performing addi-

tional assay corroboration by western blot (Supplementary Figure 39, Supplementary Figure 40D).

We analyzed purified Chroma proteins by differential scanning calorimetry (Supplementary Fig-

ure 37C, Supplementary Figure 41, Extended Data Table 1) and circular dichroism (Fig. 5E-F)

to analyze stability and secondary structure components, respectively. We structurally validated

two unconditional proteins by X-ray crystallography (Fig. 5C-D, Extended Data Table 2). All ex-

perimental details can be found in the Experimental Validation section (Supplementary Appendix

U).
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B Diffusion Models with Structured Correlations

B.1 Correlated diffusion as uncorrelated diffusion in a transformed space

Correlation and diffusion Most natural data possess a hierarchy of correlation structures, some

of which are very simple (e.g., most nearby pixels in natural images will tend to be a similar color)

and some of which are very subtle (e.g., complex constraints govern the set of pixels forming an

eye or a cat). With finite computing resources and modeling power, it can be advantageous to

design learning systems that capture simple correlations as efficiently as possible such that most

model capacity can be dedicated to nontrivial dependencies (see Appendix D).

Diffusion models capture complex constraints in the data by learning to reverse a diffusion pro-

cess that transforms data into noise [54, 55]. While most of these original diffusion frameworks

considered the possibility of correlated noise, it is typical in contemporary models to use isotropic

noise that is standard normally distributed. In this configuration, models must learn both simple

correlations and complex correlations in data from scratch.

Whitening transformations and linear generative models One classical approach for remov-

ing nuisance correlations in the data is to apply a “whitening transformation”, i.e., an affine linear

transformation z =Σ
− 1

2 (x−µ) that decorrelates all factors of variation by subtracting the empiri-

cal mean µ and multiplying by a square root of the inverse covariance matrix R =Σ
− 1

2 .

Whitening data can also be related to fitting the data to a Gaussian model x = F(z) = Rz+b where

the whitened factors z are standard normally distributed as z ∼ N (0,I) [56]. The density in the

whitened space can be related to the density in the transformed space by the change of variables

formula as

log p(x) = log pz(F
−1(x))− log

∣
∣
∣
∣
det

dF

dx

∣
∣
∣
∣

= log pz(R
−1(x−b))− log |detR|

= logN (R−1(x−b);0,I)− log |detR|
= logN (x;b,RR⊺).

From uncorrelated diffusion to correlated diffusion If we have a linear Gaussian prior for our

data p(x) =N (x;b,RR⊺) which can be sampled3 as x=Rz with z∼N (0,I), then an uncorrelated

diffusion process on the whitened coordinates zt ∼ pt(z|z0) will induce a correlated diffusion

process on the original coordinates xt ∼ pt(x|x0). For the typical case of a Gaussian diffusion

process with time-dependent noise, the uncorrelated diffusion

p(zt |z0) =N (z;αtz0,σ
2
t ),

with time-dependent signal scaling αt and noise scaling σt , will induce correlated Gaussian noise

p(xt |x0) =N (x;αtx0,σ
2
t RR⊺).

3We assume the data are centered (have zero mean) for ease of notation.
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We can also see this relationship infinitesimally in time [55]. If we express the uncorrelated diffu-

sion process in terms of a stochastic differential equation (SDE),

dz = htzdt +gt dw,

where ht is a time-dependent drift coefficient, and gt is a time diffusion coefficient, and w is a

standard Wiener process, then we can also express the express an SDE for the correlated process

on xt by substituting4 x = Rz as

dx = Rdz

= htRzdt +gtRdw

= htxdt +gtRdw.

In the next section we explain to how to relate the noise kernel parameters (αt ,σt) to the instanta-

neous parameters (ht ,gt).

B.2 Scheduling diffusion to balance signal and noise

Two-parameter noising schedules The dynamics of the noise kernel parameters (αt ,σt) define a

generalized Gaussian noising process that is used across both diffusion modeling [55, 57] and flow-

matching [58–60]. Some well-known noise parameterizations in this family include the variance-

exploding and variance-preserving processes [55] and the optimal transport (OT) flow process

[58–60]. For all of these processes, the corresponding forwards SDE, reverse SDE, and flow ODE

(described subsequently) also exist and can be parameterized in terms of parameters (ht ,gt) as a

function of the noise kernel parameters (αt ,σt) via the relationship

ht =
α ′t
αt

, gt =

√

2σ2
t

(
σ ′t
σt
− α ′t

αt

)

,

which may also be expressed as

ht =
dlogαt

dt
, gt =

√

−σ2
t

dlogSNRt

dt
,

where SNRt =
α2

t

σ2
t

. We derive this below.

Linking instantaneous and integrated parameters The above results may be seen via ODEs

which govern the time-evolution of the means and variances of the stochastic process. Following

[61], for an SDE of the form

dx = f (xt , t)dt +G(x, t)dw,

where f (xt , t) and G(x, t) are the drift and diffusion terms, we can express the time-dependent

mean and covariance as

d

dt
µt = E [ f (xt , t)]

d

dt
Σt = E [ f (xt , t)(xt−µt)

⊺]+E [(xt−µt) f (xt , t)
⊺]+E [G(xt , t)G

⊺(xt , t)] .

4This can be justified by Ito’s lemma.
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In our framework, the noise kernel is N (αtx0,σ
2
t Σ) and we seek an OU process of with the drift

term f (xt , t) = htxt , and the correlated diffusion term Gt = gtR. If we define Σ = RR⊺, and

Σt = σ2
t Σ, we have

d

dt
Σt = E [htxt(xt−µt)

⊺]+E
[
−(xt−µt)htx

⊺
t

]
+E [G(xt , t)G

⊺(xt , t)]

= 2ht E
[
xtx

⊺
t −µtµ

⊺
t

]
+g2

t Σ

= 2ht Σt +g2
t Σ

=⇒ g2
t Σ=

d

dt
Σt−2ht Σt ,

where the last step comes from the identity

Σt = E[(xt−µt)(xt−µt)
⊺] = E[xtx

⊺
t −xt µ

⊺
t −µtx

⊺
t +µt µ

⊺
t ] = E[xtx

⊺
t ]−µt µ

⊺
t .

Now substituting our noise kernel p(xt |x0) =N (αtx0,σ
2
t Σ), we have ht in terms of αt as

d

dt
µt = E [ f (xt , t)] = htE [xt ] = ht µt = α ′t x0

=⇒ ht =
α ′t
αt

=
dlogαt

dt
,

and gt in terms of σt as

g2
t Σ=Σ

′
t−2ht Σt =Σ

′
t−

2α ′t
αt

Σt = 2σtσ
′
tΣ−

2α ′t
αt

σ2
t Σ

=⇒ gt =

√

2σ2
t

(
σ ′t
σt
− α ′t

αt

)

=

√

−σ2
t

dlogSNRt

dt
.

This establishes the correspondence between the time evolution of the noise kernel and the under-

lying diffusion SDE for a general Gaussian noising schedule.

Variance Preserving schedules Throughout this work, we focus on noise that is distribution-

ally matched and use the variance-preserving process [55] which enforces a balance between the

creation of noise and destruction of signal as σ2
t = 1−α2

t . Setting ht =
α ′t
αt

≜−1
2βt , we have

gt =

√

2σ2
t

(
σ ′t
σt
− α ′t

αt

)

=

√

−2(α2
t +σ2

t )
α ′t
αt

=
√

βt ,

which gives the well-known forwards SDE

dx =−1

2
βtxdt +

√

βtRdw.
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Optimal Transport schedules The Optimal Transport (OT) schedule proposed in [58] is an-

other type of one-parameter noising process that interpolates between a prior p(x1) and the data

distribution p(x0). It induces ‘straight paths’ in the corresponding flow ODE. Given the noising

parameters σt = t and αt = 1− t, we can convert the flow ODE to an SDE,

dxt =−
1

1− t
xt dt +

√

2t

1− t
Rdwt ,

where ht = − 1
1−t

and gt =
√

2t
1−t

. The SDE trajectories samples p(xt |x0) = N (αtx0,σ
2
t Σ). In

practice, following [58], one can integrate 0 < t < 1− ε to ensure numerical stability, where ε is a

small number.

Schedule considerations With a family of parameterized schedules chosen, it is still important

to determine how to set the time scaling of noise addition to the time t ∈ (0,1). Throughout this

work, we used the variance preserving process with the log-linear SNR schedule proposed in [62],

which is favorable for likelihood weighted objectives such as ELBO. Many other possible βt have

been explored in the literature, such as the linear and cosine schedule [63], which can be used to

implicitly weigh what noise levels receive the most weight during training time and get the most

resolution during integration. With that said, it is important to note that importance weighting

across time and varying-timestep SDE and ODE solvers mean that all of these choices are largely

for convenience of implementation and variance reduction. In the most general case, one could

parameterize arbitrary two parameter schedules of αt and σt as monotonic functions satisfying the

boundary conditions (σ0 = 0,α0 = 1) and (σ1 = 1,α1 = 0).

B.3 Training with likelihood on an Evidence Lower Bound (ELBO)

Denoising loss Diffusion models can be parameterized in terms of a denoising neural network

x̂θ(x, t) that is trained to predict x0 given a noisy sample xt . Typically this is done by minimizing

a denoising loss

L(x0;θ) = Ext∼p(xt |x0),t∼Unif(0,1)

[
τt∥x̂θ(xt , t)−x0∥2

2

]

where τt is a time-dependent weighting to emphasize the loss at particular points in time (noise

levels) [55]. Training with this loss can be directly related to score matching and noise prediction

which can be cast as alternative parameterizations of the target output of the network [62].

ELBO We train our diffusion models by optimizing a bound on the log marginal likelihood of

data together with optional auxiliary losses. As shown in Information-Theoretic Diffusion models

[64] and building on Variational Diffusion models [62], we can express a lower bound on the the

log-likelihood of data in terms of the weighted average of mean-square error across diffusion time
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as

log p(z0) =−
N

2
log(2πe)+

1

2

∫ ∞

0

(
N

1+SNR
−mmse(z0,SNR)

)

dSNR

=−N

2
log(2πe)− 1

2

∫ 1

0

(
N

1+SNRt
−mmse(z0,SNRt)

)

SNR′t dt

≥−N

2
log(2πe)− 1

2

∫ 1

0

(
N

1+SNRt
−Ep(zt |z0)

[
∥ẑ(zt , t)− z0∥2

2

]
)

SNR′t dt,

where N is the dimensionality of z0, the Signal-to-Noise Ratio (SNR) is defined SNRt =
α2

t

σ2
t

with

σ2
t = 1−α2

t for VP diffusions, and mmse is the minimum achievable mean square error under
the forwards noising model as a function of the SNR. We can then apply the change of variables
formula to transform this bound as

log p(x0) = log p(z0)− logdetR

≥− N

2
log(2πe)− logdetR− 1

2

∫ 1

0

(
N

1+SNRt

−Ep(xt |x0)

[
∥R−1 (x̂(xt , t)−x0)∥2

2

]
)

SNR′t dt

=−1

2
logdet(2πeRR⊺)

︸ ︷︷ ︸

Entropy of the Gaussian prior

− 1

2
Ep(xt |x0)p(t)

[

SNR′t

(
N

1+SNRt

−∥R−1 (x̂(xt , t)−x0)∥2
2

)]

︸ ︷︷ ︸

Deviation from Gaussianity (Bound)

≜L(x;θ),

where p(t) is uniformly distributed on (0,1).

It is important to note that, for continuous data, probability density and information content is

unbounded and can become pathologically high (e.g., with infinite precision one could encode

the entire Protein Data Bank in the decimal expansion of a single coordinate). In practice we may

handle this by manipulating the noise schedule to bound the maximum attainable SNRt [64].

B.4 Auxiliary training objectives

There has been a consistent tension in the diffusion modeling literature between training on likelihood-

based objectives, likelihood-related objectives, and auxiliary domain-specific objectives [55, 65].

Here we consider a few objectives in the latter category. Generally, diffusion models can be equiv-

alently treated in the frameworks of score matching, noise prediction, denoising, which all can be

considered as different parameterizations of the problem of learning a posterior-optimal denoiser

which minimizes mean square denoising error across time.

ELBO-weighted unwhitened MSE While the information content of the structures is measured

by a SNR-weighted average of mean square error in whitened space, we also consider similarly-

weighted objective measuring errors in x-space as

Lx(x0;θ) =−Ext∼p(xt |x0),t∼Unif(0,1)

[

ω−2SNR′t ∥x̂θ(xt , t)−x∥2
2

]

. (1)

where we set the scale factor ω to give x units of nanometers. We found this regularization to be

important because in practice we care about absolute errors in x space, i.e. absolute spatial errors,
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at least as much as we care about errors in z space, which will correspond under our covariance

models (Supplementary Appendix D) to relative local geometries. These objectives share the same

minima, i.e. they will be minimized by the posterior optimal denoiser under the diffusion process,

but for an approximately trained parametric model with limited capacity will trade off different

errors in which statistics of data are emphasized in reconstruction.

Substructure MSE and Perceptually-motivated metrics As has often been emphasized in the

literature in generative models of images, not all bits are equally important to perception or, more

generally, sample utility. For example, it takes the same number of bits to encode the average color

of an image as it does to encode the color of one single pixel, but mis-estimation of the average

color will generally be much more noticeable to humans.

As a result of this, many diffusion models eschew training purely on likelihood-based metrics,

for example using flat weightings of the denoising loss across diffusion time which implicitly

emphasize the importance of low-frequency statistics [55]. Other generative models have used

domain-specific metrics such as FAPE for proteins [66] as the denoising objective for diffusion

training [67].

Here we consider auxiliary training objectives for protein backbone diffusion models which em-

phasize some conventionally important aspects of structural similarity. Since diffusion models

trained to optimality will learn the posterior mean denoising function, which minimizes mean

squared error of reconstruction from the forward process, we consider only squared-error objec-

tives.

Substructure Aligned Squared Error Minimizing ELBO-weighted mean squared error trains

a diffusion model to learn all statistics of the data at all length scales, but for proteins we know that

there are some substructural statistics which may be stronger and more important to correctly es-

timate than others. For example, proteins often exhibit substructures, such as secondary structural

elements or domains connected by more flexible linkers. We can encourage the denoiser to prior-

itize these substructural statistics of the data by optimizing the mean squared error under optimal

superposition as

Dsubstructure(x,x
′) = ∑

Mi∈{Mi}
min

T∈SE(3)
∥xMi−T◦x′Mi∥2

2,

where {Mi} is a set of substructures and the inner optimization problem can solved via the optimal

superposition with a Kabsch or quaternion-based method [68, 69]. We consider the following

substructures for measuring aligned squared error:

• Global structure. M= [[1,N]]. In this case, the substructure aligned MSE will simply be a

rescaling of the squared optimal RMSD after superposition.

• Fragment structure. Mi = {i−m, . . . , i+m}. We consider fragments of radius m = 7

residues centered around each residue i.

Distance Squared Error Many aspects of protein geometry are driven by specific packing and

steric interactions that depend more strongly on interatomic distances and less strongly on relative
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orientations. We consider a loss measuring the squared error of proteins when represented by

distance matrices of their Cα carbon atoms as

Ddistance(x,x
′) = ∑

i j

(DCA
i j (x)−DCA

i j (x′))2.

Normalizing Auxiliary Losses Across Time and Schedules All of the aforementioned losses

can be used as denoising losses by minimizing Ep(x0,xt ,t) [D(x̂(xt , t),x0)], but (i) an unweighted av-

erage will be dominated by loss values at high t and (ii) values of these losses will be incomparable

if the noise schedule of the diffusion is changed, complicating evaluation. To address both of these

issues, we propose (i) to normalize the losses with an approximate estimate of the time-dependent

error magnitude and (ii) to reweight the average with respect to time t as an average with respect

to a schedule-invariant statisic via importance weights.

One intuitive schedule-invariant statistic is the Signal to Signal plus Noise Ratio SSNRt ≜
α2

t

α2
t +σ2

t
=

SNRt

SNRt+1 . For Variance-Preserving diffusion, this value simplifies to SSNRt = α2
t ∈ [0,1]. Since t

is uniformly distributed on (0,1) and SSNRt goes from 1 to 0, we can interpret SSNR1−t as a

CDF and compute p(SSNRt) =
d
dt

SSNR−1
t (SSNRt). We can then compute importance weights

as 1
p(SSNRt)

and combine that with normalization to yield normalized denoising training losses

as

LD(x0;θ) = Ext ,x′t∼p(xt |x0),t∼Unif(0,1)

[
1

p(SSNRt)

D(x̂(xt , t);x0)

D(x′t ;x0)

]

.

Transform Squared Error Our proposed method for parameterizing predicted structure in terms

of predicted inter-residue geometries (Supplementary Appendix F) leverages predicted inter-residue

transforms Ti j between every pair of residues on the graph. When training on ELBO, these pre-

dicted inter-residue transforms are only indirectly supervised by backpropagation but we can also

directly supervise their values towards the true denoised inter-residue geometries to potentially

stabilize and accelerate learning. This is not dissimilar from auxiliary prediction of inter-residue

distances as done in end-to-end structure prediction methods such as AlphaFold [66]. Training

these quantities directly can be useful because (i) they are SE(3) invariant and typically lower-

variance targets than raw coordinates and (ii) they are aligned with the overall denoising objective

in the sense that perfect inter-residue geometry prediction will yield a perfectly denoised structure

(assuming sufficient equilibration time of the backbone solver).

We score the agreement between the predicted T̂θ
i j(xt) and actual Ti j(x0) inter-residue geometries

as the sum of squared errors in the predicted translation vectors and rotation matrices, i.e.

Ltransform(x0;θ) = ∑
i j∈G(x)

∥
∥
∥ti j(x0)− t̂θ

i j(xt)
∥
∥
∥

2

2
+
∥
∥
∥Ri j(x0)− R̂θ

i j(xt)
∥
∥
∥

2

2
,

where the translational disagreement is scaled to give it units of nanometers.
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B.5 Sampling with the Reverse-time SDE

In whitened space, we can express the reverse-time dynamics for the forwards-time SDE in terms

of another SDE [55, 70] that depends on the score function of the time-dependent marginals

∇z log pt(z) as

dz = ht z−g2
t ∇z log pt(z) dt +gt dw̄.

We can similarly express this in the score function of the transformed coordinate system as

dx = ht x−g2
t RR⊺∇x log pt(x) dt +gt R dw̄.

For the variance-preserving process, the reverse-time SDE reduces to

dx =

(

−1

2
x− RR⊺∇x log pt(x)

)

βt dt +
√

βt R dw̄.

We can sample from the diffusion model by sampling the “prior” (t = 1 distribution) and then

integrating the Reverse-time SDE backwards from t = 1 to t = 0. We can rewrite the above SDE

in directly in terms of our optimal denoising network x̂θ(x, t) (trained as described above) by

leveraging the relationship [55, 62] that

∇x log pt(x) =
(
σ2

t RR⊺)−1
(αt x̂θ(x, t)−x) .

This yields the reverse-time SDE for VP diffusions in terms of the optimal denoising network

x̂θ(x, t) as

dx =

(

−1

2
x−RR⊺ (RR⊺)−1

1−α2
t

(αt x̂θ(x, t)−x)

)

βt dt +
√

βt R dw̄

=

(

−1

2
x− αt x̂θ(x, t)−x

1−α2
t

)

βt dt +
√

βt R dw̄

=

(

−αt x̂θ(x, t)+x− 1
2 x(1−α2

t )

1−α2
t

)

βt dt +
√

βt R dw̄

=

(
αt +1

2(1−α2
t )

x− αt

1−α2
t

x̂θ(x, t)

)

βt dt +
√

βt R dw̄.

B.6 Sampling with the Probability Flow ODE

Probability Flow ODE for deterministic encoding and sampling Remarkably, it is also possi-

ble to derive a set of deterministic ordinary differential equations (ODEs) whose marginal evolu-

tion from the prior is identical to the above SDEs [55, 71]. In the context of our covariance model,

this can be expressed either in terms of the score function ∇x log pt(x) as

dx

dt
= htx+

1

2
g2

t RR⊺∇x log pt(x).
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For the variance-preserving process, this reduces to

dx

dt
=−βt

2
(x+RR⊺∇x log pt(x)) .

We can alternatively express it in terms of the optimal denoiser network x̂θ(x, t) as

dx

dt
=−βt

2

(

x+RR⊺ ((1−α2
t )RR⊺)−1

(αt x̂θ(x, t)−x)
)

=−βt

2

(
x+(1−α2

t )
−1 (αt x̂θ(x, t)−x)

)

=−βt

2

(

x

(

1− 1

1−α2
t

)

+ x̂θ(x, t)
αt

1−α2
t

)

=
βt

2

(

x
αt

1−α2
t

− x̂θ(x, t)
αt

1−α2
t

)

=
1

2

αtβt

1−α2
t

(

x− x̂θ(xt , t)

αt

)

.

The ODE formulation of sampling is especially important because it enables reformulating the

model as a Continuous Normalizing Flow [72, 73], which can admit efficient and exact likelihood

calculations using the adjoint method [73].

B.7 Conditional sampling from the posterior under auxiliary constraints

Bayesian posterior SDE for conditional sampling An extremely powerful aspect of the reverse

diffusion formulation is that it can also be extended to enable conditional sampling from a Bayesian

posterior p(x|y) by combining with auxiliary classifiers log pt(y|x) and without re-training the base

diffusion model [55]. When extended to the correlated diffusion case, this gives the SDE

dx = ht x−g2
t RR⊺ (∇x log pt(x)+∇x log pt(y|x)) dt +gt R dw̄.

For the variance-preserving process, the SDE reduces to

dx =

(

−1

2
x− RR⊺ (∇x log pt(x)+∇x log pt(y|x))

)

βt dt +
√

βt R dw̄

=

(
αt +1

2(1−α2
t )

x− αt

1−α2
t

x̂θ(x, t)− RR⊺∇x log pt(y|x)
)

βt dt +
√

βt R dw̄.

Bayesian posterior ODE for conditional sampling In the context of our covariance model and

conditional constraints, the Probability Flow ODE for sampling from the posterior is

dx

dt
= htx−

1

2
g2

t RR⊺ (∇x log pt(x)+∇x log pt(y|x)) .

For the variance-preserving process, the ODE reduces to

dx

dt
=−βt

2
(x+RR⊺ (∇x log pt(x)+∇x log pt(y|x)))

=
1

2

αtβt

1−α2
t

(

x− x̂θ(x, t)

αt

)

− βt

2
RR⊺∇x log pt(y|x).
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B.8 Related work

Subspace diffusion models [74] also consider correlated diffusion, with a particular emphasis on

focusing the diffusion on the most relevant factors of variation for statistical and computational

efficiency. Additionally, latent-space diffusion models [75] might be viewed as learning a trans-

formed coordinate system in which the diffusion process can more efficiently model the target

distribution. Our work provides further evidence for how correlated diffusion may be an underuti-

lized approach to distributional modeling and shows how domain knowledge can be incorporated

in the form of simple constraints on the covariance structure of the noise process.

C Low-Temperature Sampling for Diffusion Models

Maximum likelihood training of generative models enforces a tolerable probability of all data

points and, as a result, misspecified or low-capacity models fit by maximum likelihood will typi-

cally be overdispersed. This can be understood through the perspective that maximizing likelihood

is equivalent to minimizing the KL divergence from the model to the data distribution, which is the

mean-seeking and mode-covering direction of KL divergence.

To mitigate overdispersion in generative models, it is common practice to introduce modified sam-

pling procedures that increase sampling of high-likelihood states (mode emphasis, precision) at

the expense of reduced sample diversity (mode coverage, recall). This includes approaches such

as shrunken encodings in normalizing flows [76], low-temperature greedy decoding algorithms for

language models [77], and stochastic beam search [78].

A powerful but often intractable way to trade diversity for quality in generative models is low-

temperature sampling. This involves perturbing a base distribution p(x) by exponentiating with an

inverse temperature rescaling factor λ and renormalizing as pλ (x) =
1
Z

p(x)λ . As the inverse tem-

perature becomes large λ ≪ 1, this perturbed distribution will trade diversity (entropy) for sample

quality (likelihood) and eventually collapse into the global optimum as λ →∞. Unfortunately, low

temperature sampling in the general case will require expensive iterative sampling methods such

as Markov Chain Monte Carlo (MCMC) which typically offer no guarantee of convergence in a

practical amount of time [79].

Low temperature and diffusion models The issue of trading diversity for sample quality in

diffusion models has been discussed previously, with some authors reporting that simple modifica-

tions like upscaling the score function and/or downscaling the noise were ineffective [80]. Instead,

classifier guidance and classifier-free guidance have been widely adopted as critical components

of contemporary text-to-image diffusion models such as Imagen and DALL-E 2 [81–83].

Equilibrium versus Non-Equilibrium Sampling Here we offer an explanation for why these

previous attempts at low-temperature sampling did not work and produce a novel algorithm for

low-temperature sampling from diffusion models. We make two key observations, explained in

the next two sections

1. Upscaling the score function of the reverse SDE is insufficient to properly re-weight pop-

ulations in a temperature perturbed distribution.
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2. Annealed Langevin dynamics can sample from low temperature distributions if given

sufficient equilibration time.

C.1 Reverse-time SDE with temperature annealing

The isotropic Gaussian case To determine how the Reverse SDE can be modified to enable

(approximate) low temperature sampling, it is helpful to first consider a case that can be treated ex-

actly: transforming a Gaussian data distributionN (x0;µdata,σ
2
data) to a Gaussian priorN (x1;0,σ2

prior).
Under the Variance-Preserving diffusion, the time-dependent marginal density will be given by

pt(x) =N
(

x;αtµdata, α2
t σ2

data +(1−α2
t )σ

2
prior

)

,

which means that the score function st will be

st ≜ ∇x log pt(x)

=
αtµdata−x

α2
t σ2

data +(1−α2
t )σ

2
prior

.

Now, suppose we wish to modify the definition of the time-dependent score function so that, instead

of transitioning to the original data distribution, it transforms to the perturbed data distribution, i.e.

so the it transitions to 1
Zlambda0

p0(x)
λ0 . For a Gaussian, this operation will simply multiply the

precision (or equivalently, divide the covariance) by the factor λ0. The perturbed score function

will therefore be

s
perturb
t =

αtµdata−x

α2
t σ2

data/λ0 +(1−α2
t )σ

2
prior

.

Based on this, we can express the perturbed score function as a time-dependent rescaling of the

original score function with scaling based on the ratios of the time-dependent inverse variances

as

s
perturb
t = st

(1−α2
t )σ

2
prior +α2

t σ2
data

(1−α2
t )σ

2
prior +α2

t σ2
data/λ0

.

Therefore, to achieve a particular inverse temperature λ0 for the data distribution, we should rescale

the learned score function by time-dependent factor

λt =
(1−α2

t )σ
2
prior +α2

t σ2
data

(1−α2
t )σ

2
prior +α2

t σ2
data/λ0

≈ λ0

α2
t +(1−α2

t )λ0

where in the last step we assumed σ2
data = σ2

prior. So one interpretation of the previously observed

insufficiency of low temperature sampling based on score-rescaling [80] is that these were ham-

pered by uniform (constant temperature or isothermal) rescaling the score function in time instead

of a way that accounts for the shift of influence between the prior and the data distribution.
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Supplementary Figure 1: The Hybrid Langevin SDE can sample from temperature-perturbed

distributions. The marginal densities of the diffusion process pt(x) (top left) gradually transform

between a toy 1D data distribution at time t = 0 and a standard normal distribution at time t = T .

