
Chemical reservoir computation in a self-
organizing reaction network

In the format provided by the
authors and unedited

Nature  |  www.nature.com/nature

Supplementary information

https://doi.org/10.1038/s41586-024-07567-x

Supplementary Information:
Chemical reservoir computation in a self-organizing

reaction network

Mathieu G. Baltussen1, Thijs J. de Jong1, Quentin Duez1,
William E. Robinson1, and Wilhelm T.S. Huck1*

1Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ
Nijmegen, The Netherlands

*email: w.huck@science.ru.nl

S1

Contents
1 Experimental methods S4

1.1 Mass spectrometry analysis . S4
1.2 Data processing . S4

2 Background S7
2.1 Reservoir computation . S7
2.2 A theoretical example . S7
2.3 Training & testing . S8
2.4 In chemico reservoir computation S9
2.5 Types of tasks . S9

3 Nonlinear classification S11
3.1 Data generation . S11
3.2 Reproducibility . S11
3.3 Classification tasks . S11
3.4 Training procedure . S13
3.5 Test scores by leave-5-out cross-validation S13
3.6 Training set size . S13

4 Dynamic systems predictions S14
4.1 Fluctuating input & data generation S14
4.2 Simulation of fluctuation-driven dynamical systems S14
4.3 Training procedure . S14

5 Forecasting S15
5.1 Lorenz attractor input & data generation S15
5.2 Training procedure . S15
5.3 Mutual information . S15

References S17

List of Tables
1 List of assigned ion traces . S5

S2

Supplementary Figures
S1 Ion alignment . S19
S2 Selected singly charged ions . S20
S3 Selected doubly charged ions . S21
S4 Selected doubly charged ions cont. S22
S5 Steady state inputs and reservoir response S23
S6 Steady state inputs and reservoir response (cont.) S24
S7 Reproducibility of identical inputs . S25
S8 Scoring of Lasso classification results . S26
S9 Classification weights Ridge regression S27
S10 Classification weights Lasso regression S28
S11 Classification progress Lasso weights - 1 S29
S12 Classification progress Lasso weights - 2 S30
S13 Classification progress Lasso weights - 3 S31
S14 Classification progress Lasso weights - 4 S32
S15 Classification progress Lasso weights - 5 S33
S16 Classification train-set size influence . S34
S17 Prediction results for substrates in the metabolic network S35
S18 Prediction results for substrates in the metabolic network (cont.) S36
S19 Normalized mean-squared errors for metabolic network predictions S37
S20 Extended forecast time traces and comparison plots S38
S21 Mutual information by compound . S38

S3

1 Experimental methods

1.1 Mass spectrometry analysis

The diluted outflow of the CSTR was continuously injected in the electrospray ionization
(ESI) source of a timsToF instrument (Bruker Daltonics, Bremen, Germany), whose ESI
needle was replaced with a 10 cm long stainless steel tubing (0.2 mm outside diameter,
0.05 mm wall thickness, 0.1 mm inside diameter – Sigma Aldrich GF15490795). Ions were
electrosprayed in positive mode with the following settings: Voltage +4.5 kV, nebulizer
pressure 2.0 Bar, drying gas flow 8 L.min−1, and source temperature set to 250◦C.

Ions were then deflected towards the trapped ion mobility (TIMS) cell with a potential
of 70 V. TIMS experiments were performed using N2 as carrier gas by scanning ion
mobility from 0.4 V.s/cm2 to 0.84 V.s/cm2. The ramp time was set to 500 ms, and the
accumulation time to 20 ms in order to minimize ion activation in the ion mobility region.
Delta potentials in the TIMS funnels were set as follows: ∆1 = −20 V , ∆2 = −150 V ,
∆3 = 50 V , ∆4 = 0 V , ∆5 = 0 V , ∆6 = 0 V . RF potentials in the TIMS funnels were
set as follows: Funnel 1 RF = 200 Vpp, Funnel 2 RF = 300 Vpp, Multipole RF = 100
Vpp.

Ion transfer voltages were Quadrupole Ion Energy = 1 eV, Collision Cell In = 150 V
and Collision Energy = 3 eV. The ion transmission was optimized for the mass range of
interest (m/z 80-300) by using a transfer time of 32 µs, a collision RF of 200 Vpp and
a pre pulse storage time of 5 µs prior to time-of-flight (ToF) analysis. The mass range
scanned by the ToF analyser was m/z 50-650.

The MS and TIMS dimensions were calibrated linearly using three selected ions from
the Agilent ESI LC/MS tuning mix [(118.0863, 0.542 V.s/cm2),(322.0481, 0.732 V.s/cm2),
and (622.0290, 0.985 V.s/cm2)].

1.2 Data processing

Raw timsToF data were loaded using the TimsPy and OpenTims libraries[1]. Ion counts
were first normalized to the total ion current (TIC) to correct for eventual changes ion
transmission over time. The complete dataset was then filtered to extract the intensities
of 106 manually selected ions with unique m/z and inverse mobilities (1/K0) stored in a
peak table. Ion intensities were extracted for the given m/z with a mass width of 0.02
Da and given 1/K0 with a width of 0.006 V.s/cm2. The peak table was established based
on the most intense signals observed in several experiments and is shown in Table 1. The
molecular composition of each ion was identified based on their precise mass.

To account for inverse mobility drift between days, a data rescaling was performed.
The drift is quantified by comparing the apex of the mobilograms for two specific ions,
m/z 110.012 (D1 - [C6H12O6Ca]2+) and 233.063 (D2 - [C7H14O7Na]+), with a reference
measurement (R1 = 0.518 V.s/cm2 and R2 = 0.683 V.s/cm2). This comparison is used to
adjust inverse mobility values reported in the peak table (Rx) for drift in measurements,
rather than realigning the drifted data itself (figure S1). The conversion of reference
values to drifted values is performed with the following equation:

Dx = D1 + (Rx −R1)
(D2 −D1

R2 −R1

)
(1)

The ions constituting the peak table are reported in figures S2 to S4.

