
Quantum spin nematic phase in a square-
lattice iridate

In the format provided by the 
authors and unedited

Nature | www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-023-06829-4



Supplementary Information:

Quantum spin nematic phase in a square-lattice iridate

Hoon Kim,1,2,∗ Jin-Kwang Kim,1,2,∗ Junyoung Kwon,2 Jimin Kim,1,2

Hyun-Woo J. Kim,1,2 Seunghyeok Ha,1,2 Kwangrae Kim,1,2 Wonjun Lee,1,2

Jonghwan Kim,3,4 Gil Young Cho,1,2 Hyeokjun Heo,5 Joonho Jang,5

Ch. J. Sahle,6 A. Longo,6,7 J. Strempfer,8 G. Fabbris,8 Y. Choi,8 D. Haskel,8

Jungho Kim,8 J. W. Kim,8 B. J. Kim,1,2,†

1Center for Artificial Low Dimensional Electronic Systems,

Institute for Basic Science (IBS), 77 Cheongam-Ro, Pohang 37673, South Korea

2Department of Physics, Pohang University of Science and Technology,

Pohang 37673, South Korea

3Center for Van der Waals Quantum Solids,

Institute for Basic Science (IBS), Pohang, 37673, Korea

4Department of Materials Science and Engineering,

Pohang University of Science and Technology, Pohang 37673, Korea

5Department of Physics and Astronomy,

Seoul National University, Seoul 08826, South Korea

6ESRF, The European Synchrotron, 71 Avenue des

Martyrs, CS40220, 38043 Grenoble Cedex 9, France

7Istituto per lo Studio dei Materiali Nanostrutturati,

Consiglio Nazionale Delle Ricerche, Palermo, I-90146, Italy

8Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

∗These authors contributed equally to this work.

†To whom correspondence should be addressed; E-mail: bjkim6@postech.ac.kr

1



INDEX

Note S1. Circular dichroism in RXD

Note S2. Other mechanisms of circular dichroism

Note S3. Representation analysis for bond-center quadrupolar orders

Note S4. Microscopic processes for resonant x-ray scattering from quadrupoles

Note S5. Two-site model calculation

Note S6. Polarization analysis in RIXS

2



1. Circular dichroism in RXD

We show here that within E1-E1 transition CD can only arise when electric quadrupole

and magnetic dipole are both present.

The scattering intensity of RXD is given by

I ∝ |Σj exp(iQ · rj)f j
αβϵ

′∗
α ϵβ|2 = |Fαβϵ

′∗
α ϵβ|2 , (S1)

where f is the atomic form factor given by a 3 × 3 matrix, Fαβ = Σj exp(iQ · rj)f j
αβ, ϵ (ϵ

′)

denotes the incoming (outgoing) light polarization vector and α(β) ∈ {x, y, z}. Noting that

both F and ϵ are complex, we write

Fαβ = F1,αβ + iF2,αβ , (S2)

eαβ = e1,αβ + ie2,αβ , (S3)

where eαβ ≡ ϵ′∗α ϵβ. We omit the α and β indices below for clarity. Then the scattering

intensity becomes

I ∝|Fαβeαβ|2 = |(F1 + iF2)(e1 + ie2)|2

=|F1e1 − F2e2|2 + |F2e1 + F1e2|2 (S4)

=(F1e1)
2 + (F2e2)

2 − 2(F1e1)(F2e2) + (F2e1)
2 + (F1e2)

2 + 2(F2e1)(F1e2) .

For circularly polarized light, e1 → e1 and e2 → −e2 under LL → RR or LR → RL.

Therefore,

IDIFF ∝ (F1e1)(F2e2)− (F2e1)(F1e2). (S5)

Next, noting that time-reversal even quadrupole (time-reversal odd magnetic dipole) is

represented by symmetric (antisymmetric) components of the atomic form factor tensor, we

define

F1,2 = F S
1,2 + FA

1,2 , (S6)

e1,2 = eS1,2 + eA1,2 , (S7)

where S (A) denotes the symmetric (antisymmetric) component of the tensor. Then we

arrive at

IDIFF ∝ (F S
1 e

S
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2 E
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2 )− (F S

2 e
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2 e
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1 )(F
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1 e
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2 )
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1 e
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Further simplication is possible when F S
1 = ± F S

2 and FA
1 = ± FA

2 , in which case F S
1 (F

A
1 )

and F S
2 (F

A
2 ) can be interchanged. This is the case for Q =(0 0 odd) reflections as explicitly

confirmed in Table S4 for all possible quadrupole structures with non-zero structure factors.

