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S1. DYNAMICAL PHASE DIAGRAM

In this section, we perform detailed analysis of the dynamical phase diagram shown in Fig. 1c in the main text. We
start from analytic calculation in the case of homogeneous couplings, and then generalize to the case of inhomogeneous
couplings. Finally we discuss the application of our findings to experimental conditions.

A. Homogeneous model

First we discuss the dynamical phases for the BCS Hamiltonian with homogeneous couplings,

Ĥ = ℏχŜ+Ŝ− +
∑
k

εkŜ
z
k . (S1)

We will set ℏ = 1. As shown in Ref. [? ? ], the dynamical phases can be determined using a mean-field Lax vector

analysis. The Lax vector is defined as L⃗(u) = Lx(u)x̂+ Ly(u)ŷ + Lz(u)ẑ with components,

Lx(u) =
∑
k

Sx
k (0)

u− εk/2
, Ly(u) =

∑
k

Sy
k(0)

u− εk/2
, Lz(u) = − 1

χ
−

∑
i

Sz
k(0)

u− εk/2
, (S2)

where Sx,y,z
k (0) are the expectation value of operators Ŝx,y,z

k in the initial state.
Here we consider the initial state as Sx

k (0) = 1/2, Sy
k(0) = Sz

k(0) = 0, and εk is chosen from a uniform distribution
in the frequency range [−δs/2−EW/2,−δs/2 +EW/2] and [δs/2−EW/2, δs/2 +EW/2]. In this case, the mean-field
Lax vector takes the following form:

χLx(u) ≈ χN

2

[
1

2EW

∫ −δs/2+EW/2

−δs/2−EW/2

dx

u− x/2
+

1

2EW

∫ δs/2+EW/2

δs/2−EW/2

dx

u− x/2

]
=

χN

2EW

[
ln

(
u+

δs
4
+
EW

4

)
− ln

(
u+

δs
4
− EW

4

)
+ ln

(
u− δs

4
+
EW

4

)
− ln

(
u− δs

4
− EW

4

)]
,

χLy(u) = 0,

χLz(u) = −1.

(S3)

Note that ln z in the complex plane is a multivalued function. Here we take the principal value ln z = ln |z|+ iArg(z),
where Arg(z) is the argument of z restricted in the interval (−π, π]. Directly combining the logarithm functions might
lead to moving out of the principal branch.

One can define the dynamical phases based on the number of complex roots of equation L⃗(u) · L⃗(u) = 0: Phase I
has zero complex roots, phase II has a pair of complex roots, phase III has two pairs of complex roots. Whether the
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complex roots have non-zero or vanishing real parts could be used for further separation of the phases. In our case,

the equation L⃗(u) · L⃗(u) = 0 takes the following form,

χN

2EW

[
ln

(
u+

δs
4
+
EW

4

)
− ln

(
u+

δs
4
− EW

4

)
+ ln

(
u− δs

4
+
EW

4

)
− ln

(
u− δs

4
− EW

4

)]
= ±i. (S4)

We find four dynamical phases based on analyzing the roots of Eq. (S4):

• Phase I: No complex roots, which exist in the regime

δs
EW

< 1,
χN

EW
<

1

π
or

δs
EW

> 1,
χN

EW
<

2

π
. (S5)

• Phase II: A pair of complex roots,

u

EW
= ± i

4

[
cot

(
EW

χN

)
+

√
csc2

(
EW

χN

)
− δ2s
E2

W

]
, (S6)

which exist in the regime

δs
EW

< 1,
χN

EW
>

1

π
. (S7)

• Phase IIIa: Two pairs of complex roots with vanishing real parts,

u1
EW

= ± i

4

[
cot

(
EW

χN

)
+

√
csc2

(
EW

χN

)
− δ2s
E2

W

]
,

u2
EW

= ± i

4

[
cot

(
EW

χN

)
−

√
csc2

(
EW

χN

)
− δ2s
E2

W

]
, (S8)

which exist in the regime

δs
EW

> 1,
χN

EW
>

2

π
,

δs
EW

< csc

(
EW

χN

)
. (S9)

In phase IIIa, the order parameter, ∆BCS oscillates around a non-zero value (non-ZOPA) as pointed out in
Ref. [? ? ].