S4

Table 1: List of assigned ion traces
m/z values extracted with a mass width
of 0.02 Da, and inverse mobility with a
width of 0.006 V.s/cm2

Composition m/z 1/K0

[C4H9O4CaNa]2+ 92.001 0.517
[C5H10O5Ca]2+ 95.007 0.521
[C5H10O5Ca]2+ 95.007 0.534
[C2H3O2Ca]+ 98.975 0.594
[C2H3O2Ca]+ 98.975 0.608
[C6H10O5Ca]2+ 101.007 0.518
[C6H10O5Ca]2+ 101.007 0.53
[C6H12O6Ca]2+ 110.012 0.519
[C6H12O6Ca]2+ 110.012 0.531
[C6H12O6Ca]2+ 110.012 0.542
[C6H12O6Ca]2+ 110.012 0.549
[C6H12O6Ca]2+ 110.012 0.558
[C6H12O6Ca]2+ 110.012 0.586
[C7H14O6Ca]2+ 117.02 0.521
[C7H14O6Ca]2+ 117.02 0.535
[C7H14O6Ca]2+ 117.02 0.553
[C6H14O7Ca]2+ 119.018 0.517
[C6H14O7Ca]2+ 119.018 0.532
[C6H14O7Ca]2+ 119.018 0.541
[C6H14O7Ca]2+ 119.018 0.559
[C7H14O7Ca]2+ 125.018 0.53
[C7H14O7Ca]2+ 125.018 0.542
[C7H14O7Ca]2+ 125.018 0.564
[C7H16O7Ca]2+ 126.026 0.522
[C7H16O7Ca]2+ 126.026 0.528
[C7H16O7Ca]2+ 126.026 0.54
[C7H16O7Ca]2+ 126.026 0.545
[C7H16O7Ca]2+ 126.026 0.565
[C6H16O8Ca]2+ 128.023 0.517
[C6H16O8Ca]2+ 128.023 0.534
[C6H16O8Ca]2+ 128.023 0.541
[C6H16O8Ca]2+ 128.023 0.56
[C3H5O3Ca]+ 128.985 0.624
[C7H16O8Ca]2+ 134.023 0.53
[C7H16O8Ca]2+ 134.023 0.537
[C7H16O8Ca]2+ 134.023 0.564
[C7H16O8Ca]2+ 134.023 0.571
[C9H18O7Ca]2+ 139.033 0.527
[C9H18O7Ca]2+ 139.033 0.534
[C9H18O7Ca]2+ 139.033 0.543
[C9H18O7Ca]2+ 139.033 0.567
[C8H16O8Ca]2+ 140.023 0.525
[C8H16O8Ca]2+ 140.023 0.54

Composition m/z 1/K0

[C8H16O8Ca]2+ 140.023 0.551
[C8H16O8Ca]2+ 140.023 0.575
[C8H18O8Ca]2+ 141.031 0.529
[C8H18O8Ca]2+ 141.031 0.538
[C8H18O8Ca]2+ 141.031 0.572
[C7H18O9Ca]2+ 143.028 0.535
[C7H18O9Ca]2+ 143.028 0.544
[C7H18O9Ca]2+ 143.028 0.572
[C9H18O8Ca]2+ 147.031 0.531
[C9H18O8Ca]2+ 147.031 0.539
[C9H18O8Ca]2+ 147.031 0.545
[C9H18O8Ca]2+ 147.031 0.575
[C8H18O9]

2+ 149.028 0.537
[C8H18O9]

2+ 149.028 0.545
[C8H18O9]

2+ 149.028 0.551
[C8H18O9]

2+ 149.028 0.579
[C9H18O9Ca]2+ 155.028 0.542
[C9H18O9Ca]2+ 155.028 0.548
[C9H18O9Ca]2+ 155.028 0.558
[C9H18O9Ca]2+ 155.028 0.565
[C4H7O4Ca]+ 158.996 0.625
[C4H7O4Ca]+ 158.996 0.642

[C9H20O10Ca]2+ 164.033 0.549
[C9H20O10Ca]2+ 164.033 0.559
[C9H20O10Ca]2+ 164.033 0.577
[C9H20O10Ca]2+ 164.033 0.587
[C10H20O10Ca]2+ 170.033 0.558
[C10H20O10Ca]2+ 170.033 0.565
[C10H20O10Ca]2+ 170.033 0.584
[C10H20O10Ca]2+ 170.033 0.594
[C5H10O5Na]+ 173.041 0.623
[C5H10O5Na]+ 173.041 0.636

[C10H22O11Ca]2+ 179.039 0.566
[C10H22O11Ca]2+ 179.039 0.573
[C10H22O11Ca]2+ 179.039 0.596
[C11H24O11Ca]2+ 185.039 0.572
[C11H24O11Ca]2+ 185.039 0.602
[C6H10O5Na]+ 185.039 0.619
[C6H10O5Na]+ 185.039 0.639
[C6H10O5Na]+ 185.039 0.651
[C6H10O5Na]+ 185.039 0.673

[C11H24O12Ca]2+ 194.044 0.57
[C11H24O12Ca]2+ 194.044 0.577
[C11H24O12Ca]2+ 194.044 0.604
[C7H12O5Na]+ 199.057 0.635
[C7H12O5Na]+ 199.057 0.647
[C7H12O5Na]+ 199.057 0.657
[C7H12O5Na]+ 199.057 0.667