Then, the CD intensity becomes

IDIFF ∝ FM
1 eA1 F

Q
2 eS2 + FQ

1 eS1F
M
2 eA2 − FM

2 eA1 F
Q
1 eS2 − FQ

2 eS1F
M
1 eA2 , (S9)

where we identify FQ
1,2 = F S

1,2 and FM
1,2 = FA

1,2. Thus, the CD in our case, under the as-

sumption that only E1−E1 process is relevant, can only arise from the interference between

magnetic and quadrupolar orders.

2. Other mechanisms of circular dichroism

Here, we discuss other known origins of CD in RXD and show that they are irrelevant

to our case. In Fig. S1, we first compare the CD response of ferromagnetic (0 0 odd) reflec-

tions to that of antiferromagnetic (1 0 4n+2) reflections. The reflections (0 0 21) and (1 0 18)

are chosen as to have similar scattering geometries, and the CD differences IRC − ILC are

normalized by the magnetic diffraction peak intensity. Unlike (0 0 21) reflection exhibiting

a clear CD at the resonance, we find no indication of CD on (1 0 18) reflection. This rules

out extrinsic sources of CD, such as birefringence [1].

As for intrinsic mechanisms, there are three physically distinct origins for CD: (i) a chiral

lattice structure [2–4] or a helical magnetic structure [5–7], where CD arises from a single

type of scattering entity; (ii) interference between two distinct types of scatterers within E1-

E1 process; (iii) higher-order processes such as electric dipole-magnetic dipole (E1-M1). The

E1-M1 contribution, however, is smaller by a factor of 10−3∼ 10−4 compared to the leading

E1-E1 contribution [8], and thus cannot produce CD of the order of 1% as observed. Further,

case (i) is clearly irrelevant to Sr2IrO4 [9], as lattice is centrosymmetric and the magnetic

structure also preserves the inversion symmetry of the lattice. Therefore, CD can only be

explained by dipole-quadrupole interference within the E1-E1 process. We also note that

the Templeton-Templeton scattering, also known as anisotropy-of-tensor of susceptibility

(ATS) scattering [10], is irrelevant since it is not allowed for the body-center-translation odd
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FIG. S1. CD-RXD on magnetic reflections. a, b, (0 0 odd) magnetic reflections exhibit a

clear CD through interference between dipolar and quadrupolar moments, c, d, whereas the CD

signals are not manifested for (1 0 4n+2) reflections of similar scattering geometry.

reflection q=(0 0 21).
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3. Representation analysis for bond-centered quadrupolar orders

We systematically look for all symmetry-allowed q=0 bond-centered quadrupolar orders.

The crystal structure of Sr2IrO4 has I41/acd space group (No. 142) consisting of 32 symme-

try elements and their direct product with the translation group [11, 12]. For the Γ-point

of the conventional unit cell, the factor group G/T , where T is the translation subgroup

excluding the body-center translation of the space group G, has eight one-dimensional (1D)

and six 2D irreducible representations (IRs). The character table is shown in Table S1.