• Phase IIIb: Two pairs of complex roots with non-zero real parts,

u1
EW

=
1

4

[√
δ′2s − csc2

(
1

χ′N

)
± i cot

(
1

χ′N

)]
,

u2
EW

=
1

4

[
−

√
δ′2s − csc2

(
1

χ′N

)
± i cot

(
1

χ′N

)]
, (S10)

which exist in the regime

δs
EW

> 1,
χN

EW
>

2

π
,

δs
EW

> csc

(
EW

χN

)
. (S11)

In phase IIIb, ∆BCS oscillates with zero order parameter average (ZOPA) as explained in Ref. [? ? ].

The dynamical phases derived from the Lax analysis above are supported by numerical evidences, as shown in
Fig. S1a and Fig. S1b. We numerically solve the dynamics of ∆BCS = χ⟨Ŝ−⟩ under Eq. (S1) based on mean field
approximation, and then identify dynamical phases based on long-time average of |∆BCS|,

Avg(|∆BCS|) = lim
T→∞

1

T

∫ T

0

|∆BCS(t)|dt, (S12)

and long-time oscillation amplitude of |∆BCS|. Since the oscillations in |∆BCS| might deviates from a sinusoidal form,
it is easier to use the standard deviation as a measure of the oscillation amplitude,

Std(|∆BCS|) =
[

lim
T→∞

1

T

∫ T

0

(
|∆BCS(t)| −Avg(|∆BCS|)

)2

dt

]1/2
, (S13)

although experimentally it’s better to use the peak of Fourier spectrum to suppress the noise (see Fig. 3d in the main
text). The dynamical phases can be characterized by
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Fig. S1. Dynamical phase diagrams. a and b, Dynamical phase diagram of the homogeneous model normalized by
∆init/χN = 1/2, where ∆init is the initial value of |∆BCS|. The white lines are the dynamical critical points derived from
the Lax analysis. c and d, Dynamical phase diagram of the inhomogeneous model normalized by ∆init/χNeff = J1(Ωτ). The
white lines are the same as the homogeneous model. e, Time evolution of ∆BCS at δs/EW = 1.1, χN/EW = 1.0 under the
homogeneous model (phase IIIa). f, Time evolution of ∆BCS at δs/EW = 1.6, χN/EW = 1.0 under the homogeneous model
(phase IIIb). g, Time evolution of ∆BCS at δs/EW = 1.6, χN/EW = 1.0 under the inhomogeneous model (phase III).

• Phase I: Avg(|∆BCS|) = 0, Std(|∆BCS|) = 0.

• Phase II: Avg(|∆BCS|) > 0, Std(|∆BCS|) = 0.

• Phase III: Avg(|∆BCS|) > 0, Std(|∆BCS|) > 0.

Since εk is chosen from a distribution with particle-hole symmetry (symmetric about 0), ∆BCS becomes a real number
in this case. One can further separate phase IIIa and phase IIIb by the behavior of ∆BCS shown in Fig. S1e and
Fig. S1f.

B. Inhomogeneous model

Here we discuss the dynamical phases for the BCS Hamiltonian with inhomogeneous coupling,

Ĥ = ℏχ
∑
jk

ζjζkŜ
+
j Ŝ

−
k +

∑
k

εkŜ
z
k , (S14)

where ζk is generated by random sampling of cos(x), with x chosen from a uniform distribution in the interval
[0, 2π). Similar to the homogeneous model, εk/ℏ is still chosen from a uniform distribution in the frequency range
[−δs/2 − EW/2,−δs/2 + EW/2] and [δs/2 − EW/2, δs/2 + EW/2]. In this case, we explore the dynamical phases
numerically since the Lax analysis is not applicable. As shown in Fig. S3c and Fig. S3d, one can obtain similar
dynamical phases as the homogeneous model: Phase I remains the same, Phase IIIa merges into Phase II, and
Phase IIIb becomes the new Phase III. The phase boundary can be roughly captured by the analytical solution of
the homogeneous model. Note that χNeff is the averaged interaction strength in the inhomogeneous case, where
Neff = N/2. The superconducting order parameter is defined as ∆BCS = χ