S5

Composition m/z 1/K0

[C7H12O5Na]+ 199.057 0.68
[C7H12O5Na]+ 199.057 0.694

[C12H24O12Ca]2+ 200.044 0.575
[C12H24O12Ca]2+ 200.044 0.587
[C12H24O12Ca]2+ 200.044 0.61
[C6H12O6Na]+ 203.052 0.655
[C6H12O6Na]+ 203.052 0.663
[C6H12O6Na]+ 203.052 0.67
[C6H12O6Na]+ 203.052 0.676

[C12H26O13Ca]2+ 209.05 0.577
[C12H26O13Ca]2+ 209.05 0.583
[C12H26O13Ca]2+ 209.05 0.613
[C7H14O7Na]+ 233.063 0.683
[C7H14O7Na]+ 233.063 0.693
[C7H14O7Na]+ 233.063 0.7

S6

2 Background

2.1 Reservoir computation
Reservoir computation is a neuromorphic computation paradigm, in which a (physical) system
is used as a type of black-box artificial neural network[2]. This network responds in a nonlinear
fashion to any inputs it receives, after which a final output or computational answer is obtained
by taking an appropriate linear combination of readout nodes in the network. Training only
takes place for the readout weights, often using a simple linear regression. By directly employ-
ing the inherent complexity and capacity of the reservoir for information processing, expensive
training of any internal weights can be circumvented, while still allowing for remarkably accurate
calculations. It has been shown that sufficiently complex reservoirs hold a similar computational
power to regular neural networks, where all interaction parameters need to be tuned/trained,
thus lowering the computational and energy costs for training such networks to specific prob-
lems[3]. The principles of reservoir computation were first shown to be effective neural networks
through the (virtual) creation of liquid-state machines [4] and echo-state networks [5].

For a physical system to be an effective reservoir, it must have the following properties[2]:

1. A high-dimensional internal state space

2. Nonlinear interactions between nodes

3. Fading memory

4. Sufficient separation and generalizability of input signals

A wide variety of systems have been designed and created, based on the same overarching
principles of reservoir computation. Examples of this include cellular automata [6], electronic
[7] photonic [8] and spintronic circuits [9], soft bodies [10], and in vitro cell cultures [11].

2.2 A theoretical example
Traditionally, a reservoir computer is described as a dynamical system with internal variables x
that change over time as

dx
dt

= g(x) (2)

This dynamical system is connected to some inputs u which additionally may be time-dependent
(e.g. u(t)). This results in a dynamical system of the form

dx
dt

= g(x) + u(t) (3)

Let’s now assume we want to use the reservoir to approximate (or compute) a random
function f . This function can essentially denote any kind of desired computation, such as
analytical expressions, integral solutions of differential equations, chaotic mappings, and so on.
In general, the function takes some input denoted by u and produces an output denoted by y,
where both can be time-dependent, e.g.

y(t) = f(u(t)) (4)

Using the reservoir, we can approximate any function f as follows: any input u(t) produces a
complex reservoir response x(t). This reservoir response can be transformed into a computational
output by multiplication with a weight vector (or matrix) W to obtain ŷ(t) = W · x(t). By
choosing appropriate values for the weights, we can ensure that the computational output ŷ(t)
approximates the output y(t) of the function f , such that

S7

f(u(t)) = y(t) ≈ ŷ(t) = W · x(t) (5)

Note here that the final step of converting the reservoir response into some computational
output is completely linear. Applying weights essentially allows us to choose and combine
parts of the reservoir which have a (combined) response similar to function that we desire to
approximate. However, the appropriate types of responses need to exist within the reservoir’s
dynamics for it to be able to approximate a desired function. Therefore, we can expect that not
every reservoir can perform every type of computation.

2.3 Training & testing
In physical reservoir computation the only part of the computation that is done in silico is
calculation of the weights W . While this calculation is in principle a simple task, different
strategies exist to determine weights that are more robust to experimental noise, outliers, and
so on.

Generally, weights are obtained by minimizing a distance d(ytrain(t),W · xtrain(t)) between
the computational response x(t) of the reservoir and the true function output y(t) for some
training set where the true function outputs are already known, e.g.

argmin
W

d(ytrain(t),W · xtrain(t)) (6)

However, depending on the type of function and the type of data an alternative distance
measure may be used, such as the Euclidean distance

d2(y,Wx) =
√

y2 − (Wx)2 (7)

a higher-order distance
dn(y,Wx) = (yn − (Wx)n)1/n (8)

or even a Gaussian kernel
dσ(y,Wx) = e−(y2−(Wx)2)/σ2

(9)

Furthermore, if x is very high-dimensional - e.g. the reservoir has many observable compo-
nents - a penalized minimization strategy can be used to promote a sparser set of weights and
reduce variability in the computational output. This is especially useful when multiple observ-
able components of the reservoir are collinear, essentially showcasing similar nonlinear behaviour.
Examples of strategies like this are lasso regression—also known as L1 regularization—where
the minimization problem is modified to

argmin
W

d2(y,Wx) + λ|W | (10)

and ridge regression—also known as L2 regularization—which results in

argmin
W

d2(y,Wx) + λW 2 (11)

Lasso regressions will generally result in a sparse weight matrix, meaning that only a select
number of features are being selected, while the weights of many features will be set to zero.
Ridge regression will result in many features being used while keeping all the weights as small
as possible, which helps mitigate the problem of collinearity between features.