Irreducible Representations

Class g A1g A1u A2g A2u B1g B1u B2g B2u Eg Eu Γ1 Γ2 Γ3 Γ4

{E|0} 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

{C2|(0, 0, 12)} 2 1 1 1 1 1 1 1 1 -2 -2 2 2 -2 -2

4{C4|(0, 0, 14)} 3,4,19,20 1 1 1 1 -1 -1 -1 -1 0 0 0 0 0 0

2{C2⊥|0} 5,6 1 1 -1 -1 1 1 -1 -1 0 0 -2 -2 0 0

4{C2′ |(12 ,
1
2 , 0)} 7,8,23,24 1 1 -1 -1 -1 -1 1 1 0 0 0 0 0 0

2{I|0} 9,25 1 -1 1 -1 1 -1 1 -1 2 -2 0 0 0 0

2{σh|(12 , 0, 0)} 10,26 1 -1 1 -1 1 -1 1 -1 -2 2 0 0 0 0

4{S4|0} 11,12,27,28 1 -1 1 -1 -1 1 -1 1 0 0 0 0 0 0

2{σv|(12 , 0, 0)} 13,30 1 -1 -1 1 1 -1 -1 1 0 0 0 0 -2 2

2{σv|(0, 0, 12)} 14,29 1 -1 -1 1 1 -1 -1 1 0 0 0 0 2 -2

4{σd|(14 ,
1
4 ,

1
4)} 15,16,31,32 1 -1 -1 1 -1 1 1 -1 0 0 0 0 0 0

{E|(12 ,
1
2 ,

1
2)} 17 1 1 1 1 1 1 1 1 2 2 -2 -2 -2 -2

{C2|0} 18 1 1 1 1 1 1 1 1 -2 -2 -2 -2 2 2

2{C2⊥|(12 , 0, 0)} 21,22 1 1 -1 -1 1 1 -1 -1 0 0 -2 2 0 0

TABLE S1. Character table of I41/acd space group (No. 142). The rows and columns

correspond to the classes and the irreducible representations, respectively. The second column

lists for each class the symmetry elements, which are numbered as in the international tables for

crystallography [11].

All of the IRs that are invariant against the body-center translation {E|(1
2
, 1
2
, 1
2
)} are
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labeled in terms of the IRs of the point group of the space group, whereas the remain-

ing four 2D IRs that change their sign upon the body-center translation are labeled as

Γ1 through Γ4. These provide a complete basis set for all possible symmetry breaking

orders that do not enlarge the unit cell. For example, an arbitrary magnetic order can

be expressed by eight axial vectors placed at each position of the eight Ir ions in the

unit cell; i.e., a real vector in the 3×8=24 dimensional space, which can be reduced to

A1g ⊕A2g ⊕B1u⊕B2u⊕ 2Eg ⊕ 2Eu⊕ 2Γ1⊕ 2Γ2⊕Γ3⊕Γ4 (for detailed representation analy-

sis of the magnetic order, see Supplementary information in [13]). Among them, the Γ1

magnetic structure is experimentally confirmed by RXD [14] and neutron diffraction [9] (see

Fig. S2b).

Similarly, an arbitrary bond-centered quadrupolar order can be expressed by sixteen rank-

two cubic tensors placed at the sixteen nearest-neighbour (NN) bond-centers in the unit cell

a b caa b c

a
bc

FIG. S2. Crystal and magnetic structures of Sr2IrO4. a, b, The crystal (a) and magnetic (b)

structure of Sr2IrO4. Iridium ions and moments are colored by purple. c, Bond centers between

nearest neighbors are numbered. Primed numbers indicate bond centers connected by the body-

center translation.
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(at 16f Wyckoff-positions), each of which carries five quadrupolar degrees of freedom

Sx
i S

x
j − Sy

i S
y
j

1√
3
(2Sz

i S
z
j − Sx

i S
x
j − Sy

i S
y
j )

Sx
i S

y
j + Sy

i S
x
j

Sy
i S

z
j + Sz

i S
y
j

Sz
i S

x
j + Sx

i S
z
j


, (S10)

where i and j are the NN iridium ions. They lead to a representation of 80 by 80 matrices,

which can be reduced into the following IRs:

3A1g ⊕ 3A1u ⊕ 2A2g ⊕ 2A2u ⊕ 2B1g ⊕ 2B1u ⊕ 3B2g ⊕ 3B2u

⊕ 5Eg ⊕ 5Eu ⊕ 5Γ1 ⊕ 5Γ2 ⊕ 5Γ3 ⊕ 5Γ4 . (S11)

For quadrupolar orders with Eg and Γ1 symmetry, Table S2 shows the basis vectors,

whose transformation matrices are listed in Table S3.

Based on the Raman results, provided that only Qyz (S
y
i S

z
j +Sz

i S
y
j ) and Qzx (S

z
i S

x
j +Sx

i S
z
j )

can couple to the light polarizations ϵyz and ϵzx, respectively, there are only two possible

quadrupolar structures, which have either ferroquadrupolar (q4 ̸=0) or antiferroquadrupolar

(q5 ̸=0; see Fig. S3) pattern within the layers.

a b

a
bc

FIG. S3. Ferroquadrupolar and antiferroquadrupolar orders. a, b, Eg symmetry quadrupo-

lar orders with ferroquadrupolar (a) and antiferroquadrupolar (b) configuration of Qzx moments.
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BCs
Eg Γ1

Egu Egv Γ1u Γ1v

1 (q1, q2, q3, q4, q5) (q1, -q2, -q3, q5, q4) (q1, q2, q3, q4, q5) (q1, -q2, -q3, q5, q4)

