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Referees' comments: 

Referee #1: 

In the paper. “Illuminating protein space with a programmable generative model”, Ingraham et al. 

present a novel method to generate “meaningful” protein models. The method contains a set of 

computational advantages over earlier methods (see, for instance, 

https://arxiv.org/abs/2206.04119 or https://arxiv.org/abs/2209.15611), and follows the progress 

shown by diffusion models in many areas. The “meaningfulness” (a word used 79 times in the 

paper) is demonstrated by “in silico” experiments, i.e. designing sequences from the protein model 

and using OmegaFold to fold these sequences. If at least one of 100 designed sequences folds 

within 0.5Å TM-score the authors assume that the design is successful. 

Unfortunately, the paper does not convince me that this paper provides significant progress over 

earlier work. In particular, the paper: (1) is lacking any experimental validation that any of the 

sequences fold to the desired fold; (2) many of the “meaningful” structural models generated do 

not even pass the (quite lose) in silico test; and (3) from a practical perspective it is unclear that 

the computational advantages presented here are that useful; in particular, the scaling might not 

be of great importance as proteins only span about two orders of magnitude in length. 

I will detail some comments below: 

Major advantages of the paper 

Novelty in scalability: A combination of a local and an inverse cubic is novel and could provide an 

advantage over other methods. However, scaling is probably unimportant as proteins only cover a 

few orders of magnitude. Methods like AlphaFold can already handle large complexes using 

bfloat16 and other JAX tricks. The structural model is novel (at least for proteins), but if I 

understand it correctly, it has about 10x more parameters than the structural model of AlphaFold. 

Not really clear to me why this is needed or if this can cause problems. 

Major 

Lack of experimental validation: Many models are not even validated in silico. To the best of my 

knowledge, no one has experimentally demonstrated that OmegaFold folding strongly correlates 

with a functional protein. AlphaFold (for a single sequence) has been shown to do this, i.e. it is 

likely that OmegaFold also could work, but this needs to be verified. At the bare minimum, the 

authors should use AlphaFold single to verify their in silico tests. 

Another problem is that the authors only test a subset of their “meaningful” models in silico. I 

think this is strongly misleading, and I do think the paper should only mention the models 

validated in silico. I assume this would remove a large part of the models and (unfortunately) 

make the paper less appealing. 

Some designed models are implausible to fold as predicted, e.g. the shape complementarity. This 

makes it hard to understand which designs are realistic and which ones are not. 



The in silico test uses lax criteria for success (TM-score >0.5). It would be possible to require a 

structure criterion (TM >0.8). Also unclear if the authors discuss TM-align or TM-score. 

The next major problem is code availability. No information is provided, and even after requests 

from the editor, this reviewer has not been given access to a working copy of the program, i.e. this 

paper should have been rejected without review. Anyhow, even without the code, this paper raises 

several questions, and if the code is not released with an open-source licence, the usefulness of 

this paper drops significantly. 

The structural module seems to require about 10x the number of parameters compared with the 

models from AlphaFold. Is this an advantage? 

The network described in Fig. S5 is not well understood. You need to add details about each block. 

What are Internal coordinates and Interresidue transforms in Table 2? This lacks detailed 

descriptions I think. 

Hardly any ablation studies are performed. 

Minor 

The design network is novel, and it would be interesting to compare the performance of this 

method with ProteinMPNN. 

The reference list is not sorted alphabetically, making it very hard to read for this reviewer. 

Some details are missing in the description: 

How are the initial distributions of distances generated. What is the prior? 

Is the graph updated each iteration or not? Does it make a difference? 

Is the covariance matrix (big sigma) derived only once from the initial polymer, or is it updated 

from dewhitened polymer after every iteration? 

Can you expand on the advantage of “Variance-Preserving diffusion” (Appendix A)? You claim that 

it is necessary to obtain a gaussian distribution at time t=1, but I did not understand how. 

Can you expand on the advantages of diffusion models over (equivariant) normalising flows in 

sampling protein space? 

What are “casually masked GNNs”? Is it the same as in Anand et al., 2022? This needs more 

details. 

It would be interesting to compare your structural module with the one from AlphaFold as ablation 

studies. 

How do you insert the shape-matching loss (section K) to the sampling? Do you compute its 

gradient of the sum of the two Wasserstein losses and add it to the score? 



In this work, Ingraham et al blend a deep understanding of polymer physics with the practical 
considerations of common-use cases for protein design to build a computational protein design 
program, Chroma. The authors use Chroma to generate a set of small and large proteins, and 
they demonstrate accurate in silico structure prediction for the small proteins. They then apply 
a series of cleverly crafted external potentials to bias the designed proteins for various design 
problems, including motif grafting, fold class, symmetry, volumetric shape conditioning, and 
even a potential based on a natural language model. If Chroma can produce experimentally 
validated proteins, it would be very useful for the design field. My main concern with the work 
is that there is no experimental validation of any of the designed proteins. In the absence of any 
experimentally determined structures, the authors discuss a few nice metrics that demonstrate 
the “designability” and originality of the generated backbones, such as comparing TERMS with 
those of natural proteins and set coverage by CATH domains. However, in some cases, e.g., 
with the shape-conditioned protein alphabet, the authors suggest the models are “plausible” 
because they have the kinds of secondary structure found in natural proteins. This is too 
subjective an assessment and could be quantified either in a similar manner as previously 
mentioned or with predicted structures (Of course, experimental verification would be most 
welcome.). I am very excited by this work but also have some reservations that I hope the 
authors can address. 

Will the code of Chroma be made freely available? The website demo is insufficient to 
independently vet the performance of the model, especially since the paper emphasizes 
conditional generation of structures and this demo offers no such option. How confident are 
the predicted structures (pLDDT, pAE) of the designed sequences? The authors report Tm score 
in Fig 3b,c but do not mention model confidence. I used proteinMPNN to compute sequences 
of some small models (< 140 aa) generated from the Chroma demo and then used AlphaFold2 
to fold them in single-sequence mode. The predicted structures agreed with the designed 
model (approx. 2 Å rmsd) but AF2 was not confident in the structures (pLDDT < 75). Could the 
authors please discuss a similar kind of assessment of their designed structures? 

After reading the manuscript, I still do not fully grasp why the addition of priors from polymer 
physics is key to success here. I intuitively agree with the statement the authors make in the 
supplement that the physics-based priors should allow the model to focus on learning the 
appropriate structure distribution instead of re-learning polymer connectivity. But I do not see 
that the advantage is quantified in any way other than with these appeals to reason. Is the 
model faster to train compared to one using uncorrelated gaussian noise? Do the physics-based 
priors keep the generative model from wandering into unproductive territory more than 
uncorrelated gaussian noise? The authors describe that a low temperature trick is needed to 
generate plausible protein structures, which suggests that this approach is not without its 
nuances. Some additional discussion with quantifiable advantages of the model over other 
approaches would be welcome in the main text, if possible. 