Reweighting the distribution by inverse temperature λ0 as 1
Zλ0

pt(x)
λ0 (left column, bottom two

rows) will both concentrate and reweight the population distributions. The annealed versions of

the reverse-time SDE and Probability Flow ODEs (middle columns) can concentrate towards local

optima but do not correctly reweight the relative population occupancies. Adding in Langevin

dynamics with the Hybrid Langevin SDE (right column) increases the rate of equilibration to

the time-dependent marginals and, when combined with low-temperature rescaling, successfully

reweights the populations (bottom right).
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Temperature-adjusted reverse time SDE We can modify the reverse-time SDE by simply

rescaling the score function with the above time-dependent temperature rescaling as

dx = ht x−g2
t λtRR⊺∇x log pt(x) dt +gt R dw̄.

For the variance-preserving process, this reduces to

dx =

(

−1

2
x− λtRR⊺∇x log pt(x)

)

βt dt +
√

βt R dw̄

=

(

−1

2
x−λt

αt x̂θ(x, t)−x

1−α2
t

)

βt dt +
√

βt R dw̄.

Temperature adjusted probability flow ODE Similarly for the Probability Flow ODE we can

rescale as

dx

dt
= htx−

1

2
g2

t λtRR⊺∇x log pt(x).

For the variance-preserving process, this reduces to

dx

dt
=−βt

2
(x+λtRR⊺∇x log pt(x))

=
βt

2

(

x
αt +λt−1

1−α2
t

− x̂θ(x, t)
λtαt

1−α2
t

)

.

Rescaling does not reweight We derived the above rescaling rationale by considering a uni-

modal Gaussian, which has the simple property that the score of the perturbed diffusion can be

expressed as a rescaling of the learned diffusion. This will not be true in general, and sure enough

we find that the above dynamics do drive towards local maxima but do not reweight populations

based on their relative probability (Supplementary Figure 1) as true low temperature sampling

does. To address this, we next introduce an equilibration process that can be arbitrarily mixed in

with the non-equilibrium reverse dynamics. Concurrent with this work, [84] identified this problem

as well and proposed several potential solutions based on MCMC.

C.2 Annealed Langevin Dynamics SDE

Instead of reversing the forwards time diffusion in a non-equilibrium manner, we can also use

the learned time-dependent score function ∇x log pt(x) (expressed in terms of the optimal de-

noiser x̂θ(x, t)) to do slow, approximately equilibrated sampling with annealed Langevin dynamics

[85].

While the annealed Langevin dynamics of [85] was originally framed via discrete iteration, we can

recast it in continuous reverse-time with the SDE

dx =−g2
t

ψ

2
RR⊺λ0∇x log pt(x) dt +gt

√
ψ R dw̄.
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For variance-preserving process, this reduces to

dx =−βtψ

2
λ0RR⊺∇x log pt(x) dt +

√

βtψ R dw̄,

where ψ is an “equilibration rate” scaling the amount of Langevin dynamics per unit time. As

ψ → ∞ the system will instantly equilibrate over time (require infinite number of sampling steps),

constantly adjusting to the changing score function. In practice, we can think about how to set

these parameters by considering a single Euler-Maruyama integration step in reverse time with

step size 1
T

where T is the total number of steps

x
t− 1

T
← xt +

βtψ

2T
λ0RR⊺∇xt

log pt(xt)+

√

βtψ

T
R ϵ ϵ∼N (0,I),

which is precisely preconditioned Langevin dynamics with step size
βtψ
T

. For a sufficiently small

interval (t−dt, t) we can keep the target density approximately fixed while increasing T to do an

arbitrarily large number of Langevin dynamics steps, which will asymptotically equilibrate to the

current density log pt(x).

C.3 Hybrid Langevin Reverse-time SDE

We can combine the annealed Reverse-time SDE and the Langevin Dynamics SDE into a hybrid

SDE that infinitesimally combines both dynamics. Denoting the inverse temperature as λ0 and the

ratio of the Langevin dynamics to conventional dynamics as ψ , we have

dx = ht x−g2
t

(

λt +
λ0ψ

2

)

RR⊺∇xt
log pt(xt) dt +gt

√

(1+ψ) R dw̄.

For the variance-preserving process, it reduces to

dx =

(

−1

2
x−

(

λt +
λ0ψ

2

)

RR⊺∇xt
log pt(xt)

)

βt dt +
√

βt(1+ψ) R dw̄

=

(

−1

2
x−
(

λt +
λ0ψ

2

)

RR⊺ (RR⊺)−1

1−α2
t

(αt x̂θ(x, t)−x)

)

βt dt +
√

βt(1+ψ) R dw̄

=

(

−1

2
x−
(

λt +
λ0ψ

2

)
αt x̂θ(x, t)−x

1−α2
t

)

βt dt +
√

βt(1+ψ) R dw̄,

where we highlight in pink the terms that, when set to unity, recover the standard reverse time

SDE.

Representative samples using this modified SDE are shown in Supplementary Figure 2. Without

the low temperature modification, this idea is very reminiscent of the Predictor Corrector sampler

proposed by [55], where those authors explicitly alternated between reverse-time diffusion and

Langevin dynamics while we fuse them into a single SDE.
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Inverse temperature

1.0 1.4 2.0 4.0 8.0

Supplementary Figure 2: Low-temperature sampling drives towards high-likelihood states

with increased secondary structure content. Increasing the inverse temperature λ increases the

likelihood (ELBO) for unconditional samples from the backbone diffusion model (left, top). These

high-likelihood states exhibit increased rates of backbone hydrogen bonding that underlie sec-

ondary structure (left, middle). We observe that the ELBO itself (which is sequence-independent)

is strongly associated with hydrogen bonding rates, and the highest likelihood states are partic-

ularly associated with increased locality of hydrogen bonding at the primary sequence distance

|i < j| < 8 (left, bottom). These relationships can be seen within the evolution of single samples

under fixed random seeds (each row, right), where structures sampled at higher inverse tempera-

ture λ have increased secondary structure content and tighter packing as compact globular folds.

The model shown is ChromaBackbone v0, while ChromaBackbone v1 generally has higher sec-

ondary structure compositions at lower inverse temperature.

Equilibration is not free Generally speaking, as we increase the amount of Langevin equilibra-

tion with ψ , we will need to simultaneously increase the resolution of our SDE solution to maintain

the same level of accuracy. However, we found that even a modest amount of equilibration was

sufficient to considerably improve sample quality in practice with ψ ∈ [1,8]. With a larger ψ , a

smaller time step is needed to ensure the accuracy of SDE integration.

Even more equilibration Lastly, while the Hybrid Langevin-Reverse Time SDE can do an ar-

bitrarily large amount of Langevin dynamics per time interval which would equilibrate asymp-

totically in principle, these dynamics will still inefficiently mix between basins of attraction in

the energy landscape when 0 < t ≪ 1. We suspect that ideas from variable-temperature sampling

methods, such as simulated tempering [86] or parallel tempering [87], would be useful in this

context and would amount to deriving an augmented SDE system with auxiliary variables for the

temperature and/or copies of the system at different time points in the diffusion. Additionally,

momentum-aware approaches such as those based on Hamiltonian Monte Carlo [84] may help
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increase equilibration rates and thus enable better satisfication of conditioning criteria with fewer

objective function evaluations.

D Polymer-Structured Diffusions

Most prior applications of diffusion models to images and molecules leveraged uncorrelated dif-

fusion in which data are gradually transformed by isotropic Gaussian noise. We found this ap-

proach to be non-ideal for protein structure applications for two reasons. First, noised samples

break simple chain and density constraints that almost all structures satisfy such as basic size scal-

ing laws of the form Rg ∝ Nν , where the scaling exponent is approximately ν ≈ 0.4 [88, 89].

These mismatches between the data distribution and the noising process force the model to allo-

cate capacity and training time towards re-learning basic and well-understood constraints. Second,

when high-noise samples are highly “out-of-distribution” from the data distribution, this can limit

the performance of efficient domain-specific neural architectures for molecular systems, such as

sparsely-connected graph neural networks. To this end, we introduce multivariate Gaussian dis-

tributions for protein structures that (i) are SO(3) invariant, (ii) enforce protein chain and radius

of gyration statistics, and (iii) can be computed in linear time. Throughout this section, we will

introduce covariance models for protein polymers (which can be thought of as a un-whitening

transform R, see Appendix B) with parameters that can be fit offline from training the diffusion

model. We provide an overview figure that illustrates the different Gaussian distributions presented

in this section, their corresponding diffusion processes, and the respective distance statistics which

they capture in Supplementary Figure 3.

D.1 Diffusion processes predictably affect molecular distances

Here we show how variance-preserving diffusion processes (Supplementary Appendix B) will pre-

dictably affect molecular geometry as a function of the covariance structure of the noising process.

We will use this result to reflect on how the covariance structure should be designed. Squared

distance D2
i j and the squared radius of gyration R2

g are both functions that can be expressed as

quadratic forms in the coordinates. That means they can be expressed as a function F(x) = x⊺Ax

where A is a matrix weighting the cross-terms as F(x) = ∑i, j Ai jxix j. Suppose that we want to

understand the behavior of these quantities as they evolve under the forward process of a diffusion

model. Recall that we can write samples from the forward diffusion process as

xt = αtx0 +

√

1−α2
t Rz, z∼N (0,I).

So we can write the time-expectation of any quadratic form as

Ep(xt |x0) [F(x)] = Ez

[

(αtx0 +

√

1−α2
t Rz)⊺A(αtx0 +

√

1−α2
t Rz)

]

= F(αtx0)+Ez

[

F(
√

1−α2
t Rz)+αt

√

(1−α2
t )
(
x
⊺
0Rz+Rz⊺x0

)
]

= α2
t F(x0)+Ez

[

F(
√

1−α2
t Rz)

]

= α2
t F(x0)+(1−α2

t ) Epmodel(x) [F(x)] .
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ChainResidue

Residue Gas

Ideal Chain

Globular 

(Monomer)

Globular

(Complex)

Diffusion time (NSNR)
10

Monomer Complex

Supplementary Figure 3: Polymer-structured diffusions capture multiple scales of distance

statistics in proteins. A residue gas covariance model (top row, Appendix D.4) enforces atomic

proximity within residues, but ignores chain correlations and length-dependent Rg scaling effects.

The ideal chain covariance model (second row, Appendix D.2), a standard entry point for polymer

physics, captures atomic proximity along a chain but does not capture the length-dependent Rg

scaling driven by polymer collapse. The globular covariance model (third and fourth rows, Ap-

pendix D.3), combines chain covariance with an analytic scaling law that reproduces the empirical

Rg scaling of globular proteins and complexes. All of these covariance models admit computation

of matrix-vector products involving covariance and inverse-covariance matrices with linear time

complexity.

The squared distance is a quadratic form, so diffusion processes will simply linearly interpolate to

the behavior of the prior as

Ep(xt |x0)

[
D2

i j(xt)
]
= α2

t D2
i j(x0)+(1−α2

t ) Epprior(x)

[
D2

i j(x)
]

and squared radius of gyration will similarly evolve under the diffusion as

Ep(xt |x0)

[
R2

g(xt)
]
= α2

t R2
g(x0)+(1−α2

t ) Epprior(x)

[
R2

g(x)
]
.

Punchline Because variance-preserving diffusion models will perform simple linear interpola-

tions between the average squared distances and Rg of the data distribution and of the prior, we

should focus on covariance structures that empirically match these properties as closely as pos-

sible. Two primary ways will be in the chain constraint, i.e., that Di,i+1(xt) should always be

small and match the data distribution, and the density constraint of how R2
g(xt) should behave as a

function of protein length and typical packing statistics.
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D.2 Covariance model #1: Ideal Chain

In this section, we introduce one of the simplest covariance models that enforces the chain con-

straint but ignores the Rg scaling. It will interpolate between the data distribution and the ensemble

of unfolded random coils.

Noise process We index our amount of noise with a diffusion time t ∈ [0,1]. Given a denoised

structure x0, a level of noise t, and a noise schedule αt , we sample perturbed structures from a

Multivariate Gaussian distribution p(xt |x0) =N (αtx0,(1−α2
t )Σ) as

xt = αtx0 +

√

1−α2
t Rz, z∼N (0,I),

where the covariance matrix enforcing our chain constraint Σ= RR⊺ can be expressed in terms of

its square root R, which is defined below.

Key to our framework is a matrix R whose various products, inverse-products, and transpose-

products with vectors can be computed in linear time. We define the matrix R in terms of its

product with a vector f (z) = Rz as

f (z)i = x̃i +δ x̃1−∑
k

x̃k

N
, where x̃i = a

i

∑
k=1

zk.

The inverse product f−1(x) = R−1x is then

f−1(x)i =
x̃i− x̃i−1

a
, where x̃i = xi− x1 +

1

δ ∑
k

xk

N
.

This definition of R induces the following inverse covariance matrix on the noise, which possesses

a special structure of

Σ
−1 = (RR⊺)−1 =

1

a2












1 −1

−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 1












+
1

(Naδ )2
11⊺.

The parameter a sets the length scale of the chain and the parameter δ sets the allowed amount of

translational noise about the origin. This latter parameter is important for training on complexes

where each chain may not have a center of mass at 0.

D.2.1 Covariance model #1 has ideal chain scaling Rg ∝ N(1/2)

Our ideal-chain model is a simple Brownian motion and so the interatomic residual is Gaussian

distributed with zero mean and a2|i− j| variance, i.e.,
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ri j ∼N (0,a2|i− j|).

The expected squared norm for a Multivariate Normal Distribution (MVN) with spherical covari-

ance is ∥µ∥2
2 + kσ2 where k is the dimensionality, so we have

Ep(xt |x0)

[
D2

i j(xt)
]
= α2

t D2
i j(x0)+(1−α2

t )3a2|i− j|.

When αt = 0, the expected squared distances are those of the data distribution, while when αt = T ,

they are those on an ideal Gaussian chain.

To compute the expected radius of Gyration, we can use the identity that it is simply half of the

root mean square of inter-residue distances

1

2N2 ∑
i, j

Epprior

[

∥x j
t −xi

t∥2
2

]

=+
1

2N2 ∑
i, j

(1−α)3a2|i− j|

= 3a2 1

2N2 ∑
i, j

|i− j|

= 3a2 1

N2

N

∑
i=1

N

∑
j=i

j− i

= 3a2 N

6

(
N2−1

N2

)

.

Therefore, we can also view the mean behavior of the diffusion as linearly interpolating the squared

radius of gyration as

Ep(xt |x0)

[
R2

g (x)
]
= α2

t

(

R
(0)
g

)2
+(1−α2

t )3a2 N

6

(
N2−1

N2

)

.

When α → 0 and N ≪ 0, the term
(

N2−1
N2

)

≈ 1 we recover the well-known scaling for an ideal

chain with Ep(xt |x0)

[
R2

g(xt)
]
= Nl2

6 where the segment length is l =
√

3a.

D.3 Covariance model #2: Rg-confined Globular Polymer

In this section we consider how to extend the previous model in a way that preserves the chain

constraint while further restricting the scaling of the radius of gyration Rg. We consider a family of

two-parameter linear chain models that include the previous model as a special case. Specifically,

consider the following linear recurrence

xi = azi +bxi−1

= a
i

∑
j=2

bi− jz j +bi−1x1.
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Here, the parameter a is a global scale parameter setting the “segment length” of the polymer and

b is a “decay” parameter which sets the memory of the chain to fluctuations. Informally, at each

step along the chain, we bury 1−b percent of the way to the origin and step in a random direction

with step scale a. We recover a spherical Gaussian when b = 0 and the ideal Gaussian chain when

b = 1.

This system can also be written in matrix form as x = Rz with

R = a












vb0

vb1 b0

vb2 b1 b0

...
. . .

. . .

vbN−2 b1 b0

vbN−1 · · · b2 b1 b0












where v =
√

Var(x1).

We can solve for the equilibrium value of v via the condition Var(x1) = a2v2 =Var(xi) =Var(xi−1).
The solution is

Var(xi) = a2 Var(zi)+b2 Var(xi)

Var(xi)(1−b2) = a2

a2v2 =
a2

1−b2

v =
1√

1−b2
.

So our final recurrence is

xi = a
i

∑
k=2

bi−kzk +a
bi−1

√
1−b2

z1.

D.3.1 Expected Radius of Gyration E[R2
g] as a function of b

To compute the expected Radius of Gyration, we will use the identity R2
g(x) =

1
2N2 ∑i, j D2

i j(x),
which we can compute via the variance of the residual between xi and x j. Assuming j > i, we

have

x j− xi

a
=

j

∑
k=i+1

b j−kzk +
i

∑
k=2

(b j−k−bi−k)zk +
b j−1−bi−1

√
1−b2

z1,
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the variance of which is

1

a2
E
[
D2

i j(x)
]
=

1

a2
Var(x j− xi)

= Var

(
j

∑
k=2

b j−kzk +
b j−1

√
1−b2

z1−
i

∑
k=2

bi−kzk−
bi−1

√
1−b2

z1

)

= Var

(
j

∑
k=i+1

b j−kzk +
i

∑
k=2

(

b j−k−bi−k
)

zk +
b j−1−bi−1

√
1−b2

z1

)

=
j

∑
k=i+1

b2( j−k)+
i

∑
k=2

(b j−k−bi−k)2 +
(b j−1−bi−1)2

1−b2

=
2(1−b j−i)

1−b2
.

So the expected R2
g is

1

a2
E
[
R2

g (x)
]
=

1

a2
E

[

1

N2

N

∑
i=1

N

∑
j=i

D2
i j(x)

]

=
1

N2

N

∑
i=1

N

∑
j=i

1

a2
E
[
D2

i j(x)
]

=
1

N2

N

∑
i=1

N

∑
j=i

2(1−b j−i)

1−b2

=
2bN+1−b2N(N +1)+2b(N2−1)−N(N−1)

(b−1)3(b+1)N2

≈
(

6b

N
+1−b2

)−1

for b on (0,1) and N≫ 1

=
N

6b+N(1−b2)
.

The approximation in the penultimate step works quite well in practice and becomes more accurate

with growing N, which we can verify with the limit

∀b ∈ (0,1) lim
N→∞

2bN+1−b2N(N +1)+2b(N2−1)−N(N−1)

(b−1)3(b+1)N2

(
6b

N
+1−b2

)

= 1.

Limiting Behaviors We can verify that this result reproduces the expected limiting behavior of

an ideal unfolded chain when b→ 1 as

lim
b→1

1

a2
E
[
R2

g (x)
]
=

N

6
,

and of a standard normal distribution when b→ 0 as

lim
b→0

1

a2
E
[
R2

g (x)
]
= 1.
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R2
g Scaling To finish up, we can add back in our global scaling factor a to give

Ex∼pprior(x)

[
R2

g(x)
]
≈ Na2

6b+N(1−b2)
.

D.3.2 How to implement any R2
g scaling

Empirical analysis and biophysical models suggest that protein radii of gyration Rg will scale with

the number of residues N with scaling law

Rg = rNν ,

where r ≈ 2.0Å and ν ≈ 0.4 [88, 89].

Given this expected behavior of R2
g as a function of N, we can solve for the value of b(N) that

implements the correct scaling by solving

Ex∼pprior(x)

[
R2

g(x)
]
= (rNν)

2
=

Na2

6b+N(1−b2)
.

This gives a quadratic equation with the solution

beffective(N,a,r,ν) =
3

N
±N−ν

√

N2(ν−1)(N2 +9)− a2

r2
,

where the positive branch is the relevant one to us (the negative branch corresponds to a patholog-

ical solutions for small N), giving us the final result

beffective(N,a,r,ν) =
3

N
+N−ν

√

N2(ν−1)(N2 +9)− a2

r2
.

D.3.3 Standardizing the translational variance

Initializing the above recurrence relationship at equilibrium yields diverging marginal variance as

b→ 1. We can arbitrarily re-tune the translational variance of each chain with the following

mean-deflation operation enforcing ∑k
xk

N
= (1−ξ )∑k

x̃k

N
as

xi = x̃i−ξ ∑
k

x̃k

N
.

This operation has the inverse

x̃i = xi +
ξ

1−ξ ∑
k

xk

N
.
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D.3.4 Setting the parameters

First, we set the dimension-wise segment scaling factor a= 1.559 by fitting uniformly random φ ,ψ
chains with ideal geometry. We then dynamically set b for each chain to satisfy its predicted Rg

scaling with the relationship beffective(Natoms,a,r,ν) =
3

Natoms
+N−ν

atoms

√

N
2(ν−1)
atoms (N2

atoms +9)− a2

r2 ,

ν = 0.4, r = 0.66, and Natoms = 4Nresidues. We have two procedures for setting the values of ξ ,

leading to two different named covariance models:

1. Monomer Rg scaling. Set ξ so that the translational variance of each chain is unity. This

will cause chains to have a realistic radius of gyration but pile up at the origin.

2. Complex Rg scaling. Set ξ per chain by solving for the translational variance that also

implements the correct whole-complex Rg scaling as a function of the number of residues.

This will cause chains to preserve a realistic complex-level radius of gyration and also intra-

chain radius of gyration that scales as that of individual globular proteins.

D.3.5 Covariance factors and their inverses

When also including a centering transform, we can factorize the square root of the covariance

matrix, Σ
1
2 ≜ R, as a product of three matrices,

R = aRcenterRsumRinit

= a

(

I− ξ

N
11⊺
)












b0

b1 b0

b2 b1 b0

...
. . .

. . .

bN−2 b1 b0

bN−1 · · · b2 b1 b0























1√
1−b2

1

1
. . .

1

1












.

Each of these matrices can be multiplied with a vector with linear time and space complexity, as

Rcenter is a global shift, Rsum is a simple linear filter, and Rinit is a single-element adjustment.

Similarly, we can build up the inverse of the matrix square root as

R−1 =
1

a
R−1

initR
−1
sumR−1

center,

where the factor-wise inverses are

R−1
init =












√
1−b2

1

1
. . .

1

1












,
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and, via solving xi = ∑
i
j=1 bi− jz j for zi,

R−1
sum =












1

−b 1

−b 1
. . .

. . .

−b 1

−b 1












,

and, via the matrix inversion lemma,

R−1
center = I+

ξ

(1−ξ )N
11⊺.

D.3.6 Covariance determinant

Computing likelihoods of protein chains under the multivariate normal prior introduced in this sec-

tion or computing the Diffusion ELBO from Appendix B requires computation of the determinant

of the covariance matrix. Fortunately, the simple form of our covariance model leads to a simple

form for the determinant. With a chain length of N, we have

logdetR = N loga + logdetRcenter + logdetRsum + logdetRinit

= N loga + logdet

(

I+

(

−ξ 1

N

)

1⊺
)

+N logb0 +− 1

2
log(1−b2)

= N loga + log

(

1+1⊺
(

−ξ 1

N

))

+0 +− 1

2
log(1−b2)

= N loga + log(1−ξ )+0 +− 1

2
log(1−b2),

where logdetRcenter follows from the matrix determinant lemma. Thus, detR = aN(1−ξ )√
1−b2

.

D.3.7 Inverse covariance and intuition

We may examine the inverse of the globular covariance matrix to build intuition on the underlying

factors driving correlations in our system. For simplicity, we analyze5 the simpler case of the

uncentered covariance model with Σuncentered = aRsumRinitaR
⊺
initR

⊺
sum. It will be helpful to define

D ≜ R
−⊺
initR

−1
init and to note that the inverse sum operator can be expressed as R−1

sum = I−bP, where

P is a nilpotent shift matrix with ones on the first lower diagonal. We then have

D =












1−b2

1

1
. . .

1

1












,

5We thank Rian Kormos for this proof and analysis.
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and

Σ−1
uncentered =

1

a2
R−⊺sumR

−⊺
initR

−1
initR

−1
sum

=
1

a2
(I−bP⊺)D(I−bP)

=
1

a2

(
D−b(P⊺D+D⊺P)+b2P⊺DP

)

=
1

a2

(
D−b(P⊺+P)+b2P⊺P

)

=
1

a2












1 −b

−b 1+b2 −b

−b 1+b2 −b
. . .

. . .
. . .

−b 1+b2 −b

−b 1












,

where the penultimate line follows from the behavior of the shift operator P.

We can identify within this precision matrix a linear combination of two well-known precision

matrices: the precision of Brownian motion, i.e. the chain Laplacian matrix, and the precision for

a spherical Gaussian, i.e. an identity matrix, along some nuisance boundary conditions as

Σ
−1 =

1

a2












b












1 −1

−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 1












+(1−b)2I+











b(1−b)

b(1−b)






















.

This provides another simple characterization of our globular covariance model as being the re-

sult of a combination of ‘chain springs’ holding the polymer together locally along with ‘burial

springs’ pulling the chain to the origin. This simple energetic structure has been leveraged in prior

biophysical ‘toy models’ of hydrophobic collapse in proteins [90].

D.4 Alternative covariance model: Residue Gas

One useful parameterization of protein structure that strikes a balance between capturing the strong

spatial dependencies induced by covalent bonds while avoiding the accumulated lever effects of

internal coordinates is the so-called “Residue Gas” approach of AlphaFold [66]. In this parame-

terization, each residue is treated as a rigid body with local geometries fixed to their ideal values.

This will ensure idealized intra-residue geometries by construction, though inter-residue covalent

bond geometries, i.e. Ci−Ni+1 bonds, will need to be fixed by the predictor.

Prior work applying diffusion models for protein backbones has modeled the Cα carbons as in-

dependently distributed with a fixed variance, i.e. x
Cα
1 , . . . ,xCα

N ∼ N
(

0,σ2
Cα

)

[67, 91]. While
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previous frame-based approaches then model the remaining N,C,O atoms locked to the Cα carbon

with variable rotation and ideal geometry, we can simply model these atoms as normally dis-

tributed around Cα with a fixed standard deviation σintra. At full noise levels this will induce an

isotropic distribution over implied frame orientations while keeping these atoms close to the parent

Cα , and as such can be considered an off-ideality relaxation of frame diffusion models [67] or an

all-backbone-atom extension of i.i.d. Cα diffusion models [91].

This sequential Gaussian dependency structure within residues will imply that all coordinates are

jointly Gaussian with square root of the covariance matrix

Rgas =








Rresidue

Rresidue

. . .

Rresidue








and with block diagonal elements

Rresidue =







σintra σCα 0 0

0 σCα 0 0

0 σCα σintra 0

0 σCα 0 σintra






.

In our experiments we set the intra-residue standard deviation to σintra = 1 and the residue standard

deviation to σCα = 10. As can be seen in Supplementary Figure 3, this covariance implies trajec-

tories that are extremely similar to frame-based diffusion [67], but with the added benefit that we

can treat non-ideal bond stretch and angle fluctuations. We do lose the guarantee of fixed internal

ideal geometries, but this only requires learning the equivalent of ∼ 6 additional numbers.

E Random Graph Neural Networks

Prior approaches to predicting or generating protein structure have relied on neural network archi-

tectures with O(N2) or O(N3) computational complexity [66, 67, 91], in part motivated by the

need to process the structure at multiple length scales simultaneously and/or to reason over triples

of particles as is done during distance geometry methods. Here, we introduce an effective alter-

native to these approaches with sub-quadratic complexity by combining Message Passing Neural

Network [92] layers with random graph generation processes. We design random graph sampling

methods that reproduce the connectivity statistics of efficient N-body simulation methods, such as

the Barnes-Hut algorithm [93].