2 (-q1, -q2, -q3, q4, q5) (-q1, q2, q3, q5, q4) (q1, q2, q3, -q4, -q5) (q1, -q2, -q3, -q5, -q4)

3 (-q1, -q2, q3, q4, -q5) (q1, -q2, q3, -q5, q4) (-q1, -q2, q3, q4, -q5) (-q1, q2, -q3, q5, -q4)

4 (q1, q2, -q3, q4, -q5) (-q1, q2, -q3, -q5, q4) (-q1, -q2, q3, -q4, q5) (-q1, q2, -q3, -q5, q4)

5 (q1, q2, q3, q4, q5) (q1, -q2, -q3, q5, q4) (-q1, -q2, -q3, -q4, -q5) (q1, -q2, -q3, q5, q4)

6 (-q1, -q2, -q3, q4, q5) (-q1, q2, q3, q5, q4) (-q1, -q2, -q3, q4, q5) (q1, -q2, -q3, -q5, -q4)

7 (-q1, -q2, q3, q4, -q5) (q1, -q2, q3, -q5, q4) (q1, q2, -q3, -q4, q5) (-q1, q2, -q3, q5, -q4)

8 (q1, q2, -q3, q4, -q5) (-q1, q2, -q3, -q5, q4) (q1, q2, -q3, q4, -q5) (-q1, q2, -q3, -q5, q4)

TABLE S2. The basis vectors of Eg and Γ1 bond-center quadrupolar orders. Bond

centers (BCs) are indicated in Fig. S2c. qi (i=1,· · · ,5) are independent parameters for quadrupolar

moments.

Matrix representation

1 0

0 1

 0 1

1 0

 −1 0

0 1

 0 −1

1 0


Symmetry elements for Eg 1, 9, 17, 25 8, 16, 24, 32 5, 13, 21, 29 4, 12, 20, 28

Symmetry elements for Γ1 1, 2, 5, 6 3, 4, 7, 8 9, 10, 13, 14 11, 12, 15, 16

Matrix representation

−1 0

0 −1

  0 −1

−1 0

 1 0

0 −1

  0 1

−1 0


Symmetry elements for Eg 2, 10, 18, 26 7, 15, 23, 31 6, 14, 22, 30 3, 11, 19, 27

Symmetry elements for Γ1 17, 18, 21, 22 19, 20, 23, 24 25, 26, 29, 30 27, 28, 31, 32

TABLE S3. Matrix representation of the symmetry elements for Eg and Γ1 IRs. The

matrices are expressed in the (u, v) basis in Table S2. The symmetry elements of I41/acd space

group are numbered as in the international tables for crystallography [11].

Next, we solve for possible quadrupole structures consistent with the CD-RXD results

(Fig. 2). The reflection at (0 0 21) implies that the order is odd under the body-center
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translation symmetry, which in turn implies that the structure must be one of the four

IRs: Γ1, Γ2, Γ3 or Γ4. We obtain five quadrupolar orders with non-vanishing scattering

amplitude (Γ1⊕Γ2⊕Γ3⊕ 2Γ4), which are documented in Table S4. Using the scattering

amplitudes FQ (Table S4) and the magnetic structure in Fig. S2b, we simulate the azimuth-

angle dependence of the CD signals at (0 0 21) for different values of s = rQzx/My.
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BC eiQ·r Γ1u (Qyz) Γ1v (Qzx)

1 1 (0, 0, 0, q1, 0) (0, 0, 0, 0, q1)

2 -1 (0, 0, 0, -q1, 0) (0, 0, 0, 0, -q1)

3 i (0, 0, 0, q1, 0) (0, 0, 0, 0, -q1)

4 -i (0, 0, 0, -q1, 0) (0, 0, 0, 0, q1)

5 -i (0, 0, 0, -q1, 0) (0, 0, 0, 0, q1)

6 i (0, 0, 0, q1, 0) (0, 0, 0, 0, -q1)

7 -1 (0, 0, 0, -q1, 0) (0, 0, 0, 0, -q1)

8 1 (0, 0, 0, q1, 0) (0, 0, 0, 0, q1)