There is not much discussion on the performance of the sequence design model vs the 
backbone generation model. How important is the new sequence design model to design 
success? Are there any key differences with published sequence design models such as 

Referee #2:



pMPNN? Could they use pMPNN sequences for their generated backbones to get better 
agreement between predicted and generated structures?  

As the authors mention, it is exciting that the model can generate proteins within arbitrary fold 
classes so that designers can begin to focus on designing function. One historical and enabling 
example is that of the parameterization of coiled coils, which could then be computationally 
generated in a precisely defined, predictable way. It would be nice to see an example of this 
kind of precise, fine-tuned generation of backbones for a different class of protein (one not so 
easily parameterized as coiled coils) enabled by Chroma. This would be an exciting 
computational result but, despite mentioning this in the text, the authors have stopped short of 
showing it explicitly.  

One main advantage that the authors emphasize in this work is the ability to generate large 
structures and complexes with low computational cost. It is exciting that Chroma can generate 
large structures in linear time, but it remains to be seen whether these proteins express and 
fold to the correct oligomerization state. An experimentally determined structure of a designed 
protein would be helpful to indicate that the model is able to generate valid structures beyond 
the breakdown point of structure prediction models such as Omegafold and AlphaFold2. (How 
do the predicted structures/sequences compare when folded in AlphaFold2, single-sequence 
mode?) In the absence of an atomic resolution structure, some evidence that the proteins 
express and elute at the correct molecular weight on a size-exclusion column would be 
welcome. For the symmetric complexes, a similar experimental indication that the proteins 
form the desired oligomerization state would be appropriate. 

The authors describe in detail their approach to training a conditional classifier, but a general 
discussion seems lacking concerning how (or if) to tune the weight of this new gradient relative 
to the diffusion-learned gradient. 

Fig 3b shows results of structure prediction of the designed models. The results are promising 
for proteins < 300 aa but drop significantly for longer proteins. Each point in the plot is also the 
best result of 100 designs sequences for that generated backbone. What is the distribution of 
Tm values over these 100 sequences?  Is the distribution in Fig 3c just over the 100 pts shown in 
Fig 3b, or over the 100 x 100 sequences that were folded with Omegafold? 

The data on which the model is trained should ideally be mentioned in the main text instead of 
buried in the supplement. Could the authors elaborate on why they train on a small subset of 
the PDB filtered by homology and sequence similarity? Would it be somehow problematic to 
train on as much data as possible, while also ensuring that the test, validation, and train sets 
have minimal overlap? The authors seem to implicitly support this sentiment by adding 
antibody structures only filtered at 90% sequence similarity (presumably because the CDR loops 
are the most variable but only account for a fraction of the sequence).  



Section E.2 in the supplement could use a detailed figure explaining the computation and 
operations involved for updating the structure via convex optimization, since this is the key 
factor that is driving model performance.  

Figure 4c takes up a lot of real estate for pictures of protein complexes that have no 
computational or experimental validation. The authors do not show that any components of 
these assemblies can be individually predicted and do not design sequences for them; they 
suggest the structures look plausible because they have helices and sheets. The authors might 
consider moving this to the supplement to make space for a more substantive description of 
the model and its essential features. 

The authors repeatedly argue that using correlated diffusion is superior to uncorrelated 
diffusion for the task of backbone generation. Could they quantify this please? One way would 
be to compare performance of two different models trained with correlated vs uncorrelated, 
but there are likely other ways to do this without needing to retrain models. 

The random graph neural network is an elegant approach to capturing long-distance 
dependencies without too much additional computational cost relative to kNN alone. In Section 
D.3, the authors discuss computational complexity and why the random graph neural network
has better time/memory performance than more expensive methods such as transformers, but
it would be good to see a discussion around model output quality. Does the random graph
network perform as well as a fully connected graph network? Better than a simpler kNN-based
graph? How much worse? How much better? It would be great to see some quantification of
model performance other than the theoretical speed/memory of the computation, if possible.
If a model is fast but mostly produces low quality backbones, it might not be as useful as a
slower model that produces higher quality structures.

The sequence design network is not fully described in this work. Could the authors please add 
more detail? 

Fig S5, a schematic showing how each of these networks feed into one another would be 
helpful. 

G.2. How long did training take?

There are some typos in the manuscript, e.g., in E.3.   

The approach described in K.2 is perhaps best illustrated with a figure that depicts: 1) the goal, 
2) the parameters, 3) the approach, and 4) An example of resulting data that is generated and
used for the external potential.

Regarding Fig 4b, can the authors please quantify how well the motif-conditioned structures 
harbor the desired motif? What is the distribution in RMSD for the generated structure vs the 
input motif? What is this distribution after performing sequence design on the generated 



backbone and subsequently predicting its structure? The authors go into much detail in the 
supplement describing how they encoded the external motif-grafting potential, but they do not 
fully describe the performance of the model under this potential, outside showing a few panels 
in Fig 4b. 

“The generated structures are once again plausible despite similar difficulties to the DHFR 
example.” Could the authors please quantify the meaning of “plausible” here? 

Did the authors generate the entire capsid complex in Fig. 4a (right) or part of it (from which 
they then build the full structure from the minimal symmetrized parts)? 



 Referee #3: 

The paper describes a new generative neural network-based model for jointly generating protein 

sequences and structures. From a purely methodological perspective this is a very interesting 

paper containing very many novel and extremely interesting ideas, so purely from a 

methodological viewpoint this is a solid paper. 

The main idea is based on the recent success of diffusion models in images; however, unlike 

existing papers trying to approach protein structure using diffusion models where the noising 

process generally takes the noised structure very far away from the realm of physically plausible 

structure, the authors propose a novel diffusion process which means the diffusion process will end 

up at a random polymer rather than a random cloud of atoms. 

The authors further employ graph neural networks with random connectivity to reduce the 

computational complexity. The main application the authors aim at is protein design. 

My main concern, which in my opinion means this is not appropriate for Nature in the current 

form, is the lack of experimental evaluation. 

All evaluation is done for protein design in silico, as such it is unclear whether this is applicable to 

real protein design. If the authors want to make the main point of the paper to be around protein 

design, there needs to be experimental validation of the designed proteins. This doesn’t 

necessarily need to be full structures however should be indicative of the structures the authors 

designed the protein for being the structure the protein takes in vitro. 