E.1 Background: efficient N-body simulation

One of the principal lessons of computational physics is that N-body simulations involvingO(N2)
dense interactions (e.g. gravitational simulations and molecular physics) can often be effectively

simulated with only O(N logN)-scaling computation. Methods such as Barnes-Hut [93] and the

Fast Multipole Method take advantage of a common particular property of (and inductive bias for)



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 37

physical systems that more distant interactions can be modeled more coarsely for the same level

of accuracy. For example, in cosmological simulations, you can approximate the gravitational

forces acting on a star in a distant galaxy by approximating that galaxy as a point at its center of

mass.

So far, most relational machine learning systems [94] for protein structure have tended to process

information in a manner that is either based on local connectivity (e.g. a k-Nearest Neighbors or

cutoff graphs) [95] or all-vs-all connectivity [66, 67, 91]. The former approach is natural for highly

spatially localized tasks such as structure-conditioned sequence design and the characterization of

residue environments, but it is less clear if local graph-based methods can effectively reason over

global structure in a way that is possible with fully connected Graph Neural Networks, such as

Transformers [96]. Here we ask if there might be reasonable ways to add in long-range reasoning

while preserving sub-quadratic scaling simply by random graph construction.

Related work Our method evokes similarity to approaches that have been used to scale Trans-

formers to large documents by combining a mixture of local and deterministically [97] or randomly

sampled long-range context [98]. Distant-dependent density of context has also been explored in

multiresolution attention for Vision transformers [99] and in dilated convolutional neural networks

[100].

E.2 Random graph generation

We propose to build scalable graph neural networks for molecular systems by sampling random

graphs that mix short and long-range connections. We define the graph G = (V,E) where V is the

node set and E is the edge set. A protein can be represented as a point set x ∈ R
N×3. We define

the process of constructing the geometric graph as G(x) = (V,E(x)) with |V|= N. Different from

the usual graph construction scheme, the edges are generated stochastically, and E(x) describes

the process. We consider schemes in which edges for each node are sampled without replacement

from the set of possible edges, weighted by an edge propensity function based on spatial distance

(Fig. 4). In practice, we implement this weighted sampling without replacement using Gumbel

Top-k sampling [78] (Algorithm 1). Throughout this work, we use hybrid graphs which include

the 20 nearest neighbors per node together with 40 randomly sampled edges under the inverse

cubic edge propensity function so that both short-range and long-range interactions are sampled

with appropriate rates.

E.3 Computational complexity

Under the inverse cubic attachment model, the cumulative edge propensity as a function of distance

will scale as
∫ Dmax

Dmin

1
r3 r2dr =

∫ Dmax
Dmin

1
r
dr = logDmax− logDmin. As we increase the total size (radius)

of the system by Dmax, we only need to increase the total number of edges per node by a factor of

logDmax to keep up with the increase in total edge propensity (and to therefore ensure that increas-

ingly distant parts of the system do not “steal” edge mass from closer parts of the system). This

means that, even if we were to scale to extremely large systems such as large, solvated molecular

dynamics systems with millions of atoms, the total amount of computation required for a system

of N atoms will scale as O(N logN). In practice, we found that for protein sizes considered in
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k-NN

Random graphs

Inverse cubicExponential

Edge propensity

20 k-NN + 40 Inverse Cubic

constant

Marginal distance propensity (uniform grid)

Mixed graph

Uniform

Deterministic graph

Long-range attachment

Monotonic decreasing distance propensity

Non-vanishing local attachment

Supplementary Figure 4: Random graphs with distance-weighted attachment efficiently cap-

ture long-range context. Contemporary graph neural networks for learning from molecular sys-

tems achieve efficiency via spatial locality, e.g. with a spatial k-Nearest Neighbors graphs or cutoff

graph (top left, O(Nk)). We propose methods that retain this efficiency while incorporating long-

range context through random edge sampling weighted by spatial distance (middle columns). We

consider three different graph sampling schemes: (i) Uniformly random sampling (middle left)

introduces long-range context but at the expense of vanishing local attachment. (ii) Exponential

distance weighting (middle center), which can be related to dilated convolutions [100], includes

both short- and long-range attachment but introduces a typical length scale as it induces Gamma-

distributed distances. (iii) Inverse cubic distance weighting (middle right), which is the effective

connectivity scaling of fast N-body methods such as Barnes-Hut [93], retains a balance of both

short and long-term distances with a marginal distance propensity that gently and monotonically

decays with D. In practice, we combine inverse cubic sampled random graphs with deterministic

k-NN graphs to guarantee coverage of the k closest nodes while adding in long-range context (top

right).

this work (complexes containing up to 4000 residues6) it was sufficient to simply set the number

of edges per node to a constant k = 60, which means that the graph and associated computation

will scale within this bounded size as O(N). This is a considerable improvement on previous ap-

proaches for global learning on protein structure such as methods based on fully connected graph

neural networks [91] O(N2) or Evoformer-based approaches [66] which scale as O(N3). These

sparse graphs also combine favorably with our method for synthesizing updated protein structures

6In some of our symmetry examples we find that models still generalize well to systems larger than they were

trained on.
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Algorithm 1 Random graph generation

Require: Inter-node distances {Di j}N
i, j=1, inverse temperature λG , attachment propensity

log p((i, j) ∈ E(x)|Di j) ∝ ec(Di j), number of edges to sample k

for each i ∈ [N] do

for each j ∈ [N] do

Ui j ∼ Uniform(0,1) ▷ Sample uniform noise per edge

Zi j← λG c(Di j)− log
(
− log

(
Ui j

))
▷ Perturb log probabilities with Gumbel noise

end for

E ←⋃N
i {(i, j)| j ∈ TopK(Zi)} ▷ Sample top k edges

end for

based on predicted inter-residue geometries (Section F).

F Structure from Inter-residue Geometry Predictions

F.1 Background and motivation

Prior neural network layers for generating molecular geometries in proteins have typically relied

on either (i) direct prediction of backbone internal coordinates (i.e., dihedral angles) [101, 102],

which incurs accumulating errors along the chain in the form of “lever effects” that hinder per-

formance beyond small systems; (ii) prediction of inter-residue geometries followed by offline

optimization [103, 104], which builds on the successes of predicting protein structure from con-

tacts [105] but is difficult to make end-to-end trainable; or (iii) iterative local coordinate updates

based on the entire molecular system [66, 106], which can benefit from end-to-end learning but

also face computational and stability challenges that may come with that.

Predicting structure as predicting constraints In principle, protein structures arise from a bal-

ance of competing intra- and inter-molecular forces. In that sense, protein structure may be re-

garded of as the solution to a constraint satisfaction problem with many competing potential in-

teractions across multiple length scales. It is therefore natural to think about protein structure

prediction as a so-called “Structured Prediction” problem [107], in which predictions are cast as

the low-energy configurations of a learned potential function. Structured Prediction formulations

of tasks often learn in a data efficient manner because it can be simpler to characterize the con-

straints in a system the the outcomes of those constraints. This perspective can be leveraged for

molecular geometries via differentiable optimization or differentiable molecular dynamics [106,

108, 109], but these approaches are often unstable and can be cumbersome to integrate as part of a

larger learning system.

F.2 Equivariant structure updates via convex optimization

Here we introduce a framework which combines the benefits of inter-residue geometry prediction

and end-to-end differentiable optimization in an efficient and stable formulation based on convex
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Supplementary Figure 5: An iterative consensus algorithm resolves coordinates from predicted

inter-residue geometries. An initially noised structure (top left) is processed by a graph neural

network which predicts denoised inter-residue geometries between every pair of residues on the

graph (bottom left), along with confidence weights for each prediction (not shown, Appendix F).

The problem of finding the optimal structure satisfying the confidence-weighted inter-residue ge-

ometry predictions forms a convex problem which can be solved by iteratively replacing residue

poses with their neighborhood weighted-average consensus pose (parallel coordinate descent, top).

The equilibrated poses are then imputed with relative local atom positioning also predicted by the

graph neural network, forming the overall denoised structure prediction x̂θ (xt , t) (top right). This

entire procedure can be optimized end-to-end via automatic differentiation. As the parallel coordi-

nate descent iterations proceed, the initially discordant geometry predictions for any given residue

(right center, orange tube widths denote confidence), i.e. {T j ◦ T̂ ji} j∈N(i) begin to coalesce (right

bottom). The inter-residue direction and orientation visualizations (bottom left) map the normal-

ized translation vector and rotation matrix of Ti j to RGB colors, respectively (using the last three

elements of a quaternion representation of the rotation matrix).

optimization. We show how predicting pairwise inter-residue geometries as pairwise rigid transla-

tion transformations with potentially anisotropic uncertainty models induces a convex optimization

problem which can be solved by a simple iteration that quickly drives towards a global consensus

configuration. Throughout this section, we will build on the widely adopted approach representing
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the rigid orientations of residues in proteins via coordinate reference frames [66, 67, 106].

The key idea of our update is that we ask the network to predict a set of inter-residue geometries

Ti j together with confidences wi j (which will initially be simple but can be extended to anisotropic

uncertainty) and we then attempt to either fully or approximately solve for the consensus structure

that best satisfies this set of pairwise predictions. We visualize the method in Supp. Fig. 5.

Transform preliminaries Let T = (O, t)∈ SE(3) be a transformation consisting of a rotation by

an orthogonal matrix O ∈ SO(3) followed by a translation by a vector t ∈ R
3. These transforma-

tions form a group with identity, inverse, and composition given by

Tid = (I, 0),

T−1 =
(
O−1, −O−1t

)

Ta ◦Tb,= (Oa, ta)◦ (Ob, tb) = (OaOb, Oatb + ta) .

We denote the transformation to the frame of each residue a as Ta, and denote the relative trans-

formation from residue a to residue b as

Tab ≜ T−1
a ◦Tb =

(
O−1

a Ob, O−1
a (tb− ta)

)
.

These relative transformations satisfy equations

Tab ◦Tbc = Tac,

Tba = T−1
ab .

Converting from backbones to transforms We represent the rigid pose of a residue as an ab-

solute translation and rotation in space Ti ≜ (Oi, ti). We can compute these residue poses by

building an orthonormal basis from three backbone coordinates at a residue i, i.e. from the set of

atoms
{

xN
i ,x

Cα
i ,xC

i

}

. To do this, we define the vectors v1 = xN
i −x

Cα
i and v2 = xC

i −x
Cα
i , and then

build an orthonormal basis as

u1 =
v1

∥v1∥
, u2 =

v2

∥v2∥
,

n1 = u1, n2 =
n1×u2

∥n1×u2∥
, n3 =

n1×n2

∥n1×n2∥
,

which gives the final transform as

Ti =
(

[n1,n2,n3]
⊺ , x

Cα
i

)

.

We note that pose representations are SE(3) equivariant but are not invertible unless one forces

coordinates to adopt ideal geometries, as is the choice in many structure prediction and diffusion

methods [66, 67, 110, 111]. Many backbone geometries with differing internal bond lengths and

angles) will give rise to the same transform Ti (though it is also true that many structures are

not resolved at a resolution to meaningfully distinguish these degrees of freedom). Nevertheless,

we can retain the benefits of both coarse transformation frames for prediction and fine all-atom

granularity via a hierarchical decomposition in which we predict coarse residue-transform based

inter-residue geometries along with sub-frame deviations from ideality, which can be in turn be

composed (equivariantly) to yield the final structure.
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Convex problem How can we define a consensus structure given a set of predictions of inter-

residue geometries, some of which may agree and some of which may disagree? This problem

is naturally formulated as an optimization problem. Given a collection of pairwise inter-residue

geometry predictions and confidences {Ti j,wi j}i j∈E , we score a candidate structure {Ti}N
i=1 via a

weighted loss U that measures the agreement between the current pose of each residue Ti and the

predicted pose of the residue given each neighbor T j and the predicted geometry T ji as

U
(
{Ti};{wi j,Ti j}

)
= ∑

i, j

wi j

∥
∥Ti−T j ◦T ji

∥
∥2

= ∑
i, j

wi j

∥
∥Oi−O jO ji

∥
∥2

+wi j

∥
∥ti− (O jt ji + t j)

∥
∥2

.

Note that we define a norm on the discrepancy between two Euclidean transforms Ta,Tb as

∥Ta−Tb∥2 ≜ ∥Oa−Ob∥2 + ∥ta− tb∥2. We wish to optimize each local pose Ti with neighbors

fixed as

T⋆
i ← argmin

Ti

U
(
{Ti};{wi j,Ti j}

)
.

This problem of finding the local “consensus pose” for a residue T⋆
i given its neighborhood is

a convex optimization problem, the solution to which can be realized analytically as a weighted

average with projection,

T⋆
i =

(

ProjSO(3)

(

∑
j

pi jO jO ji

)

, ∑
j

pi j(O jt ji + t j)

)

, where pi j =
wi j

∑ j wi j

and the projection operator may be implemented via SVD as in the Kabsch algorithm [68] for

optimal RMSD superposition. If we iterate this update multiple times to all positions in parallel,

we obtain a parallel coordinate descent algorithm which can rapidly equilibrate towards a global

consensus (Supplementary Figure 5).

Two-parameter uncertainty models The above iteration leverages an isotropic uncertainty model

in which the error model for the translational component is spherically symmetric and coupled to

the uncertainty in the rotational component of the transform. We may also consider anisotropic

uncertainty models where these confidences are decoupled. In the first of these, we decouple the

weight wi j into separate factors for the translational and rotational components of uncertainty as

w
⊺
i j and w∠

i j, respectively. The overall error model being optimized is then

U
(
{Ti};{wi j,Ti j}

)
= ∑

i, j

w∠
i j

∥
∥Oi−O jO ji

∥
∥2

+w
⊺
i j

∥
∥ti− (O jt ji + t j)

∥
∥2

.

This makes intuitive sense when the network will possess high confidence about the relative po-

sition of another residue but not its relative orientation, and may still be solved analytically by

weighted averaging with projection.
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Supplementary Figure 6: Anisotropic confidence models capture asymmetric uncertainty in

predicted inter-residue geometries. Position i is forced towards its consensus position which

is the mean of a fusion of anisotropic Gaussians. Here we visualize the covariance ellipses of

component the Gaussians, i.e. the inverses of the precision matrices predicted by our network.

Three-parameter uncertainty models In a more sophisticated form of anisotropic uncertainty,

we extend this framework to ellipsoidal error models bespoke to each i j, while retaining a closed-

form iteration update using approaches from sensor fusion. We parameterized this anisotropic

error model by separating this precision term w into three components: w∠
i j for rotational precision

and two components for position: w
∥
i j for radial distance precision, and w⊥i j for lateral precision.

The radial and lateral precision terms are each eigenvalues of the full 3x3 precision matrix Pi j for

translation errors (i.e., inverse covariance matrix under a multivariate normal error model):

Pi j = w
∥
i jπi j +w⊥i j(I−πi j), πi j =

(O jt ji)(O jt ji)
⊺

(O jt ji)⊺(O jt ji)

where πi j is the projection matrix onto the radial direction from t j to the predicted position

O jt ji + t j of ti, and I−πi j is the projection matrix onto lateral translations (spanned by the re-

maining two eigenvectors). These anisotropic terms finally combine as

U
(
{Ti};{wi j,Ti j}

)
= ∑

i, j

(
O jt ji + t j− ti

)⊺
Pi j

(
O jt ji + t j− ti

)
+w∠

i j

∥
∥Oi−O jO ji

∥
∥2

= ∑
i, j

w
∥
i j

∥
∥πi j(O jt ji + t j− ti)

∥
∥2

+w⊥i j

∥
∥(I−πi j)(O jt ji + t j− ti)

∥
∥2

+w∠
i j

∥
∥Oi−O jO j

∥
∥2

.

As we expect that the radial precision always exceeds the lateral precision, our neural predictor

outputs three positive parameters (w⊥, w∥−w⊥, w∠). Whereas the isotropic objective above is

solved by weighted averaging, the anisotropic translation part of this objective is solved by a stan-

dard Gaussian product operation from sensor fusion [112],

t⋆i = ti +

(

∑
j

Pi j

)−1

∑
j

Pi j(O jt ji + t j− ti).

We illustrate this anisotropic Gaussian fusion operation in Supplementary Figure 6.
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Algorithm 2 Equivariant Consensus Structure from Inter-residue Geometries

Require: {Ti j,wi j}i j∈EG(x) ▷ Predicted inter-residue geometries and confidence weights

Require: {tiN, tiCα , tiC, tiO}N
i=1 ▷ Predicted local atomic geometries

Require: {Ti}N
i=1 ▷ Initial residue poses

Require: M ▷ Number of parallel coordinate descent iterations

∀i, j, pi j← wi j

∑ j wi j
▷ Compute confidence weights

for each m ∈ 1 . . .M do

∀i Ti←
(

ProjSO(3)

(

∑ j pi jO jO ji

)
, ∑ j pi j(O jt ji + t j)

)

▷ Locally optimize poses

end for

for each ATOM ∈ {N,Cα ,C,O} do

∀i (0, xATOM
i )← Ti ◦ (0, tiATOM) ▷ Build atoms

end for

return x ▷ Output atomic backbone geometry

F.3 Equivariant prediction of backbone atoms

The parallel coordinate descent procedure optimizes residue poses {Ti} but our diffusion model

(Supplementary Appendix D) requires unconstrained atomic prediction of all backbone heavy

atoms. We can straightforwardly augment the above predictions in an equivariant manner by pre-

dicting local coordinates {tiN, tiCα , tiC, tiO}N
i=1 for each atom position relative to the parent residue

pose from graph node embeddings. To simplify learning, we parameterize these predictions as

residual updates from the ideal backbone geometry positions. To build the final atomic struc-

ture, we simply right-compose these local coordinate predictions tiATOM with each parent pose Ti

as

(0, xATOM
i ) = Ti ◦ ( 0, tiATOM).

We schematize this combined method in Algorithm 2. These predictions will be equivariant be-

cause they are right-composed with the parent residue poses, which are equivariant because they

are built from relative, equivariant projection from the initial geometry xt .

F.4 Time-dependent post-prediction scaling

It has been helpful in prior diffusion modeling works to parameterize the denoising network output

in a way that can behave as an identity function for low noise levels early in training [65]. We

found this to be helpful as well and parameterized the final prediction as

x̂θ (xt , t) = ηt x̃θ (xt , t)+(1−ηt)xt ,

where x̃θ (xt , t) is the output from the inter-residue consensus and the time dependent ‘gate’ ηt was

set in two ways:
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• Output Scaling A Set ηt to scale as
√

1−SSNRt with a learnable offset by parameterizing

as ηt = S
(
S−1(SSNRt)+uθ

t

)
where S(·) is the sigmoid function and uθ

t is parameterized by

a small MLP.

• Output Scaling B Set ηt to scale as
√

1−SSNRt with a learnable offset by parameterizing as

ηt = 1−
(
1−S

(
S−1(SSNRt)+uθ

t

))
I(SSNRt > CUTOFF) where S(·) is the sigmoid function,

uθ
t is parameterized by a small MLP, and CUTOFF = 0.99. This is similar to the previous

scaling but almost always disabled except for the highest values of the signal-to-noise ratio.

G Chroma Architecture

Chroma builds a joint distribution of the sequence and and all-atom structure of protein complexes

via the factorization

log p(x,s,χ) = log p(x)
︸ ︷︷ ︸

backbone likelihood

+ log p(s|x)
︸ ︷︷ ︸

sequence likelihood

+ log p(χ|x,s)
︸ ︷︷ ︸

side-chain likelihood

.

We model these likelihoods with two networks: a backbone network trained as a diffusion model

to model p(x) and a design network which models sequence and side chain chains conditioned

on backbone structure. Both networks are based on a common graph neural network architecture,

and we visualize the overall system in Supplementary Figure 7. We list important hyperparameters

for the backbone network in Supplementary Table 2 and for the design network in Supplementary

Table 3. We design sequences by extending the framework of [95] and factorizing joint rotamer

states autoregressively in space, and then locally autoregressively per side-chain χ angle within a

residue as done in [113]. For the sequence decoder, we explore both autoregressive decoders of

sequence (pictured in Supplementary Figure 7) and conditional random field decoding of sequence,

which was also explored in concurrent work [114].

G.1 Graph neural networks for protein structure

Graph Neural Network All of our neural network models are based on graph neural networks

[94] that reason over 3D structures of proteins by transforming them into attributed graphs built

from rigid transformation invariant (SE(3)-invariant) features. The building block from which

these models are built is presented in Algorithm 3. This approach has been pursued in several prior

works for sequence design [95, 115, 116] and our primary architectural innovations to extend this

to all-atom protein complex generative modeling are two-fold:

• We propose random graph neural networks that add in long-range connections and reasoning

while preserving sub-quadratic computational complexity (Supplementary Appendix E)

• We introduce a method for efficiently and differentiably generating protein structures from

predicted inter-residue geometries based on parallel coordinate descent (Supplementary Ap-

pendix F)

Featurization We represent protein structure as an attributed graph with node and edge embed-

dings computed as SE(3)-invariant features of the input backbone. For the node features we encode
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Supplementary Figure 7: Chroma is composed of graph neural networks for backbone denois-

ing and sidechain design.

local geometry via bond lengths and the backbone dihedral angles lifted to the unit circle via paired

sin and cos featurization. We encode the inter-residue geometries between each pair of nodes (i, j)
with the following edge features:

• Inter-atomic distances: Distances between all atoms at residues i and j, i.e. the 8× 8

distance matrix, lifted into a radial basis via fi(Dab) ≜ e(Dab−µi)
2/σ2

i for 1 ≤ i ≤ 20 and

centers µi spaced linearly on [0,20] and σi = 1.
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Algorithm 3 Graph Neural Network Layer

Require: ni, ei j ▷ Node and edge embeddings with shapes (B,N,C) and (B,N,K,C)
Require: N (i) ▷ Graph topology specifying neighbors of each residue

for each i ∈ [L] do

ñi← NodeLayerNorm(ni)
ẽi j← EdgeLayerNorm(ei j)

pi j← Concatenate j∈N (i)(ñi, ñ j, ẽi j)
mi j←MessageMLP(pi j)
mi← Aggregate j(mi j)

pi← Concatenate(ñi,mi)
ni← ni +NodeUpdateMLP (pi)

end for

for each i ∈ [N] do

for each i j ∈N (i) do

pi j← Concatenate j∈N (i)(ni,n j, ẽi j)
ei j = ei j +EdgeUpdateMLP(pi j)

end for

end for

return ni,ei j ▷ Updated node and edge embeddings

• Inter-atomic directions: The unit vector from x
Cα
i at residue i to atom b in residue j, con-

catenated over all atoms b ∈ {N,C,Cα ,O} in j.

• Chain distance: Tuple encoding (1) chain distance featurized as (log(|i− j|+1) for residues

i, j lying along the same chain, else 0, and (2) a binary flag indicating if i and j are in different

polymer chains.

• Transform features: For two frames Ta = (Oa, ta) and Tb = (Ob, tb) let Ta→b denote the

transform that maps coordinates in frame Ta to coordinates in frame Tb. For each residue i,

define two frames, a local frame Ti and chain frame Tc(i). The chain frame is obtained by

using the Grahm-schmidt construction to pass to an orthonormal set of vectors [n1,n2,n3]
starting with N−Cα and Cα −C vectors averaged across the chain. The following trans-

forms are computed: Ti→ j,Ti→c( j),Tc(i)→c( j). For each of these transforms, the features

log(∥t∥), t, and quaternion(O) are computed and concatenated.

Equivariance Because the input features are SE(3) invariant and the update layer (see section

F for details) is SE(3) equivariant, the ChromaBackbone network is SE(3) equivariant and the

ChromaDesign network is SE(3) invariant.
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Category Hyperparameter Value in ChromaBackbone v0 Value in ChromaBackbone v1

Diffusion Process Covariance Model Globular Monomer Globular Complex

Noise Schedule Log-linear SNR (-7,13.5) [62] Log-linear SNR (-7,13.5)

Graph Features Node Features Internal Coordinates Internal Coordinates

Edge Features
Atom distances, Atom directions,

Chain distances, Transforms

Atom distances, Atom directions,

Chain distances, Transforms

Edges per Node, k 60 60

Number of Nearest Neighbor Edges 20 20

Number of Random Edges 40 40

Random Edge Type Inverse Cubic Inverse Cubic

Graph Neural Network Number of GNN layers 12 12

Node Embedding Dimension 512 512

Edge Embedding Dimension 256 256

Node MLP Dimension 512 512

Edge MLP Dimension 128 128

Dropout p 0.1 0.1

Denoising Solver Inter-residue Parameterization Direct Ti j prediction Update from Ti j (xt)
Uncertainty Model Isotropic (1-parameter) Decoupled (2-parameter)

Number of Iterations 3 10

Post-Process Scaling A B

Loss Function Likelihood Loss ELBO ELBO

Auxilliary Losses ELBO-weighted MSE Dglobal, Dfragment, Di j SE, T̂i j SE

Total Number of Parameters 18.6M 18.6M

Total Number of Training Steps 1.6M 1.8M

Supplementary Table 2: ChromaBackbone Hyperparameters.

G.2 ChromaBackbone

The backbone network parameterizes an estimate of the optimal denoiser x̂θ (xt , t) and combines

a graph neural network described in the previous section with the inter-residue consensus layer

described in Appendix F. We trained two major versions used throughout this work (aside from

the ablation study), with hyperparameters described in Supplementary Table 2.

G.3 ChromaDesign

The design network parameterizes the conditional distribution of sequence and χ angles given

structure pθ (s,χ|x) by combining the graph neural network encoder described in the previous

section with sequence and side-chain decoding layers. To enable robust sequence prediction and

the potential for use as a conditioner, we train ChromaDesign with diffusion augmentation, i.e.

we predict sequence and chi angles given a noisy structure xt and a time t as pθ (s,χ|xt , t). We

consider both a Potts decoder architecture which admits compact and fast constrained sampling

with conditioning or auxiliary objectives, as well as an autoregressive decoder architecture for

capturing higher-order dependencies in the sequence and modeling sidechain conformations given

sequence and structure.

G.4 Related Work

Generative models based on diffusion There has been broad interest in generative models of

protein structure, and diffusion models have seen particularly rapid adoption towards the problem.

This has included diffusion models for protein monomers represented as coarse Cα coordinates

[91], internal coordinates [102], and rigid frames [117, 118], as well as for protein complexes

represented as rigid frames [119]. Beyond backbone-only models, there have also been joint gen-
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Category Hyperparameter Value in ChromaDesign Potts Value in ChromaDesign Multi

Diffusion Process Covariance Model None Globular Complex

Noise Schedule N/A Log-linear SNR (-7,13.5)

Graph Features Node Features Internal Coordinates Internal Coordinates

Edge Features
Atom distances, Atom directions,

Chain distances

Atom distances, Atom directions,

Chain distances, Transforms

Number of edges per node, k 40 60

Number of kNN edges 40 60

Number of inverse cubic edges 0 0

Graph Neural Network Number of GNN layers 6 10

Node embedding dimension 128 128

Edge embedding dimension 128 128

Node MLP hidden dimension 512 512

Edge MLP hidden dimension 128 128

Dropout p 0.1 0.1

Label smoothing 0.1 0.1

Sequence Decoder Type Potts model, First order
Potts model, First order,

Autoregressive

Sidechain Decoder Type N/A Autoregressive

Chi decoder Number of χ bins N/A 36

Total Number of Parameters 3.9M 13.8M

Supplementary Table 3: ChromaDesign Hyperparameters.

erative frameworks which model all-atom protein structure with mixed diffusions over backbone,

sequence, and side-chain degrees of freedom [67, 120]. Furthermore, we are beginning to see ex-

perimental validation of diffusion-based models for structure and/or sequence [119, 121] and for

partially joint sequence-structure models that combine a language model prior with deterministic

structure prediction [122].