FQ =


0 0 0

0 0 c∗q1

0 c∗q1 0


Azimuth Ψ (o) 60

2

-2

-4

4

120-120 -60

C
D

 (%
)

s = 0.04

-0.04
-0.02

0.02
0


0 0 cq1

0 0 0

cq1 0 0


Azimuth Ψ (o) 60

2

-2

-4

4

120-120 -60

C
D

 (%
)

s = 0.04

-0.04

-0.02

0.02

0

BC eiQ·r Γ2u (Qzx) Γ2v (Qyz)

1 1 (0, 0, 0, 0, q1) (0, 0, 0, -q1, 0)

2 -1 (0, 0, 0, 0, -q1) (0, 0, 0, q1, 0)

3 i (0, 0, 0, 0, q1) (0, 0, 0, q1, 0)

4 -i (0, 0, 0, 0, -q1) (0, 0, 0, -q1, 0)

5 -i (0, 0, 0, 0, -q1) (0, 0, 0, -q1, 0)

6 i (0, 0, 0, 0, q1) (0, 0, 0, q1, 0)

7 -1 (0, 0, 0, 0, -q1) (0, 0, 0, q1, 0)

8 1 (0, 0, 0, 0, q1) (0, 0, 0, -q1, 0)

FQ =


0 0 c∗q1

0 0 0

c∗q1 0 0


Azimuth Ψ (o) 60

2

-2

-4

4

120-120 -60

C
D

 (%
)

s = 0.04

-0.04
-0.02

0.02
0


0 0 0

0 0 -cq1

0 -cq1 0


Azimuth Ψ (o) 60

4

-4

-8

8

120-120 -60

C
D

 (%
)

s= 0.04

-0.04

-0.02

0.02

0
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BC eiQ·r Γ3u (Qxy) Γ3v (Qxy)

1 1 (0, 0, q1, 0, 0) (0, 0, q1, 0, 0)

2 -1 (0, 0, -q1, 0, 0) (0, 0, -q1, 0, 0)

3 i (0, 0, -q1, 0, 0) (0, 0, q1, 0, 0)

4 -i (0, 0, q1, 0, 0) (0, 0, -q1, 0, 0)

5 -i (0, 0, q1, 0, 0) (0, 0, -q1, 0, 0)

6 i (0, 0, -q1, 0, 0) (0, 0, q1, 0, 0)

7 -1 (0, 0, -q1, 0, 0) (0, 0, -q1, 0, 0)

8 1 (0, 0, q1, 0, 0) (0, 0, q1, 0, 0)

FQ =


0 cq1 0

cq1 0 0

0 0 0


Azimuth Ψ (o) 60

2

-2

-4

-6

4

6

120-120 -60

C
D

 (%
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s = 0.04
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0

BC eiQ·r Γ4u (Qx2−y2 & Q3z2−r2) Γ4v (Qx2−y2 & Q3z2−r2)

1 1 (q1, q2, 0, 0, 0) (q1, -q2, 0, 0, 0)

2 -1 (-q1, -q2, 0, 0, 0) (-q1, q2, 0, 0, 0)

3 i (q1, q2, 0, 0, 0) (-q1, q2, 0, 0, 0)

4 -i (-q1, -q2, 0, 0, 0) (q1, -q2, 0, 0, 0)

5 -i (-q1, -q2, 0, 0, 0) (q1, -q2, 0, 0, 0)

6 i (q1, q2, 0, 0, 0) (-q1, q2, 0, 0, 0)

7 -1 (-q1, -q2, 0, 0, 0) (-q1, q2, 0, 0, 0)

8 1 (q1, q2, 0, 0, 0) (q1, -q2, 0, 0, 0)

c∗ ·

 q1-
q2√
3

0 0

0 -q1-
q2√
3

0

0 0
2q2√

3


Azimuth Ψ (o) 60

2

-2
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3
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4

6
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C
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s = 0.04

-0.04
-0.02

0.02

0

12



TABLE S4: Bond-centered quadrupolar orders with non-zero scattering amplitudes FQ

at (0 0 4n+1) reflection. Bond centers are numbered in Fig. S2c, and q1 and q2 are independent

parameters representing static quadrupole moments. The scattering amplitudes FQ are expressed

in terms of c = 4(1− i) and q1 and q2. For Γ4 structure, the azimuth profile is shown for q2=0.

4. Microscopic processes for resonant x-ray scattering from the quadrupoles

Here, we discuss possible microscopic processes that lead to resonant x-ray scattering from

bond-centered quadrupoles. As discussed in Ref. 15, quadrupole channel has vanishing

intensity when only on-site processes are considered.