S8

2.4 In chemico reservoir computation
Chemical reaction networks have the potential to incorporate the various properties necessary for
reservoir computation. In non-selective chemical settings, highly complex and strongly branched
chemical reaction networks may emerge. Especially in networks with recursive chemical reac-
tions, a combinatorial explosion of unique molecules may be created, leading to an increasingly
high-dimensional internal state space. Generally, many of the chemical reactions in such sys-
tems are between different compounds, potentially catalyzed by the presence of a catalyst. This
leads to interactions that vary from linear, for unimolecular reactions, to strongly nonlinear, for
reactions occurring via complex catalyzed reaction schemes. These properties may allow some
chemical reaction networks the necessary complexity for reservoir computation.

However, for the reservoir to be able to process a series of different inputs, a fading memory
of those inputs is required. This property can be physically achieved by situating the chemical
reaction network in an out-of-equilibrium setting. The exchange of compounds with an external
environment firstly allows the system to receive inputs in the form of different compounds, but
also to have the effect of those inputs to disappear over time by the outflow of compounds.
Various techniques exist to bring, and keep, chemical reaction networks out-of-equilibrium. In
this work we achieve this by using continuously-stirred flow reactors, which can continuously
receive new inputs, while flushing out the reactor content over time. The inflow and outflow of
compounds can be effectively modelled as an additional flow-term in the ordinary differential
equations describing the dynamics of the chemical reaction network[12]. The effect of the flow
reactor on the dynamics of the chemical reaction network are essentially equivalent to the fading-
memory property as often encoded in reservoir computers (and continuous-time recursive neural
networks in general). This can be seen directly from the form of the differential equations
describing a general chemical reaction network in flow:

d[C]]

dt
= g([C]) + kf [u]− kf [C] (12)

with kf the flowrate, [C] the concentration of chemical species, [u] the input flown into the reac-
tor, and g([C]) a general description of the reaction kinetics (which can often be approximated
using a mass-action kinetics framework). Here, the term kf [C] establishes behaviour similar
to that of fading memory nodes in, for example, Hopfield networks[13] and various reservoir
computers[14]. Specifically, chemical species [C] that are not directly connected to an input
(e.g. u = 0) and are also kinetically separated from input species (e.g. the interactions are slow
or take multiple steps) can be interpreted and employed as more robust, but less responsive,
memory nodes.

2.5 Types of tasks
In this work, we make a distinction between 3 specific types of computational tasks that can be
solved using the reservoir computation approach. These are i) analytical expressions, ii) integral
solutions of non-homogeneous ordinary differential equations, and iii) chaotic maps. All three
types are briefly (and non-formally) discussed below to explain their underlying logic.

Analytic expressions

Analytical expressions are commonly understood to be all mathematical expressions that can
be written down and solved in closed form. This includes constants, arithmetic functions
(+,−, x,−), powers and roots (xn, x1/n), as well as exponential functions (eax), logarithms
(lnx) and trigonometric functions (sin(x), cos(x), . . .), as well as more specialized functions and
series expansion, such as the Bessel functions and convergent summations. We also include clas-
sifications in this definition, as they can be represented by any of the above operations together
with the modulus (|x|) or modulo (xmodn) operators.

S9

For computation of such functions using the reservoir computer approach, this implies that
the output should only be dependent on a singular input, and should not be influenced by any
historical inputs that the reservoir may have received. Generally, this means that these types of
functions are only calculated using static inputs and steady-state data.

Integral solutions of non-homogeneous ordinary differential equations

Next, the reservoir can also approximate the behaviour of differential equations when exposed
to a time-dependent external driving force, which we call the input u(t). These are non-
homogeneous ordinary differential equations of the form

dy
dt

= g(y,u(t)) (13)

Solutions to these type of equations are normally obtained by integration as

y(t) = f(u(t)) =
∫ t

t0

g(y,u(τ))dτ (14)

The solutions to this equation depend not just on the form of the equation g, but also on the
initial state y0 = y(t0) and input (or driving force) over time u(t). Thus, solving this equation
for a specific u(t) requires knowledge about past values of u(t) as well as current values, in
contrast to the analytical expressions discussed above.

For computation of the function y(t) = f(u(t)), the reservoir is required to retain some
information from its past input in order to yield a result similar to the integration.

Chaotic maps

The third category of functions to compute in this work is the forecasting of chaotic dynamics.
We now assume that the input to the reservoir u(t) represents a solution to a chaotic system
(such as the Lorenz attractor equations, as shown in 5). This means that u(t) evolves according
to a differential (or difference in discrete cases) equation that is sensitive to initial conditions
(similar current trajectories will diverge over time), non-periodic, and shows topological mixing.

In contrast to most dynamical systems, forecasting the behaviour of a chaotic system is
intrinsically difficult, as it requires estimating a function of the form

u(t+ δt) = f(u(t)) (15)

that is extremely sensitive to the specific state of u(t) as well as previous states, and is therefore
often highly non-linear and non-trivial.

S10

3 Nonlinear classification
Nonlinear classification of two-dimensional data is a standard class of supervised learning prob-
lems. It specifically refers to problems that cannot be effectively solved using a linear classifier,
such as linear regression or a linear support-vector classifier (LSVC). We focus on a selection of
nonlinear classification tasks, showcasing a broad range of applicability. All tasks start with the
same two-dimensional input of specific NaOH and formaldehyde concentrations. These inputs
can be appropriately rescaled and recentred for each specific task.

Specifically, we want to perform a classification of inputs ui sampled from a two-dimensional
input space U = [0, 1] × [0, 1]. The set of inputs {ui} is sampled using a Latin hypercube
algorithm[15] to ensure a uniform sampling space. For every classification task, a nonlinear
function f exists that for every input ui assigns an outcome (or label) yi = f(ui).