∑
k ζk⟨Ŝ

−
k ⟩. The initial condition is chosen
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Fig. S2. Experimental control of dynamical phases. a and b, Dynamical phase diagram for the experiment with two
atomic ensembles, in terms of averaged spin-exchange interaction strength χNeff and peak AC Stark shift fAC. The white lines
show the predicted dynamical phase boundaries to guide the eye. The white dashed line marks a small region of phase II’ due
to the imbalance of EW for the two atomic ensembles. c, EW as a function of peak AC Stark shift fAC, with AC Stark shift
applying to atomic cloud 1. d, δs as a function of peak AC Stark shift fAC (red line). The dashed line marks the place where
δs = fAC.

as the maximum |∆BCS| one can achieved by an external drive along the cavity axis, Ĥdrive = Ω
∑

k ζkŜ
y
k . Assuming

the initial state can be prepared by applying Ĥdrive for a time τ , we have

∆init

χNeff
≈ 1

2π

∫ 2π

0

dx cos(x) sin(Ωτ cos(x)) = J1(Ωτ), (S15)

where Jn is the Bessel function of the first-kind, and the maximum of J1(Ωτ) can be achieved at Ωτ = 0.586π. It is
worth to mention that ∆BCS is a real number initially, but it becomes a complex number during the time evolution,
as shown in Fig. S3g.

C. Experimental control of dynamical phases

Here we elaborate on the experimental implementation of the Hamiltonian Eq. (S14). As discussed in the previous
section, we would like to approximately engineer single-particle energies εk/ℏ sampled from a uniform distribution in
the frequency range [−δs/2−EW/2,−δs/2+EW/2] and [δs/2−EW/2, δs/2+EW/2]. The two different experimental
schemes used in the main text to explore the energy distribution are summarized in the following table:

Description Approx. εk/ℏ

Scheme I
(Fig. 2, main text)

1) Single atomic cloud
2) AC Stark shift

[−ẼW/2, ẼW/2]

Scheme II
(Fig. 3, 4, main text)

1) Two atomic clouds
2) AC Stark shift to cloud 1

Cloud 1: [−δs/2− EW/2,−δs/2 + EW/2]
Cloud 2: [+δs/2− EW/2,+δs/2 + EW/2]

The first scheme is used to probe the phase I to phase II transition. We use a single atomic ensemble and apply an
AC Stark shift beam with a gradient to approximately engineer εk/ℏ from a uniform distribution [−ẼW/2, ẼW/2], as
discussed in the Methods. As shown in Fig. 2a in the main text, the distribution of atomic frequencies is not exactly
uniform, so we calculate the variance of the frequency distribution experimentally. Theoretically we assign a spread
ẼW such that the uniform distibution over [−ẼW/2, ẼW/2] matches the measured experimental variance. We use
this scheme to probe the dynamical phase diagram at δs = 0 (see Fig. 1c in the main text).

It is worth mentioning that the uniform distribution [−ẼW/2, ẼW/2] can be interpreted in two different ways: 1)

δs = 0 and EW = ẼW; 2) δs = EW = ẼW/2. Here we prefer the first interpretation δs = 0 because in this scheme we
only have a single control parameter (the strength of AC Stark shift beam). Additionally, the line δs = EW in the
dynamical phase diagram has an implication that a small perturbation of δs can generate a gap in atomic frequency,
which is prohibited under this mapping between experimental controls and the model parameters.

In the second scheme that probes transitions into phase III, we use two atomic ensembles and apply an AC Stark
shift beam (peak AC Stark shift fAC) to the first ensemble to generate a frequency splitting δs between the two



5

ensembles. In contrast to the first scheme, as discussed in the Methods, here we instead use the differential lattice
light shifts to engineer a frequency spread EW for each ensemble. As shown in Fig. 3a in the main text, in this case we
define δs as the mean frequency difference between the two ensembles, and EW as the width of a uniform distribution
generating the same variance.