Jeff = 1/2

site i site j

(i)

(ii) (iii)

2p3/2

P
β

P
α
+

t

t

Upd

FIG. S4. Two-site resonant x-ray scattering process. The bond-centered quadrupoles obtain

finite scattering amplitude from inter-site hopping t and on-site Coulomb interaction Upd. The

scattering process is illustrated in the hole picture.

The lowest-order RIXS process sensitive to bond-centered quadrupoles is depicted in

Fig. S4, which involves (i) hopping to a neighboring site, (ii) exchange scattering between

2p core hole and 5d valence electron, and (iii) hopping back to the original site, thus having

an amplitude smaller than the on-site processes by a factor ∼ t2
Upd

Γ3 . Specifically, the RIXS
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operator R̂αβ reads:

R̂αβ ∝
∑

{m,m′}

⟨i|P̂+
α

t̂

Γ
|m⟩⟨m| Ûpd

Γ
|m′⟩⟨m′| t̂

Γ
P̂β |i⟩ , (S12)

where P̂β (P̂+
α ) corresponds to the dipole transition operator for x-rays with polarizations β

(α); |i⟩ is the initial state, and |m⟩, |m′⟩ are intermediate states; t̂ denotes electron hopping,

Ûpd denotes exchange Coulomb interaction between core and valence holes, and Γ is a core-

hole lifetime. The energy denominators of this perturbation expansion are replaced by Γ

using the fast-collision approximation [16, 17].Alternatively, quadruoples may be detected

through inter-site photon-induced transitions (see Fig. S5), as discussed in Refs. 18, 19.

Jeff = 1/2

2p3/2

t
P

α
+

site i site j

P
β

FIG. S5. Resonant x-ray scattering process with inter-site photon-induced transitions.

The scattering process is illustrated in hole picture.

5. Two-site model calculation

An arbitrary wavefunction |Ψ⟩ for a pair of S=1/2 spins in a 4D Hilbert space can be ex-

pressed by eight real numbers uα and vα (α = s, x, y, z), which are real and imaginary

part, respectively, of the coefficients of the usual time-reversal invariant basis for two S=1/2

spins; i.e., |s⟩= 1√
2
(| ↑↓⟩ − | ↓↑⟩), |x⟩= i√

2
(| ↑↑⟩ − | ↓↓⟩), |y⟩= 1√

2
(| ↑↑⟩ + | ↓↓⟩), and
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|z⟩= −i√
2
(| ↑↓⟩+ | ↓↑⟩). In this basis, the order paramaters are

Mα = −i
∑

β,γ∈{x,y,z}

ϵαβγ|β⟩⟨γ| ,

Nα = i(|α⟩⟨s| − |s⟩⟨α|) ,

Qαβ = −1

2
(|α⟩⟨β|+ |β⟩⟨α|) + 1

3
δαβ|γ⟩⟨γ| ,

Si · Sj =
1

4

∑
α∈{x,y,z}

|α⟩⟨α| − 3

4
|s⟩⟨s| .

(S13)

First, we note that M = 2u′ × v′, where u′ ≡ (ux, uy, uz) and v′ ≡ (vx, vy, vz), and thus

requiring M ∥ ŷ eliminates two parameters as uy = vy =0. Next, we redefine u′ and v′ in the

3-dimensional space (x, s, z), and require that |u′|2 + |v′|2=1 (normalization of |Ψ⟩) and

u′ ·v′=0 (fixing the overall phase). Note that u′×v′= 1
2
(Nz,My,−Nx). Thus, when ϕc=0,

u′ × v′ ∥ ẑ, which means that both u′ and v′ are in the xs plane and can be expressed as

u′ = cos θ(− sinϕ, cosϕ, 0),

v′ = sin θ ( cosϕ, sinϕ, 0).
(S14)

Finally, spin canting by angle ϕc can be achieved by rotating in the sz plane, whereby

u′ = cos θ(− sinϕ, cosϕ cosϕc, cosϕ sinϕc),

v′ = sin θ ( cosϕ, sinϕ cosϕc, sinϕ sinϕc).
(S15)

As shown in Eq. (5) in the main text, the wavefunction |Ψ⟩ can be expressed in terms of

the two parameters θ and ϕ as

|Ψ⟩ = (cos θ cosϕ+ i sin θ sinϕ) cosϕc|s⟩

+ (− cos θ sinϕ+ i sin θ cosϕ)|x⟩

+ (cos θ cosϕ+ i sin θ sinϕ) sinϕc|z⟩.