The authors use existing protein structure prediction methods (in this case OmegaFold) to 

compare the predictions of the model to the structure their design model predicts. This has been 

successfully employed by other groups using AlphaFold as such it’s indicative of their method 

working well; however, this is no replacement for experimental verification. 

If the authors do not have the ability to experimentally verify their methods, an alternative way of 

evaluating their method that would convince me is to evaluate their method as a protein structure 

prediction method. So the authors should be able to use their method to generate structures 

conditioned on the amino acid sequences, and if the method works well those should be similar to 

experimental structures. Seeing if this procedure is competitive to state-of-the-art methods for 

protein structure prediction e.g. on Cameo would be conclusive evidence for the effectiveness of 

their method in my opinion. However this would require a reframing of the paper, making it less 

protein design-centric. 

Further I see issues with the authors' claim of subquadratic complexity. From a technical viewpoint 

this is correct; however I think purely considering runtime is misleading for data-based models. 

For machine learning models choices such as the random connectivity the authors propose to get 

subquadratic complexity will in general have an impact on accuracy, so what the authors would 

need to show beyond just algorithmical complexity is that accuracy does not degrade with length 

to really make the claim that this is a computationally much more efficient method. In fact, in Fig. 

3b the authors show that their generated structures differ much more from OmegaFold predictions 

as proteins get longer. As the authors point out this could be due to prediction becoming harder; 

however, it is also possible that their method fails to work at these lengths. The authors would 

need to demonstrate that this method produces correct results for large systems, i.e. that the 

particular inductive bias they employ via the sparse connectivity doesn’t reduce performance for 

large systems. 

The authors also do not show which of the many novel ideas in this paper contribute to the overall 

accuracy. The authors should ideally show considerably extended ablations of the different 

components they introduce. 



In a spirit similar to what is currently happening in Image diffusion models the authors show that 

their model can be conditioned in various ways, including distance-based constraints, forcing the 

model to generate symmetric structures, conditioning on natural language annotations, etc. This 

shows that diffusion models provide a flexible framework for protein generation. 

Overall I think from a methodological point of view this paper is an excellent contribution to the 

field; however, I think it is severely held back by the evaluation. I would encourage the authors to 

extend the evaluation, and with careful evaluation and careful analysis of the contributions I think 

this can become a landmark paper in the field.



Author Rebuttals to Initial Comments: 

We appreciate the reviews’ thoughtful feedback and feel that it has helped us to significantly 
strengthen our work. We highlight four major updates to our manuscript, followed by a more 
detailed point-by-point response to reviewers: 

1. Experimental validation of generated proteins. To demonstrate the designed proteins
can express, behave, and fold as intended, we provide a comprehensive set of new
experiments validating generated proteins including two high-resolution crystal
structures with an average agreement to designs of ~1Å (Figure 6, Appendix T, and
Supp Figures 31-38). We screened ~310 designs from our model that were not filtered
by external methods or in silico structure prediction, found many of these proteins
express well through a split-GFP assay, and further biophysically characterized a subset
of the designs through circular dichromism and DSF assays that suggest that they form
stable folds with secondary structure content that is consistent with the designed
backbones.

2. Systematic ablation study. To evaluate the impact of novel model components, we
trained seven production-scale variants of the model with various ablations and
evaluated the resulting impacts on both held-out likelihood (ELBO) and sample quality
as measured by large-scale in silico refolding (Appendix K, Supp Fig 18). We find that
our proposed globular covariance models for proteins can improve likelihood over
residue gas approaches, that our atomic output layer based on inter-residue geometry
prediction can be competitive with and in some cases improve on local-frame update
based approaches, and that random long-range graph connections can improve sample
quality over a pure k-NN. Additionally, we provide quantitative evidence that our low-
temperature sampling method indeed increases sample likelihood and that this is
quantitatively associated with sample quality as measured by backbone hydrogen bond
formation (Supp Fig 2).

3. In silico refolding evaluation of all conditional design methods. To test the
plausibility and quality of conditionally generated samples from the model, we
performed large scale sampling and refolding tests across our major conditioning
methods including substructure, symmetry, shape, class, and natural language (Appendix
J, Supp Figs 12-17). We find evidence of refolding in every case and across subcases
such as varying symmetry groups, varying levels of substructure conditioning context,
and varying semantic cues. These results were substantiated by multiple structure
prediction methods including AlphaFold, ESMFold, and OmegaFold.

Code and model availability. We now include code and a production environment for sampling 
backbones and sequences with Chroma, along with a tutorial notebook highlighting each major 
conditional sampling method. Note that we provide these elements to the reviewers solely for the 
purpose of carrying out their review. As stated in the licenses included within the code, the 
reviewers may not use the provided code and weights for anything other than the review process 
and should destroy any copies they may make after completing their reviews. Note that upon 
publication of our paper, we will make Chroma available to the research community via a 



difference license. 
 
In addition to these broad updates, we would like to provide more detailed responses to each 
reviewer’s comments along with how we have updated the manuscript to address their concerns. 
 
Reviewer 1: 

 
In particular, the paper: (1) is lacking any experimental validation that any of the 
sequences fold to the desired fold; (2) many of the “meaningful” structural models 
generated do not even pass the (quite lose) in silico test… The in silico test uses lax 
criteria for success (TM-score >0.5). It would be possible to require a structure criterion 
(TM >0.8). … unclear if the authors discuss TM-align or TM-score. 
 

 
[See Major Updates 1 & 3]  
Thank you for this important point; we agree that there was significantly more validation to do 
both experimentally and computationally to demonstrate the validity of the proposed structures. 
We now provide experimental evidence that the designed proteins can fold as intended through 
two X-ray crystal structures, several CD spectra, and expression characterization for hundreds of 
designs (Figure 6). For our conditional methods that did not previously have in silico evidence 
of refolding, we also provide comprehensive refolding experiments, and we report raw TM 
scores of refolding as distributions across different conditional methods and subtasks across 
AlphaFold, ESMFold, and OmegaFold so that no cutoff needs to be applied (Appendix J). 
Lastly, we also clarify in the description of the relevant section that we use TM-align. 
 

(3) from a practical perspective it is unclear that the computational advantages presented 
here are that useful; in particular, the scaling might not be of great importance as 
proteins only span about two orders of magnitude in length… A combination of a local 
and an inverse cubic is novel and could provide an advantage over other methods. 
However, scaling is probably unimportant as proteins only cover a few orders of 
magnitude…. It would be interesting to compare your structural module with the one 
from AlphaFold as ablation studies. 