It is worth mentioning that the Gaussian profile of the AC Stark shift beam leads to an increase in EW for the
first atomic ensemble, as well as a reduction of the expected splitting of the two ensembles δs < fAC, as shown in
Fig. S2c and d. Using experimental parameters, we get the dynamical phase diagram as depicted in Fig. S2a and
b. The imbalance of EW for the two atomic ensembles can lead to a small region of phase II’ marked by the white
dashed line. This occurs because the spin-exchange interaction is able to lock the ensemble with smaller EW, while
the ensemble with larger EW remains unlocked, which leads to |∆BCS| approaching a small but nonzero constant
value. In the experiment, due to other dissipative processes and reduced signal-to-noise ratio for small χN , we do
not observe a difference between phase I and phase II’. This is the cause of a small discrepancy between theory and
experiment in Fig. 4b in the main text in identifying the position of the phase transition.

S2. SHORT-TIME SIGNATURES OF DYNAMICAL PHASES

In this section, we discuss the properties of the dynamical phases using short-time observables, since dissipative
processes and noise in the experiment lead to difficulties in measuring long-time observables. In the following, we show
that phase I can be characterized by the fast decay of |∆BCS|, phase II can be characterized by Higgs oscillations. We
further show that the phase II to phase III transition can be captured by the dip in the short-time oscillation frequency
of |∆BCS|. Finally, we provide an explanation of the frequency dip using an analytical solution of the two-spin BCS
model.

A. Phase I: fast decay

In phase I, the single-particle energy term
∑

k εkŜ
z
k dominates over the spin-exchange interaction. To leading order,

one can calculate |∆BCS| in the homogeneous model by dropping the interaction term, which gives

|∆BCS|
χN

≈ 1

2N

∣∣∣∑
k

e−iεkt/ℏ
∣∣∣ = 1

2

∣∣∣∣ 1

2EW

∫ −δs/2+EW/2

−δs/2−EW/2

e−ixtdx+
1

2EW

∫ δs/2+EW/2

δs/2−EW/2

e−ixtdx

∣∣∣∣
=

1

2

∣∣∣∣ cos(δs2
)∣∣∣∣ · ∣∣∣∣ sin(EWt/2)

EWt/2

∣∣∣∣.
(S16)

The decay profile of |∆BCS| is set by a sinc function with a 1/e coherence time t satisfying EWt/2π ≈ 0.7. For the
inhomogeneous model a similar fast decay time scale of the order of EWt/2π ∼ 1 can be derived. As shown in Fig. 2b
in the main text, we observe fast decay of |∆BCS| within 1 µs in phase I. The decay time scale for the other dynamical
phases can be more than 10 times longer.

B. Phase II: Higgs oscillation

Higgs oscillation, generated by collective excitation of the Higgs mode in BCS superconductor, is characterized
by the oscillation of |∆BCS| at frequency ω = 2Avg(|∆BCS|) [? ]. For the homogeneous model (see Fig. S3a), we
numerically confirmed this relation for all the points in phase II and phase IIIa. For the inhomogeneous model (see
Fig. S3b), this relation is approximately satisfied in phase II. In experiment, we observe hints of Higgs oscillation (see
Fig. 2 in the main text), which can be ideally described by the inhomogeneous model with δs = 0 (see the inset in
Fig. S3b).

C. Transition to phase III: frequency dip

In the main text, we discuss a way to understand the phase II to phase III transition by visualising the two atomic
ensembles as two large spins. For the inhomogeneous model, phase II exists in the small δs regime, where the two
spins lock to each other and form a single large spin through spin-exchange interactions. In this case the many-body
gap protection leads to the damped oscillations observed in phase II. Increasing δs in phase II leads to the reduction
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Fig. S3. Relation between oscillation frequency and averaged order parameter in Higgs oscillations. a, Homo-
geneous model where each point is a choice of (χN, δs) in phase II (red) and phase IIIa (blue). The dashed line represents
ω = 2Avg(|∆BCS|). b, Inhomogeneous model where each point is a choice of (χNeff , δs) in phase II. The inset shows the points
with δs = 0.