(S16)

Using this form of the wavefucntion, the expectation values for the magnetic and non-

magnetic order parameters are found as

⟨Nx⟩ = sin 2θ cosϕc, (S17)

⟨My⟩ = sin 2θ sinϕc, (S18)

⟨Qxy⟩ = ⟨Qyz⟩ = 0, (S19)

⟨Qzx⟩ =
1

2
cos 2θ sin 2ϕ sinϕc, (S20)

⟨−S⃗1 · S⃗2 − 1

4
⟩ = 1

2

(
cos 2θcos 2ϕcos2 ϕc − sin2 ϕc

)
. (S21)
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FIG. S6. Two canted magnetic moments. Two spins are canted by an angle ϕc with respect

to the global crystal axes x and y, producing a net ferromagnetic moment along the y-axis.
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6. Polarization analysis in RIXS

The backscattering-type RIXS spectrometer widely used in the hard x-ray energy regime

based on the Rowland circle geometry [20] does not allow polarization analysis because the

large angular spread of scattered x-rays precludes the use of a conventional polarizer. How-

ever, in our particular case, a judicious selection of the scattering geometry in combination

with external magnetic fields allows isolation of all three spin components Saa, Sbb and Scc.

We note that, for the case of Sr2IrO4 with low-spin d5 configuration, the RIXS operator at

Ir L3-edge can be expressed in terms of spin operators [15].

Fig. S7a shows the magnetic stacking pattern of Sr2IrO4 with and without a mag-

netic field. With a relatively small magnetic field (⪆ 0.3 T), magnetic moments can be

aligned perpendicular to the field [14]. The (1 0L) scan of Sr2IrO4 with a magnetic field in

Fig. S7b demonstrates that domains are well aligned by the field in our experiment, showing

a completely suppressed (1 0 4n), mostly suppressed (1 0 4n+2), and dominant (1 0 2n+1)

peaks [21]. Thus, the orientation of the magnetic moments can be controlled by rotating

the magnet holder which changes the direction of the field.

In addition, a large momentum transfer from the high energy of x-rays provides access

to multiple Brillouin zones allowing measurements in many different scattering geometries.

Specifically, the incident angle α in Fig. S7c can be varied from almost zero to 90◦. To align

the crystallographic axes to the magnetic field, the sample is oriented so that the ac-plane is

in the scattering plane, and the scattering angle (2θ) is fixed close to 90◦ to suppress elastic

Thomson scatterings. Under these conditions, the RIXS responses at extreme incident

angles, normal (α ∼ 90◦) or grazing (α ∼ 0◦), are sensitive mostly to two spin components.

For example, in a normal-incidence geometry (α∼ 90◦), two polarization channels, π×π′

and π × σ′, mostly measure Sbb and Scc, respectively. When a magnetic field is applied

along [010], the weak ferromagnetic moments in Sr2IrO4 are fully aligned parallel to the

field direction (Fig. S7a) and all spins are aligned to the perpendicular direction [100].

Thus, RIXS in a normal-incidence geometry with a [010] field collects the two transverse

modes (T+T′) to the AF moments, where T is the in-plane transverse mode and T′ is the

out-of-plane transverse mode. On the other hand, when the field is applied along [100],

the longitudianl (L) and the out-of-plane (T′) modes are collected. Likewise, the modes

being measured in a grazing-incidence geometry can be determined for each field direction,
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c

π

π′
σ′

Ir α

a b

c

H ‖ b

2θ

FIG. S7. Polarization analysis of RIXS measurements. a, Magnetic ordering pattern of

Sr2IrO4 with and without a magnetic field. Without a magnetic field, canted pseudospin moments

(blue arrows) in each IrO2 planes produce a net ferromagnetic moments (magenta arrows) with

a stacking pattern of ‘uddu’ along the c-axis. With a small magnetic field (cyan arrows), the net

ferromagnetic moments are aligned along the field direction (H ∥ a or H ∥ b), rendering pseudospin

moments approximately perpendicular to the field direction. b, (1 0 L) scan with a small magnetic

field along the b-axis. c, Schematics of scattering geometry for RIXS measurements. α is the

incident angle and 2θ is the scattering angle between incident and outgoing x-rays. The c-axis

normal sample is oriented such that the ac-plane is the scattering plane. In this horizontal scattering

geometry, π-polarized x-rays are incident to the sample and outgoing x-rays are unpolarized.

and the corresponding modes for all possible combinations of incidence geometries and field

directions are tabulated in Extended Data Table 1. We note that this idea has been used

in previous RIXS studies on Sr2IrO4 to suppress [21] or emphasize [22] the out-of-plane

transverse mode at (π, π).