 
It is an important point that it is possible to run AlphaFold for typically sized protein design 
problems, as well as other cubically- and quadratically-scaling models, and that this is often done 
in practice. At the same time, sub-quadratic scaling for protein design is still highly desirable; it 
allows systems to be treated with as large of native context as possible and it can also massively 
improve the speed, and therefore scale, with which we move through design space. As one recent 
example, it could be argued that ProteinMPNN saw immediate and widespread adoption because 
it provides fast sampling via approximately linearly scaling computation with system size.  
 
As a second piece of evidence towards the benefits of linear scaling, we did consider swapping 
in the AlphaFold structure module for our GNN-based layer for our ablation studies but, because 
we train on complexes with up to 4000 residues, this was not feasible on our hardware 
capabilities without significantly reducing the size and complexity of our task or having to 
concoct some analog of “cropping” that has been used in structure prediction. We consider it a 



benefit of our architecture that it is able to train on systems of such a size without having to cut 
them into smaller subsystems, because this will allow the model to maximally leverage context 
at design time. 
 
While we did not directly introduce the AlphaFold structure module in our ablations, we did 
perform ablations measuring the impact of our several new modeling components, which include 
new diffusion processes, new model architectures, and new sampling algorithms. We find 
evidence that all quantitatively improve performance of the model (Appendix K for ablations and 
Appendix B for low temperature sampling). [See Major Update 2] 
 
 I do think the paper should only mention the models validated in silico 
 
With the updated refolding studies (Appendix J), we hope to provide evidence that the methods 
are validated, but we still think it is important to examine the raw proposal distributions coming 
from the model. Otherwise, it can be unclear what performance is coming from the structure 
prediction method versus what performance is being provided by the underlying generative 
model. This is also why we intentionally did not use structure prediction refolding as a filter in 
designing proteins for experimental validation. 
 

The structural module seems to require about 10x the number of parameters compared 
with the models from AlphaFold. Is this an advantage? 

 
We are unsure which specific part of the model the reviewer is referring to, but if it is the overall 
parameter count, the main model that we used throughout our experiments is ChromaBackboneA 
which has ~20 million parameters (Appendix F). This is a relatively modest parameter count by 
contemporary standards; when we downloaded a current version of AlphaFold (via OpenFold) 
we counted ~93 million parameters. 
 

The network described in Fig. S5 is not well understood. You need to add details about 
each block…. What are Internal coordinates and Interresidue transforms in Table 2? This 
lacks detailed descriptions I think… What are “casually masked GNNs”? Is it the same 
as in Anand et al., 2022? This needs more details. 
 

Thank you for pointing this out; we have since added further descriptions of the model 
architecture, including an algorithm box for the GNN and a more detailed explanation of the 
graph features and sequence design network components in Appendix F. 
 

The next major problem is code availability. 
 
[See Major Update 4] 
We intend to make this model broadly available. Further, we are sharing with the reviewers a 
preliminary version of the code and a tutorial notebook walking through the sampling methods in 
this revision package. Importantly, the elements being shared as part of this resubmission are for 
review purposes, as is stated in the accompanying license file. 
 



The design network is novel, and it would be interesting to compare the performance of 
this method with ProteinMPNN. 

 
We have added an evaluation in Supp Fig 11 and shown that our method’s performance is 
comparable to ProteinMPNN as measured by sequence recovery.  
 

How are the initial distributions of distances generated. What is the prior? 
Is the covariance matrix (big sigma) derived only once from the initial polymer, or is it 
updated from dewhitened polymer after every iteration? … Can you expand on the 
advantage of “Variance-Preserving diffusion” (Appendix A)? You claim that it is 
necessary to obtain a gaussian distribution at time t=1, but I did not understand how. 

 
To answer the reviewer’s specific questions, the prior is a Gaussian distribution over Cartesian 
coordinates with zero mean and a covariance matrix from our set of proposed covariance 
matrices. The base covariance matrix is stationary and only a function of sequence length. The 
distances we discuss in Appendix C are the distances induced by this distribution, and we note 
that an interesting property of the Variance Preserving diffusion is that it will preserve quadratic 
forms, which includes the preservation of squared distance statistics. So, if there are certain 
squared distances which have the same expected value in the data distribution and in a given 
prior, these squared distances will be preserved in expectation through the corresponding 
diffusion process. 
 
We have found visualizations helpful to get a better sense of the connection between the prior 
and the corresponding diffusion processes, and so we have added new figures to the manuscript 
including visualizations comparing the proposed diffusion priors and processes in Supp Fig. 3 as 
well as a visualization of the underlying prior covariance matrix itself along with conditional 
(clamped) samples in Supp Fig 19.  
 

Can you expand on the advantages of diffusion models over (equivariant) normalising 
flows in sampling protein space? 
 

Technically, when treated with the Probability Flow ODE formulation, our model is an 
equivariant normalizing flow over protein space. This follows from Song et al.’s result that 
continuous time diffusion models can be treating as continuous normalizing flows without 
retraining (Appendix A.5) and that our architecture is equivariant (Appendices E and F).  
 
That said, the training of conventional normalizing flows (whether continuous or discrete-time) 
has been difficult because it requires backpropagating through entire simulation trajectories with 
O(T) memory and compute cost, where T is the number of time steps. A major benefit of the 
denoising diffusion paradigm is that we can directly sample from, and also train on, 
instantaneous samples from any time point along the diffusion process, thus reducing those costs 
to be O(1) in both memory and time. As a result of this “simulation-free” training, we can train 
much higher capacity models for the same GPU budget. 
 

Is the graph updated each iteration or not? Does it make a difference?... 
 



We dynamically update the graph at every time step of the diffusion process during both training 
time and testing time. Interestingly, another useful side effect of the simulation-free O(1) training 
cost (previous comment) of denoising diffusion models is that we can sample random graphs at 
training time without having to worry about backpropagating through graph construction. 
Without this dynamic updating, the graph topologies from high-noise states would be applied to 
the low noise states and likely not include residue contacts that form during the reverse diffusion. 
 
 How do you insert the shape-matching loss (section K) to the sampling? Do you compute 
its gradient of the sum of the two Wasserstein losses and add it to the score? 
 
We directly add the gradient of the ShapeLoss with a time-dependent scaling and have added a 
section describing this scaling in Appendix Q.  
 
Reviewer 2: 
 

Will the code of Chroma be made freely available? 
 
[See Major Update 4] 
Yes, we intend to make this model broadly available. Further, we are sharing with the reviewers a 
preliminary version of the code and a tutorial notebook walking through the sampling methods in 
this revision package. Importantly, the elements being shared as part of this resubmission are for 
review purposes, as is stated in the accompanying license file. 
 