3.1 Data generation
To perform the nonlinear classification with the formose reservoir computer, the inputs ui are
first transformed to a range of appropriate chemical inflow concentrations, with the first compo-
nent of the input linearly mapped to the NaOH [10, 50] mM concentration range, and the second
component linearly mapped to the formaldehyde [10, 150] mM concentration range. The DHA
and CaCl2 inputs were held constant at 50 mM and 15 mM respectively. Due to experimental
(time) limitations, the full set of inputs was split into five different sets, for which the FRC
response was measured on different days. These five different sets were then separated further
into two sets covering either the bottom or top half of the formaldehyde input concentration
range. These partitions are shown in figures S5 and S6, with the inputs per experiment shown
on the left, and the resulting ion signals on the right. Repeat-inputs were included at the start,
end, and during every experiment run to check reproducibility of the measured output (see sec-
tion 3.2). The reservoir output was measured by ion mobility-mass spectrometry, as the relative
abundance of specific ions following the procedure detailed in section 1.2.

Every input was applied to the system for a duration of 30 minutes, to ensure that the FRC
reached a steady-state. The outputs were read during the last 10 minutes (600 seconds) for
each 30 minutes period, and were then used as steady-state data, averaging over the observed
signal intensities to reduce noise. Finally, for every input we collect the averaged steady-state
output results in a 106-dimensional vector, to obtain the chemical output as a function of input
xi = g(ui), where g denotes the response of the reservoir.

3.2 Reproducibility
To determine how reproducible the data is across different experimental days identical inputs
were measured consistently across each nonlinear classification experiment. The relative inten-
sities and corresponding error bars are shown in figure S7. This demonstrates that the relative
error is enough to clearly differentiate between different compounds, across days and conditions.

3.3 Classification tasks
We determined the nonlinear classification capabilites of the FRC by attempting 10 different
classification tasks, which are detailed below:

AND gate

AND(x, y) =

{
1 if x > 0.5 ∧ y > 0.5

0 otherwise
(16)

S11

OR gate

OR(x, y) =

{
0 if x < 0.5 ∧ y < 0.5

1 otherwise
(17)

Linear separator

Linear(x, y) =

{
1 if y > x

0 otherwise
(18)

Triangular separator

Triangle(x, y) =


1 if (y > x/3 + 1/3) ∧ (x < y/3 + 1/3)

0 if (y < x/3 + 1/3) ∧ (x < y/3 + 1/3)

−1 otherwise
(19)

XOR gate

XOR(x, y) =

{
1 if (x > 0.5 ∧ y < 0.5) ∨ (x < 0.5 ∧ y > 0.5)

0 otherwise
(20)

Checkers pattern

XOR(x, y) =

{
1 if (⌊3x⌋ mod 2 ∧ ⌊3y⌋ mod 2) ∨ (⌊3x⌋ mod 2 ∧ ⌊3y⌋ mod 2)

0 otherwise
(21)

Circle

Circle(x, y) =

{
1 if ((x− 0.5)2 + (y − 0.5)2 < 0.125)

0 otherwise
(22)

Sine wave

Sine(x, y) =

{
1 if y > 0.5 + 0.5 ∗ sin 2πx

0.8 − π
4

0 otherwise
(23)

Concentric circles

Concentric(x, y) =

{
1 if ((x− 0.5)2 + (y − 0.5)2 < 0.16) ∧ ((x− 0.5)2 + (y − 0.5)2 > 0.04)

0 otherwise
(24)

Dots

Dots(x, y) =


1 if ((x− 0.3)2 + (y − 0.3)2 < 0.05)

1 if ((x− 0.7)2 + (y − 0.7)2 < 0.05)

0 otherwise
(25)

S12

3.4 Training procedure
Following the standard reservoir computer approach[3], we now train a linear regression model
yi = h(xi) that maps the chemical outputs to the classification results. Specifically, for the
discrete nonlinear classification tasks we employ a linear support vector machine (LSVM) to
better accommodate the transition between the continuous nature of the chemical output, and
the discrete nature of the desired outcomes. L2-regularization is used to obtain the weights
during training in order to counteract the high collinearity between some ions in the chemical
output.

3.5 Test scores by leave-5-out cross-validation
To test the prediction capabilities of the FRC for nonlinear classification tasks, we perform
a stratified leave-5-out cross validation. In this procedure, during training of the LSVM we
randomly leave out 5 input-output pairs such that we preserve the percentage of samples for
each class. After training, we apply the LSVM to the 5 left-out chemical outputs to obtain 5
predictions ŷj , for which we calculate Matthew’s Correlation Coefficient (MCC, also called the
ϕ-coefficient):

ϕ =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(26)

where TP denotes the number of True Positives, TN denotes True Negatives, FP denotes False
positives, and FN denotes False Negatives. The MCC ranges between -1 and +1, with +1
corresponding to perfect predictions and -1 corresponding to predictions that are all wrong.
For a classification task with two categories of equal size, a score of 0 corresponds to random
guessing. The MCC is generally considered the most reliable and interpretable measure for
classification task accuracies[16]. We have further calculated the ϕ-accuracy of every task as

ϕ acc. =
ϕ+ 1

2
(27)

This procedure is repeated for 20 repeats of 26 leave-5-out train-test splits, 520 repeats in total,
after which all MCC-scores are averaged to obtain a leave-5-out cross validation (L5O-CV) score.

3.6 Training set size
To further investigate at what size the dataset is capable of achieving reliable and robust predic-
tions, an additional cross-validation was performed on random train-test splits of the full datasets
for increasing train set sizes. For every dataset size, 520 random train-test splits (stratified) were
performed and the resulting training and testing scores were averaged.

The resulting learning curves are shown in figure S16.