In our experiment, we choose to measure RIXS in a normal-incidence geometry varying

the field direction. We fixed the scattering geometry because changing the scattering geom-

etry significantly varies the x-ray footprint on the sample which makes a direct comparison
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of intensities between the spectra difficult. Also, since two spectra obtained in a grazing-

incidence geometry practically provide the same polarization components (Extended Data

Table 1), we decided to conduct RIXS in a normal geometry which can provide two spectra

of T+T′ and T′+L. Since the in-plane (T) and out-of-plane (T′) transverse modes at short

wavelengths are virtually identical [21, 23, 24], we can approximate T+T′ and T′+L to 2T

and T+L, respectively. Then, the pure transverse (T) and longitudinal (L) mode can be

isolated by subtraction/addition of the raw spectra.

We choose q vectors around (3 0 28.5): (3 0 25.8), (3.5 0 25.8) and (3.5 0.5 25.8) are

selected for (π, π), (π/2, π/2) and (π, 0), respectively. A large H value is required to make

the incident angle close to normal (α ∼ 90◦). For these q vectors, the incident angle was

around 75◦, which gives ∼ 6.7% leakage (sin2 15◦≈ 0.067) in our RIXS spectra. Thus, the

contributions to each components (Saa, Sbb, Scc) from the two polarization channels, π × π′

and π × σ′, are calculated as,

ST ′+L

ST+T ′

 =

ma mb mc

na nb nc



Saa

Sbb

Scc

 , (S22)

where mi and ni (i = a, b, c) are the portions of Sii in the T+T′ spectrum (ST+T ′) and the

T′+L spectrum (ST ′+L), respectively. However, for Sr2IrO4, due to canted moments with

a canting angle ϕ∼ 11◦ [14], the in-plane spin components are not exactly parallel to the

crystal axes. Thus, another transformation is required to take this into account,
Saa

Sbb

Scc

 =


cos2 ϕ sin2 ϕ 0

sin2 ϕ cos2 ϕ 0

0 0 1




SL

ST

ST ′

 , (S23)

where moments are aligned along the a-axis. Given that T and T′ are virtually identical

away from the zone center, we find the relation between spin polarized spectra (S∥, S⊥)

and raw spectra (ST+T ′ , ST+L) using Eq. (S22) and Eq. (S23), where S∥ is the spectrum for

the pure longitudinal mode and S⊥ is for the pure transverse mode. For example, in our

experiment, the transformation matrix for (π, 0) spectra is given by,S∥

S⊥


(π,0)

=

 2.198 −1.198

−0.118 1.118

ST ′+L

ST+T ′


(π,0)

. (S24)
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FIG. S8. Raw RIXS spectra of Sr2IrO4. a-f, The raw RIXS spectra measured along the

magnetic zone boundary from (π/2,π/2) to (π, 0). Elastic peaks and constant backgrounds have

been removed by fittings. All spectra are normalized to the intensity of electronic excitations

(10Dq). The error bars are the standard errors of multiple measurements.

Figure S8 shows the raw RIXS spectra after removing the elastic peaks by fitting. With

the vertical (horizontal) magnetic field, the spectrum approximately measures the T+T′

(T+L) components. From the (π/2,π/2) spectra, it is seen that the peak in the T+T′

channel is much larger than that in the T+L channel due to the single magnon in the

T channel. Upon approaching (π 0), the difference between the two channels gradually

decreases, and eventually become identical at (π, 0). The error bars in Fig. 4 in the main

text were determined by the standard propagation of uncertainty.

We note that a small magnetic field we used here (∼ 0.3 T) does not change magnetic

excitations in RIXS measurements as demonstrated in Fig. S9, since the magnitude of the

in-plane spin exchange (J) in Sr2IrO4 is about 60 meV while a field of 0.3 T corresponds to

57 µeV for a 1 µB spin.
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FIG. S9. Field dependence of RIXS spectrum. The (π, 0) spectrum of Sr2IrO4 is measured

with (black) and without (red) an external magnetic field of 0.3 T. The two raw spectra show no

difference within the error bars.
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