How confident are the predicted structures (pLDDT, pAE) of the designed sequences? 
The authors report Tm score in Fig 3b,c but do not mention model confidence. I used 
proteinMPNN to compute sequences of some small models (< 140 aa) generated from the 
Chroma demo and then used AlphaFold2 to fold them in single-sequence mode. The 
predicted structures agreed with the designed model (approx. 2 Å rmsd) but AF2 was not 
confident in the structures (pLDDT < 75). Could the authors please discuss a similar 
kind of assessment of their designed structures? 

 
We were very glad to hear that the model could work in the reviewer’s hands. Regarding the 
general point about refolding and model confidence, while we were adding our new refolding 
experiments and ablation studies [Major Updates 2 & 3], we also have investigated how TM 
score and confidence related across multiple checkpoints and folding algorithms (Supp Fig 17). 
We find that they are strongly, though not perfectly, correlated and agree that confidence would 
likely be a useful and potentially differentiated filter in practice for design. 
 

After reading the manuscript, I still do not fully grasp why the addition of priors from 
polymer physics is key to success here. I intuitively agree with the statement the authors 
make in the supplement that the physics-based priors should allow the model to focus on 
learning the appropriate structure distribution instead of re-learning polymer 
connectivity. But I do not see that the advantage is quantified in any way other than with 
these appeals to reason. Is the model faster to train compared to one using uncorrelated 
gaussian noise? Do the physics-based priors keep the generative model from wandering 
into unproductive territory more than uncorrelated gaussian noise? The authors describe 



that a low temperature trick is needed to generate plausible protein structures, which 
suggests that this approach is not without its nuances. Some additional discussion with 
quantifiable advantages of the model over other approaches would be welcome in the 
main text, if possible…. The authors repeatedly argue that using correlated diffusion Is 
superior to uncorrelated diffusion for the task of backbone generation. Could they 
quantify this please? One way would be to compare performance of two different models 
trained with correlated vs uncorrelated, but there are likely other ways to do this without 
needing to retrain models.  

 
Thank you for this comment; we now have evidence to support our correlated diffusion based on 
polymer covariance. In our new ablation experiments (Appendix K), we trained seven models 
representing different configurations of proposed methodology, two of which were based on a 
Gaussian “Residue Gas”, chain-uncorrelated Gaussian covariance model. Instead of being fully 
uncorrelated, which would cause atoms even within a residue to become dissociated from each 
other, we design a block diagonal covariance matrix that captures spatial proximity between 
atoms within a residue. We consider this to be a close Gaussian surrogate to C-alpha diffusions 
and “Frame diffusion” presented in Trippe et al and Anand et al, but with the added benefit that 
it can also model all backbone atomic degrees of freedom and capture non-ideality. We explain 
this covariance model in Appendix C and present a visualization comparing the different 
diffusions with Supp Fig 3.  
 
In our ablation experiments (Appendix K), we learn several things, including: 

 Almost all model configurations can produce backbone samples that are designable and 
refold in silico.  

 From the point of view of likelihood, Globular Covariance is favorable to Residue Gas 
covariance  

 From the point of sample quality as measured by refolding, random graphs are favorable 
to k-NN based graphs 

 
Ultimately, while all proposed model components showed potential improvements to either 
likelihood and/or sample quality in some capacity, the single aspect of our framework on which 
sample quality most critically rests is our novel low temperature sampling algorithm. We have 
added further quantitative evidence showing that this method does successfully sample from high 
likelihood states in Supp Fig 2 and that these states are associated with improved sample quality 
as measure by hydrogen bonding rates (i.e., secondary structure content). We note that this low-
temperature sampling algorithm is entirely general and in fact has been applied by multiple other 
groups to achieve strong results while our work was on a preprint server [1,2]. 
[1] https://arxiv.org/abs/2304.03889 
[2] https://arxiv.org/abs/2304.05364 
 

There is not much discussion on the performance of the sequence design model vs the 
backbone generation model. How important is the new sequence design model to design 
success? Are there any key differences with published sequence design models such as  
pMPNN? Could they use pMPNN sequences for their generated backbones to get better 
agreement between predicted and generated structures?... The sequence design network 
is not fully described in this work. Could the authors please add more detail?  



  
 
We have added an evaluation comparing different variants of our ChromaDesign model and 
ProteinMPNN and showing they have comparable performance as measured by sequence 
recovery in Supp Fig 11. We also have added further details on the architecture of the model in 
Appendix F and on the low-complexity penalties we use for sampling in Appendix H.  
 

As the authors mention, it is exciting that the model can generate proteins within 
arbitrary fold classes so that designers can begin to focus on designing function. One 
historical and enabling example is that of the parameterization of coiled coils, which 
could then be computationally generated in a precisely defined, predictable way. It would 
be nice to see an example of this kind of precise, fine-tuned generation of backbones for a 
different class of protein (one not so easily parameterized as coiled coils) enabled by 
Chroma. This would be an exciting computational result but, despite mentioning this in 
the text, the authors have stopped short of showing it explicitly.  

 
We think this is an excellent idea and are quite excited about the prospect of being able to 
robustly index a particular family of folds. While we agree that finding a particular small number 
of parameters that quantitatively “organize” a family remains an open question, we do see 
repeated generation of diverse samples subject to constraints in our substructural infilling method 
Supp Fig 20, for which we see a high degree of refolding in Supp Fig 12. The routine 
satisfaction of diverse samples subject to constraints with realistic protein geometries suggests 
that we are very close to parametrically-indexable families (one could consider our “plane-cut” 
families a family in some sense). 
 

The authors describe in detail their approach to training a conditional classifier, but a 
general discussion seems lacking concerning how (or if) to tune the weight of this new 
gradient relative to the diffusion-learned gradient.  

 
Thank you for raising this point - balancing the level of classifier guidance has certainly been a 
common problem in the diffusion modeling literature and our work is no exception. We have 
added some explanations of how we tune the guidance scale and gradient clipping cutoffs for 
neural network classifiers in Appendix J.4 and also include the guidance scale as a 
hyperparameter in our refolding studies of semantically conditioned samples in Supp Fig 16. 
 

Fig 3b shows results of structure prediction of the designed models. The results are 
promising for proteins < 300 aa but drop significantly for longer proteins. Each point in 
the plot is also the best result of 100 designs sequences for that generated backbone. 
What is the distribution of Tm values over these 100 sequences? Is the distribution in Fig 
3c just over the 100 pts shown in Fig 3b, or over the 100 x 100 sequences that were 
folded with Omegafold?  