S13

4 Dynamic systems predictions

4.1 Fluctuating input & data generation
Noisy DHA flow profiles were generated usingnumpy. Values were generated using a nor-
mal distribution around the base flow value of 36.25 µL/min with a standard deviation of
36.26/3.5 µL/min, tuned such that there are no negative values generated while keeping the
flow rate as large as possible. These flowrates correspond to a mean concentration of 50 mM
with a standard deviation of ∼ 14.268 mM . Each flow rate was held constant for 60 seconds,
before switching. The formaldehyde, NaOH and CaCl2 inputs were held constant at 50 mM ,
30 mM and 15 mM respectively.

4.2 Simulation of fluctuation-driven dynamical systems
For the in silico simulation, a network of the carbon-metabolism of E. Coli[17] was adapted. This
was done by modifying the SBML file of that publication on the BioModels archive (https://
www.ebi.ac.uk/biomodels/MODEL2010160002) using the Tellurium Python package, such that

all metabolites in the network had additional inflow and outflow terms of the form ∅
kfXin−−−−→ X

and X
kfX−−−→ ∅. The flow constant was set to kf = 0.5min−1, and the inflow concentrations Xin

were set to the initial concentrations of the model. This modified SBML file was subsequently
compiled into a C++ module by the Amici computational package [18] and loaded as a Python
module.

To generate the training and test sets, the model was first run for 1000 minutes until steady-
state was reached. Then, for every step in the fluctuating input pattern (every 60 seconds), the
DHA input flow concentration was set to the corresponding value of the physical flow profile.
The model was simulated with this input flow for the duration of the physical flow profile (1
minute) before the new DHA input flow was set. For every step, the simulation was initialized at
the final state of the previous step. By appending the results of all simulation steps, a complete
record of the behaviour of the network under fluctuating conditions was obtained.

4.3 Training procedure
Next, we trained the recorded formose reservoir response (binned in 10 second intervals to reduce
noise) on the individual substrate time series of the model. This was done using a ridge regression
algorithm with the regularization strength set to α = 5 ·10−5. The predictions were scored using
the normalized mean-squared error (NMSE):

NMSE =

∑
i(ŷi − yi)

2∑
i(yi − ȳi)2

(28)

with y the true values, ȳ true value averaged over time, ŷ the predicted values by the formose
reservoir, and i the index running over all substrates.

Extended results of this process are shown in figures S17 and S18 and NMSE calculations in
figure S19

S14

https://www.ebi.ac.uk/biomodels/MODEL2010160002
https://www.ebi.ac.uk/biomodels/MODEL2010160002

5 Forecasting

5.1 Lorenz attractor input & data generation
Flow profiles were generated using equation 29, using standard conditions of ρ = 28.0, β = 8/3,
σ = 10.0, with an initial state of 10 for each axis. The x, y and z axis were assigned to NaOH,
DHA and formaldehyde respectively.

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

(29)

The system was solved using scipy . integrate .odeint, varying t from 0 to 80 with a total
of 6480 steps. Each output step was matched to one second in the flow profile. A different
scaling factor was used for each compound, 1.4, 1 and 1.3 for NaOH, DHA and formaldehyde
respectively. The base flow rate is 30.2083 µL/min for each syringe, with base concentrations
of NaOH, DHA and formaldehyde at 30 mM , 50 mM and 50 mM respectively. The CaCl2
concentration was held constant at 15 mM .

5.2 Training procedure
Next, we trained the recorded formose reservoir response (binned in 10 second intervals to reduce
noise) on the same Lorenz attractor input 2 minutes into the future, using as target function
f(u) = u(t+ 2min.). This was done using a ridge regression algorithm with the regularization
strength set to α = 5 · 10−5 on 30 minutes of the recorded formose output, after which inputs
were successfully forecast 2 minutes ahead for the next 3 hours of data (fig. S20).

5.3 Mutual information
Generally, the FRC shows a nonlinear response to the chemical inputs it receives. We want to
quantify which parts of the FRC, e.g. which compounds, contribute most to the processing of
these inputs, and if distinct parts process inputs differently. Because the relationship between
input and output(s) may be non-linear, standard correlation methods may not capture the full
interaction picture. Instead, we choose to quantify the input-output relationships in terms of
mutual information. Mutual information quantifies directly the ’amount of information’ that
can be obtained about one variable by observing the other variable, which in the case of the
FRC correspond respectively to input and (a) output. Because MI is an information-theoretic
quantity, it is not limited to linear dependencies, making it highly suitable for the nonlinear
effects in the context of in chemico reservoir computation.

Mutual information is defined for a pair of random variables X and Y as

I(X;Y) = DKL(P(X,Y)||PX ⊗ PY) (30)

=

∫
Y

∫
X
P(X,Y)(x, y) log

(
P(X,Y)(x, y)

PX(x)PY (y)

)
(31)

with PX and PY the marginal distributions, and P(X,Y) the joint distribution of the random
variables. The MI calculates the Kullback-Leibler divergence (a type of statistical distance),
between the observed joint probability distribution of both variables and the hypothetical joint
probability if both variables were independent (given by the product of marginal distribution).

S15

Depending on the base of the logarithm, this quantity is either expressed in Shannon (base
2, also known as the bit), the nat (base e), or the Hartley (base 10). In this paper, mutual
information uses the natural logarithm and is therefore given in nats.

In practice, the MI can only be calculated by first estimating the probability distributions PX

and PY associated to the random variables, as only a finite number of observations of X and Y
may be obtained. These estimates are often obtained by appropriate binning of the observations,
but estimations based on entropy-calculations of k-nearest-neighbours has also been shown to
work[19]. The second method is used in this paper, using a standard implementation provided
by the Scikit-learn computational package[20] in Python.