One common theme of generative models for proteins thus far has been dense reasoning in which,

to generate complex molecular systems like proteins or protein complexes, learning frameworks

must reason over all possible pairs of interactions in a system. While these approaches will, by con-

struction, always be able to perform as well as sparsely-connected approaches, Chroma provides

evidence that simpler frameworks based entirely on sparse reasoning and knowledge of domain

structure can be sufficient to build a complete joint model for complex multi-molecular systems

such as protein complexes. We anticipate that this sufficiency argument may be important for two

reasons: Firstly, subquadratic scaling O(N logN) of algorithms has been a foundational paradigm

for modeling the physical world from molecular [123] to cosmological systems [93]. Second, and

perhaps more speculatively, it may be argued that, given multiple algorithms with similar perfor-

mance, simpler and more computationally efficient algorithms are more likely to be robust and to

generalize [124].

Potts Decoder In the Potts formulation of the ChromaDesign network, we factorize the condi-

tional distribution of sequence as a conditional Potts model, a type of conditional random field

[56], with likelihood

pθ (s|x) =
1

Z(x,θ)
exp

(

−∑
i

hi(si;x)−∑
i< j

Ji j(si,s j;x)

)

,

where the conditional fields hi(si;x) and conditional couplings Ji j(si,s j;x) are parameterized by

the node and edge embeddings of the graph neural network, respectively. We train the Potts de-

coder with diffusion augmentation to predict sequence given a noisy structures xt and a time t
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Supplementary Figure 8: Randomized autoregression orders with spatial smoothing vary the

typical spatial context for sequence modeling. Uniformly random autoregression orders (left) are

spatially uncorrelated and as a result induce highly disordered contexts which are unlike the con-

ditionals used during substructure design tasks. Uniformly random orderings can be transformed

into spatially coherent orderings by applying tunable spatial smoothing to the original ordering val-

ues, followed by ARGSORT. We apply spatial smoothing with by local neighborhood averaging

on a k-NN graph. Intermediate strengths of spatial smoothing produce locally coherent orderings

(middle), while strong smoothing producing crystallization-like, coherent traversals of the entire

structure (right). We uniformly sample µsmooth ∼ U(0,1) at training time.

as

pθ (s|xt , t) =
1

Z(xt , t,θ)
exp

(

−∑
i

hi(si;xt , t)−∑
i< j

Ji j(si,s j;xt , t)

)

.

Advantages of the Potts decoders include that they admit fast global optimization even when com-

bined with conditioning constraints or co-objectives via as simulated annealing or gradient-based

samplers ([125]) and that they have been highly validated experimentally as sufficient generative

models for generating diverse and functional samples when trained on protein families. A disad-

vantage is that they are limited beyond modeling second-order effects and require many more iter-

ations of Monte Carlo sampling than one-shot ancestral sampling of autoregressive models.

Autoregressive Decoder We build on the theme of using graph neural networks with autore-

gressive decoders for sequence design [106, 115, 116] and factorize the conditional distribution of

sequence given structure autoregressively as

pθ (s|x) = ∏
i

pθ (sπi
|sπi−1

, . . . ,sπ1
,x),

where π is a permutation specifying an decoding order for the sequence. We sample random

traversals with a randomly sampled amount of spatial correlation, as shown in Supplementary

Figure 8, that may better align with conditionals encountered at design time and enable more

spatially structured decompositions that mix more effectively in causally-masked message passing.

We train the autoregressive decoder with diffusion augmentation to predict sequence given a noisy

structure xt and a time t as

pθ (s|xt , t) = ∏
i

pθ (sπi
|sπi−1

, . . . ,sπ1
,xt , t).

Sidechain Decoding We model the conditional distribution of side chain conformations given

sequence and backbone structure by modeling theχ angles with an autoregressive decomposition



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 51

as

pθ (χ|s,x) = ∏
i

pθ (χπi
|χπi−1

, . . . ,χπ1
,s,x),

where the conditional joint distributions pθ (χπi
|χπi−1

, . . . ,χπ1
,s,x) at each residue locally factor-

ize as up to four discrete, sequential decisions as in [113]. We model model these with empirical

histograms for each angular degree of freedom binned at 36 bins, i.e. with 10◦ angular resolu-

tion. During sampling, we convert the discrete binned probability masses into linearly interpolated

probability densities, giving a distribution over angles that is fully supported on the hyper-torus.

We train the sidechain decoder with diffusion augmentation to predict chi angles from a sequence

s, a noisy structure xt , and a time t as

pθ (χ|s,xt , t) = ∏
i

pθ (χπi
|χπi−1

, . . . ,χπ1
,s,xt , t).

H Training

H.1 Dataset

Processing We constructed our training dataset from a filtered version of the Protein Data Bank

[126] queried on 2022-03-20. We filtered for non-membrane X-ray protein structures with a resolu-

tion of 2.6 Å or less and reduced redundancy by clustering homologous sequences with USEARCH

[127] at 50% sequence identity and selecting one sequence per cluster. Additionally, because anti-

body folds are highly diverse in both sequence and structure and highly releveant to biotherapeutic

development, we enriched our redundancy-reduced set 1726 non-redundant antibodies that were

clustered at a 90% sequence identity cutoff. This yielded 28,819 complex structures which were

transformed into their biological assemblies by favouring assembly ID where the authors and soft-

ware agreed, followed by authors and finally by software only. Missing side-chain atoms were

added with pyRosetta [128].

Splitting We split the data set with into 80%/10%/10% train, validation and test splits by min-

imizing the sequence similarity overlap using entries of PFAM family ID, PFAM clan ID [129],

UniProt ID [130] and MMSEQ2 cluster ID at a 30% threshold [131]. To accomplish this, we

construct a similarity graph in which each PDB entry is represented by a node connected to other

entries that share at least one identical annotation. Connected sub-graphs are identified and bro-

ken apart by iteratively deleting the most central annotations until there are 50 or fewer connected

nodes. Using this procedure, we increased the fraction of test annotations with no representation in

the training set (versus a random split) from 0.1% to 9% for Pfam clan, from 10% to 59% for Pfam

family, from 50% to 82% for MMSEQ30 cluster, and from 70% to 89% for Uniprot ID.

H.2 Optimization

Backbone network We trained ChromaBackbone v1 on 8 Tesla V100-SXM2-16GB using the

Adam optimizer [132] to optimize a sum of the regularized ELBO loss (Supplementary Appendix

B) and an unweighted sum of the losses described in (Supplementary Appendix B.4). We linearly

annealed the learning rate from 0. to 2×10−4 over the first 10,000 steps and trained for a total of
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Experiments Sample type T λ ψ Backbone Model Design Model Complexity Penalty

Computational

Unconditional 500 10 2 Multiple Multiple LCP

Ablation Study 500 10 2 Multiple ChromaDesign Potts LCP

Substructure 400 8♢ 2▷◁ ChromaBackbone v1 ChromaDesign Multi LCP

Symmetry 500⋆ 8 8▷◁ ChromaBackbone v1 ChromaDesign Multi LCP

Shape 3000⋆ 10 2,3 ChromaBackbone v1 ChromaDesign Multi LCP

Classification 2000 10 2 ChromaBackbone v1 ChromaDesign Multi LCP

Language 500 10 2 ChromaBackbone v1 ChromaDesign Multi LCP

Wet Lab

Unconditional I 1000 10 2 ChromaBackbone v0.4999 ChromaDesign Potts UP

Unconditional II 2000 10 0.1 ChromaBackbone v0.4998 ChromaDesign Potts LCE

Conditional I Multiple 10 2 ChromaBackbone v0.4999 ChromaDesign Potts UP

Conditional II 2000 10 0.9 ChromaBackbone v0.4999 ChromaDesign Potts UP

Supplementary Table 4: Sampling hyperparameters. We review all configurations for sampling

used across both in silico and wet lab experiments. The (⋆) symbol in the T column indicates

integrating with an improved Euler-like integrator. The (⋄) symbol in the λ0 column corresponds

to keeping inverse temperature fixed (isothermal sampling) throughout integration instead of the

annealing presented in Appendix C. The (▷◁) symbol in the ψ column indicates that the annealed

Langevin dynamics is used instead of the reverse diffusion SDE.

1,796,493 steps. Due to the linear scaling memory footprint of our model, we dynamically pack

complexes into minibatches to approach a target number of residues per batch which was 4,000

residues per GPU and thus 32,000 residues per step. We estimated the final model parameters

with an exponential moving average (EMA) of per-step parameter values with a decay factor of

0.999 [133]. We trained ChromaBackbone v0 similarly but without EMA estimation, and we refer

to checkpoints from specific epochs of training as ChromaBackbone v0.XXXX where XXXX is the

epoch number.

Design network We trained ChromaDesign Potts and ChromaDesign Multi with the same

framework as the backbone networks but a few specific modifications: We trained ChromaDesign

Potts in a time-invariant manner on uncorrupted samples x0 to optimize a pairwise composite

log-likelihood approximation of the Potts log-likelihood [134], averaged to nats per residue. We

trained ChromaDesign Multi in a time-aware manner on samples xt from the diffusion process.

As a training objective we used the sum of the pairwise composite log likelihood loss for the Potts

decoder (residue-averaged) along with the average per residue log likelihood losses for the three

other decoder ‘heads’: the autoregressive sequence decoder, the marginal sequence decoder (which

independently predicts each residue identity si from structure xt), and the autoregressive side chain

predictor.

I Sampling

I.1 Sampling backbones

We sampled proteins from Chroma by first generating backbone structures and then designing

sequences conditioned on the backbone. Unless otherwise specified, we generated structures by

integrating the reverse diffusion SDE (appendix Q.2) with λ0 = 10. For constrained conditioners

(e.g. substructure, symmetry), we opt for annealed Langevin dynamics (see appendix M.2 for more

details).
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I.2 Sampling sequences

For all design tasks, we experimented with both autoregressive and Potts-based sequence sampling

but ultimately decided on Potts-based samples as they facilitated more thorough global optimiza-

tion with sequence complexities penalties. It has been widely observed that low temperature sam-

pling from likelihood-based models often biases towards low complexity sequences [77], and we

also have observed this phenomenon to happen on occasion during conditional sequence design.

While it is not impossible that low-complexity sequences may still fold in silico and in vivo, we

wish to be able to control the level of sequence complexity at the time of design.

We control sequence complexity via penalized Markov-Chain Monte Carlo (MCMC) with our

conditional Potts models. We define the total energy as the sum of the conditional Potts energy

plus an optional sequence complexity penalty, and sample sequences using 10 independent cycles

of simulated annealing Monte Carlo (MC), each with 4000 ·N steps, where N is the length of the

protein.

Robust design The ChromaDesign Multi network is trained with diffusion augmentation such

that it can predict sequence given structures as though the structures arose from the diffusion en-

semble at time t. This time conditioning serves as a kind of amortized tunable amount of data

augmentation during design. Throughout this work, we sample sequences with t = 0, but note that

t > 0 is useful for increasing sequence design robustness.

I.2.1 Unique Permutations (UP) restraint

The first restraint type that we used is based on the number of unique permutations of the designed

sequence, Ω [135]:

Ω = log

(
L!

∏
N
i=1 ni!

)

,

where N is the number of different amino acids in the sequence, ni is the number of occurrences of

amino acid type i. This restraint simply applied a linear penalty when Ω dropped below a desired

threshold Ω̂:

C1 =

{

Ω̂−Ω, if Ω < Ω̂

0, otherwise

We chose Ω̂ to be one standard deviation below the empirical mean for PDB sequences of length L.

Specifically, we found that the empirical mean and standard deviation among PDB sequences to de-

pend on L as 2.855 ·
(
1+9.927 ·L−0.894

)−1
and 0.287 ·

(
1+0.0447 ·L0.810

)−1
, respectively.

I.2.2 Local Composition Entropy (LCE) restraint

Our second sequence complexity restraint was based on the mean sequence entropy over all local

windows:

C2 =
L

L−w+1

L−w+1

∑
i=1

Si,

where w is window length (we used w = 30 throughout this study) and Si is the entropy of the i-th

window.
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I.2.3 Local Composition Perplexity (LCP) restraint

Our third sequence complexity restraint also used local-window entropies, but applied a quadratic

penalty on corresponding perplexities when the entropy fell below a predefined threshold

C3 =
L

L−w+1

L−w+1

∑
i=1

(

eŜ− eSi

)2
∆
(
Si < Ŝ

)
. (2)

where Ŝ is the threshold entropy value and ∆
(
Si < Ŝ

)
is an indicator variable of whether Si falls

below Ŝ. Here, we used w = 30 and as Ŝ we chose the 5th percentile of 30-residue local window

entropies in PDB sequences (∼ 2.32 nats). All three restraints effectively restricted the sampling of

sequences from Potts models to regions of expected sequence complexity for native-like sequences,

with the last two having the advantage of not introducing potentially undesired global inter-residue

correlations.

J Evaluation: Unconditional Samples

J.1 Sample generation

We generated three sets of unconditional protein samples using Chroma. All sets used the same

parameters: 500 steps, λ0 = 10, and ψ = 2. Of these three sets, we used ChromaBackbone v0

and v1 to generate two sets of single-chain proteins and ChromaBackbone v1 to generate one

set of multi-chain proteins. The single-chain sets each contained 50,000 samples and the lengths

were drawn from a “1/length” distribution, where the probability of a protein chain’s length was

inversely proportional to its length constrained to a minimal length of 50 and a maximal length

of 1,000 residues. This length distribution induces the property that any random residue in the

generated data will be equally likely to belong to any particular length protein.

The multi-chain set contained 10,000 samples with the length distribution taken from the empirical

statistics of chain lengths in PDB complexes. Specifically, for each Chroma sample, we drew a

random protein complex from the PDB and took the number of chains and their lengths from

that complex. Supplementary Figures 9 and 10 show randomly-chosen (i.e., non-cherry picked)

samples from the resulting sets for single-chain and multi-chain examples, respectively.

J.2 Backbone geometry statistics

We evaluated the structural validity of Chroma-generated single-chain structures by characterizing

their secondary structure and residue interactions alongside a non-redundant subset of structures

from the PDB (Supplementary Table 5). Secondary structure classification (α-helix, β -strands, and

coil) was performed using Stride [140]. We defined two residues as interacting if their Cα atoms

were within 8 Å of each other, and computed the mean number of long-range residue contacts.

We also computed contact order [141] and radius of gyration [89], length normalizing them ac-

cording to their corresponding empirical power laws (see Supplementary Table 5). Supplementary

Figure 11 panels a-d show the distributions of these metrics.
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Supplementary Figure 9: Random single-chain samples from ChromaBackbone-v1.
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Supplementary Figure 10: Random complex samples from ChromaBackbone-v1.

J.3 Tertiary motif analysis

Natural protein structures exhibit considerable degeneracy in their use of local tertiary backbone

geometries, such that relatively few local tertiary motifs account for the majority of the observed
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Supplementary Figure 11: Unconditional backbone samples reproduce both low and high or-

der structural statistics of natural proteins. a and c, Distributions of structural properties (in a)

and length-dependent scaling of contact order [136] and radius of gyration (in b) computed on a set

of 50,000 single-chain samples from the unconditional ChromaBackbone v0 at inverse tempera-

ture λ0 = 10, compared to the corresponding metrics for PDB structures. b and d, Distributions

of structural properties (in b) and length-dependent scaling of contact order and radius of gyration

(in d) computed on a set of 50,000 single-chain samples from the unconditional ChromaBackbone

v1 at inverse temperature λ0 = 10 and a set of 500 single-chain samples from the unconditional

ChromaBackbone v1 at inverse temperature λ0 = 1, compared to the corresponding metrics for

PDB structures. Box plots in a and b show medians and inter-quartile ranges. e, The distribution of

closest-match RMSD for TERMs of increasing order originating from native or Chroma-generated

backbones (at inverse temperature λ0 of 1 or 10, as indicated).

Metric Description Normalization

Secondary structure content (SSi) Fraction of residues mapping into Helix,

Strand, or Coil secondary-structure classes

none

Mean Residue Contact (Cmean) Average number of contacts per residue none

Long-range Residue Contact (Clong) Average number of long-range contacts per

residue. Contacts are long-range if they in-

volve residues separated in sequence by 24

or more positions

none

Contact Order (CO) Average sequence distance between con-

tacting residues normalized by the total

length of the protein; higher contact orders

generally indicate longer folding times

CO/N−0.3 [141]

Radius of Gyration (Rg) Root mean square distance of structure’s

atomic coordinates from its center of mass

Rg/N0.4 [89]

Supplementary Table 5: Structural metrics used for characterizing backbone geometries
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a b

c d

Supplementary Figure 12: Unconditional backbone samples demonstrate structural novelty

across different metrics and protein sizes. ChromaBackbone v0 and v1 datasets used for this

evaluation are defined in Appendix J.1. a, Fraction of backbones with PDB nearest neighbor TM-

scores above 0.5 (top) or 0.7 (bottom) by length, for ChromaBackbone v0 and v1. b, CATHdb

nearest neighbor TM-scores by TM-align and FoldSeek agree closely. c, Length-normalized num-

ber of CATH domains required for 80% coverage versus structure length for ChromaBackbone

v0, v1, and PDB. d, Length-normalized number of CATH domains required for 80% coverage

versus PDB nearest neighbor TM-score (by FoldSeek) for both ChromaBackbone v0 and v1.

structure space [142]. These tertiary motifs, or TERMs, consist of a central residue, its backbone-

contiguous neighbors, neighboring residues capable of contacting the central residue, and their

backbone-contiguous neighbors [142, 143]. Depending on how many contacting residues are

combined into the motif, TERMs can be distinguished as self, pair, triple, or higher-order, corre-

sponding to having zero, one, two, or more contacting neighbors (Supplementary Figure 11e, top),

respectively. To compare the local geometry of Chroma-generated backbones with that of native

structures, we randomly sub-sampled self, pair, triple, and full TERMs (i.e., TERMs containing

all contacting residues for a given central residue) within Chroma backbones and identified the

closest neighbor (by backbone RMSD) to each within the “search database”—i.e., the training set

used for Chroma. We performed a similar analysis on a set of native proteins not contained within

the search database–i.e., the test set used for Chroma. Although the test and training sets had been
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Supplementary Figure 13: Unconditional backbone samples span natural protein space while

also frequently demonstrating high novelty. a. We co-embedded ≈ 50,000 samples from

ChromaBackbone v1 along with a small set of about ≈ 500 samples from our PDB test set us-

ing UMAP [137] on 31 global fold descriptors derived from knot theory [138, 139]. We visualize

in the largest embedding plot all of these points colored by our length-adjusted CATH novelty met-

ric, which estimates the normalized number of CATH domains needed to achieve a greedy cover

at least 80% of residues at TM > 0.5. We use this score because it continues to grade the novelty

of longer proteins which almost all have a PDB nearest-neighbor TM < 0.5. On average Chroma

has a CATH novelty score of 2.7 and PDB has a CATH novelty score of 1.9. The four embedding

insets (left) demonstrate the specific distributions of properties of interest by highlighting popula-

tions of structures that are mainly helices, strands, large (> 500 residues), or from the PDB test

set. b, We highlight twelve proteins from across the embedding space with a high novelty score

(with embedding locations numbered)

split by chain-level sequence homology, we took further care to exclude any apparent homologs of

native TERMs from consideration as matches. To this end, we compared the local 31-amino acid

sequence windows around each TERM segment and its corresponding match, with any pairings

reaching 60% or more sequence identity not being allowed to participate in a match.

Supplementary Figure 11e shows the distribution of closest-neighbor RMSDs for TERMs de-

rived from both native and Chroma-sampled backbones that were generated at inverse temper-

atures λ0 = 10 and λ0 = 1. The distributions of nearest-neighbor RMSD were very close for

low-temperature samples from Chroma and native proteins, indicating that Chroma geometries

are valid and likely to be as designable as native proteins, including complex motifs with four

or five disjoint fragments (see Supplementary Figure 11e, bottom panel). Because native amino-

acid choices are driven by these local geometries [144], and adherence to TERM statistics has

been previously shown to correlate with structural model accuracy and success in de-novo design

[143, 144], this argues for the general designability of Chroma-generated backbones in a model-
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independent manner. Notably, the samples from Chroma at its natural temperature (i.e., λ0 = 1)

still utilize precedented low-order TERMs, while their geometries do begin to depart from native

for higher-order motifs.

J.4 Novelty analysis

We assessed the novelty of Chroma-generated samples by comparing them to natural protein folds

from CATHdb S40 [145] and PDB100 with FoldSeek (5-53465f0) [146]. For each sample, we

identified the closest hit in the PDB (with the highest TM-score) by using FoldSeek to search

against the highest resolution experimental structure within each cluster of PDB100. We estimated

novelty by computing fractions of entries with TM-scores above 0.5, 0.7 or 0.9; see Supplementary

Figure 12a for results using ChromaBackbone v0 and v1.

Additionally, we aligned all Chroma-generated samples against the full CATHdb dataset (all-to-

all) using FoldSeek. We greedily determined the number of domains needed to cover at least 80%

of the query by identifying the hits with the highest number of residues within 5 Å of the query

that were not already covered. The number of domains required increases with query size given

that CATH domains typically have a length ranging between 50 and 200 amino acids. We defined

a length-normalized CATH novelty metric as the number of domains required to cover 80% of the

query divided by
max(L,300)

300 , where L is protein length. As a baseline, we analyzed our PDB test set

using the same approach (see Supplementary Figure 12c,d).

Finally, we embedded single-chain structures from Chroma and the test set in 31 Gauss Integral di-

mensions using the pdb2git program from the Phaistos suite [139, 147]. Discarding the structures

that failed to embed, the remaining 47,786 Chroma samples and 561 natural folds were projected

onto a two-dimensions space using UMAP [137] with default parameters of 25 neighbors and a

minimal distance of 0.5 (see Supplementary Figure 13).

J.4.1 TM-align versus FoldSeek

While the TM-scores produced by the program TM-align [148] are a well-established standard for

comparing structures, we used FoldSeek for computational efficiency (allowing all-to-all compar-

isons) and tuned it to closely reproduce TM-align results. Specifically, by comparing a subset of

3,000 unconditional structures to the ∼ 32k structurally conserved domains from CATHdb S40 set

with TM-align and FoldSeek, we found that using FoldSeek with parameters:

--alignment-type 1 --min-seq-id 0 -s 20 -e inf --max-seqs 17000 -k 5

--num-iterations 2

provided the best trade-off between compute time and retrieval. There is an overall good agreement

between the two programs when the highest TM-score is above 0.45, with the median difference

of -0.003, 95 %CI [-0.013,-0.0003]. FoldSeek tends to overestimate novelty below this cutoff by a

median difference of -0.057, 95 %CI [-0.08,-0.024]. Comparison between FoldSeek and TM-align

is summarized in Supplementary Figure 12b.
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Supplementary Figure 14: ChromaBackbone v0 and v1 refolding TM-scores across length, sec-

ondary structure, and novelty. TM-scores between Chroma-generated structures and structures

predicted for the corresponding designed sequence using AlphaFold, ESMfold, and OmegaFold,

across length, helical content, and novelty. A maximum of 2000 points per model and bin is

shown. Due to hardware limitations, ESMFold predictions were restricted to proteins shorter than

848 amino acids and OmegaFold predictions were restricted to proteins shorter than 618 amino

acids.

J.5 Refolding analysis

We generated one sequence for each of the sampled single-chain unconditional structures (see

section J.1) for both ChromaBackbone v0 and v1. We used the Potts decoder of ChromaDesign

Multi as described in section I.2 (conditioned on t = 0.) in conjunction with the Local Compo-

sition Perplexity restraint described in equation 2. We then used AlphaFold [66, 149], ESMFold

[150], and OmegaFold [111] to predict structures of each the designed sequences. A summary of

the results is presented in Supplementary Figure 14. While shorter sequences refold successfully

more frequently, there is a non-trivial fraction of even very long designs (e.g., 800-1000 residues)

that do refold quite accurately (Supplementary Figure 14, top row). Interestingly, helix content

does not appear to be a strong predictor of refolding (Supplementary Figure 14, middle row), but

the distance to the nearest neighbor in the PDB does (Supplementary Figure 14, bottom row).

Validation through refolding is most challenging for novel structures, as both the generation and

prediction tasks are most challenging in this limit and require strong generalization of the underly-

ing methodology.

J.6 Sequence design analysis

We used ChromaDesign Potts and ChromaDesign Multi to generate protein sequences on the

test set using different complexity penalty methods, reflecting the experimental validation ap-

proach. We assessed sequence recovery for all residues, as well as over exposed, core, and interface
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Supplementary Figure 15: ChromaDesign and ProteinMPNN have comparable sequence re-

covery on natural proteins. We plot the median and interquartile ranges of per-protein sequence

recoveries when evaluated on the Chroma test set (left) and an intersection of the Chroma and

ProteinMPNN test sets (right).

regions. We compared performance to ProteinMPNN [116] using the 002 checkpoint at a temper-

ature of 0.01, as well as the 020 checkpoint at a temperature of 0.1. Considering that a substantial

portion of Chroma’s test set was incorporated into ProteinMPNN’s training set, performance was

assessed on the overlapping entries of both test sets. A summary of the performances is shown

in Supplementary Figure 15. Chroma designs and ProteinMPNN 002 exhibited comparable per-

formance across all regions and subsets, while ProteinMPNN 020 tended to have lower sequence

recovery. Neither of the complexity penalty methods appeared to have a meaningful impact on the

performance of ChromaDesign.

K Evaluation: Conditional Samples

In this section, we demonstrate the effectiveness of our integrated approach of programmable gen-

eration and design in creating protein structures capable of refolding in silico. We focus on eval-

uating our methods against state-of-the-art protein structure models such as AlphaFold [66, 149],

ESMFold [150], and OmegaFold [111]. Our expectation is that the proteins generated by our de-

sign exhibit novel structures and sequences. Therefore, we do not anticipate multiple sequence

alignment (MSA) hits, prompting us to deploy AlphaFold with a high number of cycles. To com-

pare refolded structures with generated ones, we compute the Template Modeling (TM) score using

the TM-align software [148]. For each generated backbone, we design one sequence following the

methodology described in section U.1 and report the TM score between the original and refolded

backbones.
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Supplementary Figure 16: Substructure-conditioned samples can refold in silico. a, Schematic

outlining the refolding pipeline generating these data b, Best-of-ten TM scores for each sampled

backbone for each PDB, aggregated across task for each structure prediction method (AlphaFold2,

OmegaFold, and ESMFold). Substructure-conditioned samples are able to achieve best-of-ten TM

scores higher than 0.5 for every PDB considered with each structure prediction method. c, Median

TM score (across structure predictors) per task. Distribution of median TM score shifts down as

more of the protein backbone is occluded. d, Example samples along with predicted structures

(drawn in white) for three PDBs across each task.