 
To clarify, Fig. 3c is indeed the distribution of the same points as shown in Fig. 3b. To give a 
broader sense of the raw TM scores across different tasks and folding algorithms we now include 
a systematic refolding study in Appendix J and Supp Figs 12-17 and in the ablation study Supp 
Fig 18 which show the values TM scores (sometimes best of k, sometimes raw). 



 
The data on which the model is trained should ideally be mentioned in the main text 
instead of buried in the supplement. Could the authors elaborate on why they train on a 
small subset of the PDB filtered by homology and sequence similarity? Would it be 
somehow problematic to train on as much data as possible, while also ensuring that the 
test, validation, and train sets have minimal overlap? The authors seem to implicitly 
support this sentiment by adding antibody structures only filtered at 90% sequence 
similarity (presumably because the CDR loops are the most variable but only account for 
a fraction of the sequence).  

 
This is an important point that we would like to make clearer in the text. In our experience we 
agree we would ideally train on all the data in the PDB, and the main issue has been that 
generative models are extremely sensitive to the distributional weighting of different classes in 
the training set. Training on all of the data in the PDB with a flat weighting will make the model 
very sensitive to “overrepresented folds” in the PDB, e.g. trypsins, kinases, certain model viral 
proteins, etc. Ideally, we would train on all of these data as a “stream” from which structures are 
drawn relative to their uniqueness to up-weight underrepresented structures. Our current 
approximation to that is simply redundancy reduction. We note this problem is far more of an 
issue for generative models than for deterministic structure prediction models because they are 
estimating a marginal distribution instead of estimating a conditional mode. 
 

Section E.2 in the supplement could use a detailed figure explaining the computation and 
operations involved for updating the structure via convex optimization, since this is the 
key factor that is driving model performance.  

 
We agree and have added a figure to better explain and visualize the inter residue-based 
geometry prediction in Supp Fig 5. 
 

Figure 4c takes up a lot of real estate for pictures of protein complexes that have no 
computational or experimental validation. The authors do not show that any components 
of these assemblies can be individually predicted and do not design sequences for them; 
they suggest the structures look plausible because they have helices and sheets. The 
authors might consider moving this to the supplement to make space for a more 
substantive description of the model and its essential features.  

 
If this comment is specifically in relation to the shape-conditioning section, the main point that 
we hoped to not bury is that diffusion models can solve for geometries subject to surprising and 
complex constraints. We also have some evidence that shape conditioning for complex 
geometries can produce structures that refold in silico (Supp Fig 14). But the point is taken and 
we will consider reorganizing more of the novel evaluation results into the main figures. 
 

The random graph neural network is an elegant approach to capturing long-distance 
dependencies without too much additional computational cost relative to kNN alone. In 
Section D.3, the authors discuss computational complexity and why the random graph 
neural network has better time/memory performance than more expensive methods such 
as transformers, but it would be good to see a discussion around model output quality. 



Does the random graph network perform as well as a fully connected graph network? 
Better than a simpler kNN-based graph? How much worse? How much better? It would 
be great to see some quantification of model performance other than the theoretical 
speed/memory of the computation, if possible. If a model is fast but mostly produces low 
quality backbones, it might not be as useful as a slower model that produces higher 
quality structures.  

 
We thank the reviewer for the kind words and agree that the random graph neural network idea 
warrants further investigation. While training on fully connected graphs is not feasible with our 
current hardware setup without significantly reducing the maximum complex size (our current 
largest complex is 4000 resides), we do compare random graphs vs k-NN graphs in our ablation 
study (Appendix K, Supp Fig 18) and find that the random long range graph connections 
improve performance over a pure k-NN based approach as measured by AlphaFold refolding. 
 

Regarding Fig 4b, can the authors please quantify how well the motif-conditioned 
structures harbor the desired motif? What is the distribution in RMSD for the generated 
structure vs the input motif? What is this distribution after performing sequence design 
on the generated backbone and subsequently predicting its structure? The authors go into 
much detail in the supplement describing how they encoded the external motif-grafting 
potential, but they do not fully describe the performance of the model under this 
potential, outside showing a few panels in Fig 4b.  

 
Since our original submission, we have discovered a better method for substructure conditioning 
and focused most of our evaluation on it. The new method is based on hard constraints rather 
than soft restrains by implementing a modified Langevin dynamics, i.e. a formulation where it 
satisfies the substructure conditioning by construction. This new method, described in Appendix 
M, combines low temperature annealed Langevin dynamics with a custom covariance (inverse 
mass) matrix that assigns infinite mass to the “clamped” regions of structure. The challenge in 
this formulation is to allow the model to rapidly explore in the constrained conformational space 
(e.g., unclamped structure / loop space), i.e. to take the benefit of coherent chain motions while 
also satisfying boundary constraints. Fortunately, we can do this precisely with our globular 
covariance prior by applying Gaussian conditioning formulas, as visualized in Supp Fig 19. We 
find that this infilling method achieves high refolding rates across a variety of conditioning 
scenarios as shown in Supp Fig 12. 
 

“The generated structures are once again plausible despite similar difficulties to the 
DHFR example.” Could the authors please quantify the meaning of “plausible” here?  

 
The word plausible here was imprecise, and we now focus on infilling sample quality through 
refolding as shown in Supp Fig 12. 
 

Did the authors generate the entire capsid complex in Fig. 4a (right) or part of it (from 
which they then build the full structure from the minimal symmetrized parts)?  

 
To generate symmetric assemblies, we introduce a novel approach (Algorithm 4) in which, at 
each step of the SDE solver, we compute the drift and diffusion terms for a randomly selected 



contiguous subset of the entire structure. To achieve this, we employ a process of randomly 
sampling an asymmetric unit and identifying substructures based on the distance-based k-nearest 
neighbors (k-NN). Throughout the entire trajectory of the SDE, all asymmetric units contribute to 
the update of the SDE solver through a process called symmetric broadcasting. Therefore, this 
technique allows the algorithm to effectively have global awareness while maintaining a constant 
memory cost with respect to symmetry orders. The capsid-like structures depicted in Figure 4 
were generated using a value of k = 6, so the model never needs to put the entire 60 subunits 
(960,000 atoms) into memory. Our algorithm can generate refoldable protein assemblies 
validated with AlphaFold Multimer (Appendix J.2 and Supp Fig 13), demonstrating the 
effectiveness of our approach. 
 
Reviewer 3: 
 

The paper describes a new generative neural network-based model for jointly generating 
protein sequences and structures. From a purely methodological perspective this is a very 
interesting paper containing very many novel and extremely interesting ideas, so purely 
from a methodological viewpoint this is a solid paper. 
 

We thank the reviewer for the kind words and are very glad to hear that some of the ideas may be 
of broader interest. 
 