of the many-body gap, and hence to a decrease of the corresponding oscillation frequency. Phase III exists in the large
δs regime, where the spin locking occurs separately in each ensemble, and the two large spin are instead precessing
around each other, with a rate set by the splitting δs and the spin-exchange interaction. Increasing δs in phase III
leads to a speed up of the oscillation frequency. Therefore one expects the existence of a frequency dip separating
between phase II and phase III. Indeed as shown in Fig. S4c and d, we find good agreement between the frequency
dip and the corresponding dynamical critical point. For small δs, the oscillation frequency approaches the Higgs
oscillation frequency discussed in the previous subsection. For large δs, the oscillation frequency approaches δs. The
reduction of oscillation frequency compared to δs indicates many-body effects in phase III. It’s worth to mention that
in contrast to the inhomogeneous model, the frequency dip indicates the phase IIIa to phase IIIb transition for the
homogeneous model.

D. Frequency dip in the two-spin BCS model

Here we use the analytical mean field solution of the BCS Hamiltonian with two large spins (S = N/4 for each
spin) to understand the frequency dip discussed above. In this case, the Hamiltonian simplifies to

Ĥ/ℏ = χŜ+Ŝ− +
δs
2
Ŝz
1 − δs

2
Ŝz
2 , (S17)

where Ŝ± = Ŝ±
1 + Ŝ±

2 . The mean field equations of motion for the Hamiltonian above can then be written as

d

dt
Sx
1 = 2χSySz

1 − δs
2
Sy
1 ,

d

dt
Sy
1 = −2χSxSz

1 +
δs
2
Sx
1 ,

d

dt
Sz
1 = −2χ(Sy

2S
x
1 − Sx

2S
y
1 ),

d

dt
Sx
2 = 2χSySz

2 +
δs
2
Sy
2 ,

d

dt
Sy
2 = −2χSxSz

2 − δs
2
Sx
2 ,

d

dt
Sz
2 = −2χ(Sy

1S
x
2 − Sx

1S
y
2 ).

(S18)

The spin components without the hat represent the expectation value of the corresponding spin operators.
In the following, we assume an initial state satisfying Sx

1 = Sx
2 = N/4, Sy

1 = Sy
2 = Sz

1 = Sz
2 = 0. The conserved

quantities of the two-spin BCS model are the total magnetisation

Sz = Sz
1 + Sz

2 = 0, (S19)

the total energy

E/ℏ = χS+S− +
δs
2
Sz
1 − δs

2
Sz
2 = χ

(
N

2

)2

, (S20)

as well as the spin length of each of the large spins, (Sx
1 )

2 +(Sy
1 )

2 +(Sz
1 )

2 = (N/4)2, (Sx
2 )

2 +(Sy
2 )

2 +(Sz
2 )

2 = (N/4)2.
Using these conserved quantities, one can derive from the mean field equations in Eq. (S18) an equation of motion for
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respectively. b, Oscillation frequency of |∆BCS| in the two-spin BCS model Eq. (S17) as a function of δs/χN . The frequency
dip at δs/χN = 1 marks the dynamical phase transition point. c, Short-time frequency ω of the dynamics under inhomogneous
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as shown in Extended Data Fig. 2 from the Methods. d, Short-time frequency ω of the dynamics using experimental control
parameters. The white line marks the phase II to phase III transition and represents the same boundary as in Fig. S2. The
frequency dips match the dynamical critical points for both cases.

the BCS order parameter, ∆BCS = χS−. To simplify the notation, we define ∆ ≡ |∆BCS|/χN , i.e. ∆2 = S+S−/N2.
From Eq. (S19) and Eq. (S20), we obtain

d

dt
∆2 = − δs

χN2

d

dt
Sz
1 =

2δs
N2

(Sy
2S

x
1 − Sx

2S
y
1 ), (S21)

which leads to

d2

dt2
∆2 =

2δs
N2

(
Sx
1

d

dt
Sy
2 + Sy

2

d

dt
Sx
1 − Sy

1

d

dt
Sx
2 − Sx

2

d

dt
Sy
1

)
= 4δsχ∆

2Sz
1 − 2δ2s

N2
(Sx

1S
x
2 + Sy

1S
y
2 ).