K.1 Refolding substructure-conditioned samples

Eight PDBs were selected for this evaluation by sampling from the test set restricted to monomers

with lengths between 60 and 500 amino acids and no missing structural data. For each template, we

explore refolding rate on four conditional generation tasks, each of which consists of masking out

a fraction (20%, 40%, 60%, and 80%) of the residues and conditioning on the atomic coordinates

of the unmasked residues. Masks are obtained by shifting a plane normal to the first principal

component of the atomic coordinates until the desired percentage of residues are masked. For a

formal description of the conditioning task as well as the method under evaluation, see section N.

For each of the 32 conditioning tasks, ten backbones were sampled subject to a filtering which

excluded samples containing discontinuities, clashes, or stereochemical violations, resulting in

a total of 320 backbones. For each backbone, ten sequences were designed using the method

described in I, and the resulting 3200 sequences are refolded with AlphaFold2 [66], OmegaFold

[111], and ESMFold [110].

TM scores between predicted and designed models are evaluated, the results are summarized in

Supplementary Figure 16. Calling a backbone a hit at a best-of-ten TM score cutoff of 0.5, we see

non-zero hit rate across all PDBs considered for all three structure prediction methods, with 100%

hit-rate achieved on several PDB-task-structure-predictor combinations. At a TM score cutoff of
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Supplementary Figure 17: Symmetry-conditioned samples can refold in silico. a, b, Refolding

statistics for all the generated backbones (no filtering). c, Computational protocol for refolding

analysis. d, representative refolded samples for different symmetry groups.

0.8, when restricting our analysis to the task of masking out 60% of the template backbone, we see

non-zero hit rate on half of the sampled PDBs for each of the three structure prediction methods.

We see that refolding becomes less likely as more of the template is masked (and hence more of

the monomer backbone is infilled).

K.2 Refolding symmetry-conditioned samples

We investigated the designability of symmetric assemblies generated by ChromaBackbone v1 us-

ing AlphaFold v2 and our refolding experiments showed remarkable refolding rate, indicating

that Chroma can generate highly designable assemblies. Our study involved two sets of refolding

experiments across various point groups, including Cyclic (C2, C3, C4), Dihedral (D2, D3, D4),

Tetrahedral (T ), Octahedral (O), and Icosahedral (I) groups. For each symmetry group, we ex-

plored single chain lengths of 50, 100, 150, and 200 residues. For each combination of symmetry

and backbone length, we generated 50 backbones without applying any filtering, resulting in a

total of 1,800 backbones. To ensure consistency, we used the sequence design method described

in appendix I, which enforced identical sequences for all chains. For each backbone, we sampled

20 sequences and used AlphaFold v2 for folding prediction, employing 10 cycles without Multiple

Sequence Alignment (MSA). This process produced a total of 36,000 structure predictions.

In the case of higher-symmetry groups (T, O, and I), which consist of 12, 24, and 60 subunits,

respectively, we limited our validation to symmetric trimers that respect C3 symmetry. This choice

was reasonable due to the presence of a three-fold axis in these groups. Unfortunately, reliable

and rapid structure prediction models for large and high-symmetry assemblies are currently un-

available. It is important to note that while the poorer refolding results observed in the trimer-only
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setting might result from excluding interface interactions from neighboring chains, this does not

necessarily imply that the designed proteins will not assemble. Based on the results obtained from

the aforementioned protocol, we observed a considerable number of successfully refolded designs

across the selected symmetry groups and sequence lengths (see Supplementary Figure 17). The

probability of success in refolding, defined as a TM-score greater than 0.5, was found to be higher

for assemblies with a smaller number of subunits and shorter chain lengths. We have included

selected refolded structures in Supplementary Figure 17.

Furthermore, we conducted a separate set of refolding validation experiments that focused specif-

ically on assemblies with O and I symmetries, generating 500 backbones instead of 50. We ob-

served a notable number of successful trimer refoldings. However, how trimer refolding correlates

with assembly formation success rate requires further investigation.

K.3 Refolding shape-conditioned samples

While shape-conditioned samples may drive towards folds that are highly atypical of what is found

in natural proteins, we sought to characterize to what extent they can be refolded in silico. For each

of the 26 letters in the Latin alphabet and each of the 10 digits in the Arabic numeral system, we

sampled 120 backbones representing a combination of sizes (length 500, 750, or 1000) and condi-

tioner hyperparameters. For the conditioner hyperparameters, we considered two configurations:

(i) one with fixed point cloud scaling, ψ = 2, and the hybrid SDE and (ii) the other with autoscal-

ing, ψ = 3 and purely annealed Langevin dynamics. Ultimately we found both methods gave a

large number of refolding hits so these may be primarily regarded as a mechanism for diversity.

For each of the backbones sampled in this workflow we sampled 5 sequences and refolded with all

three structure prediction methods. We outline the overall workflow and results in Supplementary

Figure 18.

Remarkably, we observe refolding with high TM-scores across all 36 shape classes and all 3 struc-

ture prediction methods (Supplementary Figure 18), even though samples were at minimum 500

residues long which is often a difficult regime for in silico refolding. Every shape shown in Figure

3c scored at least an ESMfold TM-score of 0.65 (many higher than this), and when we visualize

the ESMfold models with the highest TM-score correspondence to our Chroma designs in Supple-

mentary Figure 18d, we see that many of them successfully refold into the intended 3D shapes.

We emphasize that the only information being passed to ESMfold is the amino acid sequence, and

we in no way use ESMfold during the sampling process itself other than for the final selection of

models to examine based on agreement. Thus, it would appear that both structure predictors and

Chroma are capturing sufficiently similar sequence-structure relationships to agree on how they

might be leveraged to propose folds.

K.4 Refolding class-conditioned samples

Refolding on CATH class (fold) conditioned samples works in silico. To illustrate the performance

of the ProClass conditioner and provide in silico evidence that the designs can be made in the lab,

a computational sampling protocol was run as illustrated in Supplementary Figure 19 (left). Three

canonical folds were selected: beta barrel, Rossmann fold, and IG fold. For each fold, 2000

conditional backbones were sampled. For each fold, the top 100 samples (evaluated by p(fold)
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Supplementary Figure 18: Shape-conditioned samples can refold in silico. a, Experimental

protocol for refolding analysis of shape-conditioned samples. b, Samples for even the same shape

cue, such as the letter A, can exhibit large topological variations. c, Top TM-scores per backbone

out of 5 designed sequences across three different folding methods. d, The ESMfold models

(white) with the highest level of TM-score agreement with the Chroma model (rainbow).

under ProClass) were selected for design and refolding. Sequence design was performed 100

times for each backbone, then each of the resulting 30,000 resulting sequences were folded by

three folding models: AlphaFold, OmegaFold, and ESMFold. To evaluate if the refolding was

successful for each model a TM score was calculated against the generated backbone. If that TM

score was greater than 0.5 it was considered a successful refolding event. Overall success of a

backbone was evaluated by choosing the best TM score out of 100 designs.

Choosing hyperparamers that allow for successful optimization of the backbones requires tuning.

Two key hyperparameters are guidance scale, and max norm. Both need to be tuned to achieve

high-quality samples. The guidance scale rescales the gradient of the conditioner for sampling,

while max norm provides a maximum gradient norm above which the gradient is clipped. If the

guidance scale is too low the sample looks like an unconditioned sample. If the guidance scale is

too high, it breaks local backbone bond length constraints and the sampled protein might explode.

max norm choices that are too low result in gradient clipping in a way that prevents optimization.

If max norm is chosen to be too high, random outlier gradients can cause the sampling trajectory

to fail, as occasionally the gradients explode and destroy the sample. This random gradient explo-

sion does not occur for all conditional sampling problems, and so is evaluated on a case-by-case

basis.

The conditional parameters depend on various other sampling hyperparameters, so must be de-

termined for each sampling problem separately. The best choice for guidance scale tends to vary

based on inverse temperature, Langevin factor, and the number of steps. Practically, the guidance
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Supplementary Figure 19: Class-conditioned samples can refold in silico. a, Conditional gener-

ation protocol diagram. Three canonical folds were chosen to conditionally design the beta barrel,

Rossmann fold, and IG fold. 2000 conditional samples were generated for each fold. The best

100 of each fold were selected for downstream refolding analysis. There is close agreement in TM

score for all folding algorithms for these samples. b, Each backbone was designed 100 times and

refolded under each folding model. Almost all of the structures refold with a TM score greater

than 0.5 in best of 100 sequence designs. In the bottom plot, Conditioned backbones have a range

of probabilities of being the correct fold. In general conditioning on CAT class requires many

samples before high quality examples are generated. Some are easier to optimize than others. c, A

selection of the best examples for each fold in conditional design. The middle column illustrates

an example of the same class from the PDB for reference. The right column is an exemplar protein

generated from Chroma. In white is the refolded structure, in rainbow is the sampled backbone.

scale and max norm are found by a small sampling hyperparameter search. A small number of

seed-controlled samples are run at different choices of guidance scale and max norm (e.g. 0.1,

1, 10, 100). Then the best performing values are chosen for a production run. We chose max norm

to be 10.0, and use a guidance scale of 0.1 for the refolding experiments described in Supplemen-

tary Figure 19(a).

Refolding successes were observed across all three conditioned folds. Refolding had high agree-

ment across models, as seen in Supplementary Figure 19(left bottom). Further in Supplementary

Figure 19(middle), about 40% of the designs meet the threshold for refolding success. For a design

to be considered successful, it also has to have a high p(fold). Qualitatively this cutoff can vary on

what is acceptable, however, the best samples tend to be close to 1. In Supplementary Figure 19(b

bottom), the top 100 backbones are seen to vary substantially in the best optimization performance

achieved. Some CAT annotations are very difficult to optimize, whereas others are relatively easy

and good samples can be found quickly. In all three cases, structures that refolded and match the

desired fold were found. These examples can be seen in Supplementary Figure 19(c).
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Supplementary Figure 20: Natural language-conditioned samples can refold in silico. a,
Schematic that outlines the refolding pipeline generating these data. Structures conditioned on

the caption “Crystal structure of Fab” have two chains of 200 residues in length. Structures con-

ditioned on SH2 domain, kinase domain and Rossmann fold captions have single chains of length

110, 300 and 125 residues, respectively. In all cases, a task token is passed to the caption model

specifying that the caption represents the entire structure; see Appendix T for further details. Other

sampling parameters are listed in Supplementary Table 4. b, Best-of-ten TM scores for structures

sampled with guidance from each caption and refolded using different structure prediction methods

(AlphaFold2, ESMFold, and OmegaFold). OmegaFold is run on only the first chain for complexes.

c, Chroma backbones (rainbow) superimposed on OmegaFold predicted structures (white), along-

side examples from the PDB for each caption for comparison.

K.5 Refolding language-conditioned samples

To demonstrate the designability of samples conditioned on natural language, we draw backbones

with reverse diffusion guided by the gradients of a model that predicts p(y|xt), where y is a par-

ticular caption. Details about the underlying model are given in Appendix T. For each of the four

captions, we sample 50 backbones using three different guidance scales (1, 10, and 100) to com-

bine the conditioning gradient with the gradient from the diffusion model. The backbone length

and number of chains are chosen separately per caption to be similar to representative examples in

the PDB. Subsequently, we design ten sequences for each backbone and refold as in appendix K.1.

For backbones with more than one chain, when using OmegaFold we only fold the first chain,

rather than the entire complex. We find that larger guidance scales can result in incoherent back-

bones with particularly low likelihood, and reject those structures derived from backbones with

ELBO below 0. For the remaining backbones, refolding performance is approximately the same

regardless of guidance scale, and a scale of 10 tends to provide an acceptable balance between

effective conditioning and ELBO. The TM scores between each surviving designed backbone and

its best refolded structure are shown in Supplementary Figure 20.
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Supplementary Figure 21: The agreement of predicted structures with designs (TM-score) is

correlated to model confidence (pLDDT). We evaluated ESMFold, AlphaFold, and OmegaFold

models on the 35,000 unconditional samples generated in the ablation study, which represent model

behaviors and biases across several different configurations. We see across these data that struc-

ture predictions with high correspondence between Chroma models and refolded predictions are

also generally higher confidence predictions, suggesting a general self-consistency between the

sequence structure relationships being modeled across these different systems.

We find examples of designability for structures conditioned on each caption, although the suc-

cess rate varies considerably. The single chain structures refold with larger TM scores to their

Chroma predictions than complexes (antibody example). Nevertheless, for all captions we ob-

serve instances where our design protocol is successful, as measured by refolding with a TM score

above 0.5. We also show some comparisons of Chroma and successfully refolded structures in the

right panel of Supplementary Figure 20, alongside canonical examples of each caption from the

PDB.

K.6 Analysis of structure prediction confidence versus refolding TM

We observe a correlation between TM-Score and pLDDT for ESMFold, AlphaFold, and OmegaFold

across 35,000 unconditional samples generated in the ablation study. For all three predictors, we

see a correlation between predictor consistency, i.e. the TM-score between the generated protein

and the refolded protein, and predictor confidence, i.e. the pLDDT of the predicted structural

model model. We visualize this correspondence in Supplementary Figure 21.

L Evaluation: Ablation Study

To better understand the influence of our proposed covariance model (Supplementary Appendix

B), graph neural network topology (Supplementary Appendix E), atomic output layer parameteri-

zation (Supplementary Appendix F), and losses (Supplementary Appendix B), we trained multiple

variants of the model that ablate and modify different components as detailed in Supplementary
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Figure 22. These ablations were evaluated through the lenses of likelihood and sample quality to

holistically evaluate their effects on model performance.

L.1 Alternate model configurations and training

In this section, we briefly review the components of the model that we modified as well as their

respective variations.

Model component: Covariance. We consider two covariance models for defining the diffusion

process, which are are visualized in Supplementary Figure 3 and described in Appendix D:

• Covariance variant: ResidueGas. In this model, the coordinates of each Cα are indepen-

dently and identically normally distributed with standard deviation 10Å (along each x,y,z
dimension). The other coordinates of the N, C, and O atoms within the residue are then dis-

tributed normally around Cα with 1Å conditional standard deviation. This can be considered

an off-frame relaxation of frame diffusion models [67] or an all-backbone-atom extension of

IID Cα diffusion models. [91].

• Covariance variant: Globular. This covariance model captures spatial proximity con-

straints in the form of correlations within atoms in a residue and between residues in a chain,

while also respecting global length-dependent Rg scaling effects that arise from polymer

collapse. This version includes Complex Rg scaling.

Model component: Graph We consider two kinds of graph structure, which are visualized in

Supplementary Figure 4 and described in Appendix E:

• Graph variant: k-NN. This used a graph topology based on the 60 nearest neighbors in the

current structure.

• Graph variant: Random Graph. This used a hybrid graph topology for which 20 of the

edges are the nearest neighbors in the current structure and 40 of the edges are sampled

according to the inverse cubic attachment model.

Model component: Output. We consider three kinds of output parameterization varying from

the consensus update visualized in Supplementary Figure 5 and described in Appendix F:

• Output variant: PairFrameA. This uses the inter-residue geometry parameterization with

three equilibration steps and one uncertainty parameter per i, j that is coupled to both transla-

tion and rotation. The predicted transforms Ti j are parameterized as linear projections from

the final edge embeddings, and the coordinates are post-processed with time-dependent scal-

ing method A.

• Output variant: PairFrameB. This uses the inter-residue geometry parameterization with

ten equilibration steps and two uncertainty parameters per i, j, one for translation and one

for rotation. The predicted transforms Ti j are parameterized as residual updates to the trans-

forms of the current structure based on the final edge embeddings and the coordinates are

post-processed with time-dependent scaling method B.



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 71

LossGraph OutputCovariance

ResidueGas ELBOkNN PairFrameA

ELBOResidueGas Random PairFrameA

Globular ELBORandom PairFrameA

Globular +AuxLoss1Random PairFrameA

Globular ELBORandom LocalFrame

+AuxLoss2Globular Random PairFrameB

Globular Random PairFrameB ELBO

Likelihood evaluation

Sample quality evaluation

0

1

Epoch

1100 1101 1102 1103 1104

ɑ-Helix
Fraction

Large inter-checkpoint SS fluctuations

0

1

0

1
Refolding especially driven by alpha-helicity

7 model configurations

35,000 backbones

x1000 samples 

(100-500 AA, uniform)

AlphaFold

Total refolded

at TM > 0.5

β-Strand Fraction
0.0  0.0 to 0.2  0.2 to 0.4 0.4 to 1.0

Mostly ɑAll ɑ Mixed ɑ/β Higher β

AlphaFold

Refolded TM

0.0

1.0

035 model checkpoints

x5 consecutive 

checkpoints

35,000 sequences

x1 sequence design

600 X-space 
losses

Chain

whitened

losses

Random

Graph

k-NN

Model configurations

Residue 

Gas

Globular

E
L

B
O

Pai
rF

ra
m

eA

Lo
ca

lF
ra

m
e

Pai
rF

ra
m

eB

E
LB

O

E
L

B
O

+Aux 

Losses

ELBO

5 5

Covariance models Loss functions

Output layers

5

Graph topologies

Loss functions

0

0

900

400

T
o

ta
l 
re

fo
ld

e
d

T
o

ta
l 
re

fo
ld

e
d

v0*

v1

Supplementary Figure 22: Ablation study demonstrates utility of novel model components

as measured by likelihood and sample quality. We trained seven models composing different

configurations of proposed components and baselines, modifying the covariance model (Supple-

mentary Appendix B), graph neural network topology (Supplementary Appendix E), atomic output

parameterization (Supplementary Appendix F), and losses (Supplementary Appendix B) (top left).

We indicate the two configurations corresponding to ChromaBackbone v0 and ChromaBackbone

v1, where v0 has one additional change of using the globular monomer version of the globular

covariance scaling. Training for ∼500,000 steps on 8 V100 GPUs with a batch size of ∼32,000

residues per step suggests that there is little generalization gap between the training and validation

sets (top middle, windowed averaged training curves across 100 epochs). From the perspective of

likelihood (top right), globular covariance is favorable to residue gas covariance (Supplementary

Appendix D), inter-residue geometry prediction layer is favorable to local frame updates if tuned

appropriately (Supplementary Appendix F), and auxiliary losses incur a cost to ELBO (Supple-

mentary Appendix B). When we applied these trained models to generate unconditional samples

(bottom left), we observed large fluctuations in secondary structure composition between adjacent

checkpoints (bottom, middle left). When aggregating across these checkpoints, we observed that

refolding by AlphaFold was highly dependent on the fraction of α-helices in the sampled structure

(bottom, middle right). In spite of this, the refolding rate of samples based on a model with ran-

dom graph topologies was higher than those of a model based on k-NN topologies (Supplementary

Appendix E) and losses weighted in x-space induced better refolding than losses weighted only in

chain-whitened space (bottom right).

• Output variant: LocalFrame. This uses a local frame-transform update to the coordi-

nates that is parameterized based on the final node embeddings. The coordinates are post-
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processed with time-dependent scaling method A.

We consider three kinds of losses, described in Appendix B:

• ELBO This is a pure likelihood loss, which is a weighted average squared error loss in

whitened space together with additional additive terms to account for normalization and

change of variables. It is measured in Nats per atom in Cartesian space and is comparable

across different diffusion models.

• +AuxLoss1 To the base ELBO loss, we add the ELBO-weighted unwhitened loss (Equation

1) that measures mean squared error in Cartesian space.

• +AuxLoss2 To the base ELBO loss, we add the SSNR-weighted global MSE loss, the SSNR-

weighted 7mer fragment MSE loss, the Distance MSE loss, and the Inter-residue Transform

MSE loss.

Training For each of the model configurations in the ablation study, we trained on batch sizes of

32,000 residues by leveraging data parallelism across 8 V100 GPUs for ∼ 500,000 steps, which

is approximately ∼ 1500 epochs and ∼ 28 days of wall clock time. Models were trained with

the Adam optimizer [132] and a learning rate of 2× 10−4 with an initial linear warm-up phase

of 10,000 steps. After each epoch, we evaluated one-sample estimates of ELBO and other losses

across the full training and evaluation sets.

L.2 Ablation results

Likelihood analysis While it is clear that sample quality evaluations are very important for dif-

fusion models generally [55] and also specifically in the case of protein generative models [91,

103], we first compare the different model variants from the point of view of likelihood. Likeli-

hood measures have been broadly useful in deriving scoring functions for criticizing proteins and

can, in certain instances, form a useful framework to make contact with free-energy quantities aris-

ing from statistical physics. We expect that models which behave well from the point of view of

likelihood may also be useful as scoring functions to be used more broadly in protein design and

modeling.

We visualize the trajectories of ELBO (Supplementary Appendix B) for the training and validation

sets in Supplementary Figure 22. While the trajectories are smoothed with a 100-epoch moving

average because they are noisy one-sample estimates per datapoint, there is a clear and consistent

separation between the different model configurations. We make three observations:

First, there is a consistent improvement as measured by ELBO of the globular covariance models

over the residue gas models. In some ways, this is to be expected from theory, because the in-

formation theoretic diffusion likelihood can be rewritten in terms of the bits accounted for by the

prior plus additional corrections to account for non-Gaussianity [64]. Therefore a prior that better

fits the data distribution, such as our globular covariance model that is based on the empirical scal-

ing of real proteins, should do better as measured by likelihood even if the learned denoisers can

account for a similar number of bits.
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Second, we see similar but modest improvements in likelihood across the three different output

layer parameterizations, where PairFrameB is favorable to LocalFrame which is favorable to

PairFrameA. Thus we see evidence suggestive of favorable performance for our inter-residue

geometry prediction over purely local prediction, though this can depend on tuning and is poten-

tially confounded by the fact that PairFrameB also changes the output scaling at the same time.

Optimizing the output layer will likely warrant further investigation.

Finally, we observe that adding auxiliary non-ELBO losses to otherwise purely ELBO-based train-

ing reduces ELBO performance.

Sample quality analysis. To evaluate each of the model configurations from the point of view

of sample quality, we performed a large scale sample-and-refolding analysis. For each of the

seven model configurations, we took five checkpoints from consecutive epochs around epoch 1100,

sampled 1000 backbones per checkpoint with lengths uniformly distributed between 100 and 500

amino acids. We note that this epoch corresponds to ∼ 360,000 training steps, which is approx-

imately one quarter of the total training time of the ChromaBackbone v0.4998 that was used in

our broader refolding experiments. We expect that the total refolding rates reported in this section

may be generally lower than our production model.

We observe large epoch-to-epoch fluctuations in secondary structure biases of the samples (Sup-

plementary Figure 22, bottom center left). This is reminiscent of behaviors previously observed

in other diffusion models [133], in which a batch of images may be all tinted one color, then an-

other, even when the underlying denoising function is only changing slightly. These macroscopic

fluctuations arising from microscopic changes may be intuitively understood as a tendency of the

sampling process to amplify small per-time-step discrepancies. This phenomenon has previously

been addressed by exponential moving averaging (EMA) of the checkpoints [62, 133], and we

anticipate this is a worthwhile direction for future work.

Nevertheless, when we aggregate across checkpoints, we observe a few trends. All of the models

trained with denoising losses that measure squared error in Cartesian space, which includes both

the auxiliary loss models and the residue gas models, tend to have higher refolding rates than the

models which were trained only with a chain whitened losses. This aligns with classical intuition

on proteins in the sense that chained whitened coordinates emphasize local geometries in proteins

while Cartesian coordinates much more directly measure the absolute positioning of coordinates in

space that underlie contacts and interatomic distances. We also observe that the random graph neu-

ral networks have considerably higher folding rates than a purely k-NN based model, and that the

best performing model overall combined our new diffusion and output parameterizations together

with several new auxiliary loss functions. Thus, as has been a common lesson in the diffusion mod-

eling literature, non-likelihood based losses or denoising weightings can be important to driving

sample quality measures [55].

Low-temperature sampling remains essential All of the model configurations in this ablation

study can generate samples which successfully refold and, in that sense, none of these changes

qualitatively break model performance. We emphasize that the same cannot be said about low-

temperature sampling, as all of these experiments were sampled with λ = 10. As shown in Sup-

plementary Figure 2, low temperature sampling is important to generate high likelihood samples
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which are sufficiently compact and structured to have a chance at refolding.

M Programmability: Conditioners framework

Overview In principle, the set of proteins satisfying a given set of functional constraints can be

described using Bayes’ Theorem,

p(protein|function) ∝ p(protein)× p(function|protein)

where the posterior distribution of proteins p(protein|function) is proportional to the likelihood,

i.e. the probability of satisfying the set of functional constraints p(function|protein) times the

prior probability of the protein molecule being able to host function p(protein). This characteri-

zation has been appreciated for several decades [151], but leveraging it is challenging in practice

for two reasons. First, developing tractable and accurate priors over the space of possible proteins

has proven extremely difficult owing to the tremendous complexity in a single protein system (a

complex can easily have > 104 atoms) and the intractabilities of marginalizing out low level de-

tails. Secondly, even with an accurate prior, sampling from the space of polypeptide conformations

is highly difficult as it will typically involve a rugged landscape for which global optimization is

infeasible.

One potential way to simplify the difficult inverse problem posed by protein design is given by con-

temporary methods from machine learning. In particular, diffusion models simplify conventionally

intractable inverse problems by learning a sequence of distributions that gradually transform from

a complex data distribution turns into a simple and tractable distribution [54, 85]. This has enabled

transformative applications in text-to-image modeling [82, 83].

M.1 Bayes’ theorem for score functions

Bayes’ Theorem can be directly applied to Bayesian inversion with diffusion models where we

can derive the time-dependent posterior score ∇x log pt(x|y) as the sum of the original prior score

∇x log pt(x) and the likelihood score ∇x log pt(y|x) as

∇x log pt(x|y) = ∇x log
pt(x)pt(y|x)

pt(y)

= ∇x log pt(x)+∇x log pt(y|x)−
�

�
�

�
�
�

∇x log pt(y)

= ∇x log pt(x)+∇x log pt(y|x).

This formulation can treat arbitrary combinations of conditions if we model the joint event y as

factorizing into independent sub-events y1, . . . ,yM. Then we have the posterior score

∇x log pt(x|y1, . . . ,yM) = ∇x log pt(x)+
M

∑
i=1

∇x log pt(yi|x).

These posterior scores can directly substitute the usual score function in the posterior SDE and

ODE described in Appendix B.
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Joint programmable sampling of sequence and structure While we focus on classifier con-

ditioning of backbone structures throughout this work, it is also straightforward to extend the

above picture to include joint gradient-based sequence and structure sampling by leveraging new

discrete sampling methods based on locally gradient-adjusted MCMC proposals [125, 152]. It

is an important distinction that joint sequence-structure sampling at inference time does not re-

quire joint sequence-structure diffusion at training time; all we require for joint sampling is ac-

cess to a time-dependent joint likelihood pt(x,s). Our current Chroma model satisfies this as

pt(xt ,st) = pt(xt)pt(s|xt), which may be leveraged as

∇x,s log pt(x,s|y1, . . . ,yM) = ∇x,s log pt(x,s)+
M

∑
i=1

∇x,s log pt(yi|x,s).

M.2 Conditioners: motivation

Motivation: Constraints versus Restraints Bayes’ theorem can incorporate both soft restraints,

which reweight the posterior but do not restrict its support, and hard constraints, which can com-

pletely eliminate certain regions of space. Hard constraints are just as useful and sometimes more

natural than soft restraints in protein design, for example when conditioning on precise coordinates

of a small molecule binding substructure or when exactly enforcing symmetries across large sys-

tems. Nevertheless, unconstrained gradient-based sampling algorithms such as Langevin dynam-

ics or diffusion SDEs (Supplementary Appendix B) do not directly apply to constrained posteriors

without special modifications. Here, we seek a framework that can support both restraints and

constraints in concert with fully general sampling algorithms.