My main concern, which in my opinion means this is not appropriate for Nature in the 
current form, is the lack of experimental evaluation. … All evaluation is done for protein 
design in silico, as such it is unclear whether this is applicable to real protein design. If 
the authors want to make the main point of the paper to be around protein design, there 
needs to be experimental validation of the designed proteins. This doesn’t necessarily 
need to be full structures however should be indicative of the structures the authors 
designed the protein for being the structure the protein takes in vitro. …. The authors use 
existing protein structure prediction methods (in this case OmegaFold) to compare the 
predictions of the model to the structure their design model predicts. This has been 
successfully employed by other groups using AlphaFold as such it’s indicative of their 
method working well; however, this is no replacement for experimental verification.  

 
[See Major Updates 1 & 3] 
We agree that confirmation of real proteins behaving as intended in the lab is an important proof 
point, and we have updated the manuscript to now include two X-ray crystal structures that agree 
with models at ~1Å, thermal melt and circular dichroism data to characterize several proteins 
that melt and show secondary structure content consistent with design, and expression data for 
310 designs that suggest a large fraction can express well in a bacterial system (Figure 6, 
Appendix T, and Supp Figures 31-38). 
 
Of course, there are still many more potential applications for the model than can be tested in the 
lab in the context of a single study. Thus, we sought to characterize our major conditioning 
methods by systematic assessment of refolding under multiple methods and for multiple subtasks 
(Appendix J and Supp Figs 12-17). As described in our major update, we find evidence of 
refolding in all cases and for structures at a variety of lengths and secondary structure content. 



 
The authors also do not show which of the many novel ideas in this paper contribute to 
the overall accuracy. The authors should ideally show considerably extended ablations of 
the different components they introduce. 

 
[See Major Updates 2] 
We have added an ablation study evaluating the impact of these different ideas on model 
performance as measured by held out likelihood and sample quality in (Appendix K, Supp Fig 
18). We modify the model along several dimensions including: (1) choice of covariance model, 
(2) choice of graph type, (3) choice of atomic output parameterization layer, and (3) choice of 
loss function(s). We find that all presented components can contribute to favorable performance 
in different ways, however, the most essential aspect of the framework for being able to generate 
high-quality samples appears to be our low temperature sampling algorithm. We have further 
evidence that low-temperature sampling drives the model towards high likelihood states (Supp 
Fig 2), and we also find that these high likelihood states are strongly associated with increased 
secondary structure formation.  
 

Further I see issues with the authors' claim of subquadratic complexity. From a technical 
viewpoint this is correct; however I think purely considering runtime is misleading for 
data-based models. For machine learning models choices such as the random 
connectivity the authors propose to get subquadratic complexity will in general have an 
impact on accuracy, so what the authors would need to show beyond just algorithmical 
complexity is that accuracy does not degrade with length to really make the claim that 
this is a computationally much more efficient method. In fact, in Fig. 3b the authors show 
that their generated structures differ much more from OmegaFold predictions as proteins 
get longer. As the authors point out this could be due to prediction becoming harder; 
however, it is also possible that their method fails to work at these lengths. The authors 
would need to demonstrate that this method produces correct results for large systems, 
i.e. that the particular inductive bias they employ via the sparse connectivity doesn’t 
reduce performance for large systems. 
 

The distinction between the complexity required for an algorithm and the complexity required 
for effective performance is an important one and we appreciate that the reviewer has raised this. 
First, to calibrate expectations, we want to make clear that we would generally expect a fully 
connected system to perform as well as or better than a sparsely connected system if it is well-
tuned and the data are at least of modest size. In that sense we think of our Random GNN 
architectures as an analog of Sparse Transformers (discussed in Appendix D).  
 
Unfortunately, with our current hardware capabilities, we are unable to train quadratically scaling 
models in any reasonable amount of time without significantly changing the task and approach, 
as our task includes protein complexes of up to 4000 residues in size. Indeed our 
ChromaBackboneA model, which has only 60 edges per node, took 10 weeks to train on 8 V100 
GPUs. While we were not able to measure the cost of approximating a fully connected system 
with a sparse graph, we were able to at least compare the approaches of a purely local sparse 
graph vs a graph that allocated some of the edges towards random long-range connections. We 



found that, as measured by refolding under AlphaFold, the random graph approach was favorable 
to a purely local k-NN (Appendix K and Supp Fig 18). 
 
So, it remains to be seen what the cost of approximating fully connected architectures with sub-
quadratic, graph-based approaches will be for design larger protein systems. We do think that this 
work provides some of the first evidence (to our knowledge) that a sub-quadratic graph-based 
approach can continue to perform well even for some large systems, e.g. the symmetry refolding 
experiments in Supp Fig 13. 

 
 
In a spirit similar to what is currently happening in Image diffusion models the authors 
show that their model can be conditioned in various ways, including distance-based 
constraints, forcing the model to generate symmetric structures, conditioning on natural 
language annotations, etc. This shows that diffusion models provide a flexible framework 
for protein generation. … Overall I think from a methodological point of view this paper 
is an excellent contribution to the field; however, I think it is severely held back by the 
evaluation. I would encourage the authors to extend the evaluation, and with careful 
evaluation and careful analysis of the contributions I think this can become a landmark 
paper in the field. 

 
We thank this reviewer for their thoughtful and encouraging remarks, and we too are very 
excited by the prospect of diffusion models in the field of protein design. We hope that our added 
evaluations, both experimental and computational, will relieve the reviewers’ main reservations 
regarding the previous version of our manuscript. 
 
 



 

  

Reviewer Reports on the First Revision: 

Referees' comments: 

 

Referee #1: 

 

With the experimental validations and clarifications, this paper has strongly improved and could in 

principle be accepted (although I think a shorter version of the paper might be more suitable). 

Obviously, it is very discouraging that the authors claim to "we will make Chroma available to the 

research community via a difference license" (I assume they mean different). It can be noted that 

the authors have had several months to decide what license to use, so the plan means actually 

nothing. However, this is in the end an editorial decision if this purposely vague statement is 

sufficient for acceptance. (If I was the editor I would demand an open-source license and enforce 

that the paper was out before publication.) 

 

 

Referee #2: 

 

The authors provide an updated manuscript with experimental validation of their diffusion model. 

They have addressed all my questions and concerns, and I believe the work is high quality. 

 

I am glad to read that the authors will release the code. I look forward to seeing it out. I was not 

able to access the code itself for review. But I was able to run the model in the notebook, and I 

am satisfied. From the revision, it is clear that evaluating backbone likelihood (ELBO) should be 

considered when generating backbones, so I hope there will be an obvious way to perform this 

calculation within the code, given a set of input coordinates. 