(S22)

From the above conserved quantities, we can create the equivalent expressions δsS
z
1 = −χN2(∆2 − 1/4), 2(Sx

1S
x
2 +

Sy
1S

y
2 ) = N2∆2 − 2× (N/4)2 + 2(Sz

1 )
2. Plugging these into the equation of motion gives

d2

dt2
∆2 = −6(χN)2(∆2)2 +

(
2(χN)2 − δ2s

)
∆2 +

δ2s − (χN)2

8
. (S23)

The equation above can be further simplified to

1

2

(
d

dt
∆

)2

+ V (∆) = 0, (S24)

where

V (∆) =
1

2
(χN)2

(
∆2 − 1

4

)(
∆2 − 1− (δs/χN)2

4

)
, (S25)
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with an initial condition ∆ = 1/2. Eq. (S24) can be understood as a classical particle with position ∆ oscillating

in the potential V (∆). For δs < χN , we find ∆ oscillating between ∆max = 1/2 and ∆min =
√

1− (δs/χN)2/2.
This is equivalent to phase II in the cases of many spins with inhomogeneous atom-light couplings, because all the
oscillations damp in the large χN limit. For δs > χN , we find ∆ oscillating between ∆max = 1/2 and ∆min = 0,
since the definition of ∆ requires ∆ ≥ 0. This is equivalent to phase III in the cases of many spins because the
phase connects to single-particle oscillations in the large δs limit. Therefore, a dynamical phase transition occurs at
δs/χN = 1, which is equivalent to the phase II to phase III transition in the many-spin system.
The analytical solution of Eq. (S24) can be written in terms of Jacobian elliptic funtions dn and cn:

∆(t) =


1

2
dn

(
1

2
χNt

∣∣∣∣(δs/χN)2
)

if δs < χN

1

2

∣∣∣∣cn(1

2
δst

∣∣∣∣(χN/δs)2)∣∣∣∣ if δs > χN

. (S26)

The frequency of ∆(t) can be written in terms of the complete elliptic integral of the first kind K(k2):

ω

χN
=



π

2K
(
(δs/χN)2

) if δs < χN

δs
χN

π

2K
(
(χN/δs)2

) if δs > χN

. (S27)

The mean-field trajectories on the Bloch sphere are shown in Fig. S4a, and the oscillation frequency Eq. (S27) is
shown in Fig. S4b. The dynamical phase transition can also be understood from the mean field trajectories. For
δs < χN , the two large spins lock to each other and oscillate near the x axis of the Bloch sphere. For δs > χN , the
two large spins are unlocked and precess around the whole Bloch sphere. Near the dynamical critical point, the mean
field trajectories are close to the north pole or south pole of the Bloch sphere, which leads to a slow down of the
oscillations because they approach stable fixed points of the Hamiltonian.

S3. AXIAL MOTION

In this section, we elaborate on how to take into account axial motion present in the experimental system. Similar
discussions can be found in Ref. [? ]. We start with the one-dimensional Hamiltonian of our cavity QED system with
two internal atomic levels (|↑⟩ and |↓⟩), given by

Ĥ =
∑

σ={↑,↓}

∫
dx ψ̂†

σ(x)

[
p̂2

2M
+ V0 sin

2(kLx)

]
ψ̂σ(x) +

∫
dx ψ̂†

↑(x)

[
ℏω0 + Uac(x)

]
ψ̂↑(x)

+ ℏgc
∫
dx cos(kcx)

[
ψ̂†
↑(x)ψ̂↓(x)â+ â†ψ̂†

↓(x)ψ̂↑(x)

]
+ ℏωcâ

†â,

(S28)

where kL = 2π/λL is the wavenumber of the lattice beams (λL = 813nm), kc is the wavenumber of the cavity mode
(λc = 689nm), ω0 is the atomic transition frequency between |↑⟩ and |↓⟩ states, Uac(x) is the AC Stark shift applied
to the atoms (including the differential light shift from the lattice beams and the transverse AC Stark shift beam),
and ωc is the frequency of cavity resonance.
Since the atoms are trapped in an optical lattice with lattice depth on the order of 103ER, we can approximate each

lattice site as an harmonic trap with axial trapping frequency ℏωT =
√
4V0ER, where ER = ℏ2k2L/2M is the lattice

recoil energy. We also ignore tunnelling processes between lattice sites. In this case, one can expand the atomic field
operator in terms of lattice site index j and harmonic oscillator levels n:

ψ̂σ(x) =
∑
jn

ĉjn,σϕn(x− jaL). (S29)

Here, aL = λL/2 is the lattice spacing, and ϕn is the harmonic oscillator wave function for mode n, given by

ϕn(x) =
1√
2nn!