In figure S21 the mutual information between every ion signal and respectively DHA, NaOH
and formaldehyde inputs (as described in the previous section) are shown.

S16

References
1. Łącki, M. K., Startek, M. P., Brehmer, S., Distler, U. & Tenzer, S. OpenTIMS,

TimsPy, and TimsR: Open and Easy Access to timsTOF Raw Data. Journal of
Proteome Research 20, 2122–2129 (2021).

2. Tanaka, G. et al. Recent advances in physical reservoir computing: A review. Neural
Networks 115, 100–123 (2019).

3. Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural
network training. Computer Science Review 3, 127–149 (2009).

4. Maass, W., Natschläger, T. & Markram, H. Real-Time Computing Without Stable
States: A New Framework for Neural Computation Based on Perturbations. Neural
Computation 14, 2531–2560 (2002).

5. Jaeger, H. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy
in Wireless Communication. Science 304, 78–80 (2004).

6. Snyder, D., Goudarzi, A. & Teuscher, C. Computational capabilities of random
automata networks for reservoir computing. Physical Review E 87, 042808 (2013).

7. Chen, T. et al. Classification with a disordered dopant-atom network in silicon.
Nature 577, 341–345 (2020).

8. Van der Sande, G., Brunner, D. & Soriano, M. C. Advances in photonic reservoir
computing. Nanophotonics 6, 561–576 (2017).

9. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators.
Nature 547, 428–431 (2017).

10. Nakajima, K., Hauser, H., Li, T. & Pfeifer, R. Information processing via physical
soft body. Scientific Reports 5, 10487 (2015).

11. Didovyk, A. et al. Distributed Classifier Based on Genetically Engineered Bacterial
Cell Cultures. ACS Synthetic Biology 4, 72–82 (2015).

12. Blokhuis, A., Lacoste, D. & Gaspard, P. Reaction kinetics in open reactors and serial
transfers between closed reactors. The Journal of Chemical Physics 148, 144902
(2018).

13. Hopfield, J. J. Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences 79, 2554–2558
(1982).

14. Cucchi, M., Abreu, S., Ciccone, G., Brunner, D. & Kleemann, H. Hands-on reservoir
computing: a tutorial for practical implementation. en. Neuromorphic Computing
and Engineering 2, 032002 (2022).

15. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in
Python. Nature Methods 17, 261–272 (2020).

16. Boughorbel, S., Jarray, F. & El-Anbari, M. Optimal classifier for imbalanced data
using Matthews Correlation Coefficient metric. en. PLOS ONE 12, e0177678 (2017).

17. Oliveira, A. S. F., Ciccotti, G., Haider, S. & Mulholland, A. J. Dynamical nonequi-
librium molecular dynamics reveals the structural basis for allostery and signal prop-
agation in biomolecular systems. The European Physical Journal B 94 (2021).

S17

18. Fröhlich, F. et al. AMICI: high-performance sensitivity analysis for large ordinary
differential equation models. Bioinformatics 37, 3676–3677 (2021).

19. Kraskov, A., Stögbauer, H. & Grassberger, P. Estimating mutual information. Phys-
ical Review E 69, 066138 (2004).

20. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research 12, 2825–2830 (2011).

S18

Supplementary Figures

Figure S1: a) Comparison of the apex of the mobilograms for two ions, m/z 110.012
([C6H12O6Ca]2+) and 233.063 ([C7H14O7Na]+), between a reference measurement (R1

and R2) and a measurement where a drift is observed (D1 and D2). b) Any reference
inverse mobility (Rx) can be adjusted for drift by using the equation 1. The corresponding
drifted value is named Dx. For each experiment, reference inverse mobilities included in
the peak table are adjusted for drift, thereby ensuring that similar peaks are processed
in different experiments regardless of any drift.

S19

Figure S2: Selected singly charged ions considered for data. Selected inverse mobility
ranges are highlighted by red rectangles. The inverse mobility ranges not considered
were attributed to isobaric doubly charged ions, as evidenced by their isotopic pattern.

S20

Figure S3: Selected doubly charged ions considered for data extraction. Selected inverse
mobility ranges are highlighted by red rectangles.

S21

Figure S4: Selected doubly charged ions considered for data extraction. Selected inverse
mobility ranges are highlighted by red rectangles.

S22

Figure S5: Steady state inputs and reservoir response for multiple experiments and mea-
surement runs. On the left, the inputs per experiment are shown with colour indicating
the order. On the right, the measured ion signals in response to the different inputs are
shown. Areas indicated between vertical bars are used as steady state data.

S23

Figure S6: Steady state inputs and reservoir response for multiple experiments and mea-
surement runs. On the left, the inputs per experiment are shown with colour indicating
the order. On the right, the measured ion signals in response to the different inputs are
shown. Areas indicated between vertical bars are used as steady state data.

S24

Figure S7: Bar plots showing the reproducibility of ion intensities measured by mass
spectrometry for every compound of interest, across four different days, for identical
input conditions. Average intensities are represented by the bars, standard deviations in
the intensities by the black error bars. a) 20mM NaOH, 115mM b) 40mM NaOH, 115mM
c) 20mM NaOH, 45mM d) 40mM NaOH, 115 mM formaldehyde.

S25

Figure S8: Scatter plots showing for every classification task the classification accuracy
per input, averaged over 100 random train-test splits, obtained from a Lasso regression.