 

It is interesting that there were no strongly correlated variables with model expression/solubility. 

The authors might want to check for (if they haven’t already) the presence of any N-terminal 

degrons within their designed sequences (e.g., Leu and Phe for E. coli). 

 

The authors provide much welcomed ablation studies to evaluate important elements of their 

model performance. While it does not seem from the loss function that random graphs are better 

than kNN graphs, it is clear from the folding calculations that random graphs produce more 

predictably “foldable” backbones, so this approach will likely see wide adoption in the community. 

 

The authors allow diffusion of atoms within a residue to account for non-ideality, although they did 

not analyze its importance (e.g., in the two crystal structures, were there any residues that 

deviated from ideality that agreed with the diffused backbone coordinates?). This non-ideality 

seems potentially important, and it sets this model apart from current popular models such as 

RFdiffusion. 

 

Fig. S34: There is a protein in “mostly beta” and a protein in “mixed alpha+beta” that appears to 

be an all-alpha protein. 

 

 

Referee #3: 

 

The authors have substantially improved the paper by including experimental validation and also 

providing ablations of the various components of their algorithm. The authors also include results 

showing that the model is comparable in terms of accuracy to other contemporary methods 

(ProteinMPNN), while being in a very different part of the neural network architecture space, which 

makes this very interesting. 

 

Overall the authors' experimental validation seems thorough including X-ray crystal structures for 



 

  

two of their designs, showing that they reproduce the structures the authors designed for to high 

accuracy. 

 

There are a few comments that I think would be useful to address however: 

 

In Fig. 4 the authors show their experiments on symmetry-conditioned, substructure-conditioned 

and shape-conditioned sampling; however I am concerned that for the shape-conditioned samples 

in Appendix J3 the authors show very low success rates when refolding with structure prediction 

methods and no experimental validation, so I’m highly doubtful if those are meaningful. I think 

they are interesting and should be mentioned, but I don’t think they should be displayed so 

prominently. 

 

The same applies to the higher order symmetries. Here the authors only showed refolding results 

for trimer subsets, so there are questions regarding how well those reflect reality. Again these are 

interesting results and should be included in the paper; however given these caveats they 

shouldn’t be displayed so prominently in my opinion. 

 

I would suggest leaving both of these to the appendix. 
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Author Rebuttals to First Revision: 

Referee 1: 

it is very discouraging that the authors claim to "we will make Chroma available to the research 
community via a difference license" (I assume they mean different). It can be noted that the 
authors have had several months to decide what license to use, so the plan means actually 
nothing. 

We apologize for our delay in aligning on the final software license, and we agree on the importance of 
using a standardized open-source license so that the community may build on the work in an unrestricted 
manner. As we mention above, we are happy to now commit to the Apache 2.0 license for the code, along 
with a non-commercial license on the model weights. 

 

Referee 2: 

was able to run the model in the notebook, and I am satisfied. From the revision, it is clear that 
evaluating backbone likelihood (ELBO) should be considered when generating backbones, so I 
hope there will be an obvious way to perform this calculation within the code, given a set of input 
coordinates. 

We are glad to hear that you were able to use the model in our notebook environment. We will be 
releasing the code, along with a notebook environment like this and tools for computing metrics such as 
the ELBO in an open-source repository on GitHub with an Apache 2.0 license. The weights will be 
accessible under a non-commercial license. 

 

It is interesting that there were no strongly correlated variables with model expression/solubility. 
The authors might want to check for (if they haven’t already) the presence of any N-terminal 
degrons within their designed sequences (e.g., Leu and Phe for E. coli). 

We agree that the lack of a clear signal here is interesting. While the concern about degrons would seem 
important for our E. coli system, our expression system involves a standardized N-terminal polyhistidine 
tag so it would be less clear how to test for any more subtle affects beyond the first few residues. 

 

The authors allow diffusion of atoms within a residue to account for non-ideality, although they 
did not analyze its importance (e.g., in the two crystal structures, were there any residues that 
deviated from ideality that agreed with the diffused backbone coordinates?). This non-ideality 
seems potentially important, and it sets this model apart from current popular models such as 
RFdiffusion.   

Thank you for making this note about the model’s ability to capture non-ideal states, which we also feel is 
an important aspect of the framework. While we were considering doing analyses like this, it became 
clear that the vast majority of bond length and angle information in the PDB (and potentially in our own 
models) is likely driven primarily by model building software due to limited data resolution. As a result, 
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making this point convincingly would seem to require careful curation of many high-resolution structures 
along with more involved analysis of the underlying electron density maps. We leave this to future work. 

 

Referee 3: 

In Fig. 4 the authors show their experiments on symmetry-conditioned, substructure-conditioned 
and shape-conditioned sampling; however I am concerned that for the shape-conditioned 
samples in Appendix J3 the authors show very low success rates when refolding with structure 
prediction methods and no experimental validation, so I’m highly doubtful if those are 
meaningful. I think they are interesting and should be mentioned, but I don’t think they should be 
displayed so prominently.  

The same applies to the higher order symmetries. Here the authors only showed refolding results 
for trimer subsets, so there are questions regarding how well those reflect reality. Again these are 
interesting results and should be included in the paper; however given these caveats they 
shouldn’t be displayed so prominently in my opinion.  

I would suggest leaving both of these to the appendix. 

We agree that, based on the refolding analyses in our June revision, the Shape-conditioned and potentially 
some of the higher-order symmetry conditioned sampling protocols would seem to have mixed to low 
evidence for their plausibility of generating productive designs. Fortunately, as part of our model 
standardization efforts (major point 1 above), we recomputed all of our refolding evaluations with the 
final version of our model, which was the one that showed the most promise in the ablation study. We 
observe that this final model version shows significantly improved rates of refolding across both shape 
and symmetry conditioning tasks (Appendix J Supp. Figure 17-18), where we now observe widespread 
refolding of all letters and numbers across three structure prediction methods and can furnish a 
discernable alphabet purely of models predicted by ESMfold (Supp. Figure 18). We have regenerated all 
main text figures with samples from these finalized protocols, and also reduced the sizes of the largest 
symmetry examples in the main figure. 

We wish to thank the editor and reviewers for all their helpful and encouraging feedback on this work; it 
has significantly shaped the course of the paper in a way that we hope makes it more broadly useful to the 
community. 

 

Sincerely, 

The Authors 

 

Gevorg Grigoryan, PhD 
Chief Technology Officer 
Generate Biomedicines, Inc. 
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Research Associate Professor 
Computer Science and Biology 
Dartmouth College 
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