(
MωT

πℏ

)1/4

e−MωT x2/2ℏHn

(√
MωT

ℏ
x

)
(S30)
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where Hn(x) are the Hermite polynomials. Plugging this expansion into the Hamiltonian and transforming to the
rotating frame of the atoms, we obtain

Ĥ/ℏ =
∑
jnσ

nωT ĉ
†
jn,σ ĉjn,σ +

∑
jn

εjnĉ
†
jn,↑ĉjn,↑ + gc

∑
jnm

ζnmj (ĉ†jn,↑ĉjm,↓â+ â†ĉ†jm,↓ĉjn,↑) + δcâ
†â (S31)

where δc = ωc−ωa. For simplicity, we assume Uac(x) is either small or slowly varying in space and thus does not change
the trap geometry. This term gives rise to an inhomogeneous transition frequency εjn =

∫
dxUac(x)[ϕn(x− jaL)]

2/ℏ.
We calculate ζnmj in the following way:

ζnmj =

∫
dx cos(kcx)ϕn(x− jaL)ϕm(x− jaL) =

∫
dx cos(kcx+ kcjaL)ϕn(x)ϕm(x)

= cos(jφ)

∫
dx cos(kcx)ϕn(x)ϕm(x)− sin(jφ)

∫
dx sin(kcx)ϕn(x)ϕm(x)

= cos(jφ)Re

[
(iη)se−η2/2

√
n<!

n>!
Ls
n<

(η2)

]
− sin(jφ) Im

[
(iη)se−η2/2

√
n<!

n>!
Ls
n<

(η2)

]
.

(S32)

where φ = πkL/kc, s = |n−m|, n< = min(n,m), n> = max(n,m), Lα
n(x) are the generalised Laguerre polynomials,

and η = kc
√

ℏ/2MωT is the Lamb-Dicke parameter. In our case ωT /2π = 165 kHz, implying that η = 0.17. This
places us in the Lamb-Dicke regime where ζnmj is negligible for |n − m| > 1. It can be convenient to rewrite the

Hamiltonian in terms of operators Ŝj
nσ,mσ′ = ĉ†jn,σ ĉjm,σ′ , resulting in the following form:

Ĥ/ℏ =
∑
jnσ

nωT Ŝ
j
nσ,nσ +

∑
jn

εjnŜ
j
n↑,n↑ + gc

∑
jnm

ζnmj (Ŝj
n↑,m↓â+ â†Ŝj

m↓,n↑) + δcâ
†â. (S33)

In addition to the Hamiltonian dynamics, we also consider dissipation processes such as cavity loss with a rate
κ/2π = 153 kHz, as well as spontaneous emission with a rate γ/2π = 7.5 kHz. The full dynamics of this open system
can be described by the following Lindblad master equation:

d

dt
ρ̂ = − i

ℏ
[Ĥ, ρ̂] +

[
L̂cavρ̂L̂

†
cav −

1

2
{L̂†

cavL̂cav, ρ̂}
]
+
∑
jn

[
L̂j,nρ̂L̂

†
j,n − 1

2
{L̂†

j,nL̂j,n, ρ̂}
]
, (S34)

where the jump operator for cavity loss is given by L̂cav =
√
κâ, and the single-particle jump operators for spontaneous

emission are given by L̂j,n =
√
γŜj

n↓,n↑. Here, we assume that spontaneous emission is in the Lamb-Dicke regime.