Requirements We propose four desiderata for a programmable protein design framework:

• Compositionality. Problems are expressed as design programs which are composed from

“building blocks” encoding different required attributes.

• Restraints. Building blocks should be able to express soft restraints (e.g. classifier guid-

ance) as a special case.

• Constraints. Building blocks should be able to express hard constraints, such as manifold

constraints, as a special case.

• Automatic sampling. It should be feasible to automatically synthesize a valid sampling

algorithm for any design program without requiring additional logic to be implemented by

the user.

Design specifications as energy functions The Bayesian picture, as well as classical protein

design approaches [151], formulate protein design problems in terms of energy functions which

express the (unnormalized) negative log-posterior probability density of a protein system given a

set of conditions. We can similarly cast posterior diffusions in terms of a time-dependent total
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Conditioners enforce constraints via transformation Conditioners are composable

Supplementary Figure 23: Conditioners parameterize protein design problems, facilitate au-

tomatic sampling algorithms, and are composable. (Left) Conditioners are functions which

map an unconstrained system consisting of an initial state x̃t and energy U0 = 0 to a transformed

state xt = f (x̃t ,U0; t) and an updated energy U f (x̃t ,U0; t). Gradient-based sampling with respect

to unconstrained x̃t on the Conditioner-adjusted Diffusion energy (left) will induce constrained

dynamics on xt . Many kinds of restraints and constraints can be realized in this framework (right),

and because of matched input-output types, simple Conditioners can be composed into complex

Conditioners to jointly satisfy multiple design objectives within a complex protein design problem.

energy as

U(xt ;y, t) =− log pt(xt)− log pt(y|xt)+C1

=
1

2

∥
∥σ−1

t R−1 (xt−αt x̂t (xt , t))
∥
∥

2

2
︸ ︷︷ ︸

Diffusion Energy

+ log pt(y|xt)
︸ ︷︷ ︸

Restraint Energy

+C2,

where the gradient of the total energy with respect to x will yield the negative posterior score

function7.

Constraints via linear transformations How can we encode constraints such as symmetry and

substructure? Many constraints, including these, can be enforced via affine transformation func-

tions of the form f (x̃) = Ax̃+b which map points in unconstrained Euclidean space x̃ ∈ R
N to

points in a constrained space f (x̃) ∈ Ω ⊆ R
M. We can then run Langevin dynamics (Supple-

mentary Appendix B) with the gradient of constrained energy U( f (x̃t);y, t) with respect to the

unconstrained coordinate x̃t as

dx̃ =−g2
t ψ

2
λtRR⊺∇x̃U( f (x̃t);y, t) dt +gt

√
ψ R dw̄.

7We may choose to stop gradient flow through the denoiser model, which saves compute cost and recovers the

behavior of the score functions from training time. This will lead to a non-conservative vector field (as is standard

practice for diffusion models), but allowing gradients to flow through the denoiser restores energy conservation [153].
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For variance-preserving schedule, the SDE reduces to

dx̃ =−βtψ

2
λtRR⊺∇x̃U( f (x̃t);y, t) dt +

√

βtψ R dw̄.

The constrained dynamics of xt will then evolve according to the SDE8

dx = Adx̃

= A

(

−βtψ

2
λtRR⊺∇x̃U( f (x̃t);y, t) dt +

√

βtψ R dw̄

)

=−βtψ

2
λtARR⊺∇x̃U( f (x̃t);y, t) dt +

√

βtψ AR dw̄

=−βtψ

2
λtARR⊺A⊺∇xU(xt ;y, t) dt +

√

βtψ AR dw̄,

(3)

which is precisely Langevin dynamics with a modified mass matrix (ARR⊺A⊺)−1 [154, 155] which

will sample from the constrained domain Ω.

Nonlinear constraints: Exact sampling Many constraint sets cannot be expressed as the images

of affine transformations [156]. One such example relevant to protein design is box constraints,

where some subsets of atoms may be confined to contiguous finite regions of space. To enforce

these constraints while still sampling from the intended energy function, we can simply design

a nonlinear function f that implements the constraint and then adjust the total energy for sam-

pling with the log-volume adjustment factor given by the multivariate change of variables formula:

log
∣
∣
∣det

∂ f
∂ x̃

∣
∣
∣. This works so long as f is continuously differentiable and bijective onto the con-

strained space and the constrained space has the same dimension as the domain of f . It is further

possible to extend this to also consider non-dimension-preserving transforms, e.g. with certain

embedded Riemannian manifolds, for which we refer the reader to [157].

This transformed MCMC approach may be useful even when the nonlinear transformation function

is fully unconstrained, for example, if it is a learned normalizing flow model of a particular class

of structures of interest, in which case it will induce a dynamics similar to latent diffusion models

[75].

Nonlinear constraints: Beyond If we are willing to sacrifice exact sampling from the true en-

ergy function, we may also discard the log-determinant adjustment and absorb the bias induced by

running Langevin dynamics in a transformed space. These dynamics will still be exactly confined

to the range of f , but may potentially be biased by change-of-volume effects as well as non-

bijectivity. However, this opens up a large number of possibilities which are simple to implement

by the user, as they only require a differentiable function f that implements the desired constraints

which need not have an inverse and which can be differentiated by automatic differentiation. We

have found this latter paradigm useful, as one can quickly realize more complex functionalities

such as restricting sampling of subsets of a system to rigid body motions, to satisfying complex

constraints such as optimal transport by differentiable inner optimization, and beyond.

8The first step can be justified by Ito’s lemma.
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M.3 Conditioners

The previously described restraints and constraints for Langevin dynamics share a common form

of implementation: they modify the system coordinates x and/or the total energy U . This suggests

a natural “building block” for a protein programming framework: transformation functions which

input and output system states (x,U).

We define a conditioner as a function F : RN×R→Ω⊆ R
M×R which maps state-energy pairs

in unconstrained input space R
N×R to potentially constrained state-energy pairs in Ω⊆ R

M×R.

For ease of notation, we further refer to Conditioners component-wise F = ( f ,U f ) in terms of a

state update function f : RN ×R→ Ω f ⊆ R
M and an energy update function U f : RN ×R→

ΩU ⊆ R.

Conditioned Diffusion To sample from Conditioner-biased diffusion problems, we will use a

gradient-based sampling algorithm, such as Langevin dynamics or Hamiltonian Monte Carlo, on

the Conditioner-transformed instance of the energy

U(x̃t ;U f , f , t) =
1

2

∥
∥σ−1

t R−1 ( f (x̃t ,U0; t)−αt x̂t ( f (x̃t ,U0; t), t))
∥
∥

2

2
︸ ︷︷ ︸

Diffusion Energy

+ U f (x̃t ,U0; t)
︸ ︷︷ ︸

Conditioner Energy

,

where the gradient ∇x̃U(x̃t ;U f , f , t) for sampling is computed with respect to the unconstrained

coordinates x̃t . These gradients and dynamics can be computed efficiently even for complex com-

posed conditioners by leveraging modern automatic differentiation frameworks, as shown in Sup-

plementary Figure 23.

Desiderata The Conditioner formulation satisfies all of our desiderata:

• Compositionality. Let F1 : RN1×R→ Ω1 ⊆ R
M1×R and F2 : RN2×R→ Ω2 ⊆ R

M2×R

be Conditioners and assume N1 = M2
9. Then F3 = F1 ◦ F2 is a Conditioner with F3 :

R
N2×R→Ω1 ⊆ R

M1×R.

• Restraints. Generalized restraints may be realized with state update f (x,U) = x (Identity

function) and energy update U f (U, x̃t , t) =U− log p(y|x, t).
• Constraints: Linear Transforms. Distribution-preserving linear transform constraints may

be realized with state update f (x,U) = Ax+b and energy update U f (U, x̃t , t) =U (Identity

function).

• Constraints: Non-Linear Transforms. Distribution-preserving nonlinear domain con-

straints may be realized with bijective and differentiable state update f :RN×R→Ω f ⊆R
M

and energy update U f (U, x̃t , t) =U + logdet
∣
∣
∣

∂ f
∂ x̃

∣
∣
∣ (Change of volume adjustment).

• Automated Sampling. Any gradient-based sampling algorithm may be used in concert with

the Conditioner-adjusted energy and an annealing schedule on the diffusion time t.

9Composition of blocks will require that their inputs and outputs can be shape-compatible, just as in the case of

composing differentiable blocks in neural networks. For example, two substructure constraints by definition must be

expressed in a way that can be jointly realized with one set of protein chain lengths.
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Conditioners for sequence and structure As noted in the previous section, the Conditioner

framework is also straightforwardly applied to joint sampling of sequence and structure, where we

define the joint energy

U(xt ;y, t) =
1

2

∥
∥σ−1

t R−1 ( f (x̃t ,U0; t)−αt x̂t (xt , t))
∥
∥

2

2
︸ ︷︷ ︸

Diffusion Energy

− log p( fs(s̃t))| fx(xt), t)
︸ ︷︷ ︸

Sequence Likelihood

+U f (x̃t , s̃t ,U0, t)
︸ ︷︷ ︸

Conditioner Energy

,

where gradient and dynamics are computed in unconstrained space x̃t , s̃t and we can use approaches

such as Discrete Langevin sampling [125, 152] to sample from sequence space while leveraging

gradients for building locally-informed proposals. Sequence and structure gradients can be com-

puted in one pass via automatic differentiation frameworks.

Thus, we can perform joint sequence and structure sampling conditioned on a target objective with-

out needing to train a joint diffusion on sequence and structure at the same time; all we require is a

valid joint posterior for sequence and structure conditioned on function which may be realized, for

example, with a conditional language model for sequence given structure together with a diffusion

model for the backbone structure joint marginal.

M.4 Example applications of constraint composition

We list the composable Conditioners explored in this work in Supplementary Table 6. Some prac-

tical protein design problems that might be realized as composite constraints under this framework

are

De-novo binders Combine (i) substructure conditioning on antigen, (ii) optional scaffold con-

straint on binder, and (iii) contact constraints on epitope/paratope.

Enzyme miniaturization Use motif conditioning to graft an active site into a novel scaffold or

known scaffold (e.g. via combining with a substructure conditioner).

Nanostructure control Use combinations of shape and substructure conditioners to sample novel

designable folds or complexes satisfying nanometer-scale target geometries.

Nanomaterial design Combine symmetry conditioners or shape conditioners control with sub-

structure condtioners to produce functionalized nanomaterials with periodic structure.

M.5 Related work

Energy functions for specifying multi-objective design problems have a long history in and out of

protein design, which we do not attempt to review here. Concurrent with this work, [158] proposed

a framework for programmatic design of proteins by introducing a grammar for problem specifica-

tions which can be compiled into deep energy functions that are sampled via annealed MCMC in

sequence space. Some advantages of our Conditioners framework include that it admits efficient

gradient-based sampling, that it can exactly enforce hard constraints on continuous degrees of free-

dom during sampling, and that it supports the fast-convergence properties of diffusion annealing

which “tunnels” from a unimodal t = 1 base distribution into the multimodal t = 0 target posterior.

Beyond protein design, the idea of using MCMC with diffusion models to sample from complex
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Conditioner f (x̃,U, t) U f (x̃,U, t) Examples and applications

Symmetry constraint Gx̃ U Large assemblies

Substructure constraint R̄R−1x̃+ µ̄ U +∥x̂θ ( f (x̃,U, t), t)M−xM
t ∥2

2 Substructure grafting

Substructure distances x̃ U− log pt(di j|x̃) Interface and contact constraints

Substructure motif x̃ U +η log
(

1+ eζ [ρ(xt )−ρmax]
)

Motif-conditioned scaffolds

Shape constraint x̃ U +ShapeLosst(x,r) Molecular shape control

Sequence x̃ U− log pt(sequence|x̃) Sequence constraints

Secondary structure x̃ U− log pt(ss|x̃) Topological constraints

Domain classification x̃ U− log pt(domain|x̃) Pfam, CATH, Taxonomy

Text caption x̃ U− log pt(caption|x̃) Natural language prompting

Likelihood restraint x̃ U− log pt(·|x̃) Biasing towards specifications

Linear constraint Ax̃+b U Exactly enforcing specifications

Nonlinear constraint f (x̃) U + logdet
d f
dx̃

Exactly enforcing specifications

Supplementary Table 6: Conditioners for Chroma.

composed energy functions was explored in [84], which also presents useful tools for negation and

other primitive composition operations.

Our framework introduces a versatile conditioning mechanism that accommodates additional modal-

ities such as natural languages [75] and 3D densities [159], allowing users to designate either

parametric or non-parametric classifiers as restraint energies. Moreover, it facilitates a compos-

able structure for sampling within constrained domains and manifolds, bearing a resemblance to

MCMC methods for structured spaces. In our methodology, we initiate sampling from an un-

constrained space, followed by mapping these samples onto the corresponding constrained space.

This mapping procedure echoes the ideas of Mirror Langevin Dynamics [160, 161], where the

constrained transformation operates as a ”mirror map”. For sampling linear subspaces, our ap-

proach recovers preconditioned Langevin Dynamics [155], achieved via mass matrix conditioning

[154].

N Programmability: Substructure Constraints

N.1 Motivation

Many protein design tasks including imputation of missing structural data, redesign of an enzyme

scaffold given an active site, and redesign of the CDRs of a known antibody framework require

exact specification of the known structural coordinates. In this section, we describe a method that

allows for such specification as a hard constraint on the reverse diffusion trajectories.

We began by exploring methods for substructural conditioning that bias sampling by adding a

conditional score term ∇ logx pt(y|x) to the drift component in the reverse SDE (Appendices P O).

In practice, we found that these methods do not always result in samples that satisfy the condition

y exactly. Often to enforce y in these regimes one must upweight the conditional score relative to

the prior score function which can result in a reduction in the likelihood (or ELBO) of the samples

drawn, or even in numerical instability.

The method presented below is motivated by the approach described in [154] where the equilibrium
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Globular
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(conditioned)
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Supplementary Figure 24: The globular covariance model admits analytic conditioning (Left)

Heatmaps illustrating comparison of unconditional (top) globular covariance matrix RR⊺ and con-

ditioned (bottom) covariance matrix R̄R̄⊺. (Middle) X-coordinate plotted against residue index of

samples drawn from unconditional (top) and conditional (bottom) prior. (Right) Initial samples

X0 and noised samples drawn from p(X1|X0) for the unconditional (top) and conditional (bottom)

priors. Conditioned-on structural residues are drawn in gray and correspond to the same residues

that are conditioned in the covariance matrix and line plot.

states of a system are sampled by simulating the dynamics of an auxiliary system with a modified

mass matrix. If the mass matrix is chosen appropriately, the original system’s configuration space

can be sampled more efficiently.

The method works by integrating a modified Annealed Langevin Dynamics SDE (see appendix C)

backwards in time to sample from p0(x|x1), where the dynamics are modified using a mass matrix

that assigns higher mass to particles closer (in chain distance) to known coordinates and assigning

infinite mass to known atoms. Samples drawn using this method satisfy y with probability 1.

Let S,M⊂ [1, · · · ,N] denote the atoms comprising the unknown scaffold and known motif, re-

spectively, throughout this section.

N.1.1 Related work

Song et al. [55] present a replacement method for drawing approximate conditional samples

from p(xS0 |xM0 ) in which one samples a sequence of noised motifs x̄M1:T ∼ q(xM1:T |xM(0)), then

runs diffusion backward in time but at each time step replacing xMt ← xMt before sampling

xt−1 ∼ p(xt−1|xt). [91] demonstrated that this method introduces an irreducible error that is ex-

acerbated by the correlation introduced by q and proposes a particle filtering-based approach that

furnishes arbitrarily accurate conditional samples given sufficient computation. Informally, the
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Supplementary Figure 25: Examples of substructure-conditioned Chroma samples Example

conditional samples drawn by conditioning on substructures of 8 PDBs sampled from the Chroma

test split. Conditioned-on portions of the structure are defined by splitting the protein by a plane

normal to the first principal component of the atom coordinates and are drawn in grey. The plane

is shifted to condition on a specified fraction of the residues for each column.

error introduced by the replacement method arises from imputing noised motifs that are highly

unlikely given the corresponding noised scaffold.

N.2 Approach

It is known that for x ∼ N (µ,Σ), if we partition the coordinates as above into subsets M,S
and follow the Gaussian conditioning formula to write x =

[
xS

xM

]

with µ =

[
µS

µM

]

and Σ =
[

ΣSS ΣSM

ΣMS ΣMM

]

such that (xS |xM = a)∼N (µ̄, Σ̄) where

µ̄ = µS +ΣSMΣ−1
MM(a−µM)

and

Σ̄ = ΣSS −ΣSMΣ−1
MMΣMS ,

where inverse matrices are understood to denote pseudo-inverses. We also compute the Cholesky

factorization R̄R̄⊺ = Σ̄. To draw an approximate conditional sample from p(xS0 |xM0 = a) we pro-

ceed as follows: we sample xS1 ∼N (µ̄, Σ̄) from the conditional prior, set xM1 = a , and integrate a

modified Annealed Langevin Dynamics SDE (see section C.2)
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dx =−g2
t ψ

2
R̄R̄⊺∇x log pt(x)

λ0 dt +gt

√
ψ R̄ dw̄

backwards in time, where the matrices R̄, R̄⊺ are broadcast to the correct size with the conditioned

on rows and columns filled by zeroes. Supplementary Figure 24 illustrates R̄, R̄⊺ as well as samples

from a conditional prior.

Additionally, we have found it helpful to incorporate a reconstruction-guidance based gradient

term as in [162]. We have found that, while this can introduce some instability to the sampling, it

improves sample quality. To do so, in our conditioner formulation we define

U f (x̃t ,U, t) =U +∥x̂θ (xt , t)
M−xMt ∥2

2,

where

xt = f (x̃t) = Ax̃t +b = R̄R−1x̃t + µ̄.

See section M.2 for a derivation that under this f , evolving x̃ according to the unmodified An-

nealed Langevin SDE induces dynamics on xt equivalent to the mass-modified dynamics presented

above.

O Programmability: Substructure Distances

O.1 Motivation

In some instances, it may be useful to generate diverse protein chains or complex structures un-

der the constraints that one or more specific residue pairs be in spatial proximity (i.e., form a

“contact”). Such a conditioner could be used, for example, to design binders by ensuring that the

desired binding site is being engaged. Or it could be used to enforce some desired topological

properties–i.e., the proximity of N- and C-termini (e.g., for ease of circular permutation). Assum-

ing that we are interested in conditioning on a contact between atoms i and j within the diffusion

conditioning framework, we wish to compute the probability that the distance between two atoms

in the fully denoised structure D
i j
0 is below a desired cutoff c, i.e. D

i j
0 < c, given a noised sample

at time t and the corresponding distance d
i j
t .

O.2 Approach

The Bayesian approach to diffusion conditioning approach would be to build an estimate of the

time-dependent likelihood pt(y|x(t)) to classify noisy inputs. In the case of a contact classifier,

we can build an analytic approximation for pt(D
i j
0 < c|xt) as follows. First, we choose a prior

p(x0) that captures distance statistics in the PDB giving rise to an tractable posterior denoising

distribution p(x0|xt). With a Gaussian prior for x0, which we can use our globular covariance

model for, we arrive at a Gaussian posterior for p(x0|xt) and can further model the posterior dis-

tances p(D
i j
0 |xt) with a non-central chi-squared distribution. This allows us to compute the desired

p(D
i j
0 < c|xt) using the CDF of the non-central chi-squared distribution.
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First, we can build a Gaussian approximation of a prior for protein chains p(x0) with our globular

covariance model (Appendix D.3) as

p(x0)∼N (0,RR⊺).

Then, according to our forward process, we have a forwards transition kernel for the likelihood

as

p(xt |x0)∼N (αtx0,σ
2
t RR⊺).

We can now apply Bayes’ Theorem as

p(x0|xt) ∝N (x0;0,RR⊺) N (xt ;αtx0,σ
2
t RR⊺)

∝N (x0;0,RR⊺) N
(

x0;
xt

αt
,
σ2

t

α2
t

RR⊺
)

p(x0|xt) =N (x0;αtxt ,σ
2
t RR⊺).

We can therefore express a sample from the posterior x0 ∼ p(x0|xt) as

x0 = αtxt +σtRz,

where z∼N (0,I). Assuming j > i, we have

x
j
0−xi

0 = αt(x
j
t −xi

t)+σt([Rz] j− [Rz]i).

From the Rg scaling analysis of the globular covariance model (Supplementary Appendix D.3) we

have

σ2
i j ≜ Var([Rz] j− [Rz]i))

=
2a2(1−b j−i)

1−b2
,

and therefore the inter-atomic residual will be Gaussian distributed as

x
j
0−xi

0

σtσi j
∼N

(

αt(x
j
t −xi

t)

σtσi j
,I

)

.

The squared inter-atomic distance is a squared 2-norm of this residual, which will therefore follow

a non-central Chi Squared distribution with 3 degrees of freedom as

∥
∥
∥
∥
∥

x
j
0−xi

0

σtσi j

∥
∥
∥
∥
∥

2

2

=
(D

i j
0 )

2

σ2
t σ2

i j

∼ NonCentralChiSquared

(

αt(d
i j
t )

2

σ2
t σ2

i j

,k = 3

)

.

We can therefore apply distance restraints by adjust the total energy by

log p(D
i j
0 <C|xt , t) = log

(

1−Q 3
2

(√
αtd

i j
t

σtσi j
,

C

σtσi j

))

,

where Q is the Marcum Q-function.
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(a) (b) (c)

Supplementary Figure 26: Motifs can occur in entirely unrelated structural contexts. a, An

example motif composed of three disjoint segments. b, PDB entry 3NXQ harbors the motif with

a backbone RMSD of 0.45 Å. c, PDB entry 3OBW harbors the motif with a backbone RMSD of

0.64 Å.

P Programmability: Substructure Motifs

P.1 Motivation

It would be very useful for a variety of protein engineering applications to condition structure

generation on the presence of a particular structural “motif.” By this we mean an arbitrary sub-

structure, composed of any number of disjoint backbone segments, that we would like to exist

within our final generated structure. In practice, such a motif could represent a functional con-

stellation of residues or a metal/small-molecule binding site—this could be useful for designing

enzymes or other functional proteins, by exploring ideas around a core functional mechanism. In

another example, the motif could correspond to a “scaffolding” part of the molecule that we would

want to preserve—e.g., the binding scaffold that can admit different loop conformations. Or the

motif could represent a desired epitope that we would like to faithfully present on the surface of

a generated protein in the context of vaccine design. Fig. 26 shows an example motif and two

unrelated native protein structures in which this motif is found with low RMSD.

P.2 Approach

To determine whether a pre-specified motif is present within a given structure S is simple–one can,

for example, find the substructure of S with the lowest optimal superposition root-mean-squared-

deviation (RMSD) to the motif and ask whether this RMSD value is below a desired cutoff; this

can be done using previously published algorithms [163, 164]. To enable conditional generation

based on the presence of a motif then, we employ a form of reconstruction guidance based on the

best RMSD to the motif in the present de-noised structure. Specifically, at time t we define the

best-match RMSD to the target motif with coordinates xM as

ρ (xt) = min
π∈Π

min
T∈SE(3)

∥xMt −T◦ x̂θ (xt , t)
Mπ ∥2

√

|Mπ |
, (4)

where the outer minimization is over the combinatorial space Π of alignment permutations π of

motif disjoint segments onto the current structure xt and the inner minimization is over the optimal
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superposition of the motif given a specific alignment π . The actual calculation is done using a

branch-and-bound search similar to the one defined in Zhou et al. [163] rather than an explicit

minimization over permutations. With this, we then modify the energy within our conditioner

formulation (see section M) as

U f (xt ,U, t) =U +η log
(

1+ eζ [ρ(xt)−ρmax]
)

,

where ρmax is the threshold RMSD below which we desire to find the motif in the final generated

structure, and η and ζ are parameters (we used η = 50 and ζ = 4 in this work). With this mod-

ification, auto-differentiation of the resulting energy to obtain the score function creates gradients

that pull the system towards containing the motif in question. Note that the location of the motif

within the generated structure needs not be specified, as equation 4 optimizes over all possible

alignments at each step of the reverse diffusion. On the other hand, it is also easy to introduce

constraints to the possible matching alignments, such as either relative constraints on the mapping

of individual segments of the motif (e.g., first and second segments must be separated by anywhere

between 3 and 20 residues) or absolute constraints on the location of the motif (e.g., first segment

must match in the first 100 residues of the generated structure). This can be easily accommodated

by modifying the parameters of the search in equation 4 as shown previously [163].

Q Programmability: Symmetry

Q.1 Motivation

The functions of many proteins are often realized through self-assembly into large higher-order

structures. One of the most powerful and widely employed tools for this in nature is symmetric

assembly, observed in everything from large membrane pores that gate transfer of materials in and

out of cells to icosahedral viral capsids which can encapsulate an entire genetic payload [165].

Similarly, incorporating symmetry into computational design of proteins holds great promise for

building large functional complexes [166]. To realize this potential within our diffusion frame-

work, we propose a method to directly constrain sampling to any prescribed discrete Euclidean

symmetries.

Related work Incorporating group equivariance in machine learning has been an important topic

in the machine learning community [167]. Incorporating symmetries is critical in molecular sim-

ulations [168, 169]. In this work, we propose a method for incorporating symmetry for point

set sampling with applications in the generation of large-scale protein complexes with arbitrary

discrete symmetry groups.

Q.2 Symmetry breaking in sampling

Group theory lays the foundation for describing symmetries in mathematics, physics, and biology.

[170–172] Let G = [g]Mi=0 be a collection of symmetry operations that form a group such as point

groups and space groups. For point sets in R
3, these symmetry operations can be represented as a

set of orthogonal transformations, i.e. rotations and/or reflections.
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To generate symmetric protein complexes, we want to sample structures x ∈RM×N×3 that are built

from M = |G| identical single chain proteins x ∈R
N×3 where N is the number of residues for each

subunit. The SDE solving process produces final samples with:

x0 = sdesolve(xT )

For sample generation to respect symmetries for an arbitrary group G, the SDE/ODE dynamics

needs to be G-invariant up to a permutation of subunits. Let · represent the symmetric operations

(rotation, reflection, and translation) performed on point sets in R
3, we define the sampling proce-

dure sdesolve : RM×N×3→ R
|G|×n×3 with x0 = sdesolve(xT ) being the desired samples. The

sampling procedure should follow the following G-invariance condition:

sdesolve(gxT ) = gsdesolve(xT ) = σ(g)sdesolve(xT ) ,∀g ∈ G

where g indicates a group element in G and we impose an arbitrary order on G and our method is

equivariant to the permutation of subunits. σ(g) is the induced permutation operation that satisfies

the relation: gG = σ(g)G, as computed from the group multiplication table (also called the Caley

table).

The first equality in appendix Q.2 is trivially satisfied if f (·) or the underlying gradient update is

E(3) equivariant, as G consists of only orthogonal transformations and translations. However, the

second equality is generally not satisfied. For molecular simulations where Hamiltonian dynamics

is used, the second equality can be satisfied if (i) the energy function is E(3) invariant, and (ii)

the initial xT and dxT

dt
are symmetric, i.e gxT = σ(g)xT ,g

dxT

dt
= σ(g) dxT

dt
. At each successive

time step, xt automatically satisfies the prescribed G-symmetry. This approach confines both the

position and momentum update to ensure that the sampled configurations remain symmetric.