S26

Figure S9: Weights obtained from the Ridge regression training of various tasks, on a
normalized data set. Weights are represented by a vertical bar per compound, with
compounds numbered according to table 1

S27

Figure S10: Weights obtained from the Lasso regression training of various tasks, on
a normalized data set. Weights are represented by a vertical bar per compound, with
compounds numbered according to table 1

S28

Figure S11: (1 of 5) Visualization of the creation of an XOR gate by composition of dif-
ferent compounds with different weights as obtained through a lasso regression, ordered
by the absolute value of weights. Every fifth compounds is shown here for brevity, a full
version of 25 compounds is included in the Supporting Information. a) Plots showing
measured intensities for a compound (normalized to standard scores) and a shaded back-
ground obtained by interpolation. Plots are sorted by decreasing absolute weight value
(contribution in the classification process). Axis are the same as in S8, with NaOH input
on the x-axis and formaldehyde input on the y-axis. b) Plots showing the same intensities
as in the top row, now multiplied by the weight for that respective compound. c) Plots
showing the resulting classification by weighting and summing up contributions from all
compounds included at that point.

S29

Figure S12: (2 of 5) Visualization of the creation of an XOR gate by composition of dif-
ferent compounds with different weights as obtained through a lasso regression, ordered
by the absolute value of weights. Every fifth compounds is shown here for brevity, a full
version of 25 compounds is included in the Supporting Information. a) Plots showing
measured intensities for a compound (normalized to standard scores) and a shaded back-
ground obtained by interpolation. Plots are sorted by decreasing absolute weight value
(contribution in the classification process). Axis are the same as in S8, with NaOH input
on the x-axis and formaldehyde input on the y-axis. b) Plots showing the same intensities
as in the top row, now multiplied by the weight for that respective compound. c) Plots
showing the resulting classification by weighting and summing up contributions from all
compounds included at that point.

S30

Figure S13: (3 of 5) Visualization of the creation of an XOR gate by composition of dif-
ferent compounds with different weights as obtained through a lasso regression, ordered
by the absolute value of weights. Every fifth compounds is shown here for brevity, a full
version of 25 compounds is included in the Supporting Information. a) Plots showing
measured intensities for a compound (normalized to standard scores) and a shaded back-
ground obtained by interpolation. Plots are sorted by decreasing absolute weight value
(contribution in the classification process). Axis are the same as in S8, with NaOH input
on the x-axis and formaldehyde input on the y-axis. b) Plots showing the same intensities
as in the top row, now multiplied by the weight for that respective compound. c) Plots
showing the resulting classification by weighting and summing up contributions from all
compounds included at that point.

S31

Figure S14: (4 of 5) Visualization of the creation of an XOR gate by composition of dif-
ferent compounds with different weights as obtained through a lasso regression, ordered
by the absolute value of weights. Every fifth compounds is shown here for brevity, a full
version of 25 compounds is included in the Supporting Information. a) Plots showing
measured intensities for a compound (normalized to standard scores) and a shaded back-
ground obtained by interpolation. Plots are sorted by decreasing absolute weight value
(contribution in the classification process). Axis are the same as in S8, with NaOH input
on the x-axis and formaldehyde input on the y-axis. b) Plots showing the same intensities
as in the top row, now multiplied by the weight for that respective compound. c) Plots
showing the resulting classification by weighting and summing up contributions from all
compounds included at that point.

S32

Figure S15: (5 of 5) Visualization of the creation of an XOR gate by composition of dif-
ferent compounds with different weights as obtained through a lasso regression, ordered
by the absolute value of weights. Every fifth compounds is shown here for brevity, a full
version of 25 compounds is included in the Supporting Information. a) Plots showing
measured intensities for a compound (normalized to standard scores) and a shaded back-
ground obtained by interpolation. Plots are sorted by decreasing absolute weight value
(contribution in the classification process). Axis are the same as in S8, with NaOH input
on the x-axis and formaldehyde input on the y-axis. b) Plots showing the same intensities
as in the top row, now multiplied by the weight for that respective compound. c) Plots
showing the resulting classification by weighting and summing up contributions from all
compounds included at that point.

S33

Figure S16: Training curves for classification tasks as a function of the train-set size,
where all samples not in the train-set are used for the test-set. Scores are calculated
using the Φ coefficient. Training scores are indicated in orange, test scores are indicated
in blue.

S34

Figure S17: Prediction results for substrates in the metabolic network

S35

Figure S18: Prediction results for substrates in the metabolic network (cont.)

S36

Figure S19: a) Normalized mean-squared error (NMSE) per substrate in the metabolic
network, both for predictions made by the Formose Reservoir (FRC) and a linear, Ridge
regression predictor. b) Histogram of NMSE scores for both prediction methods

S37

Figure S20: Extended time traces and comparison plots for 2-minute forecasts of simul-
taneously varying DHA, NaOH and formaldehyde inputs that resemble the behaviour of
a Lorenz attractor. True inputs are shown as purple, orange and red lines respectively,
and the forecasts as blue lines.

Figure S21: Direct mutual information between Lorenz attractor DHA, NaOH and
formaldehyde inputs and ion signal output. Every bar corresponds to the mutual infor-
mation in units of nats per compound, calculated over the full duration of the experiment.

S38

	SpringerNature_Nature_7567_ESM.pdf
	Experimental methods
	Mass spectrometry analysis
	Data processing

	Background
	Reservoir computation
	A theoretical example
	Training & testing
	In chemico reservoir computation
	Types of tasks

	Nonlinear classification
	Data generation
	Reproducibility
	Classification tasks
	Training procedure
	Test scores by leave-5-out cross-validation
	Training set size

	Dynamic systems predictions
	Fluctuating input & data generation
	Simulation of fluctuation-driven dynamical systems
	Training procedure

	Forecasting
	Lorenz attractor input & data generation
	Training procedure
	Mutual information

	References