In the experiment, δc is the largest frequency scale (δc ≫ gc
√
N,κ), so we can adiabatically eliminate the cavity

photons [? ] and obtain the following effective atom-only master equation:

d

dt
ρ̂ = − i

ℏ
[Ĥeff , ρ̂] +

[
L̂colρ̂L̂

†
col −

1

2
{L̂†

colL̂col, ρ̂}
]
+

∑
jn

[
L̂j,nρ̂L̂

†
j,n − 1

2
{L̂†

j,nL̂j,n, ρ̂}
]
. (S35)

Here, the effective Hamiltonian is given by

Ĥeff/ℏ =
∑
jnσ

nωT Ŝ
j
nσ,nσ +

∑
jn

εjnŜ
j
n↑,n↑ + χ

∑
jnm

∑
kpq

ζnmj ζpqk Ŝj
n↑,m↓Ŝ

k
p↓,q↑, (S36)

and effective collective jump operator generating superradiant decay takes the form

L̂col =
√
Γ
∑
jnm

ζnmj Ŝj
m↓,n↑, (S37)

where χ = −g2cδc/(δ2c + κ2/4) and Γ = g2cκ/(δ
2
c + κ2/4). The equivalent superconducting order parameter takes the

following form:

∆BCS = χ
∑
kpq

ζpqk ⟨Ŝk
p↓,q↑⟩. (S38)

One can recover the inhomogeneous model discussed in the previous section by removing the axial harmonic oscillator
level labels.
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Fig. S5. Understanding experimental results with axial motion effects. a Example phase II traces with χN/2π =
1.29MHz, fAC/2π = 1.1MHz. b Example phase III traces with χN/2π = 0.79MHz, fAC/2π = 1.1MHz. c Example phase I
traces with χN/2π = 0.15MHz, fAC/2π = 1.1MHz. The blue points are experimental data, the orange lines represent numerical
simulations under ideal conditions (see Eq. (3) in the Methods), the green lines include dissipative processes on top of the ideal
simulations, and the red lines consider both dissipative processes and axial motion effects.

Similarly, the Hamiltonian for initial state preparation takes the form

Ĥdrive/ℏ =
∑
jnσ

nωT Ŝ
j
nσ,nσ +

1

2

∑
jnm

ζnmj (ΩŜj
n↑,m↓ +Ω∗Ŝj

m↓,n↑). (S39)

In numerical simulations, we perform a mean-field approximation, which replaces the operators Ŝj
pσ,qσ′ by their

expectation values ⟨Ŝj
pσ,qσ′⟩ in the Heisenberg equation of motion. We perform a random sampling of the axial

harmonic oscillator mode n for each atom based on a thermal distribution of 15 µK, and we only include the modes
n and n ± 1 into our calculation due to the Lamb-Dicke parameter. The atom number in our simulations is set
to 2000; to match χN to experimental values, we rescale χ accordingly. We also empirically take into account two
additional dissipation processes to quantitatively capture the behavior of |∆BCS| at longer time scales. The first is

a single-particle decoherence between electronic states, described by the jump operators L̂el
j,σ =

√
γel

∑
n Ŝ

j
nσ,nσ with

γel/2π < 1kHz for Fig. 2 starting from t = 0µs, and by γel/2π = 0.0036(fAC/2π) + 4kHz for Fig. 3 and Fig. 4 in
the main text. The second is a single-particle decoherence between motional states, described by the jump operators
L̂mo
j,n =

√
γmo

∑
σ Ŝ

j
nσ,nσ with γmo/2π = 15kHz.

Some example traces including axial motion effects are depicted in Fig. S5. Generally speaking, accounting for these
effects allows us to more accurately predict features present in the experimentally measured evolution of |∆BCS|, at
the same time leaving the predicted dynamical phase boundaries unchanged. As shown in Fig. S5a, including axial
motion effects in phase II traces allows us to capture the faster damping rate of the Higgs oscillations, as well as a slow
oscillation in |∆BCS| at the axial trapping frequency. Likewise, as shown in Fig. S5b, including axial motion effects
in phase III traces allows us to capture the faster damping rate of the oscillations in |∆BCS|, although the observed
damping rate is still faster than the rate predicted by theory. Finally, as shown in Fig. S5c, all the theory simulations
of phase I dynamics are similar to the simulation under ideal conditions, indicating that axial motion does not play
an significant role in this regime.