However, this is not the case for SDE/ODE sampling in our framework. We list three origins of

the symmetry-breaking error if appendix Q.2 is used: (i) the denoising network uses distances

as features and is automatically E(3) equivariant. However, because protein feature graphs are

generated probabilistically, each subunit protein has a different geometric graph, despite the pro-

tein’s overall symmetry. (ii) Our polymer structured noise is randomly sampled fromN (xT ; µ,Σ),
so each subunit protein has different chain noise. (iii) The sampling procedure requires solving

an ODE/SDE which is vulnerable to accumulated integration error. Integration error can induce

unwanted geometric drifts such as rotation and translation[173], and be a substantial symmetry

breaking force.

Q.3 Symmetric transformation as a conditioner

Basic case. We propose the symmetric sampling approach as a constrained transformation for-

malism implemented as a conditioner block, as delineated in the referenced literature. Using

the representations of G, we demonstrate the building of protein symmetric assemblies from an

asymmetric unit (AU) chain x̃ through symmetrization. We commence with the mathematical for-

mulation of the transformation, subsequently elucidating the induced linear transformation on the

intrinsic gradient dynamics.



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 88

Representing G as M×3×3 rotation matrices G, we define the constrained transformation as

xt = f (x̃t , t) = symmetrize(x̃t) = Gx̃t ,

with the equivalent indexed tensor multiplication as

[xt ]m,n,i = ∑
j

Gm,i, j[x̃t ]n, j,

where n is the index of the elements of the group, m is the index of atoms in AU, and i, j are

Euclidean indices. The associated diffusion energy transformation is

1

|G|U f (xt) =
1

2|G|
∥
∥σ−1

t R−1 ( f (x̃t ,U0; t)−αt x̂t (xt , t))
∥
∥

2

2
=− 1

|G| log pt(xt).

The energy is averaged with |G| to account for the diffusion energy in individual AU with M atoms.

We can compute the Jacobian of the transformation f : RM×3→ R
N×M×3 as

d f (xt)

dx̃t
= G→ d[ f (xt)]m,n,i

d[x̃t ]n′, j
= Gm,i, jδn,n′ .

To derive the transformed dynamics, we inspect one solver step for the reverse Langevin dynamics

(identical analysis can be done for reverse diffusion), which is

x̃t+dt = x̃t−
1

2
RR⊺

[
d f (x̃t)

dx̃t

]⊺ dU f (xt)

dxt
dt +Rdw̄,

and show the induced gradient transform with its associated indexed representation

dU f (xt)

dx̃t
=

[
d f (x̃t)

dx̃t

]⊺ dU f (xt)

dxt
= G⊺ dU f (xt)

dxt
,

dU f (xt)

d[x̃t ]n, j
= ∑

m
∑

i

Gm,i, j

[
dU f (xt)

dxt

]

m,n,i

.

Observe that in the gradient transformation, the summation occurs over indices i, contrasting with

the index j used in the forward transformation to account for the index transposition [·]⊺ between

i and j. For orthogonal transformation, the transposition is also equivalent to the inverse of the

individual rotation matrix in G. This method inherently pulls the gradients back to the AU. The

computation of the transformed gradient can be adeptly handled using auto-differentiation, specifi-

cally as vector-Jacobian products. Furthermore, the gradients accumulated in AU are also averaged

by the number of chains in the tessellated domain by dividing the gradient by |G|.
We then analyze the transformed solver step with the pull-back gradient transform and get

f (x̃t + dx̃t) = f

(

x̃t−
1

2
RR⊺

[
d f (x̃t)

dx̃t

]⊺
1

|G|
dU(xt)

dxt
dt +Rdw̄

)

= G
︸︷︷︸

symmetrize

(

x̃t−
1

2
RR⊺G−1 1

|G|
dU(xt)

dxt
dt +Rdw̄

)

︸ ︷︷ ︸

folding to AU

.
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The constrained transformation has a nice interpretation: the solver step first folds the infinitesimal

change back, followed by symmetrization. Note that this method is equivariant to permutations

of group elements in G because the gradients are pulled back to AU and tessellated following the

order of group elements in G.

Another option to pull the gradients is to perform a “broadcasting” operation from a single AU

(indexed with u ) of x. This is also a valid gradient transformation that ensures G-invariance. This

equation is an example of constrained transformations in eq. (3), and in practice we apply the

temperature adjustment described in Supplementary Appendix C.

f (x̃t + dx̃t) = f

(

x̃t−
1

2
RR⊺[G]−1

u

[
dU(xt)

dxt

]

u

dt +Rdw̄

)

.

Symmetry operation compositions. The conditioner formalism facilitates the composability of

constrained transformations, paving the way for intricate protein geometrical designs. For instance,

by strategically combining rotations and translations, we can craft periodic protein assemblies.

This technique enables the design of both crystals and quasi-crystals through prescribed tiling

operations. Moreover, by combining rotational symmetries with translations, one can engineer

protein assemblies exhibiting hierarchical symmetries, producing fractal-like assembly structures,

as depicted in the bottom row of Supplementary Figure 28.

Q.4 Practical implementation with scaling and composition

Subsampling. For efficient memory sampling of large symmetric assemblies, we consider reduc-

ing the number of chains using chain subsampling techniques. This approach allows us to focus on

updating a specific subset, denoted as S ⊂ [1, ..., |G|], of subunits in xT , thereby conserving both

memory and computational time.

Given a designated subunit i, the subset S is derived by selecting the k-nearest neighbor (k-NN)

subunits. This selection is determined by the distances between the geometric centers of the sub-

units, ensuring the incorporation of short-range interactions between them. Through this method,

K subunits are chosen, where K represents the count of neighbors the denoiser interacts with during

each integration phase.

This randomized selection not only ensures that the gradient update remains globally consistent

but also prevents potential structural clashes and suboptimal contact formations. For a visual il-

lustration of the composed constrained transformation process, refer to Supplementary Figure 27,

which provides an illustrative example of symmetric sampling in C4.

Interestingly, this procedure, at its core an index selection mechanism, can also be depicted as a

linear transformation using a sparse matrix comprised of 0s and 1s. By harnessing interchain dis-

tances, we are equipped to select K < |G| chains following an exhaustive symmetric tessellation.

This method of subsampling aligns with established techniques in molecular simulations that em-

ploy periodic boundary conditions. To further understand the subsampling process, it is interesting

to note that, much like the tessellation method, the subsampling can be described as

xt = f (x̃t , t) = x̃St = subsample(x̃t) = S x̃t ,
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Supplementary Figure 27: Constrained transformations for symmetry operations.

and
d f (xt)

dx̃t
= S ∈ [0,1]MN×KN ,

where S is the chain selection matrix of size (KN ×K) where K < M is the number of chains

selected during sampling.

Rg energy restraints. The conditioner formalism provides the flexibility to seamlessly incorporate

the restraint energy during energy updates. To ensure optimal contact and packing, we can integrate

an Rg penalty through a harmonic or flat-bottom potential. This serves to maintain both the inter-

chain distance and the Asymmetric Unit (AU) Radius of Gyration within a reasonable range via

the restraint energy

U f (xt ,U, t) =U +URg
(xt) =U + ||Rg(xt)−⟨Rg⟩||22.

The proposed samplers can also be combined with other conditioners (substructure, natural lan-

guage, shape, etc.) to realize symmetric assembly design with controllable functions.

Composed transformation. Putting this together, the composed transformation is as follows

x = subsample(symmetrize(x̃))

U f (x,U, t) =U +URg
(x̃)+URg

(subsample(symmetrize(x̃)),

We include the schematic of the composed conditioner blocks in Supplementary Figure 27. For

implementation, this can be easily implemented in a composable function.

Q.5 Additional symmetric samples

We include more generated samples for selected point groups including Cn (cyclic symmetry), Dn

(dihedral symmetry), T (tetrahedral symmetry), O (octahedral symmetry), I (icosahedral symme-

try). For all the samples we use the reverse Langevin dynamics λ0 = 8 with the Heun SDE solver

that integrates from 1 to 0 for 500 steps. We used subunit k-NN sampling with K = 5. When

K > |G|, we set K = |G|−1. We provide additional samples categorized by the imposed symme-

try group in Supplementary Figure 28 with a range of sequence lengths per subunit. Our method

strictly imposes symmetries.
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Supplementary Figure 28: Additional generated complexes based on imposed symmetry

groups.

R Programmability: Shape

R.1 Motivation

Proteins often realize particular functions through particular shapes, and consequently being able

to sample proteins subject to generic shape constraints would seem to be an important capability.

Pores allow molecules to pass through biological membranes via a doughnut shape, scaffolding
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Supplementary Figure 29: Examples of poor packing in sampled symmetric complexes. Un-

derpacking or overpacking can occur occasionally, and may be partially addressed by density re-

straints.

proteins spatially organize molecular events across the cell with precise spacing and interlocking

assemblies, and receptors on the surfaces of cells interact with the surrounding world through pre-

cise geometries. Here, we aim to explore and test generalized tools for conditioning on volumetric

shape specifications within the diffusion framework.

R.2 Approach

Our shape conditioning approach is based on optimal transport [174], which provides tools for

identifying correspondences and defining similarities between objects, such as the atoms in a pro-

tein backbone and a point cloud sampled from a target shape. We leverage two tools in particu-

lar: (i) the Wasserstein distance [174], which measures point cloud correspondences in Euclidean

space and (ii) the Gromov-Wasserstein distance, which can measure the correspondences between

objects in different domains by comparing their intra-domain distances or dissimilarities. Because

Gromov-Wasserstein distance leverages relational comparisons, it can measure correspondences

between unaligned objects of different structure and dimensionality such as a skeleton graph and a

3D surface [175] or unsupervised word embeddings in two different languages [176].

Bounding degeneracy We initially experimented with restraints based purely on the Wasser-

stein distance and a target point cloud, which can estimated with the Sinkhorn algorithm [174],

but found that the huge degeneracy in potential volume-filling conformations would often lead to

jammed or high-contact-order solutions when using a modest amount of MCMC sampling. While

long-run Langevin sampling or similar approaches could allow gentle annealing into a satisfactory

configuration in principle, we sought to accelerate convergence by breaking this degeneracy with

a very coarse ”space-filling plan” for how the fold should map into the target point cloud, which

the prior can then realize with a specific protein backbone.

Mapping 1D to 3D We can leverage Gromov-Wasserstein (GW) optimal transport to answer the

question “How would an idealized protein fill a given space in a target 3D volume?”. To do so,

we (i) built an idealized distance matrix for a protein based on the 1D to 3D distance scaling law10

10This scaling law was fit on a large single-domain protein 6HYP.
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of Dideal(|i− j|) = 7.21× |i− j|0.32, (ii) computed the distance matrix for our target shape, and

(iii) solved for the Gromov-Wasserstein optimal transport given these two distance matrices [174]

yielding a coupling matrix KGromovWasserstein with dimensionality Natoms×Npoints. This coupling

map sums to unity and captures the correspondence between each point in the protein and in the

shape. We use a small amount of entropy regularization to solve the optimal transport problem

[174].

Optimal Transport loss In the inner loop of sampling, we can combine the Gromov-Wasserstein

coupling with simple Wasserstein couplings as a form of regularization towards our fold “plan”.

Our final loss is then

ShapeLoss(x,r) = ∑
i, j

(

KGW
i j +KW

i j (x,r)
)

∥xi− r j∥,

where we compute the Wasserstein optimal couplings KW
i j with the Sinkhorn algorithm [174]. This

yields a fast, differentiable loss that can be used directly for sampling.

Time-dependent scaling We weight the ShapeLoss(x,r) term with the scaling factor

w
(shape)
t = Clamp(

√

SNRt , [0.001,3.0]),

and then add its gradient directly to the loss during sampling. So the weighted objective is

ShapeLosst(x,r) = Clamp(
√

SNRt , [0.001,3.0])∑
i, j

(

KGW
i j +KW

i j (x,r)
)

∥xi− r j∥.

Scaling point clouds to protein sizes The Wasserstein and Gromov-Wasserstein losses are sen-

sitive to the point cloud length scales, but our shapes will not in general be correctly sized to the

protein that we wish to design them with. Of the methods that we explored to deal with this, two

that demonstrated some success were

• Fixed volume scaling. We estimate an approximate volume of our point cloud via on a

hard-sphere probe with radius set on typical nearest neighbor distance. We correct for sphere

overlaps via second-order inclusion-exclusion formulas. We then resize the point cloud ge-

ometry to match ideal protein geometry scaling of approximately ≈ 128Å3 per residue and

then adjust by a manually tuned factor (in practice anywhere from 0.3-1.0).

• Autoscaling We use the fixed scaling approach for GW distance calculation but also make

our loss scale invariant during optimization by computing the loss with a version of the

current structure that has been rescaled to have the same radius of gyration as the target

point cloud.

Generating point clouds for characters We rendered Latin letters and Arabic numerals in the

Liberation Sans font, extruded these 2D images into 3D volumes, and then sampled isotropic point

clouds from these volumes. The shape logo in Fig. 1C (silhouette of the ”Stanford bunny”) was

created using data from The Stanford 3D Scanning Repository (http://graphics.stanford.

edu/data/3Dscanrep/).

http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
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Supplementary Figure 30: ProClass model architecture.

S Programmability: Classification

S.1 Motivation

Protein databases provide a rich structured set of descriptions of various aspects of proteins. Pro-

teins are classified in these databases in terms of various aspects of their sequence, structure, and

functions. We can use any of these structured descriptors to generate proteins with structurally

and semantically useful features. Some of these descriptors, particularly ones that correspond with

protein function, may induce diffuse and complex structure changes that resist simple description.

To this end, we explore using a multi-property protein classifier as a conditioner for generation,

attempting to provide the ability to directly design proteins with desired categorical descriptions.

We see this as an initial step towards programmability of protein function.

S.2 Model inputs

We passed noised backbone coordinates obtained from the PDB as input to the model, along with

a scalar 0 < t < 1 denoting the time during diffusion that the noise was sampled at. The model can

optionally consume sequence information if available.

S.3 Featurization

We encoded the diffusion time with a random Fourier featurization (e.g., see [177]). When pro-

viding a sequence, we encoded it with a learnable embedding layer of amino acid identity. Finally,

we passed backbone coordinates to extract 2-mer and chain-based distances and orientations as

described in Supplementary Appendix G. We passed the sum of these components to the neural

network.

S.4 Architecture

The encoder is a message-passing neural network. We formed the graph by taking K=20 nearest

neighbors and sampling additional neighbors from a distribution according to a random exponential

method.

We passed node and edge embeddings to each layer, with each node being updated by a scaled

sum of messages passed from its neighbors. We obtained the message to pass from node i to node
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j by stacking the embeddings at node i, those at node j, and E , and passing these to a multi-layer

perceptron (1 hidden layer). We updated edges similarly. In each layer, we also applied layer

normalization (along the channel dimension) and dropout (dropout probability=0.1).

After processing by the MPNN, we passed node embeddings to a different classification head for

each label. For each head corresponding to a chain-level label, we pooled residues from each

chain using an attentional pooling layer. We then passed the resulting embeddings to an MLP with

1 hidden layer to output logits for each label.

S.5 Labels and loss functions

We trained the model to predict the following labels: CATH, PFAM, Funfam, Organism, Secondary

Structure, Interfacial Residue. We quantified the loss for each label prediction using cross entropy,

and summed all components with equal weights.

S.6 Training

We trained the model for 300 epochs with an Adam optimizer [132] with default momentum set-

tings (betas=(0.9,0.999)). We linearly annealed the learning rate from 0 up to 0.0001 over the first

10,000 steps and then kept it constant. During training, we first sampled a time stamp 0 < t < 1

uniformly, then sampled noise from the globular covariance distribution, injected this noise into

the backbone coordinates, and fed the result to the model. Next, we predicted labels, computed

losses, and updated parameters with the Adam optimizer.

S.7 Hyperparameters

Our classification model has 4 layers, with node feature dimension 512 and edge feature dimension

192. Our node update MLP has hidden dimension 256 with 2 hidden layers, and our edge update

MLP has hidden dimension 128 with 2 hidden layers.

T Programmability: Natural Language Annotations

T.1 Motivation

Recent advances in text-to-image diffusion models such as DALL-E 2 [83] and Imagen [82]

have produced qualitatively impressive results using a natural language interface. Given the open

availability of pre-trained language models and a corpus of protein captions form large scientific

databases such as the PDB [126] and UniProt [178], we explore the possibility of creating a natural

language interface to protein backbone generation. To do this, we build a protein captioning model

(ProCap), which predicts p(y|xt), where y is a text description of a protein and xt is a noised protein

backbone. This conditional model, when used in conjunction with the structural diffusion model

presented in the main text, can be used as a text-to-protein backbone generative model.
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Supplementary Figure 31: ProCap model architecture. ProCap connects a pretrained graph neu-

ral network encoder to an autoregressive language model trained on a large data corpus including

scientific documents. We use the 125M parameter GPT-Neo as the language model, with internal

dimension D= 768. Conditioning is achieved with pseudotokens generated from encodings of pro-

tein complex 3D backbone coordinates (batch size B, number of residues N, embedding dimension

H) and a task token indicating whether a caption describes the whole complex or a single chain.

The R relevant pseudotokens for each caption, consisting of the chain/structure residue tokens and

the task token, are passed to the language model along with the caption. When used in the forward

mode, ProCap can describe the protein backbone by outputting the probabilities of each word in

the language model’s vocabulary of size V for each of the L tokens of a caption. When used in

conjunction with the prior model, it can be used for text-to-protein backbone synthesis. In training,

ProCap uses a masked cross entropy loss applied only to the caption logits.

T.2 Dataset curation

To build a caption model, we begin by curating a paired dataset of protein structures and captions

from both the PDB and UniProt databases. Caption information is collected for the structures used

for the backbone diffusion model training, as well as the individual chains within these structures.

For each structure, we use the PDB descriptive text as an overall caption. For each chain in a

structure, we obtain a caption by concatenating all available functional comments from UniProt.

Structures containing more than 1000 residues are not used, corresponding to a minority (10%) of

all structures. The final set used to train and validate the caption model contains approximately 45

thousand captions, including those from both PDB and UniProt. Unlike the backbone model, the

splits used for training are completely random. The small size of the dataset constrained architec-

ture choices to those with relatively few free parameters.
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T.3 Model architecture

T.3.1 Architecture overview

To predict captions given noised structures, we construct ProCap using a pretrained language

model and a pretrained protein encoder. The pretrained language model is the GPT-Neo 125 mil-

lion parameter model [179]. GPT-Neo was trained on the Pile [180] which contains articles from

arXiv and PubMed. Its choice is motivated to maximize the chance that the model would begin

training with some understanding of protein-related text. We also use the pretrained graph neural

network encoder from ProClass, the protein structure classification model introduced above, to

encode protein backbones. Analogously to the choice of the language model, the purpose of the

structure encoder is to start ProCap with semantic knowledge of protein structure. To condition

the autoregressive language model, GPT-Neo, pseudotokens are formed from structures using the

ProClass encoder and prepended to the caption as context, similar to [181].

T.3.2 Data embedding

Here, we describe the embedding of task, caption, and structure data into a shared tensor repre-

sentation for input to the language model. We encode captions and task tokens using a modified

version of the GPT-Neo tokenizer, whose vocabulary we augment with a special token to distin-

guish between prediction tasks involving single chains and those relating to entire structures. We

convert structure inputs into pseudotokens with the same shape as text embeddings through the

graph neural network encoder of the pre-trained ProClass model. We then concatenate the task,

structure, and caption embeddings into a representation to pass to the language model to obtain

logits representing the probabilities of caption tokens. We train our model on a standard masked

cross entropy loss of the caption. Fig. 31 details the overall architectural flow. We proceed to

discuss the details of the embedding procedure.

Structure encoding in ProCap relies on a pretrained ProClass model. This classifier model consists

of a GNN with multiple heads to extract different class information, as described previously. We

use the GNN portion of the classifier network to obtain embeddings of each residue in the latent

space of the classifier, with the intent that the pre-trained classifier weights should help ProCap

learn the relationship between structures and captions. Besides the 3D information of the atoms in

each structure, we input the diffusion timestep (noise level) to the GNN via a Fourier featurization

layer which converts the diffusion time to a vector with the same dimension as the GNN node

embedding space using randomly chosen frequencies between 0 and 16. To allow for ProCap to

learn the optional use of sequence information, in 25% of the training data we pass sequences

along with structures. In these cases, we convert the amino acid information for each residue

through a single embedding layer with output size equal to that of the GNN node embedding space

dimension, adding the result to the time step vector.

We add task tokens to the model to allow for captions of both single chain and full complex

captions. For the prediction of UniProt captions describing single chains within structures, we pass

only the embeddings of the residues in the relevant chain to the language model. For the prediction

of the PDB captions related to entire structures, we pass all residue embeddings. In addition, we

use a linear layer after the ProClass embeddings to go between the ProClass latent space and the

embedding space of the language model, which are of different dimensionality. Finally, in order to
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help the model distinguish between PDB and UniProt prediction tasks, we prepend the encodings

of entire structures with an embedding vector of a newly defined PDB marker token. We normalize

the components of all structure vectors such that each one has zero mean and unit variance.

In summary, the ProCap architecture consists of a pre-trained GNN model for structure embedding

and a pre-trained language model for caption embedding, with a learnable linear layer to interface

between the two and a learnable language model head to convert the raw language model outputs

to token probabilities.

T.4 Model training

We train ProCap to be compatible with conditional generation using the structural diffusion prior

model. Like the other conditional models in this paper, we noise each structure according to the

schedule of the structural diffusion model. During ProCap training, we freeze the graph neural

network encoder weights from the pre-trained ProClass model. As we add a <|PDB|> task token

to the GPT-Neo vocabulary to cue the model to predict whole complex captions from the PDB, we

allow the language model to learn in order to optimize the encoding of this new token and refine the

embeddings of existing ones. Given the relatively small training data size, we also experimented

with training ProCap with the language model frozen except for its head. As we found that the

average perplexity achieved on the validation set was generally inferior when freezing language

model weights, in our final training run we optimize all weights of the language model.

We performed training on a single V100 with a constant learning rate of 5× 10−5 and the Adam

optimizer with hyperparameters β1 = 0.9, β2 = 0.999. We evaluate loss on our validation set

after every 2000 training examples. Over 24 epochs, the validation cross entropy loss reaches a

minimum of approximately 2.44, and the weights from this checkpoint are used to assess model

performance.

T.5 Performance

In order to test ProCap as a generative model, we draw high-quality conditional and correspond-

ing unconditional low-temperature samples from the model. To that end, we employ a structural

denoising approach in a similar fashion to the method described in [55]. Specifically, we use the

hybrid reverse diffusion SDE of Appendix C to evolve noisy random sample structures drawn from

the diffusion model prior, with gradients of the ProCap loss with respect to structure added to the

gradients of the structure diffusion model. When the size of the ProCap gradients is too small

relative to those from the prior model, there is little appreciable difference between a caption-

conditioned sample and an unconditional sample drawn from the same seed. We thus scale the

ProCap gradients by a guidance scale of up to 100 and find that the resulting samples are better con-

ditioned, analogously to previous work on classifier guidance [80]. At even larger guidance scales,

the coherence of the samples breaks down as the base model’s gradients are overwhelmed.

We present examples of our generated samples in the main text. To evaluate ProCap model per-

formance, we measure the improvement in caption loss during the SDE evolution between the

unconditioned and conditioned samples. As an independent check, we also examine the gain in the

TM-score between our sample (conditioned over unconditioned) and a target PDB structure which
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Supplementary Figure 32: ProCap evaluation metrics show effect of natural language condi-

tioning compared to unconditioned samples from the same noised seed structure. (Left) The

caption model cross-entropy loss as a function of diffusion timestep, for two sample trajectories

with and without the use of caption gradients. (Right) The TM-score between sampled structures

and example structures from the PDB corresponding to the captions used for conditioning.

exemplifies the caption being used for conditioning. Finally, we analyze the generated structures

visually for structural coherence. Qualitatively, starting from the same noisy random structure, the

diffusion model yields denoised structures which demonstrate desirable characteristics including

secondary structure elements, both with and without guidance from the caption model.

The caption loss and TM-score metrics for example sampling trajectories are shown in Fig. 32.

Both are initially quite noisy, and the conditioned and unconditioned samples are equally likely at

high t to have lower ProCap loss and/or better alignment with the target structure. However, over

the course of the reverse diffusion, the effect of the conditioning is demonstrated. It is particularly

notable that the TM-score is relatively stable at low t, indicating a regime where the SDE evolution

is fine-tuning structural details rather than making large-scale changes. In addition, we see that the

impact of classifier guidance can vary widely, possibly owing to the intricate balance between the

gradients over the diffusion trajectory. It remains challenging to robustly generate samples with

natural language conditioning in a systematic fashion; nevertheless, our results serve as a proof of

concept of guided diffusion using text input.

As a final check of the ProCap model, we ask whether samples generated guided by natural lan-

guage suggestive of a particular CATH topology are seen as being representative of that topology,

as measured by the model of appendix S. In Supplementary Figure 33, we compare the ProCap per-

plexity and ProClass probability of an immunoglobulin fold (CATH 2.60.40) for backbones gener-

ated using the caption “Crystal structure of Fab”. We see a strong correlation between the negative

log probability of the relevant topology and the ProCap loss, suggesting that ProCap shows signs

of understanding the meaning of natural language captions at the level of CATH topologies.
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Supplementary Figure 33: ProCap perplexity shows correlation with ProClass loss. From a

group of samples generated with classifier guidance from ProCap using an antibody-related cap-

tion, we plot the resulting perplexity of each backbone against its probability of an immunoglobulin

fold (CATH 2.60.40). We estimate the fold probability of a backbone using the classification model

described in appendix S, after the backbone is generated. Successful refolding can take place re-

gardless of perplexity, as described further in appendix K.5.

U Experimental Validation

U.1 Protein design

Four sets of designs were generated for experimental validation: two unconditional sets (Uncon-

ditional I and II) and two sets conditioned on CATH class or topology (Conditioned I and II,

respectively). The full protocol for each of these involved generating a set of Chroma back-

bones (either unconditionally or conditioned), designing sequences for each backbone (10 per

backbone for Unconditional I and 1 per backbone for the rest), and sub-selecting a smaller set of

designs to be experimentally characterized (see Supplementary Table 7 for details). Importantly,

no sub-selection based on refolding or structural energy calculations was performed. Further,

the protocols were run in an automated fashion with no manual intervention or selection of de-

signs. All experimentally addressed protein sequences are included in Zenodo dataset https:

//doi.org/10.5281/zenodo.8285063.

U.2 Experimental methods

U.2.1 DNA design

Chroma protein sequences were backtranslated and codon optimized for mammalian expression,

but omitting E. coli rare codons AGA and AGG to enable flexibility in the choice of expression

host. DNA sequences were ordered as eBlocks from Integrated DNA Technologies, Inc. and

cloned into either mammalian or bacterial expression plasmids using Golden Gate Assembly (NEB

E1601L), with recipient vector information detailed in corresponding subsequent sections. All

DNA sequences are included in Zenodo dataset https://doi.org/10.5281/zenodo.82850

63.

https://doi.org/10.5281/zenodo.8285063
https://doi.org/10.5281/zenodo.8285063
https://doi.org/10.5281/zenodo.8285063
https://doi.org/10.5281/zenodo.8285063
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Supplementary Table 7: Design protocol details

Unconditional I Unconditional II Conditioned I Conditioned II

Length [100;450], uniform [100;950], uniform 100 or 200, uniform 150

Model ChromaBackbone

v0.4999

ChromaBackbone

v0.4998

ChromaBackbone

v0.4999

ChromaBackbone

v0.4999

Integration

Parameters

1000 steps of SDE,

λ0 = 10, ψ = 2

1000 steps of SDE,

λ0 = 10, ψ = 0.1
200, 600, or 2000 steps

of SDE, λ0 = 10, ψ = 2

2000 steps of HMC,

λ0 = 10, ψ = 0.9

Conditioning N/A N/A CATH class: α , β , or

mixed α/β
CATH topo 2.40.155

Backbones

generated

500 2000 335 per class 54

Filter1 log p(s) R′g L(x), log p(s), log p(χ) L(x), log p(s), log p(χ)

Final designs 172 96 36 6

1 L(x)–Chroma ELBO; log p(s)–Chroma Design A sequence log-likelihood; log p(χ)–Chroma Design B chi-angle

log-likelihood; R′g–ratio of observed over expected radius of gyration, for given sequence length.

U.2.2 Pooled split-GFP solubility assay

Split-GFP components GFP1-10 and GFP11 were codon optimized for expression in E. coli and

cloned into the pNAS1b vector [182] under araBAD and pLtetO promoters, respectively. Chroma

protein-encoding eBlocks were introduced into the split-GFP vector using pooled Golden Gate

Assembly, resulting in gene cassettes under the pLtetO promoter with a C-terminal GFP11 fusion

tag. The final encoded library protein sequences were as follows: MGSSHHHHHHSSGLVP

RGS-[Chroma protein]-GSDGGSGGGS-[GFP11]. Pooled plasmid libraries were cloned using

ElectroMAX DH10B cells (Invitrogen 11635018), and subsequently transformed into BL21 strain

T7 Express Competent E. coli (NEB C2566I).

BL21 cells electroporated with the split-GFP plasmid library were recovered for 1 h in SOC

medium (NEB B9020S) and inoculated directly into 50 mL terrific broth (TB, Gibco A1374301)

+ 100 ng/µL carbenicillin and grown at 37◦C, 230 rpm for 16 h. Cells were then diluted to

OD600 = 0.2 and grown at 37◦C, 230 rpm until OD600 = 0.8. Split-GFP system components

were then induced using 0.1 % w/v L(+)-arabinose (Thermo Scientific TS36518-0250) and 100

ng/µL anhydrotetracycline (Sigma Aldrich 37919-100MG-R) and cells were grown for an addi-

tional 3 h. In parallel, cultures of BL21 cells expressing either dihydrofolate reductase (DHFR, a

positive control) or human beta-3 adrenergic receptor (ADRB3, a negative control GPCR https:

//www.uniprot.org/uniprotkb/P13945) in the split-GFP vector were grown and induced

under the same conditions as the library (Table 8). These control cells were then spiked into the

library population at a 1:1000 ratio. 5 mL of the library with control spike-in cell mixture were

set aside for miniprep and sequencing analysis of pre-FACS populations. 5 µL of the cell mixture

was then washed twice with 1 mL cold PBS and then sorted into 4 different gated populations

representing a range of GFP fluorescence values on a BD FACSAria. Gating parameters were

determined empirically based on clonal positive and negative control cells, as shown in Supple-

mentary Figure 38c. At least 50,000 cells were collected per gate and recovered for 1 h in 1 mL

https://www.uniprot.org/uniprotkb/P13945
https://www.uniprot.org/uniprotkb/P13945
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SOC at 37◦C, 230 rpm. Recovered cells were inoculated in 5 mL TB + 100 ng/µL carbenicillin and

grown for an additional 16 h. Plasmid populations were then isolated by miniprep (Machery-Nagel

740588.50). For the fluorescence stability experiment shown in Supplementary Figure 38d, cells

recovered after FACS and regrown overnight were then subjected to a second round of identical

experimentation in which split-GFP components were induced and cells were re-examined on the

BD FACSAria.

U.2.3 Nanopore sequencing and analysis

Plasmid libraries from each population (i.e. the cells harboring the split-GFP Chroma library +

spike-in controls prior to sorting and each of the 4 bin-sorted populations) were digested using

HindIII and desalted using 0.7x v/v AMPure XP beads (Beckman Coulter A63880). 200 fmol

of each library (assuming an average length of 6kb) underwent DNA repair and end prep using

manufacturer guidelines for R9 MinION flow cells (Oxford Nanopore FLO-MIN106D). The DNA

was then purified with AMPure XP beads at a 1:1 ratio then quantified by Qubit 4 Fluorometer

(ThermoFisher). 500 ng of DNA from each library underwent barcode ligation (Oxford Nanopore

barcoding kit EXP-NBD104), followed by another 1:1 AMPure XP bead purification. Each library

was then pooled in equimolar ratios and loaded onto the MinION flow cell. One experiment was

performed using only proteins UNC 001 through UNC 172 (unconditional designs, 13.68 million

reads) and two additional experiments were performed using all Chroma proteins pooled together

(unconditional and semantically conditioned designs, 18.28 million reads total).

Sequencing reads were basecalled using Bonito Basecaller v0.6.1 (https://github.com/nanop

oretech/bonito) with ONT Chemistry r9.4.1 and accuracy mode ’high’. Raw fastq files were

generated and demultiplexed using a custom script. Demultiplexed reads were filtered for reads

longer than 400 bp using SeqKit v2.3.1 (https://bioinf.shenwei.me/seqkit/) [183] and

aligned to reference Chroma sequences using Minimap2 v2.23 (https://github.com/lh3/min

imap2) [184] to generate BAM alignment files. BAMs were sorted and indexed using samtools

v1.16.1 (https://github.com/samtools/samtools). For each BAM file, pysam v0.20.0

(https://github.com/pysam-developers/pysam) was used to count reads aligned with each

reference sequence. For sequence enrichment analysis, enrichment scores were assigned to each

protein in each sorting bin by dividing normalized read counts for a given protein in a given bin by

normalized read counts of that protein in the pre-FACS library. Split-GFP bin scores were assigned

to each protein, j, as

score j =
n=3

∑
i=0

enrichment scorei

sum of enrichment scores j
× bini

.

For pooled assay score calculations, proteins in the set containing UNC 001 through UNC 172

(smaller unconditional designs) were analyzed alone (i.e. not considering read counts for other

protein sequences) to enable triplicate data analysis between all three experiments. The set con-

taining UNC 173 through UNC 268 (larger unconditional designs) were also analyzed alone for

the duplicate experiments performed. Given the small number of semantically conditioned de-

signs, these proteins were analyzed with all other proteins. Raw and processed read counts are

included in Zenodo dataset https://doi.org/10.5281/zenodo.8285063.

https://github.com/nanoporetech/bonito
https://github.com/nanoporetech/bonito
https://bioinf.shenwei.me/seqkit/
https://github.com/lh3/minimap2
https://github.com/lh3/minimap2
https://github.com/samtools/samtools
https://github.com/pysam-developers/pysam
https://doi.org/10.5281/zenodo.8285063
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U.2.4 Soluble protein expression confirmation via western blot

The top and bottom 20 scoring unconditional proteins from set UNC 001 through UNC 172

(smaller unconditional designs) and the top 10 proteins from set UNC 173 through UNC 268

(larger unconditional designs) were cloned into an E. coli-based overexpression vector based on

pET (kanR, pBR22 origin, T7 promoter for Chroma protein expression) by Golden Gate Assem-

bly, resulting in the following protein expression format: MGS-[Chroma protein]-GSENLYFQG

SAWSHPQFEK, which includes a C-terminal TEV cleavage site and Strep-tag. Plasmids were

transformed into the BL21 derivative T7 Express Competent E. coli (NEB C2566I). Recovered

cells were inoculated into 1 mL TB + 50 ng/µL kanamycin and cells were grown in a 96-well

deep well plate at 37◦C, 230 rpm for 16 h. Cells were then diluted to OD600 = 0.15 in 1 mL

TB and grown to OD600 = 0.8. Protein expression was induced with 400 µM isopropyl ß-D-1-

thiogalactopyranoside (Teknova NC1601425) and cells were grown for an additional 3 h. Cells

were spun down at 500 x g, media was discarded, and cell pellets were stored at -80◦C for 1 day.

Cell pellets were then thawed on ice for 5 min and pellets were resuspended in 40 µL lysis buffer

consisting of 50 mM NaCl (Invitrogen AM9760G), 50 mM Tris pH 7.4 (Invitrogen 15567027), 1x

BugBuster (Millipore 70584-3), 5% glycerol (Fisher G331), 1x cOmplete protease inhibitor cock-

tail (Roche 11873580001), and 1 mM dithiothreitol (Sigma 10197777001). Cells were allowed to

lyse on ice for 10 min, then spun at 500 x g for 15 minutes to clear lysates.

1 µL of each lysate was run on a NuPAGE 12% or 4-12% Bis-Tris mini protein gel (ThermoFisher

NP0341 or NP0322) in MES buffer (Novex NP0002) and transferred to a PDVF membrane (iBlot,

ThermoFisher IB401002). Membranes were blocked in 5% milk powder in TBST for 1 h at 23◦C,

shaking. Membranes were then treated with either 1:5000 Streptactin-HRP (IBA-Lifesciences 2-

1502-001) or anti-Strep-tag-HRP (StrepMAB-Classic HRP conjugate, IBA-Lifesciences 2-1509-

001) in 5% milk in TBST for 1 h at 23◦C, shaking. Membranes were then treated with ECL

western blotting substrate (SuperSignal West Dura, ThermoFisher 34075) and visualized on an

iBright FL1500 imaging system (ThermoFisher). As some proteins expressed at much higher

levels than others, some blots were rerun with 10- to 100-fold lysate dilutions to enable qualitative

visualization of proteins at various expression levels on the same blot. Proteins were considered to

be detected if a band was visible at approximately the anticipated molecular weight.

U.2.5 Protein purification

For E. coli-based protein expression (for all tested proteins except SEM 011), 1 L of Gibco Terrific

Broth (ThermoFisher A1374301) + 50 ng/µL kanamycin was inoculated with E. coli BL21 (NEB

C3010I) containing the bacterial expression vector of the desired protein with C-terminal Strep-tag

(plasmid information in previous section). Cells were allowed to grow to log phase at 37◦C with

shaking before induction with 400 µM IPTG (Teknova I3502) and further incubation for 3 hours

at 37◦C.

Cells were harvested by centrifugation at 4,000 x g for 30 minutes, resuspended in lysis buffer

(20 mM Tris pH 8, 150 mM NaCl, 1x Halt protease inhibitor cocktail ThermoFisher 1861279, 1x

Benzonase Nuclease Sigma-Aldrich E1014) and lysed by sonication. Lysates were cleared with

centrifugation at 15,000 x g for 30 min, passed through a 0.2 µm filter, and incubated overnight

at 4◦C, with shaking, with 5 mL Strep-Tactin XT 4Flow High-capacity resin (IBA Lifesciences



Suppl. Info. for Illuminating protein space with a programmable generative model (2023) 104

2-5030).

After incubation, resin was loaded on gravity column and allowed to flow through, then washed

with 2 x 10 CV Strep-Tactin XT wash buffer W (IBA Lifesciences 2-1003) and eluted with 2x 1 CV

Strep-Tactin XT elution buffer BXT (IBA Lifesciences 2-1042). Elution fractions were pooled and

incubated with TEV (Sigma Aldrich T4455) at a 1:100 v/v concentration ratio to protein, overnight

at room temperature.

The sample was then buffer exchanged back into Strep-Tactin XT wash buffer W using a Zeba

desalting column (Thermo Scientific 89893) and incubated with 5 mL Strep-Tactin XT resin and

1 mL cOmplete His-Tag Purification Resin (Millipore Sigma 5893801001) for 1 hr at 4◦C before

flowing through a gravity column to remove TEV and uncleaved protein.

Samples were then concentrated to a volume of approximately 5 mL and purified via size exclusion

chromatography (SEC) on a HiLoad 16/600 Superdex 75 Column (Cytiva GE28-9893-33) into a

final buffer of 20 mM Tris pH 7.5 100 mM NaCl. Fractions were collected, purity was assessed by

SDS-PAGE, and appropriate fractions were pooled.

For mammalian-based protein expression of SEM 011, a gBlock encoding the protein was intro-

duced into a plasmid for transient transfection via Golden Gate Assembly under the CMV promoter

with an N-terminal signal peptide, based on vector pcDNA3.4 (ThermoFisher, A14697). The pro-

tein also had a C-terminal TEV cleavage site and Strep-tag identical to the configuration used

for bacterial expression described above. 100 mL of Expi293F cells (ThermoFisher A14635) in

Expi293 expression medium was transfected with the construct containing C-terminal Strep tag

following manufacturer’s guidelines. Cells were transfected on Day 0 at a density of 3x106 viable

cells/mL with 100 µg of plasmid DNA and placed in shaker at 37◦C, 8% CO2. At 24 h post-

transfection, cells were fed with transfection enhancers and returned to shaker for expression until

day 5.

Expression supernatant was harvested at 70% cell viability by centrifugation at 4,000 x g for 30

min. Supernatant was clarified further through a 0.22 µM filter for immediate purification. 2

mL of Strep-Tactin XT 4Flow High-capacity resin (IBA Lifesciences 2-5030) was added to the

supernatant and placed on a roller for 24 h at 4◦C for batch binding.

After incubation, resin was loaded on gravity column and allowed to flow through, then washed

with 7.5 CV Strep-Tactin XT wash buffer W (IBA Lifesciences 2-1003) and eluted with 2 x 2.5 CV

Strep-Tactin XT elution buffer BXT (IBA Lifesciences 2-1042). Eluted protein was concentrated

to 2.5 mL using Amicon Ultra-15 3 kDa spin concentrators (Millipore UFC900324) followed by

buffer exchange into PBS pH 7.4 using PD-10 desalting columns packed with Sephadex G-25 resin

(Cytiva 17085101). Desalted protein was incubated overnight with TEV protease (Sigma Aldrich

T4455) at a 1:100 v/v concentration ratio to protein, overnight at 4◦C.

The sample was then incubated with 1 mL Strep-Tactin XT resin and 1 mL cpmplete His-Tag

Purification Resin (Millipore Sigma 5893801001) for 1 h at 4◦C before flowing through a gravity

column to remove TEV and uncleaved protein.

Cleaved protein was then concentrated to a volume of approximately 1 mL and purified via size

exclusion chromatography (SEC) on a 10/300 Superdex 75 Increase Column (Cytiva 29148721)
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into a final buffer of 20 mM Tris pH 7.5 100 mM NaCl. Fractions were collected, purity was

assessed by SDS-PAGE, and appropriate fractions were pooled.

U.2.6 Circular dichroism

CD spectra to capture protein secondary structure were acquired using a 1 mm pathlength cuvette

(JASCO Part #0556) on a JASCO CD-1500 spectropolarimeter at 20◦C. To capture far-UV CD,

proteins were buffer exchanged into 10 mM NaPO4 pH 8.5 (Thermo Scientific), concentrated to

0.3-0.5 mg/mL using 10 kDa molecular weight cutoff Amicon Ultra-4 Centrifugal filters (Millipore

UFC801024), and read in the UV spectral range of 190 – 250 nm. The CD scale used was 200

mdeg/1.0 dOD with a DIT of 4 s, a bandwidth of 1 nm, a data pitch of 0.5 nm, and a scanning speed

of 50 nm/min with 1 accumulation. Background spectra were acquired across this same spectral

range for 10 mM NaPO4 pH 8.5 (J61151.AP) without protein added and was manually subtracted

after conversion. To estimate secondary structure content, deconvolution of far-UV spectra was

performed using the Beta Structure Selection (BeStSel, https://bestsel.elte.hu/index.php) Internet

server [185]. Percent beta sheets predicted as shown in Fig. 5 were the sum of predictions for

parallel, antiparallel, and turn content of each protein.

U.2.7 Differential scanning calorimetry

Protein thermal stability was assessed using a MicroCal PEAQ-DSC Automated calorimeter (Malvern

Panalytical). For sample analysis, 325 µL of each sample and matching buffer was loaded into a

96-well deep well plate (Malvern Panalytical WEL190010-010), sealed with a silicone plate seal

(Malvern Panalytical WEL190020-010), and loaded into the PEAQ-DSC Peltier stack with the

thermostat held at 4◦C.

Thermal scans were performed from 20 – 110◦C using a scan rate of 210◦C/h. At the beginning and

end of the run, the sample and reference cells of the calorimeter were cleaned with a 20% w/v Con-

trad 70 (Decon Labs #1002) using a standard SCAN procedure at the same scan rate. Additionally,

every third sample injection a buffer-buffer injection at the same scan rate was performed.

Data analysis was conducted using the dedicated PEAQ DSC Analysis tab (Malvern Panalytical).

Baseline correction was performed by subtraction of the corresponding buffer-buffer scan and

sample thermograms were further baseline corrected using the spline function to assess pre- and

post-dissociation baselines. Peak integration was then performed using a non-two-state model to

identify Tonset , Tm, and ∆Hcal/∆HV H .

U.2.8 Protein crystallization and X-ray crystallography

Diffraction quality crystals of UNC 079 were obtained by hanging drop diffusion at 4◦C by mixing

750 nL protein (15 mg/ml in 20 mM Tris pH 8, 100 mM NaCl) with 750 nL reservoir solution (2.1

M DL-malic acid, pH 7.0) over 500 µL reservoir. The drop containing crystals was mixed with

glycerol to 20% before flash freezing. X-ray diffraction data was collected at 100 K at a wavelength

of 0.97624 Å at the PETRA3 synchrotron on the P13 beamline [186] (Helix BioStructures, LLC).

The data were processed using DIALS [187] and Aimless [188] in P43212 space group with 1

molecule in the ASU. A structure was able to be phased using the Chroma-generated model using
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PhaserMR [189] and was fully refined using phenix.refine [190] to a resolution of 1.1 Å. Data

collection and refinement statistics are listed in Extended Data Table 2.

Diffraction quality crystals of UNC 239 were obtained by hanging drop diffusion at 4 °C by mixing

750 nL protein (27 mg/ml in 20 mM Tris pH 8, 100 mM NaCl) with 750 nL reservoir solution (0.2

M ammonium acetate, 0.1 M Tris pH 8.5, 25% w/v polyethylene glycol) over 500 µL reservoir.

The drop containing crystals was mixed with ethylene glycol to 20% before flash freezing. X-ray

diffraction data was collected at 100 K at a wavelength of 0.97624 Å at the PETRA3 synchrotron

on the P13 beamline [186]. The data were processed using DIALS [187] and Aimless [188] in

P212121 space group with 2 molecules in the ASU. A structure was able to be phased using the

Chroma-generated model using PhaserMR [189] and was fully refined using phenix.refine [190] to

a resolution of 2.36 Å. Data collection and refinement statistics are listed in Extended Data Table

2.

U.2.9 In-silico score comparison to split-GFP

Split-GFP values from both unconditional design sets were compared to ChromaDesign Pure-

Potts/Multi potts and autoregressive negative log-likelihood, ChromaBackbone v0/v1 ELBO, TM-

score to predicted AlphaFold, ESMFold and OmegaFold structures, AlphaFold mean pLDDT and

FoldSeek highest TM-score to the training set. ESMFold and OmegaFold structure prediction

failed for design with lengths above 848 and 631 in the second unconditional set. Experimental

values and most of the in silico scores have a strong dependency to design length (Supplementary

Figure 34 top panel). Scores for the first unconditional set were length normalized by fitting them

to design length with LOWESS smoothing and evaluating the Pearson correlation between scores

residuals to split-GFP values (Supplementary Figure 34 bottom panel). Moreover, 95% confidence

intervals of partial Spearman correlation against each unconditional set were evaluated using the

pingouin python package[191] with design length being the covariate (Supplementary Figure 35).
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U.2.10 Novelty assessment of crystallized proteins

Both crystal structures were queried against the PDB (May 2023) for structural homologs with

FoldSeek. TM-scores were recomputed for both the query and target using FoldSeek-provided

translation and rotation matrices. Internal benchmarking to replicate the CATH coverage analysis

with FoldSeek instead of all-vs-all TMalign revealed that the following parameters --alignment-type

1 --min-seq-id 0 -s 20 -e inf --max-seqs 20000 -k 5 --num-iterations 2 provide

the best tradeoff between compute time and retrieval.
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U.3 Experimental figures

Supplementary Figure 36: Unconditional protein designs. 172 unconditional Chroma proteins

(UNC 001 through UNC 172) constructed for experimental validation between 100 and 450 amino

acids in length.
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Supplementary Figure 39: Soluble protein expression confirmation via western blot. The top 20

and bottom 20 hits from the split-GFP solubility screen on proteins UNC 001 through UNC 172

were reformatted to contain a C-terminal Strep-tag. Protein expression from E. coli lysates was

detected by western blot using Streptactin or anti-Strep-tag antibody. Representative blots shown

from two independent biological experiments. Lane designations: L = ladder; C = control protein

(same on each blot)
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Supplementary Figure 40: Evaluation of additional set of unconditional protein designs. a, 96

additional unconditional designs up to 950 amino acids in length (UNC 173 through UNC 268)

were evaluated experimentally. b, Rank-ordered split-GFP bin scores for additional unconditional

proteins. Individual data points for two biological replicates shown. c, Reproducibility of split-

GFP bin scores between two independent biological replicates. d, Western blot-based confirmation

of soluble protein expression from E. coli lysates for the top 10 scoring proteins in this set using

either Streptactin or anti-Strep-tag antibody for detection. Representative blots shown from two

independent biological experiments. Lane designations: L = ladder
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Supplementary Figure 41: Differential scanning calorimetry experiments. Evaluation of 7 SEC-

purified unconditional proteins by differential scanning calorimetry. Split-GFP solubility score

shown for reference, with individual data points for two biological replicates shown.
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U.4 Experimental tables

Protein name DNA seq Amino acid seq

dihydrofolate reductase ATGATCAGTCTGATTGCGGCGTTAGCGGTAGATC

GCGTTATCGGCATGGAAAACGCCATGCCGTGGAA

CCTGCCTGCCGATCTCGCCTGGTTTAAACGCAACA

CCTTAAATAAACCCGTGATTATGGGCCGCCATAC

CTGGGAATCAATCGGTCGTCCGTTGCCAGGACGC

AAAAATATTATCCTCAGCAGTCAACCGGGTACGG

ACGATCGCGTAACGTGGGTGAAGTCGGTGGATGA

AGCCATCGCGGCGTGTGGTGACGTACCAGAAATC

ATGGTGATTGGCGGCGGTCGCGTTTATGAACAGT

TCTTGCCAAAAGCGCAAAAACTGTATCTGACGCA

TATCGACGCAGAAGTGGAAGGCGACACCCATTTC

CCGGATTACGAGCCGGATGACTGGGAATCGGTAT

TCAGCGAATTCCACGATGCTGATGCGCAGAACTC

TCACAGCTATTGCTTTGAGATTCTGGAGCGGCGG

MISLIAALAVDRVIGMENAMPWNLPADLAWFKRNT

LNKPVIMGRHTWESIGRPLPGRKNIILSSQPGTDDRV

TWVKSVDEAIAACGDVPEIMVIGGGRVYEQFLPKA

QKLYLTHIDAEVEGDTHFPDYEPDDWESVFSEFHDA

DAQNSHSYCFEILERR

human beta-3 adrenergic receptor ATGGCCCCATGGCCGCACGAGAATTCTAGTTTAG

CTCCTTGGCCTGATTTGCCCACGCTTGCTCCGAAC

ACAGCAAATACTAGTGGGTTACCGGGTGTGCCAT

GGGAAGCCGCCCTGGCAGGCGCACTTTTAGCGCT

GGCCGTTCTGGCGACAGTTGGCGGAAACCTTTTA

GTAATTGTTGCGATCGCTTGGACTCCGCGTTTGCA

AACCATGACGAATGTATTCGTGACCTCCTTGGCC

GCCGCCGACTTGGTTATGGGCTTGTTAGTTGTACC

ACCCGCAGCCACCCTTGCACTTACCGGACACTGG

CCCTTGGGAGCAACCGGGTGCGAGTTATGGACAT

CCGTAGATGTTCTTTGTGTGACCGCCTCAATTGAA

ACGCTGTGTGCATTAGCAGTGGACCGTTACTTGG

CTGTAACAAACCCCCTTCGTTACGGTGCACTGGTA

ACTAAGCGTTGTGCGCGTACGGCGGTGGTTTTGG

TGTGGGTCGTGAGCGCGGCCGTTTCCTTTGCGCCA

ATTATGAGTCAGTGGTGGCGTGTAGGTGCCGATG

CTGAGGCACAACGTTGTCACTCAAATCCTCGCTGT

TGTGCGTTCGCTTCTAACATGCCGTATGTCCTGTT

ATCTAGTAGTGTTTCTTTCTACCTGCCCTTATTGG

TTATGCTGTTCGTCTATGCTCGTGTGTTCGTTGTA

GCGACTCGTCAACTTCGCTTACTTCGCGGAGAATT

AGGTCGCTTTCCACCGGAGGAATCCCCTCCTGCCC

CATCTCGTAGTTTGGCCCCGGCGCCTGTTGGAACG

TGTGCGCCACCAGAAGGTGTTCCGGCATGTGGAC

GCCGCCCGGCCCGCTTATTGCCTTTACGTGAACAT

CGCGCCTTATGTACGTTAGGACTGATCATGGGGA

CTTTTACGCTGTGCTGGCTTCCGTTCTTCCTTGCCA

ACGTTCTGCGTGCACTTGGCGGCCCATCACTGGTT

CCTGGACCCGCGTTCCTGGCTCTTAACTGGTTGGG

CTATGCGAACTCTGCATTCAATCCTTTAATCTATT

GCCGCTCCCCCGATTTCCGCTCGGCGTTTCGCCGT

TTGTTGTGTCGCTGCGGACGCCGTTTGCCCCCGGA

ACCATGCGCCGCAGCGCGTCCCGCGTTATTTCCAT

CCGGCGTGCCAGCGGCGCGCTCATCTCCGGCGCA

ACCGCGTCTGTGCCAACGCCTGGACGGTGCCTCA

TGGGGGGTTTCT

MAPWPHENSSLAPWPDLPTLAPNTANTSGLPGVPW

EAALAGALLALAVLATVGGNLLVIVAIAWTPRLQT

MTNVFVTSLAAADLVMGLLVVPPAATLALTGHWP

LGATGCELWTSVDVLCVTASIETLCALAVDRYLAV

TNPLRYGALVTKRCARTAVVLVWVVSAAVSFAPIM

SQWWRVGADAEAQRCHSNPRCCAFASNMPYVLLS

SSVSFYLPLLVMLFVYARVFVVATRQLRLLRGELGR

FPPEESPPAPSRSLAPAPVGTCAPPEGVPACGRRPAR

LLPLREHRALCTLGLIMGTFTLCWLPFFLANVLRAL

GGPSLVPGPAFLALNWLGYANSAFNPLIYCRSPDFR

SAFRRLLCRCGRRLPPEPCAAARPALFPSGVPAARSS

PAQPRLCQRLDGASWGVS

Supplementary Table 8: Control sequences used in split-GFP assay
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